JP2017179619A - Alumina-based oxide continuous fiber and manufacturing method therefor - Google Patents

Alumina-based oxide continuous fiber and manufacturing method therefor Download PDF

Info

Publication number
JP2017179619A
JP2017179619A JP2016063929A JP2016063929A JP2017179619A JP 2017179619 A JP2017179619 A JP 2017179619A JP 2016063929 A JP2016063929 A JP 2016063929A JP 2016063929 A JP2016063929 A JP 2016063929A JP 2017179619 A JP2017179619 A JP 2017179619A
Authority
JP
Japan
Prior art keywords
alumina
fiber
based oxide
tensile strength
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016063929A
Other languages
Japanese (ja)
Other versions
JP6796390B2 (en
Inventor
和弘 粂田
Kazuhiro Kumeta
和弘 粂田
栄二 鍋井
Eiji Nabei
栄二 鍋井
伸 田中
Shin Tanaka
伸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitivy Co Ltd
Original Assignee
Nitivy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitivy Co Ltd filed Critical Nitivy Co Ltd
Priority to JP2016063929A priority Critical patent/JP6796390B2/en
Publication of JP2017179619A publication Critical patent/JP2017179619A/en
Application granted granted Critical
Publication of JP6796390B2 publication Critical patent/JP6796390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an alumina-based oxide continuous fiber less in reduction of tensile strength even when used under high temperature atmosphere for long time, containing no boron and excellent in heat resistance.SOLUTION: There is provided an alumina-based oxide continuous fiber containing alumina of 70 to 75 wt.% based on all components as a main component, silica of 20 to 29.7 wt.% based on all components and oxide of iron, magnesium, copper, yttrium, zirconium, nickel or zinc as a third component of prescribed amount and having mullite ratio of 5 to 50% in the whole crystal structure in the fiber, obtained by burning a precursor fiber obtained by dry spinning with using a compound of the metal as a starting raw material thereof.SELECTED DRAWING: None

Description

本発明は、耐熱性に優れたアルミナ系酸化物連続繊維及びその製造方法に関する。   The present invention relates to an alumina-based oxide continuous fiber excellent in heat resistance and a method for producing the same.

一般にアルミナ長繊維と呼ばれるアルミナ(Al)を主成分とするアルミナ系酸化物連続繊維は、高い耐熱性を有し、引張強度が高く、また電気絶縁性に優れる等多くの優れた特性を有しており、特に高温耐熱材料として広い分野で使用されている。 Alumina-based oxide continuous fiber mainly composed of alumina (Al 2 O 3 ), which is generally called alumina long fiber, has many excellent properties such as high heat resistance, high tensile strength, and excellent electrical insulation. In particular, it is used in a wide range of fields as a high temperature heat resistant material.

しかしながら、従来のアルミナ系酸化物連続繊維は、1200℃以上の高温雰囲気で長時間使用されることによって引張強度の低下を生じる傾向にあり、さらなる耐熱性の向上が求められている。   However, conventional alumina-based oxide continuous fibers tend to cause a decrease in tensile strength when used for a long time in a high temperature atmosphere of 1200 ° C. or higher, and further improvement in heat resistance is required.

アルミナ系酸化物連続繊維の耐熱性を向上させるために、通常アルミナの他にシリカ(SiO)を成分として含有させるが、さらに第3成分として酸化ホウ素を含有させることが提案されている(特許文献1、2、3、4)が、かかる繊維はホウ素を含有することが好ましくない用途や分野においては使用できないという問題がある。 In order to improve the heat resistance of the alumina-based continuous oxide fiber, silica (SiO 2 ) is usually included as a component in addition to alumina, but boron oxide is further proposed as a third component (patent) Documents 1, 2, 3, 4) have the problem that such fibers cannot be used in applications or fields where boron is not preferred.

他方、アルミナ系酸化物連続繊維を得るために、第3成分として酸化ホウ素以外の成分を含有させることも提案されている(特許文献5)。この提案では、アルミナを主成分とし、3〜12重量%のシリカと第3成分としてP、Ba、Sn、Y、Co、Sr、Cr、ZrまたはFeの酸化物の少なくとも1つを含有させたアルミナ質繊維が開示されているが、この繊維は不活性ガス雰囲気下で焼成されてなるものであり、また、この繊維の強さについては示されているものの、高温雰囲気で長時間使用された場合の引張強度の保持については何ら示されていない。   On the other hand, in order to obtain an alumina-based oxide continuous fiber, it has also been proposed to contain a component other than boron oxide as the third component (Patent Document 5). In this proposal, the main component is alumina, 3 to 12% by weight of silica, and at least one of oxides of P, Ba, Sn, Y, Co, Sr, Cr, Zr, or Fe are contained as the third component. Although an alumina fiber is disclosed, this fiber is fired in an inert gas atmosphere, and although the strength of this fiber is shown, it was used for a long time in a high temperature atmosphere. There is no indication of the retention of the tensile strength in the case.

さらに、還元性金属化合物としてNi、Fe、CoまたはCuの化合物を不均一になるように添加したセラミック繊維が提案されている(特許文献6)が、この提案は還元雰囲気下で焼成することによって金属化合物を還元し、サーメット繊維を得るものであって、この繊維を高温雰囲気で長時間使用された場合の引張強度の保持については何ら示されていない。   Furthermore, a ceramic fiber to which a compound of Ni, Fe, Co, or Cu is added in a non-uniform manner as a reducing metal compound has been proposed (Patent Document 6). This proposal is obtained by firing in a reducing atmosphere. The metal compound is reduced to obtain a cermet fiber, and there is no indication of maintaining the tensile strength when the fiber is used in a high temperature atmosphere for a long time.

