JP2017177083A - Particle separating device - Google Patents

Particle separating device Download PDF

Info

Publication number
JP2017177083A
JP2017177083A JP2016072999A JP2016072999A JP2017177083A JP 2017177083 A JP2017177083 A JP 2017177083A JP 2016072999 A JP2016072999 A JP 2016072999A JP 2016072999 A JP2016072999 A JP 2016072999A JP 2017177083 A JP2017177083 A JP 2017177083A
Authority
JP
Japan
Prior art keywords
flow
particles
flow path
particle
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016072999A
Other languages
Japanese (ja)
Inventor
和樹 飯嶋
Kazuki Iijima
和樹 飯嶋
俊薫 豊嶋
Toshishige Toyoshima
俊薫 豊嶋
片山 晃治
Koji Katayama
晃治 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016072999A priority Critical patent/JP2017177083A/en
Publication of JP2017177083A publication Critical patent/JP2017177083A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device that can accurately separate particles (especially, particle with a particle diameter of around several micrometers) contained in fluid and readily be miniaturized.SOLUTION: A particle separating device includes: a flow passage for a fluid containing the particles; and one or more flow generation means for generating a reciprocating flow movement of the fluid, where the flow passage has a hydraulic diameter that is equal to or lower than twenty times of a particle diameter of the particle.SELECTED DRAWING: Figure 5

Description

本発明は、流体中に含まれる粒子をその径に基づき分離する装置に関する。   The present invention relates to an apparatus for separating particles contained in a fluid based on the diameter thereof.

医薬品用途で用いる抗体は通常、当該抗体を発現可能な細胞を培養後、得られた培養液を遠心分離、濾過、カラムクロマトグラフィーなどの精製操作を行ない、製造する。その際、得られた前記抗体を含む溶液中には、当該抗体の凝集体が含まれている可能性がある。抗体凝集体は免疫原性を有するおそれがあるため、特に医薬品用途で用いる場合、当該凝集体を精度よく検出し、抗体を含む溶液中に当該凝集体を極力含まないよう製造する必要がある。しかしながら、抗体凝集体の中には、通常のカラムクロマトグラフィーやフローサイトメトリーでは検出/分離困難な、サブビジブル凝集体(粒径が0.1から10μmの凝集体)が含まれている。   Antibodies used for pharmaceutical use are usually produced by culturing cells capable of expressing the antibody, and then subjecting the obtained culture solution to purification operations such as centrifugation, filtration, and column chromatography. At that time, the obtained solution containing the antibody may contain an aggregate of the antibody. Since antibody aggregates may have immunogenicity, particularly when used in pharmaceutical applications, it is necessary to detect the aggregates with high accuracy and to produce the aggregates so that the aggregates are not contained as much as possible. However, antibody aggregates include subvisible aggregates (aggregates having a particle size of 0.1 to 10 μm) that are difficult to detect / separate by ordinary column chromatography or flow cytometry.

サブビジブル凝集体を検出する装置として、Aggregates Sizer(島津製作所製)やArchimedes(Malvern Instruments製)が知られている。しかしながら、これらの装置は検出再現性が悪いという問題点があった。またマイクロ流路を用いた、数μmの微粒子を連続的に分級可能な装置も知られている(特許文献1および2)が、微粒子の分級を当該微粒子の沈降または浮上を用いて行なうため、装置の小型化には不利といえる。   Aggregates Sizer (manufactured by Shimadzu Corporation) and Archimedes (manufactured by Malvern Instruments) are known as devices for detecting subvisible aggregates. However, these devices have a problem that detection reproducibility is poor. In addition, there is known an apparatus that can continuously classify fine particles of several μm using a microchannel (Patent Documents 1 and 2), but the fine particles are classified using sedimentation or floating of the fine particles. It can be said that it is disadvantageous for downsizing of the apparatus.

特開2006−116520号公報JP 2006-116520 A 特開2007−144270号公報JP 2007-144270 A

本発明の課題は、流体中に含まれる粒子(特に粒径が数μm前後の粒子)を精度良く分離でき、かつ小型化も容易な装置を提供することにある。   An object of the present invention is to provide an apparatus that can accurately separate particles contained in a fluid (particularly particles having a particle size of around several μm) and can be easily downsized.

上記課題を解決するために、本発明者らは粒子を含む流体の流路と往復する流動を発生させる流動発生手段とを備えた粒子分離装置を用いて鋭意検討を重ねた結果、本発明に到達した。   In order to solve the above problems, the present inventors have conducted extensive studies using a particle separation device including a flow path of a fluid containing particles and a flow generation means for generating a reciprocating flow. Reached.