特公昭61−32405号公報Japanese Patent Publication No. 61-32405 特公平1−14325号公報Japanese Patent Publication No. 1-14325 特開昭63−288217号公報JP-A 63-288217 特開2007−277744号公報JP 2007-277744 A 特開昭62−100457号公報JP-A-62-100457 特開昭62−199818号公報JP-A-62-199818

本発明は、上記のような従来のアルミナ系酸化物連続繊維における問題に鑑みなされたもので、アルミナ及びシリカを主成分とするアルミナ系酸化物連続繊維が、その製造時の焼成の過程で生成するムライト結晶の影響について検討し、特定の金属化合物を含有させた前駆体繊維を焼成することにより、焼成が完了した時点で、予めアルミナ系酸化物連続繊維を構成する結晶構造の一部を安定なムライトの結晶に転移させておくならば、その後1200℃以上の高温雰囲気下で長時間曝されても新たに生成するムライト結晶が成長し難くなり、繊維は緻密な結晶構造を維持することによって、引張強度の経時的低下が少なくなることを見いだし、本発明に至ったものである。
本発明の目的とするところは、1200℃以上の高温雰囲気下での長時間の使用時における引張強度の経時的低下が少なく、使用分野での制約のない耐熱性に優れたアルミナ系酸化物連続繊維を提供することにある。
The present invention has been made in view of the problems in the conventional alumina-based oxide continuous fibers as described above, and alumina-based oxide continuous fibers mainly composed of alumina and silica are produced in the course of firing during the production thereof. By examining the influence of mullite crystals, and firing the precursor fiber containing a specific metal compound, when the firing is completed, a portion of the crystal structure constituting the alumina-based oxide continuous fiber is stabilized in advance. If the mullite crystal is transferred to a new mullite crystal, the newly formed mullite crystal is difficult to grow even if exposed to a high temperature atmosphere of 1200 ° C. or higher for a long time, and the fiber maintains a dense crystal structure. The present inventors have found that the decrease in tensile strength with time is reduced, and have reached the present invention.
The object of the present invention is that the alumina-based oxide continuous excellent in heat resistance without restrictions in the field of use with little decrease in the tensile strength over time during long-term use in a high temperature atmosphere of 1200 ° C. or higher. To provide fiber.

本発明の要旨は、次のとおりである。
1.アルミナを全成分に対し70〜75重量%、シリカを全成分に対し20〜29.7重量%及び鉄(Fe)、マグネシウム(Mg)、銅(Cu)、イットリウム(Y)、ジルコニウム(Zr)、ニッケル(Ni)、亜鉛(Zn)の群から選ばれる金属の酸化物を全成分に対し0.3〜5重量%含み、繊維中の結晶構造全体に占めるムライトの比率が5〜50%であるアルミナ系酸化物連続繊維。
2.繊維の引張強度が60N/200Tex以上であり、1250℃で24時間加熱後の繊維の引張強度の保持率が加熱前の引張強度の70%以上である前記1に記載のアルミナ系酸化物連続繊維。
3.出発原料はいずれも水溶性または水分散性であって、アルミニウム化合物、ケイ素化合物、及びFe、Mg、Cu、Y、Zr、Ni、Znの群から選ばれる金属の化合物を出発原料とし、前記出発原料を水に溶解または懸濁させ、アルミニウム化合物をアルミナに換算して70〜75重量%、ケイ素化合物をシリカに換算して20〜29.7重量%、及び前記金属の群から選ばれる金属の化合物を該金属酸化物に換算して0.3〜5重量%の重量比で含み、20℃における粘度を10〜2000Pa・sの範囲に調製した紡糸原液を用い、乾式紡糸して得た前駆体繊維を1000〜1500℃の大気雰囲気でムライト化率5〜50%の結晶構造に焼成することを特徴とする前記1に記載のアルミナ系酸化物連続繊維の製造方法。
The gist of the present invention is as follows.
1. 70 to 75% by weight of alumina for all components, 20 to 29.7% by weight of silica for all components, and iron (Fe), magnesium (Mg), copper (Cu), yttrium (Y), zirconium (Zr) In addition, the metal oxide selected from the group of nickel (Ni) and zinc (Zn) is included in an amount of 0.3 to 5% by weight based on the total components, and the proportion of mullite in the entire crystal structure in the fiber is 5 to 50%. An alumina-based oxide continuous fiber.
2. 2. The alumina-based oxide continuous fiber according to 1 above, wherein the tensile strength of the fiber is 60 N / 200 Tex or more, and the retention rate of the tensile strength of the fiber after heating at 1250 ° C. for 24 hours is 70% or more of the tensile strength before heating. .
3. All of the starting materials are water-soluble or water-dispersible, and an aluminum compound, a silicon compound, and a metal compound selected from the group of Fe, Mg, Cu, Y, Zr, Ni, and Zn are used as a starting material, The raw material is dissolved or suspended in water, the aluminum compound is converted to alumina in an amount of 70 to 75% by weight, the silicon compound in terms of silica in an amount of 20 to 29.7% by weight, and a metal selected from the group of metals Precursor obtained by dry spinning using a spinning stock solution containing a compound in a weight ratio of 0.3 to 5% by weight in terms of the metal oxide and having a viscosity at 20 ° C. prepared in the range of 10 to 2000 Pa · s. The method for producing an alumina-based oxide continuous fiber according to 1 above, wherein the body fiber is fired in a crystal structure having a mullite conversion rate of 5 to 50% in an air atmosphere of 1000 to 1500 ° C.

本発明のアルミナ系酸化物連続繊維は、1200℃以上の高温雰囲気下での長時間の使用時における引張強度の経時的低下が少なく、長時間の使用に耐えるものであり、ホウ素を含まないことにより使用分野での制約のない耐熱性に優れたものである。
また、本発明のアルミナ系酸化物連続繊維の製造方法によれば、特定の金属化合物を用い第3成分として含ませることによって、特殊な焼成方法に拠らなくとも、耐熱性に優れたアルミナ系酸化物連続繊維を得ることが可能である。
The alumina-based oxide continuous fiber of the present invention is less susceptible to long-term use in tensile strength when used for a long time under a high temperature atmosphere of 1200 ° C. or higher, and does not contain boron. Therefore, it is excellent in heat resistance without restriction in the field of use.
In addition, according to the method for producing an alumina-based oxide continuous fiber of the present invention, by including a specific metal compound as the third component, an alumina-based excellent in heat resistance can be obtained without depending on a special firing method. It is possible to obtain oxide continuous fibers.

以下、本発明の実施の形態について、詳細に説明する。
本発明のアルミナ系酸化物連続繊維は、アルミナを主成分とする繊維であって、アルミナを全成分に対し70〜75重量%、シリカを全成分に対し20〜29.7重量%、及びFe、Mg、Cu、Y、Zr、Ni、Znの群、好ましくはFe、Mg、Cu、Yの群から選ばれる金属の酸化物を全成分に対し0.3〜5重量%含み、繊維中の結晶構造全体に占めるムライト(3Al・2SiO〜2Al・SiO)の比率が5〜50%であるムライト結晶を有する繊維である。
Hereinafter, embodiments of the present invention will be described in detail.
The alumina-based oxide continuous fiber of the present invention is a fiber containing alumina as a main component, and alumina is 70 to 75% by weight based on all components, silica is 20 to 29.7% by weight based on all components, and Fe. , Mg, Cu, Y, Zr, Ni, Zn, preferably 0.3 to 5% by weight of metal oxides selected from the group of Fe, Mg, Cu, and Y, based on the total components, It is a fiber having a mullite crystal in which the ratio of mullite (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2 ) in the entire crystal structure is 5 to 50%.

本発明のアルミナ系酸化物連続繊維は、好ましくは、アルミナを70〜74重量%、シリカを23〜29.5重量%、さらに第3成分であるFe、Mg、CuまたはYの酸化物を0.5〜3重量%含んでなる繊維である。   The alumina-based oxide continuous fiber of the present invention is preferably 70 to 74% by weight of alumina, 23 to 29.5% by weight of silica, and 0% of the oxide of Fe, Mg, Cu or Y as the third component. A fiber comprising 5 to 3% by weight.

また、本発明のアルミナ系酸化物連続繊維は、繊維中の結晶構造全体に占めるムライトの比率、即ちムライト化率が5〜50%の繊維である。ムライト化は、アルミナ、シリカによる結晶γアルミナ・非晶シリカからのムライトへの結晶転移であり、ムライト化率が高い程引張強度の保持率の面では好ましいが、焼成した繊維の引張強度が低く、使用用途等に制約を受け易くなる。本発明のアルミナ系酸化物連続繊維においては、ムライト化率は、好ましくは10〜45%であり、繊維の結晶構造にムライトが特定の比率で占めていることが必要である。
なお、ムライト化率は、前記結晶転移前後の粉末X線回析(XRD)による測定結果から算出される。
Further, the alumina-based oxide continuous fiber of the present invention is a fiber having a mullite ratio in the entire crystal structure in the fiber, that is, a mullite conversion rate of 5 to 50%. Mullitization is a crystal transition from crystalline γ-alumina / amorphous silica to mullite by alumina and silica. The higher the mullite ratio, the better the tensile strength retention, but the lower the tensile strength of the fired fiber. It becomes easy to be restricted by the usage. In the alumina-based oxide continuous fiber of the present invention, the mullite conversion rate is preferably 10 to 45%, and it is necessary that mullite occupies a specific ratio in the crystal structure of the fiber.
The mullite conversion rate is calculated from the measurement result by powder X-ray diffraction (XRD) before and after the crystal transition.

本発明のアルミナ系酸化物連続繊維は、主たる第1成分としてアルミナ、第2成分としてシリカ、さらには第3成分として前記金属の酸化物を含み、結晶構造の一部を安定なムライトとすることによって、繊維の引張強度が60N/200Tex以上、さらには65N/200Tex以上であり、1200℃以上の高温雰囲気下における引張強度の経時的低下が少なく、1250℃で24時間加熱後の引張強度の保持率が、加熱前の引張強度の70%以上、さらには75%以上であるという耐熱性に優れるものである。   The alumina-based oxide continuous fiber of the present invention contains alumina as a main first component, silica as a second component, and further oxide of the metal as a third component, and a part of the crystal structure is made stable mullite. Therefore, the tensile strength of the fiber is 60 N / 200 Tex or more, further 65 N / 200 Tex or more, and there is little decrease in the tensile strength over time in a high temperature atmosphere of 1200 ° C. or higher, and the tensile strength is maintained after heating at 1250 ° C. for 24 hours. The rate is 70% or more of the tensile strength before heating, and more preferably 75% or more.

本発明のアルミナを主成分とし、シリカ、さらに特定の前記金属の酸化物から選ばれる1種を含み、繊維中の結晶構造全体でのムライト化率が5〜50%であるアルミナ系酸化物連続繊維は、次のようにして製造することができる。   Alumina-based oxide continuous containing, as a main component, the alumina of the present invention, silica, and further containing one kind selected from oxides of the specific metal, and having a mullite conversion rate of 5 to 50% in the entire crystal structure in the fiber. The fiber can be produced as follows.

すなわち、本発明のアルミナ系酸化物連続繊維は、出発原料はいずれも水溶性または水分散性の化合物であって、アルミニウム化合物、ケイ素化合物、及びFe、Mg、Cu、Y、Zr、Ni、Znの群、好ましくはFe、Mg、Cu、Yの群から選ばれる金属の化合物を出発原料とし、前記出発原料を水に溶解または懸濁させ、アルミニウム化合物をアルミナに換算し全成分に対し70〜75重量%、ケイ素化合物をシリカに換算し全成分に対し20〜29.7重量%、及びFe、Mg、Cu、Y、Zr、Ni、Znの群、好ましくはFe、Mg、Cu、Yの群から選ばれる金属の化合物を該金属酸化物に換算し全成分に対し0.3〜5重量%の重量比で含み、20℃における粘度を10〜2000Pa・sの範囲に調製した紡糸原液を用い、乾式紡糸して得た前駆体繊維を1000〜1500℃の大気雰囲気でムライト化率5〜50%の結晶構造に焼成することにより得ることができる。   That is, in the alumina-based oxide continuous fiber of the present invention, all starting materials are water-soluble or water-dispersible compounds, and are aluminum compounds, silicon compounds, and Fe, Mg, Cu, Y, Zr, Ni, Zn. A metal compound selected from the group of, preferably Fe, Mg, Cu, and Y, the starting material is dissolved or suspended in water, the aluminum compound is converted to alumina, and 70 to 75% by weight, 20 to 29.7% by weight of the total amount of silicon compound converted to silica, and Fe, Mg, Cu, Y, Zr, Ni, Zn group, preferably Fe, Mg, Cu, Y A spinning dope prepared by converting a metal compound selected from the group into a metal oxide in a weight ratio of 0.3 to 5% by weight with respect to all components and having a viscosity at 20 ° C. adjusted in the range of 10 to 2000 Pa · s. for It can be obtained by firing the crystal structure of 5-50% mullite ratio in an air atmosphere at 1000 to 1500 ° C. The precursor fiber obtained by dry spinning.