すなわち本発明の第一の態様は、粒子を含む流体の流路と往復する流動を発生させる1または複数の流動発生手段とを備えた粒子分離装置であって、前記流路の水力直径が前記粒子の径の20倍以下である、前記装置である。   That is, the first aspect of the present invention is a particle separation apparatus comprising one or a plurality of flow generation means for generating a reciprocating flow with a flow path of a fluid containing particles, wherein the hydraulic diameter of the flow path is It is the said apparatus which is 20 times or less of the diameter of particle | grains.

さらに本発明の第二の態様は、粒子を含む流体の流路と往復する流動を発生させる1または複数の流動発生手段とを備えた当該粒子を濃縮する装置であって、前記流路の水力直径が前記粒子の粒子径の20倍以下である、前記装置である。   Furthermore, the second aspect of the present invention is an apparatus for concentrating the particles, comprising one or a plurality of flow generation means for generating a reciprocating flow with a flow path of the fluid containing the particles, the hydraulic power of the flow path It is the said apparatus whose diameter is 20 times or less of the particle diameter of the said particle | grain.

また本発明の第三の態様は、流動発生手段が、粒子を含む流体の流れる方向に対して平行方向に往復する流動を発生させる手段である、前記第一または第二の態様に記載の装置である。   The third aspect of the present invention is the apparatus according to the first or second aspect, wherein the flow generation means is a means for generating a flow reciprocating in a direction parallel to the flow direction of the fluid containing the particles. It is.

また本発明の第四の態様は、粒子レイノルズ数が5.0×10−4以上である、前記第一から第三の態様のいずれかに記載の装置である。 A fourth aspect of the present invention is the apparatus according to any one of the first to third aspects, wherein the particle Reynolds number is 5.0 × 10 −4 or more.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、粒子を含む流体の流路と往復する流動を発生させる1または複数の流動発生手段とを備えた、粒子分離装置に関する。本発明において粒子分離装置は、流路を流れる流体に含まれる粒子の径に基づき粒子を分離する装置である。本発明の粒子操作装置は、往復する流動を発生させることにより流路に導入した流体中の粒子が、往復する流動のうちの1の方向に、粒子固有の移動度で移動することで、粒子径に基づく分離を可能にしている。粒子固有の移動度は、様々な条件によって変化することから、条件として例えば流体、流路長、流体の変位量を示す波形等を適宜選択することにより、流体に含まれる所望の径を有した粒子を分離、取得できる。   The present invention relates to a particle separation apparatus including one or a plurality of flow generation means for generating a reciprocating flow with a flow path of a fluid containing particles. In the present invention, the particle separation device is a device that separates particles based on the diameter of particles contained in the fluid flowing in the flow path. In the particle manipulating device of the present invention, the particles in the fluid introduced into the flow path by generating the reciprocating flow move in one direction of the reciprocating flow with the inherent mobility of the particles. Separation based on diameter is possible. Since the inherent mobility of particles varies depending on various conditions, the fluid has a desired diameter included in the fluid by appropriately selecting, for example, a fluid, a flow path length, a waveform indicating the amount of displacement of the fluid, etc. as conditions. Particles can be separated and acquired.

本発明の装置における分離対象粒子は、流体に対し不溶性の物質からなる粒子であれば特に限定はなく、一例としてビーズ、粉砕用ボール、液晶用スペーサー、クロマトグラフィー用分離剤、吸着剤といった工業材料や、細胞、DNA、抗体などのタンパク質、ウイルスといった研究用・医療用材料があげられる。特に本発明の装置は、流体の往復する流動により分離が行なえることから、細胞、タンパク質、分離剤・吸着剤といった壊れやすい粒子の分離に適している。   The particles to be separated in the apparatus of the present invention are not particularly limited as long as they are particles made of a substance that is insoluble in the fluid. For example, industrial materials such as beads, ball for grinding, spacer for liquid crystal, separation agent for chromatography, and adsorbent And research and medical materials such as cells, proteins such as DNA and antibodies, and viruses. In particular, the apparatus of the present invention is suitable for separation of fragile particles such as cells, proteins, separation agents and adsorbents because separation can be performed by reciprocating fluid flow.

本発明の装置で分離可能な細胞に特に限定はなく、一例として血液中に含まれる細胞や培養細胞があげられる。血液中には、赤血球、白血球(単球、リンパ球。好中球、好酸球、抗塩基球など)、血小板といった血球の他に、癌細胞が含まれている場合がある。血球の大きさ(粒径)はそれぞれ、赤血球は直径7から8μm、厚さ2μmほどであり、白血球はその大半が6から15μmほどであり、血小板は1から4μmほどである。一方、血液中に含まれる癌細胞(血中循環腫瘍細胞、CTC)は10から30μm程であり、またクラスター状に凝集したCTCの大きさ(粒径)もおよそ30から100μmと、血球よりもかなり大きい。   The cells that can be separated by the apparatus of the present invention are not particularly limited, and examples thereof include cells contained in blood and cultured cells. Blood may contain cancer cells in addition to blood cells such as red blood cells, white blood cells (monocytes, lymphocytes, neutrophils, eosinophils, anti-basophils, etc.) and platelets. The size (particle size) of blood cells is 7 to 8 μm in diameter for red blood cells and about 2 μm in thickness, most of white blood cells are about 6 to 15 μm, and about 1 to 4 μm for platelets. On the other hand, cancer cells (blood circulating tumor cells, CTC) contained in blood are about 10 to 30 μm, and the size (particle size) of CTC aggregated in a cluster is about 30 to 100 μm, which is larger than that of blood cells. Pretty big.