本発明の製造方法において用いる出発原料は、いずれも水溶性または水分散性であり、
出発原料のアルミニウム化合物は、アルミナ系酸化物連続繊維の主成分であるアルミナを前駆体繊維の焼成の過程で形成しうるもので、例えば、塩基性酢酸アルミニウム、塩基性乳酸アルミニウム等の有機酸アルミニウムの塩基性塩、塩基性塩化アルミニウム、塩基性硝酸アルミニウム等の無機酸アルミニウムの塩基性塩、アルミナゾル等が挙げられる。
The starting materials used in the production method of the present invention are both water-soluble or water-dispersible,
The starting aluminum compound can form alumina, which is the main component of the alumina-based oxide continuous fiber, in the process of firing the precursor fiber. For example, an organic acid aluminum such as basic aluminum acetate or basic aluminum lactate Basic salts of aluminum, inorganic aluminum basic salts such as basic aluminum chloride and basic aluminum nitrate, and alumina sol.

また、出発原料のケイ素化合物は、前駆体繊維の焼成の過程でシリカを形成しうるもので、例えば、メチルシリケート、エチルシリケート等の加水分解物、シリカゾル、水に溶けるように変性された水溶性シリコーン等のシリコーン化合物等が挙げられる。さらに、出発原料のFe、Mg、Cu、Y、Zr、NiまたはZnの化合物、好ましくはFe、Mg、CuまたはYの化合物は、前駆体繊維の焼成の過程で第3成分として該金属酸化物を形成しうるもので、例えば、これら金属の塩酸塩、硫酸塩、硝酸塩等の無機酸金属塩、酢酸塩、ギ酸塩等の有機酸金属塩が挙げられる。   The starting silicon compound is capable of forming silica in the process of firing the precursor fiber. For example, hydrolyzate such as methyl silicate and ethyl silicate, silica sol, water-soluble modified to dissolve in water Examples thereof include silicone compounds such as silicone. Further, the starting material Fe, Mg, Cu, Y, Zr, Ni or Zn compound, preferably Fe, Mg, Cu or Y compound is used as the third component in the process of firing the precursor fiber. Examples thereof include inorganic acid metal salts such as hydrochlorides, sulfates and nitrates of these metals, and organic acid metal salts such as acetates and formates.

出発原料であるアルミニウム化合物、ケイ素化合物、及び前記金属の化合物を水に溶解または懸濁させて紡糸原液を調製するに際しては、水溶性有機重合体を紡糸助剤として添加することが曳糸性を高めるうえで好ましい。水溶性有機重合体としては、曳糸性向上機能を有するものであればよく、カルボキシメチルセルロース、ポリメタクリル酸エステル、ポリビニルアルコール等が挙げられ、なかでもポリビニルアルコールが好ましいものとして挙げられる。   When preparing a spinning stock solution by dissolving or suspending an aluminum compound, a silicon compound, and the metal compound as starting materials in water, it is possible to add a water-soluble organic polymer as a spinning aid. It is preferable in terms of increase. The water-soluble organic polymer is not particularly limited as long as it has a function of improving spinnability, and examples thereof include carboxymethyl cellulose, polymethacrylic acid ester, and polyvinyl alcohol. Among them, polyvinyl alcohol is preferable.

紡糸助剤を添加する際には、出発原料と紡糸助剤とを、出発原料を全酸化物に換算して重量比で好ましくは95/5〜70/30、より好ましくは90/10〜75/25の範囲になるようにして水に溶解または懸濁させ、アルミニウム化合物をアルミナに換算して70〜75重量%、ケイ素化合物をシリカに換算して20〜29.7重量%、及び前記金属の化合物を該金属酸化物に換算して0.3〜5重量%の重量比で含む紡糸原液を調製する。   When the spinning aid is added, the starting material and the spinning aid are preferably 95/5 to 70/30, more preferably 90/10 to 75 in terms of weight ratio when the starting material is converted to total oxide. Dissolved in or suspended in water so as to be in the range of / 25, the aluminum compound is converted to alumina in an amount of 70 to 75% by weight, the silicon compound in terms of silica in an amount of 20 to 29.7% by weight, and the metal A spinning stock solution containing 0.3 to 5% by weight in terms of the metal oxide is prepared.

紡糸原液の調製では、紡糸原液に含まれる前記金属の化合物は、該金属酸化物に換算して0.5〜3重量%添加することが必要であり、添加量が0.3重量%未満では、後述する添加の効力が発揮できず、5重量%を超えると、紡糸原液の粘度が経時的に急激に上昇し、また曳糸性も低下し、前駆体繊維を安定に得ることが困難になる。   In the preparation of the spinning dope, the metal compound contained in the spinning dope needs to be added in an amount of 0.5 to 3% by weight in terms of the metal oxide. The effect of addition described later cannot be exhibited, and if it exceeds 5% by weight, the viscosity of the spinning dope rapidly increases with time, and the spinnability also decreases, making it difficult to stably obtain precursor fibers. Become.

また、紡糸原液としては、20℃における粘度を10〜2000Pa・sの範囲になるように調製した紡糸原液を用いることが乾式紡糸法により紡糸するうえで好ましく、より好ましくは粘度が20〜500Pa・sの範囲の紡糸原液であれば、紡糸工程の安定性をより増加させる。紡糸原液における粘度の調整は、減圧濃縮法によって好ましい粘度範囲に容易にすることができる。   Further, as the spinning dope, it is preferable to use a spinning dope prepared so that the viscosity at 20 ° C. is in the range of 10 to 2000 Pa · s, when spinning by the dry spinning method, and more preferably the viscosity is 20 to 500 Pa · s. If the stock solution is in the range of s, the stability of the spinning process is further increased. Adjustment of the viscosity in the spinning dope can be facilitated to a preferred viscosity range by a vacuum concentration method.