したがって本発明の装置により、血液中に含まれる血球と癌細胞(CTC)とを分離することができる。培養細胞の分離における本発明の装置の適用例としては、胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)といった幹細胞から分化誘導した細胞培養液より、当該分化した細胞と未分化の幹細胞とを分離する例があげられる。   Therefore, the blood cell contained in blood and a cancer cell (CTC) can be isolate | separated with the apparatus of this invention. As an application example of the apparatus of the present invention in the separation of cultured cells, the differentiated cells and undifferentiated cells can be obtained from a cell culture medium induced to differentiate from stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells). An example of isolating the stem cells is given.

抗体などタンパク質の大きさ(粒径)は一般に数nm程度であるが、製造工程で機械的または熱ストレス等をかかると凝集し、不溶化するおそれがある。不溶化したタンパク質の大きさ(粒径)は数十nmから数十μm程度である。数十nm程度の不溶化タンパク質であれば、従来のカラムクロマトグラフィー法や超遠心分離法で分離・除去することができる。しかしながら粒径0.1から10μm程度のサブビジブル凝集体に該当する不溶化タンパク質は、従来の装置では精度よく分離することができなかった。本発明の装置は、サブビジブル凝集体であっても精度よく分離できるため、抗体などタンパク質の凝集体の分離・除去を精度よく実施可能である。   The size (particle size) of a protein such as an antibody is generally about several nanometers, but may be aggregated and insolubilized when subjected to mechanical or thermal stress in the production process. The insolubilized protein has a size (particle size) of about several tens of nanometers to several tens of micrometers. Any insolubilized protein of about several tens of nanometers can be separated and removed by conventional column chromatography or ultracentrifugation. However, an insolubilized protein corresponding to a subvisible aggregate having a particle size of about 0.1 to 10 μm cannot be separated with high accuracy by a conventional apparatus. Since the apparatus of the present invention can separate even sub-visible aggregates with high accuracy, it is possible to accurately separate and remove protein aggregates such as antibodies.

本発明において流路に流す流体は液体または気体を指すが、液体の方が、本発明の装置による分離能が高いため好ましい。流路に流す液体は、分離する粒子に応じ、適宜当該粒子に対し不溶性の液体を選択すればよい。例えば分離する粒子が工業材料の場合、製造時用いた溶媒をそのまま用いてもよいし、水などの安価かつ無害な溶媒に置換してもよい。一方、分離する粒子が細胞、ウイルス、抗体といった生体試料の場合は、製造時または調製時に用いた溶媒を用いると好ましい。   In the present invention, the fluid flowing through the flow path refers to a liquid or a gas, but the liquid is preferable because the separation ability of the apparatus of the present invention is high. As the liquid flowing through the flow path, a liquid that is insoluble in the particles may be appropriately selected according to the particles to be separated. For example, when the particles to be separated are industrial materials, the solvent used during production may be used as it is, or may be replaced with an inexpensive and harmless solvent such as water. On the other hand, when the particles to be separated are biological samples such as cells, viruses, and antibodies, it is preferable to use the solvent used during production or preparation.

具体的には分離する粒子が細胞の場合、当該細胞の生存を担保する点で、培養に用いた培地、血液、血漿、生理食塩水(PBS(Phosphate Buffered Saline)、TBS(Tris Buffered Saline)など)が好ましい。なお、流路に流す粒子を含む液体に、界面活性剤、タンパク質、pH調製剤、安定剤、増粘剤、保存剤、抗生物質、ポリマー、モノマーなどの添加物を含ませてもよい。これら添加物を含ませることで、液体の粘性を変えたり、非ニュートン性流体にすることで、本発明の装置による粒子分離能を高めることができる。   Specifically, when the particles to be separated are cells, the culture medium, blood, plasma, physiological saline (PBS (Phosphate Buffered Saline), TBS (Tris Buffered Saline), etc. used for culturing are ensured. ) Is preferred. In addition, additives such as surfactants, proteins, pH adjusters, stabilizers, thickeners, preservatives, antibiotics, polymers, and monomers may be included in the liquid containing particles that flow through the flow path. By including these additives, the viscosity of the liquid can be changed or the non-Newtonian fluid can be used to increase the particle separation ability of the apparatus of the present invention.

本発明の装置は、分離対象粒子を含む流体の流路の水力直径を前記粒子の径の20倍以下とすることを特徴としており、15倍以下とするとより好ましい。水力直径とは流路の断面と等価な円管の直径のことを指し、流路断面が矩形の場合、下記式(1)で算出できる。なお流路幅のアスペクト比(w/h)は1以上であればよく、1から8の間とすると好ましく、2から4の間とするとより好ましい。   The apparatus of the present invention is characterized in that the hydraulic diameter of the flow path of the fluid containing the separation target particles is 20 times or less the diameter of the particles, and more preferably 15 times or less. The hydraulic diameter refers to the diameter of a circular tube equivalent to the cross section of the flow path. When the cross section of the flow path is rectangular, it can be calculated by the following formula (1). The aspect ratio (w / h) of the flow path width may be 1 or more, preferably between 1 and 8, and more preferably between 2 and 4.

Dh=2wh/(w+h) (1)
Dh:水力直径、w:流路幅、h:流路高さ
水力直径が1.5μm前後の流路の好ましい例として、幅2.2μm×高さ1.1μmの断面を有した流路や、幅4μm×高さ1μmの断面を有した流路があげられる。水力直径が2μmの流路の好ましい例として、幅3μm×高さ1.5μmの断面を有した流路や、幅5μm×高さ1.25μmの断面を有した流路があげられる。水力直径が150μm前後の流路の好ましい例として、幅約220μm×高さ110μmの断面を有した流路や、幅375μm×高さ94μmの断面を有した流路があげられる。水力直径が200μmの流路の好ましい例として、幅300μm×高さ150μmの断面を有した流路や、幅500μm×高さ125μmの断面を有した流路があげられる。水力直径が300μmの流路の好ましい例として、幅450μm×高さ225μmの断面を有した流路や、幅750μm×高さ188μmの断面を有した流路があげられる。水力直径が400μmの流路の好ましい例として、幅600μm×高さ300μmの断面を有した流路や、幅1000μm×高さ250μmの断面を有した流路があげられる。水力直径が450μmの流路の好ましい例として、幅675μm×高さ338μmの断面を有した流路や、幅1125μm×高さ282μmの断面を有した流路があげられる。水力直径が600μmの流路の好ましい例として、幅900μm×高さ450μmの断面を有した流路や、幅1500μm×高375μmの断面を有した流路があげられる。水力直径が1050μmの流路の好ましい一例として、幅1575μm×高さ788μmの断面を有した流路や、幅2625μm×高さ657μmの断面を有した流路があげられる。水力直径が1400μmの流路の好ましい例として、幅2100μm×高さ1050μmの断面を有した流路や、幅3500μm×高さ875μmの断面を有した流路があげられる。
Dh = 2wh / (w + h) (1)
Dh: Hydraulic diameter, w: Channel width, h: Channel height As a preferable example of the channel having a hydraulic diameter of around 1.5 μm, a channel having a cross section of width 2.2 μm × height 1.1 μm And a flow path having a cross section of 4 μm wide × 1 μm high. Preferable examples of the flow channel having a hydraulic diameter of 2 μm include a flow channel having a cross section of 3 μm wide × 1.5 μm in height and a flow channel having a cross section of 5 μm wide × 1.25 μm high. Preferable examples of the flow channel having a hydraulic diameter of around 150 μm include a flow channel having a cross section of about 220 μm wide × 110 μm high and a flow channel having a cross section of 375 μm wide × 94 μm high. Preferable examples of the flow channel having a hydraulic diameter of 200 μm include a flow channel having a cross section of width 300 μm × height 150 μm and a flow channel having a cross section of width 500 μm × height 125 μm. Preferable examples of the channel having a hydraulic diameter of 300 μm include a channel having a cross section of width 450 μm × height 225 μm and a channel having a cross section of width 750 μm × height 188 μm. Preferable examples of the flow channel having a hydraulic diameter of 400 μm include a flow channel having a cross section having a width of 600 μm × a height of 300 μm and a flow channel having a cross section having a width of 1000 μm × a height of 250 μm. Preferable examples of the channel having a hydraulic diameter of 450 μm include a channel having a cross section of width 675 μm × height 338 μm and a channel having a cross section of width 1125 μm × height 282 μm. Preferable examples of the flow channel having a hydraulic diameter of 600 μm include a flow channel having a cross section of 900 μm wide × 450 μm high, and a flow channel having a cross section of 1500 μm wide × 375 μm high. Preferable examples of the flow channel having a hydraulic diameter of 1050 μm include a flow channel having a cross section of width 1575 μm × height 788 μm and a flow channel having a cross section of width 2625 μm × height 657 μm. Preferable examples of the flow channel having a hydraulic diameter of 1400 μm include a flow channel having a cross section of width 2100 μm × height 1050 μm and a flow channel having a cross section of width 3500 μm × height 875 μm.