本発明の製造方法においては、調製した紡糸原液を用いて乾式紡糸し、長繊維状の前駆体繊維を得る。乾式紡糸法により長繊維状の前駆体繊維を得る際には、紡糸原液を紡糸ノズルから加熱雰囲気中に吐出し、十分に乾燥しつつ所定の繊維径になるように巻き取る。   In the production method of the present invention, dry spinning is performed using the prepared spinning solution to obtain a long-fiber precursor fiber. When a long fiber precursor fiber is obtained by the dry spinning method, the spinning solution is discharged from a spinning nozzle into a heated atmosphere and wound up to a predetermined fiber diameter while being sufficiently dried.

前駆体繊維の焼成は、得られた前駆体繊維を、アルミナ系酸化物連続繊維の製造で通常用いられる焼成方法、すなわち1000〜1500℃、好ましくは1000〜1200℃の大気雰囲気下で焼成することにより、本発明のアルミナ系酸化物連続繊維が得られる。   Firing of the precursor fiber is performed by firing the obtained precursor fiber in a firing method generally used in the production of alumina-based oxide continuous fibers, that is, 1000 to 1500 ° C., preferably 1000 to 1200 ° C. Thus, the alumina-based oxide continuous fiber of the present invention is obtained.

本発明の製造方法においては、特に前記金属化合物を用い、金属酸化物に換算しての所定量を前駆体繊維に含ませたことにより、該前駆体繊維を焼成すると、添加した金属化合物が第3成分としての金属酸化物が生成する。該金属酸化物は、焼結助剤として作用し、短時間の焼成でアルミニウム化合物・ケイ素化合物から生成したγアルミナ・非晶シリカの一部を、速やかに安定なムライト結晶に結晶転移させ、ムライト化を生起させる。本発明の製造方法によれば、焼結助剤として作用する該金属酸化物の存在下での速やかな結晶転移によってムライト化率5〜50%の結晶構造とすることができる。   In the production method of the present invention, when the precursor fiber is fired by using the metal compound and including a predetermined amount in terms of metal oxide in the precursor fiber, the added metal compound is the first. A metal oxide as a three component is generated. The metal oxide acts as a sintering aid, and a part of γ-alumina / amorphous silica formed from an aluminum compound / silicon compound in a short period of time is rapidly crystallized to a stable mullite crystal, thereby producing mullite. Cause chemistry. According to the production method of the present invention, a crystal structure having a mullite conversion rate of 5 to 50% can be obtained by rapid crystal transition in the presence of the metal oxide acting as a sintering aid.

すなわち、本発明によれば、第3成分としての金属酸化物が含まれたアルミナ系酸化物連続繊維中には、焼成が完了した時点で既にムライト化率が5〜50%という特定比率の安定なムライトが結晶構造に存在している。そのため、本発明のアルミナ系酸化物連続繊維を耐熱材料として使用した際に、1200℃を超える高温に長時間曝されることによりムライト化率が50%以上にムライト化の進行により新たなムライト結晶が生成しても、既に存在するムライト結晶によって更なる結晶成長が阻害・抑制される。したがって、高温に長時間曝された繊維中には粗大なムライト結晶が少なく、緻密な結晶構造が維持されることによって、60N/200Tex以上の引張強度を有しながら、1200℃以上の高温雰囲気下における経時的な引張強度の低下が起こり難いアルミナ系酸化物連続繊維を得ることができる。   That is, according to the present invention, in the alumina-based oxide continuous fiber containing the metal oxide as the third component, the mullite conversion rate is already stable at a specific ratio of 5 to 50% when firing is completed. Mullite is present in the crystal structure. Therefore, when the alumina-based oxide continuous fiber of the present invention is used as a heat-resistant material, the mullite conversion rate is increased to 50% or more due to exposure to a high temperature exceeding 1200 ° C. for a long time. However, further crystal growth is inhibited and suppressed by the already existing mullite crystals. Therefore, there are few coarse mullite crystals in the fiber that has been exposed to high temperature for a long time, and a dense crystal structure is maintained, so that it has a tensile strength of 60 N / 200 Tex or higher and a high temperature atmosphere of 1200 ° C. or higher. It is possible to obtain an alumina-based oxide continuous fiber in which a decrease in tensile strength over time hardly occurs.

以下、本発明を実施例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to this.

(実施例1)
出発原料として、アルミニウム化合物に塩基性塩化アルミニウム水溶液、ケイ素化合物にシリカゾル、第3成分の金属酸化物となる金属化合物に硫酸鉄を用い、紡糸助剤としてポリビニルアルコール(PVA)を用い、出発原料とPVAとを出発原料を全酸化物に換算して85/15の重量比で水に添加して懸濁させ、出発原料を表1に示す成分比に換算して含む混合溶液とし、さらに減圧濃縮し20℃での粘度が240Pa・sの紡糸原液を調製した。この紡糸原液を用い、乾式紡糸法にて、紡糸ノズルから60℃の加熱雰囲気中に吐出し、線条物を乾燥して巻き取ることで長繊維状の前駆体繊維を作製した。得られた長繊維状の前駆体繊維を1170℃の大気雰囲気下で焼成して、繊度200Texのアルミナ系酸化物連続繊維を得た。
Example 1
As a starting material, a basic aluminum chloride aqueous solution is used as an aluminum compound, silica sol is used as a silicon compound, iron sulfate is used as a metal compound as a third component metal oxide, polyvinyl alcohol (PVA) is used as a spinning aid, The starting material is converted to total oxide and suspended in water at a weight ratio of 85/15 by adding PVA to a mixed solution containing the starting material in terms of the component ratios shown in Table 1, and further concentrated under reduced pressure. A spinning stock solution having a viscosity of 240 Pa · s at 20 ° C. was prepared. Using this spinning dope, a filament-like precursor fiber was produced by dry spinning from a spinning nozzle in a heated atmosphere at 60 ° C., and drying and winding the filament. The obtained long-fiber precursor fiber was fired in an air atmosphere at 1170 ° C. to obtain an alumina-based oxide continuous fiber having a fineness of 200 Tex.

得られたアルミナ系酸化物連続繊維は、第3成分として酸化鉄を含み、引張強度が83.4N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が25%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24時間(hr)加熱し、引張強度を測定したところ、引張強度が70.6N/200Texで、引張強度の保持率が85%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。
また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であった。
The obtained alumina-based oxide continuous fiber contains iron oxide as a third component, has a tensile strength of 83.4 N / 200 Tex, and the measurement result by XRD shows that the mullite conversion rate of the fiber crystal structure is 25%. there were.
When the obtained alumina-based continuous oxide fiber was heated at 1250 ° C. for 24 hours (hr) and measured for tensile strength, the tensile strength was 70.6 N / 200 Tex and the tensile strength retention was 85%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance.
In addition, when heated at 1250 ° C. for 24 hours, mullite formation progressed, and the mullite conversion rate was almost 100%.

(実施例2)
実施例1において、出発原料として、第3成分の金属酸化物となる硫酸鉄の成分比、紡糸原液粘度を、表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した長繊維状の前駆体繊維を焼成し、アルミナ系酸化物連続繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分として酸化鉄を含み、表2に示すとおり、引張強度が72.6N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が30%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、引張強度を測定したところ、表2に示すとおり、引張強度が65.7N/200Texで、引張強度の保持率が90%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であった。
(Example 2)
In Example 1, as a starting material, dry spinning was performed in the same manner as in Example 1 except that the component ratio of iron sulfate, which is the metal oxide of the third component, and the spinning stock solution viscosity were changed as shown in Table 1. The produced long fiber precursor fiber was fired to obtain an alumina-based oxide continuous fiber.
The obtained alumina-based oxide continuous fiber contains iron oxide as the third component, and as shown in Table 2, the tensile strength is 72.6 N / 200 Tex. From the measurement result by XRD, the mullite of the fiber crystal structure is obtained. The conversion rate was 30%.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours and measured for tensile strength. As shown in Table 2, the tensile strength was 65.7 N / 200 Tex and the tensile strength retention rate was 90%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance. In addition, when heated at 1250 ° C. for 24 hours, mullite formation progressed and the mullite conversion rate was almost 100%.

(実施例3)
実施例1において、第3成分の金属酸化物となる出発原料を硫酸マグネシウムに、また紡糸原液粘度を表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した長繊維状の前駆体繊維を焼成し、アルミナ系酸化物連続繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分として酸化マグネシウムを含み、表2に示すとおり、引張強度が78.5N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が40%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、引張強度を測定したところ、表2に示すとおり、引張強度が63.8N/200Texで、引張強度の保持率が81%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。 また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であった。
(Example 3)
In Example 1, except that the starting material to be the metal oxide of the third component was changed to magnesium sulfate and the spinning solution viscosity was changed as shown in Table 1, dry spinning was carried out in the same manner as in Example 1 to prepare The resulting long fiber precursor fiber was fired to obtain an alumina-based oxide continuous fiber.
The obtained alumina-based oxide continuous fiber contains magnesium oxide as the third component and has a tensile strength of 78.5 N / 200 Tex as shown in Table 2. From the measurement result by XRD, the mullite of the crystal structure of the fiber is obtained. The conversion rate was 40%.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours and measured for tensile strength. As shown in Table 2, the tensile strength was 63.8 N / 200 Tex and the tensile strength retention rate was 81%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance. In addition, when heated at 1250 ° C. for 24 hours, mullite formation progressed, and the mullite conversion rate was almost 100%.

(実施例4)
実施例1において、第3成分の金属酸化物となる出発原料を酢酸イットリウムに、またその成分比、紡糸原液粘度を表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した長繊維状の前駆体繊維を焼成し、アルミナ系酸化物連続繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分として酸化イットリウムを含み、表2に示すとおり、引張強度が68.5N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が33%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、引張強度を測定したところ、表2に示すとおり、引張強度が62.8N/200Texで、引張強度の保持率が91%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。 また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であった。
Example 4
In Example 1, the starting material used as the third component metal oxide was changed to yttrium acetate, and its component ratio and spinning stock solution viscosity were changed as shown in Table 1, in the same manner as in Example 1, The long fiber-like precursor fiber thus spun was fired to obtain an alumina-based oxide continuous fiber.
The obtained alumina-based oxide continuous fiber contains yttrium oxide as the third component and has a tensile strength of 68.5 N / 200 Tex as shown in Table 2. From the measurement result by XRD, the mullite of the fiber crystal structure is obtained. The conversion rate was 33%.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours and measured for tensile strength. As shown in Table 2, the tensile strength was 62.8 N / 200 Tex, and the tensile strength retention was 91%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance. In addition, when heated at 1250 ° C. for 24 hours, mullite formation progressed and the mullite conversion rate was almost 100%.

(実施例5)
実施例1において、第3成分の金属酸化物となる出発原料を塩化銅に、また紡糸原液粘度を表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した長繊維状の前駆体繊維を焼成し、アルミナ系酸化物連続繊維を得た。得られたアルミナ系酸化物連続繊維は、第3成分として酸化銅を含み、表2に示すとおり、引張強度が80.4N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が10%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、引張強度を測定したところ、表2に示すとおり、引張強度が64.7N/200Texで、引張強度の保持率が80%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。 また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であった。
(Example 5)
In Example 1, dry spinning was carried out in the same manner as in Example 1 except that the starting material to be the metal oxide of the third component was changed to copper chloride and the viscosity of the spinning dope was changed as shown in Table 1. The resulting long fiber precursor fiber was fired to obtain an alumina-based oxide continuous fiber. The obtained alumina-based oxide continuous fiber contains copper oxide as the third component, and as shown in Table 2, the tensile strength is 80.4 N / 200 Tex. From the measurement result by XRD, the mullite of the fiber crystal structure is obtained. The conversion rate was 10%.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours and measured for tensile strength. As shown in Table 2, the tensile strength was 64.7 N / 200 Tex and the tensile strength retention was 80%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance. In addition, when heated at 1250 ° C. for 24 hours, mullite formation progressed and the mullite conversion rate was almost 100%.