本発明の装置を血液中に含まれる癌細胞(CTC)の分離に適用しようとする場合、通常の癌細胞(CTC)であればその粒径が10から30μm程度、平均粒径で20μm程度のため、もれなく分離したいときは水力直径200μm(最小粒径10μm×20)以下の流路に、概ね分離したいときは水力直径400μm(平均粒径20μm×20)以下の流路に、それぞれすればよく、水路の水力直径を150μm(最小粒径10μm×15)以下(もれなく分離したいとき)、または300μm(平均粒径20μm×15)以下(概ね分離したいとき)とすると好ましい。さらにクラスター状に凝集した癌細胞(CTC)を分離しようとする場合は凝集CTCの粒径が30から100μm程度、平均粒径で70μm程度のため、凝集CTCをもれなく分離したいときは水力直径600μm(最小粒径30μm×20)以下の流路に、概ね分離したいときは水力直径1400μm(平均粒径70μm×20)以下の流路に、それぞれすればよく、水路の水力直径を450μm(最小粒径30μm×15)以下(もれなく分離したいとき)、または1050μm(平均粒径70μm×15)以下(概ね分離したいとき)とすると好ましい。   When the device of the present invention is applied to the separation of cancer cells (CTC) contained in blood, if it is a normal cancer cell (CTC), its particle size is about 10 to 30 μm, and the average particle size is about 20 μm. Therefore, when it is desired to separate all of the fluids, a hydraulic diameter of 200 μm (minimum particle size 10 μm × 20) or less may be used. It is preferable that the hydraulic diameter of the water channel is 150 μm (minimum particle size 10 μm × 15) or less (when it is desired to separate completely), or 300 μm (average particle size 20 μm × 15) or less (when it is generally desired to separate). Further, when cancer cells (CTC) aggregated in a cluster are to be separated, the aggregated CTC particle size is about 30 to 100 μm and the average particle size is about 70 μm. If you want to separate them into channels with a minimum particle size of 30 μm × 20) or less, you can set them to channels with a hydraulic diameter of 1400 μm (average particle size of 70 μm × 20) or less. 30 μm × 15) or less (when it is desired to separate all of them), or 1050 μm (average particle size 70 μm × 15) or less (when generally desired to be separated) is preferable.

本発明の装置を、サブビジブル領域(0.1から10μm)にあるタンパク質凝集体の分離に適用し、かつ対象凝集体の大きさが0.1μm程度の場合は、水路の水力直径を2μm(0.1μm×20)以下にするとよく、1.5μm(0.1μm×15)以下にすると好ましい。また対象凝集体の大きさが10μm程度の場合は、水路の水力直径を200μm(10μm×20)以下にするとよく、150μm(10μm×15)以下にすると好ましい。   When the apparatus of the present invention is applied to the separation of protein aggregates in the sub-visible region (0.1 to 10 μm) and the target aggregate size is about 0.1 μm, the hydraulic diameter of the water channel is set to 2 μm (0 0.1 μm × 20) or less, and preferably 1.5 μm (0.1 μm × 15) or less. When the size of the target aggregate is about 10 μm, the hydraulic diameter of the water channel may be 200 μm (10 μm × 20) or less, and preferably 150 μm (10 μm × 15) or less.

本発明の装置に備える、粒子を含む流体の流路の作製は、基板部材に設けた溝や凹凸面をそのまま流路として用いてもよいし、少なくともいずれか一方の部材に溝や凹凸面を設けた上面基板部材および下面基板部材とを接合する、または上面基板部材および下面基板部材と側面部材とを接合することで形成される各基板間の空洞を流路として用いてもよい。流路の形状および断面に特に限定はなく、形状としては直線状、曲線状、管状、面状などが、断面としては円形、楕円形、矩形、多角形、台形などが、それぞれあげられるが、流路形状は直線状とする方が粒子径に基づく分離をより精度よく行なえる点で好ましい。なお基板部材の材質は、粒子観察を容易に行なえる点で、透明な部材とするとよい。透明な部材の例としては、ガラス、ポリカーボネート板などの樹脂、シリコーンゴム、ポリジメチルシロキサン(PDMS)があげられる。   For the production of the fluid flow path containing particles provided in the apparatus of the present invention, the groove or uneven surface provided on the substrate member may be used as the flow path as it is, or the groove or uneven surface is provided on at least one member. A cavity between the substrates formed by joining the provided upper substrate member and lower substrate member or joining the upper substrate member, lower substrate member and side member may be used as the flow path. There are no particular limitations on the shape and cross section of the flow path, and the shape is linear, curved, tubular, planar, etc., and the cross section is circular, elliptical, rectangular, polygonal, trapezoidal, etc. It is preferable that the flow path shape is linear because separation based on the particle diameter can be performed with higher accuracy. The material of the substrate member is preferably a transparent member from the viewpoint that particle observation can be easily performed. Examples of the transparent member include glass, a resin such as a polycarbonate plate, silicone rubber, and polydimethylsiloxane (PDMS).