(比較例1)
実施例1において、第3成分の金属酸化物となる出発原料の金属化合物を用いず、塩基性塩化アルミニウム水溶液とシリカゾルにて、成分比、紡糸原液粘度を表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した前駆体繊維を焼成し、アルミナ系酸化物長繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分の金属酸化物を含まず、表2に示すとおり、引張強度が89.2N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が0%であって、結晶構造にはムライトが存在しないものであった。
また、得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、XRDでの測定結果から繊維の結晶構造のムライト化率がほぼ100%となっていたが、引張強度を測定したところ、表2に示すとおり、引張強度が41.2N/200Texで、引張強度の保持率が46%であり、得られたアルミナ系酸化物連続繊維は、耐熱性に劣るものであった。
(Comparative Example 1)
In Example 1, except that the starting material metal compound that becomes the metal oxide of the third component was not used, and the component ratio and the spinning dope viscosity were changed as shown in Table 1 with a basic aluminum chloride aqueous solution and silica sol. In the same manner as in Example 1, dry spinning was performed, and the prepared precursor fiber was fired to obtain alumina-based oxide long fibers.
The obtained alumina-based oxide continuous fiber does not contain the third component metal oxide, and as shown in Table 2, the tensile strength is 89.2 N / 200 Tex. From the measurement result by XRD, the crystal structure of the fiber The mullite conversion rate was 0%, and no mullite was present in the crystal structure.
Moreover, the obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours, and the mullite conversion rate of the fiber crystal structure was almost 100% from the measurement result by XRD, but when the tensile strength was measured, As shown in Table 2, the tensile strength was 41.2 N / 200 Tex, the tensile strength retention was 46%, and the obtained alumina-based oxide continuous fiber was inferior in heat resistance.

本発明のアルミナ系酸化物連続繊維は、1200℃以上の高温雰囲気下における引張強度の経時的低下が少なく、長時間の使用に耐え、耐熱性に優れるものであり、断熱材、耐火材、補強材、炉材、耐熱シール材、触媒担持材等の用途に有用なるもので、またホウ素を含まないことにより、意図しないホウ素の存在が好ましくない半導体製造等の分野での使用が可能である。さらに、本発明のアルミナ系酸化物連続繊維の製造方法は、大気雰囲気下での焼成を含むことから、前記繊維を商業的にも有利に得ることが可能である。

The alumina-based oxide continuous fiber of the present invention has little decrease in tensile strength over time under a high temperature atmosphere of 1200 ° C. or higher, and can withstand long-time use and has excellent heat resistance, and is a heat insulating material, fireproof material, reinforcement It is useful for applications such as materials, furnace materials, heat-resistant sealing materials, catalyst support materials and the like, and by not containing boron, it can be used in fields such as semiconductor production where the unintended presence of boron is not preferred. Furthermore, since the manufacturing method of the alumina type oxide continuous fiber of this invention includes baking by an atmospheric condition, it is possible to obtain the said fiber also advantageously commercially.

Claims (3)

アルミナを全成分に対し70〜75重量%、シリカを全成分に対し20〜29.7重量%及び鉄、マグネシウム、銅、イットリウムの群から選ばれる金属の酸化物を全成分に対し0.3〜5重量%含み、繊維中の結晶構造全体に占めるムライトの比率が5〜50%であるアルミナ系酸化物連続繊維。 70 to 75% by weight of alumina with respect to all components, 20 to 29.7% by weight of silica with respect to all components, and an oxide of a metal selected from the group of iron, magnesium, copper and yttrium with respect to all components of 0.3 Alumina-based oxide continuous fiber containing 5% by weight and containing 5 to 50% of mullite in the entire crystal structure in the fiber. 繊維の引張強度が60N/200Tex以上であり、1250℃で24時間加熱後の繊維の引張強度の保持率が加熱前の引張強度の70%以上である請求項1に記載のアルミナ系酸化物連続繊維。 2. The alumina-based oxide continuous according to claim 1, wherein the tensile strength of the fiber is 60 N / 200 Tex or more, and the retention ratio of the tensile strength of the fiber after heating at 1250 ° C. for 24 hours is 70% or more of the tensile strength before heating. fiber. 出発原料はいずれも水溶性または水分散性であって、アルミニウム化合物、ケイ素化合物、及び鉄、マグネシウム、銅、イットリウムの群から選ばれる金属の化合物を出発原料とし、前記出発原料を水に溶解または懸濁させ、アルミニウム化合物をアルミナに換算して70〜75重量%、ケイ素化合物をシリカに換算して20〜29.7重量%、及び前記金属の群から選ばれる金属の化合物を該金属酸化物に換算して0.3〜5重量%の重量比で含み、20℃における粘度を10〜2000Pa・sの範囲に調製した紡糸原液を用い、乾式紡糸して得た前駆体繊維を1000〜1500℃の大気雰囲気でムライト化率5〜50%の結晶構造に焼成することを特徴とする請求項1に記載のアルミナ系酸化物連続繊維の製造方法。 All of the starting materials are water-soluble or water-dispersible, and an aluminum compound, a silicon compound, and a metal compound selected from the group of iron, magnesium, copper, and yttrium are used as a starting material, and the starting material is dissolved in water or Suspended, 70 to 75% by weight of aluminum compound converted to alumina, 20 to 29.7% by weight of silicon compound converted to silica, and a metal compound selected from the group of the metals A precursor fiber obtained by dry spinning using a spinning stock solution containing 0.3 to 5% by weight in terms of a weight ratio and having a viscosity at 20 ° C. prepared in the range of 10 to 2000 Pa · s is 1000 to 1500. The method for producing an alumina-based oxide continuous fiber according to claim 1, wherein firing is performed to a crystal structure having a mullite conversion rate of 5 to 50% in an air atmosphere at ° C.
JP2016063929A 2016-03-28 2016-03-28 Alumina-based oxide continuous fiber and its manufacturing method Active JP6796390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063929A JP6796390B2 (en) 2016-03-28 2016-03-28 Alumina-based oxide continuous fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063929A JP6796390B2 (en) 2016-03-28 2016-03-28 Alumina-based oxide continuous fiber and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017179619A true JP2017179619A (en) 2017-10-05
JP6796390B2 JP6796390B2 (en) 2020-12-09