流路の長さは、後述する往復流動を発生させる流動発生手段による粒子移動操作(粒子分離操作)をバッチ式で行なうか、連続式で行なうかで異なる。バッチ式で行なう場合、流路内の粒子は流動発生手段により往復運動するため、流路の長さは少なくとも当該往復運動による移動量分あればよく、数十μmから数mm程度の長さでも実施可能である。ただし、バッチ式による粒子分離能力は流動発生手段による粒子移動操作の長さと比例するため、所望の分離能力を考慮の上、流路の長さを設定するとよい。一方連続式で行なう場合、流路内の粒子は排出口側に流れるためバッチ式よりも流路を長くする必要がある。例えば、粒径10μm程度の粒子を連続式、かつ精度よく分離したい場合は、流路の長さは1cm以上とするとよい。   The length of the flow path differs depending on whether the particle movement operation (particle separation operation) by the flow generation means for generating reciprocating flow, which will be described later, is performed batchwise or continuously. When the batch method is used, the particles in the flow path are reciprocated by the flow generating means. Therefore, the length of the flow path should be at least as much as the amount of movement due to the reciprocating movement, and even a length of several tens μm to several mm. It can be implemented. However, since the batch-type particle separation capacity is proportional to the length of the particle transfer operation by the flow generating means, the length of the flow path may be set in consideration of the desired separation capacity. On the other hand, in the case of the continuous method, the particles in the flow channel flow to the discharge port side, so that the flow channel needs to be longer than the batch method. For example, when it is desired to separate particles having a particle size of about 10 μm continuously and accurately, the length of the flow path is preferably 1 cm or more.

上面基板部材および下面基板部材を接合する(または上面基板部材および下面基板部材と側面部材とを接合する)ことで、粒子を含む流体の流路を作製する場合は、これら部材のいずれかに粒子を含む流体を導入/排出するための貫通口を設ける必要がある。粒子を含む流体を導入するための貫通口(流体導入口)は1つのみ設けてもよいし、複数設けてもよい。さらに流体導入口は送液チューブを介し、送液手段に接続されていてもよい。粒子を含む流体を排出するための貫通口(流体排出口)も流体導入口と同様1つのみ設けてもよいし、複数設けてもよい。また流体導入口は送液チューブを介し、吸引手段または廃液タンクに接続されていてもよい。   When a fluid flow path containing particles is produced by joining the upper surface substrate member and the lower surface substrate member (or joining the upper surface substrate member and the lower surface substrate member and the side surface member), the particles are attached to any of these members. It is necessary to provide a through-hole for introducing / extracting a fluid containing the. Only one through-hole (fluid inlet) for introducing a fluid containing particles may be provided, or a plurality of through-holes may be provided. Furthermore, the fluid inlet may be connected to the liquid feeding means via the liquid feeding tube. As with the fluid introduction port, only one or a plurality of through-ports (fluid discharge ports) for discharging the fluid containing particles may be provided. Further, the fluid introduction port may be connected to the suction means or the waste liquid tank via the liquid feeding tube.

なお後述する流動発生手段による粒子移動操作を連続式で行なう場合は、流体を排出するための貫通口の他に別途、分離した粒子を排出するための貫通口(粒子排出口)を設けてもよい。粒子排出口(粒子排出口を設けない場合は流体排出口)側に、分離・排出された粒子の通過を検出可能な装置(フローサイトメーターなど)や当該粒子の径を計測可能な装置(パーティクルカウンターなど)を備えることで、径に基づく粒子の分離が確認できる。さらに前記装置による分析結果に基づき、所望の径を有した粒子の分離・採取・除去も行なえる。   In addition, when performing the particle movement operation by the flow generation means described later in a continuous manner, in addition to the through-hole for discharging the fluid, a through-hole (particle discharge port) for discharging the separated particles may be provided separately. Good. A device that can detect the passage of separated and discharged particles (such as a flow cytometer) or a device that can measure the diameter of the particles (particles) on the particle discharge port (or a fluid discharge port if no particle discharge port is provided) By providing a counter or the like, separation of particles based on diameter can be confirmed. Furthermore, based on the analysis result by the apparatus, particles having a desired diameter can be separated, collected and removed.