Family

ID=60003911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063929A Active JP6796390B2 (en) 2016-03-28 2016-03-28 Alumina-based oxide continuous fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6796390B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315838A (en) * 2018-02-06 2018-07-24 山东大学 A kind of method that yttrium polymer precursor prepares Yttrium oxide nano fiber
CN111978550A (en) * 2020-09-10 2020-11-24 山东大学 Yttrium/aluminum-organic polymer precursor, yttrium aluminum garnet continuous fiber and preparation method
CN115259845A (en) * 2022-06-27 2022-11-01 东华大学 Preparation method of flexible continuous mullite filament

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137030A (en) * 1976-05-04 1977-11-16 Minnesota Mining & Mfg Manufacture of refractory fiber
JPS60167925A (en) * 1984-02-10 1985-08-31 Nichias Corp Heat-resistant inorganic fiber
JPS62139840A (en) * 1985-12-12 1987-06-23 Toyota Motor Corp Metallic composite material reinforced with continuous alumina fiber containing mullite crystal
JPS62206021A (en) * 1986-03-06 1987-09-10 Nippon Light Metal Co Ltd Production of alumina based filament
WO2004003276A1 (en) * 2002-06-28 2004-01-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic staple fiber accumulation for holding material, process for producing the same and holding material
JP2009061443A (en) * 2007-08-09 2009-03-26 Nissan Motor Co Ltd Inorganic fiber catalyst, production method thereof and catalyst structure
JP2012184512A (en) * 2011-03-03 2012-09-27 Nitivy Co Ltd Method for manufacturing alumina filament excellent in flexibility and heat resistance
WO2014115814A1 (en) * 2013-01-23 2014-07-31 電気化学工業株式会社 Alumina fiber and alumina fiber aggregate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137030A (en) * 1976-05-04 1977-11-16 Minnesota Mining & Mfg Manufacture of refractory fiber
JPS60167925A (en) * 1984-02-10 1985-08-31 Nichias Corp Heat-resistant inorganic fiber
JPS62139840A (en) * 1985-12-12 1987-06-23 Toyota Motor Corp Metallic composite material reinforced with continuous alumina fiber containing mullite crystal
JPS62206021A (en) * 1986-03-06 1987-09-10 Nippon Light Metal Co Ltd Production of alumina based filament
WO2004003276A1 (en) * 2002-06-28 2004-01-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic staple fiber accumulation for holding material, process for producing the same and holding material
JP2009061443A (en) * 2007-08-09 2009-03-26 Nissan Motor Co Ltd Inorganic fiber catalyst, production method thereof and catalyst structure
JP2012184512A (en) * 2011-03-03 2012-09-27 Nitivy Co Ltd Method for manufacturing alumina filament excellent in flexibility and heat resistance
WO2014115814A1 (en) * 2013-01-23 2014-07-31 電気化学工業株式会社 Alumina fiber and alumina fiber aggregate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315838A (en) * 2018-02-06 2018-07-24 山东大学 A kind of method that yttrium polymer precursor prepares Yttrium oxide nano fiber
CN108315838B (en) * 2018-02-06 2020-05-22 山东大学 Method for preparing yttrium oxide nano-fiber by yttrium polymer precursor
CN111978550A (en) * 2020-09-10 2020-11-24 山东大学 Yttrium/aluminum-organic polymer precursor, yttrium aluminum garnet continuous fiber and preparation method
CN115259845A (en) * 2022-06-27 2022-11-01 东华大学 Preparation method of flexible continuous mullite filament

Also Published As

Publication number Publication date
JP6796390B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US11572314B2 (en) Preparation method for yttrium aluminum garnet continuous fiber
TWI270404B (en) Composite cordierite filters
Tsetsekou A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties
US5378665A (en) Crystalline yttrium aluminate and process for making
CN111233445B (en) High-temperature high-strength flexible zirconia-silica fiber membrane and preparation method and application thereof
JP6796390B2 (en) Alumina-based oxide continuous fiber and its manufacturing method
JP2002068854A (en) Alumina porous material and production method thereof
CN102731104B (en) Preparation process for composite continuous ceramic fiber
CN102070326B (en) Preparation process of multi-element composite alumina-based continuous fibers
CN109734456A (en) A kind of preparation method of porous silicon nitride ceramic
CN106192078B (en) A method of the preparation of low oxygen content continuous SiC fiber is carried out using air curing
CN103614808A (en) Mullite fiber with villous whisker and preparation method thereof
Yalamaç et al. Ceramic fibers
RU2465247C2 (en) Polycrystalline corundum fibres and method of obtaining said fibres
JP2013129553A (en) Compound oxide, production method thereof and exhaust gas purification catalyst
JP6238286B2 (en) Zirconia continuous fiber and production method thereof
Wei et al. Structure evolution and thermal stability of La2O3-doped mullite fibers via sol-gel method
JP2010280529A (en) Method for manufacturing crucible for polycrystalline silicon production
CN112094125A (en) Low-thermal-conductivity low-thermal-expansion magnesium-based raw material and preparation method thereof
CA2561737A1 (en) Fiber-reinforced heat-resistant sound-absorbing material and process for producing the same
CN110629322B (en) Preparation method of high-purity polycrystalline yttrium aluminum garnet continuous fiber
CN110117841B (en) Method for preparing mullite nanofibers by electrospinning biphase precursors
JPH045770B2 (en)
JPS61289130A (en) Production of zirconia fiber having high strength and toughness
WO2022071218A1 (en) Ceramic continuous fibers having metal element and ceramic matrix composite material using same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201116

R150 Certificate of patent or registration of utility model

Ref document number: 6796390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250