本発明の装置に備える、往復する流動を発生させる流動発生手段の一例として、送液手段、気流発生手段、圧力発生手段など直接流路内の流体に往復する流動を発生させる手段や、アクチュエーターや圧電素子など流路を構成する部材(基板部材または側面部材)に対し往復振動を与える手段により間接的に流路内の流体に往復する流動を発生させる手段があげられる。流動発生手段による流動発生方向は、粒子を含む流体の流れる方向に対して垂直方向でない限り、その方向に限定はないが、粒子を含む流体の流れる方向に対して平行方向とすると高い精度の分離を迅速に行なえる点で好ましい。   As an example of a flow generation means for generating a reciprocating flow provided in the apparatus of the present invention, a means for generating a flow reciprocating directly in the fluid in the flow path, such as a liquid feeding means, an air flow generation means, a pressure generation means, an actuator, A means for generating a flow that reciprocates indirectly with the fluid in the flow path by means for applying reciprocal vibration to a member (substrate member or side member) that constitutes the flow path, such as a piezoelectric element. The direction of flow generation by the flow generation means is not limited as long as it is not perpendicular to the direction in which the fluid containing particles flows, but it is highly accurate if it is parallel to the direction in which the fluid containing particles flows. Is preferable because it can be performed quickly.

流動発生手段が直接流路内の流体に往復する流動を発生させる手段の場合、前述した手段と、流路の流体導入口および/または流体排出口とを、液密または気密に接続すればよい。流動発生手段が上面基板部材と下面基板部材と側面部材とから構成され、圧電素子などにより間接的に流路内の流体に往復する流動を発生させる手段の場合、側面部材の材質は伸縮性を有した材とすると好ましい。流動発生手段により発生される往復する流動の周期性および波形に特に限定はなく、周期的な流動であってもよく、非周期的な流動であってもよく、対称の流動であってもよく、非対称の流動であってもよい。流動発生手段を複数備える場合、各手段で異なる周期/波形の流動(非同期の流動)を発生させてもよいし、同一の周期/波形の流動(同期した流動)を発生させてもよい。   In the case where the flow generating means is a means for generating a flow that reciprocates directly with the fluid in the flow path, the above-described means and the fluid inlet and / or fluid outlet of the flow path may be connected in a liquid-tight or air-tight manner. . In the case where the flow generating means is composed of an upper surface substrate member, a lower surface substrate member, and a side surface member, and is a means for generating a flow that reciprocates indirectly with the fluid in the flow path by a piezoelectric element or the like, the material of the side surface member has elasticity. It is preferable to have the material. There is no particular limitation on the periodicity and waveform of the reciprocating flow generated by the flow generating means, and it may be a periodic flow, a non-periodic flow, or a symmetric flow. An asymmetric flow may also be used. When a plurality of flow generation means are provided, each means may generate a flow with different periods / waveforms (asynchronous flow), or may generate a flow with the same period / waveform (synchronous flow).

本発明において、流路に流れる粒子は、一定の速度以上で流れる(移動させる)ことで当該粒子を前記流路中央側に整列させることができる。具体的には流速を1mm/s以上とすると好ましい。本発明の装置による粒子の分離/濃縮の一態様(実施例2および3の条件)である、流路が幅200μm、高さ50μmの矩形断面を有する流路であり、導入する粒子の径が10μmおよび5μmであり、粒子を含んだ流体が25℃の水(動粘性率:8.97×10−7/s)であり、流速(粒子の移動速度)が1mm/sであるときの粒子レイノルズ数Repを、下記式(2)を用いて算出すると、それぞれ2.09×10−3(10μmの粒子)、および5.23×10−4(5μmの粒子)となる。
Rep=Um×a/νDh (2)
Rep:粒子レイノルズ数、Um:最大流速(通常、流速の1.5倍)
a:粒子径、ν:動粘性率、Dh:水力直径
したがって、本発明の装置を用いて粒子の分離/濃縮を行なう際、粒子レイノルズ数は5.0×10−4以上とすると好ましいことがわかる。
In the present invention, the particles flowing in the flow channel can be aligned at the center of the flow channel by flowing (moving) at a certain speed or higher. Specifically, the flow rate is preferably 1 mm / s or more. The flow path is a flow path having a rectangular cross section with a width of 200 μm and a height of 50 μm, which is an aspect of the separation / concentration of particles by the apparatus of the present invention (conditions of Examples 2 and 3). 10 μm and 5 μm, when the fluid containing particles is water at 25 ° C. (kinematic viscosity: 8.97 × 10 −7 m 2 / s), and the flow velocity (particle moving speed) is 1 mm / s When the particle Reynolds number Rep is calculated using the following formula (2), 2.09 × 10 −3 (10 μm particles) and 5.23 × 10 −4 (5 μm particles) are obtained.
Rep = Um × a 2 / νDh (2)
Rep: Particle Reynolds number, Um: Maximum flow velocity (usually 1.5 times the flow velocity)
a: Particle diameter, ν: Kinematic viscosity, Dh: Hydraulic diameter Therefore, when performing separation / concentration of particles using the apparatus of the present invention, it is preferable that the particle Reynolds number is 5.0 × 10 −4 or more. Recognize.

一般に、動粘性率が10−6から10−9/sの流体が流れる流路内において、粒子を整列させるパラメーターは、流路の幾何学構造、流路断面積に対する粒子サイズ、流路を流れる流体の物性、流路内を流れる粒子に働く力などがあげられる(Jian Zhou et.al.,Lab on a chip,13,1121−1132(2013))。本発明では、粒子は、流動発生手段により生じる往復する流動にさらされることで絶えず加速度が変化する空間にさらされている。当該加速度変化時に発生する、粒子周りの不均一な速度分布由来のせん断力が、壁面から離れる方向に粒子を押しつけ、粒子を流路中央に整列していると考えられる。 In general, in a flow channel in which a fluid having a kinematic viscosity of 10 −6 to 10 −9 m 2 / s flows, the parameters for aligning the particles are the geometry of the flow channel, the particle size with respect to the cross-sectional area of the flow channel, the flow channel The physical properties of the fluid flowing in the flow path, the force acting on the particles flowing in the flow path, and the like (Jian Zhou et.al., Lab on a chip, 13, 1121-1132 (2013)). In the present invention, the particles are exposed to a space where the acceleration is constantly changed by being exposed to the reciprocating flow generated by the flow generation means. It is considered that the shear force derived from the non-uniform velocity distribution around the particles generated when the acceleration changes, presses the particles away from the wall surface, and aligns the particles in the center of the flow path.

また、前記せん断力は流路壁面に近い方が大きくなると考えられる。従って本発明の一態様における粒子の整列のためのパラメーターとしては、流路断面積に対する粒子径、粒子の加速度変化の有無、前記加速度変化量があげられる。これらのパラメーターにより、Jianらの文献の形態では実現できない、Rep<<1という非常に小さい粒子レイノルズ数であっても粒子を整列させることができる。   Moreover, it is thought that the said shear force becomes large near the flow path wall surface. Therefore, the parameters for the alignment of the particles in one embodiment of the present invention include the particle diameter with respect to the cross-sectional area of the flow path, the presence / absence of the acceleration change of the particles, and the acceleration change amount. With these parameters, the particles can be aligned even with a very small particle Reynolds number of Rep << 1, which cannot be realized in the form of Jian et al.

本発明の装置は、粒子を含む流体の流路と往復する流動を発生させる1または複数の流動発生手段とを備えた粒子分離装置において、前記流路の水力直径を前記粒子の径の20倍以下とすることを特徴としている。本発明により、流体中に含まれる粒子をその径に基づき、精度よく分離(分級)することができる。また本発明の装置は、粒子をその径に基づき流路中央部へ移動させることができるため、分離に必要な流路を極めて短くでき、粒子分離装置の小型化が容易である。   The apparatus of the present invention is a particle separation apparatus comprising one or a plurality of flow generation means for generating a reciprocating flow with a flow path of a fluid containing particles, wherein the hydraulic diameter of the flow path is 20 times the diameter of the particles. It is characterized by the following. According to the present invention, particles contained in a fluid can be accurately separated (classified) based on the diameter. Moreover, since the apparatus of the present invention can move particles to the center of the flow path based on the diameter thereof, the flow path required for separation can be extremely shortened, and the particle separation apparatus can be easily downsized.

なお流体中に含まれる粒子の種類が1種類の場合、流路出口(粒子排出口)での当該粒子の濃度は高まる。したがって本発明の装置により、遠心分離器など従来の装置では濃縮困難な、極微量の試料(例えば1μL程度)からの粒子(細胞など)濃縮が可能となる。   In addition, when the kind of particle | grains contained in a fluid is one type, the density | concentration of the said particle | grain at a flow-path exit (particle discharge port) increases. Therefore, the apparatus of the present invention makes it possible to concentrate particles (such as cells) from a very small amount of sample (for example, about 1 μL), which is difficult to concentrate with a conventional apparatus such as a centrifuge.

本発明の装置に備える流路(流路構造体)の一態様を示した図である。It is the figure which showed the one aspect | mode of the flow path (flow path structure) with which the apparatus of this invention is equipped. 本発明の装置に備える流動発生手段の一態様を示した図である。(A)は正面図であり、(B)は平面図である。It is the figure which showed the one aspect | mode of the flow generation means with which the apparatus of this invention is equipped. (A) is a front view, (B) is a plan view. 本発明の装置の一態様を示した図である。It is the figure which showed the one aspect | mode of the apparatus of this invention. 図3に示す装置による、流路内への往復振動の発生を示した図(模式図)である。FIG. 4 is a diagram (schematic diagram) showing the occurrence of reciprocal vibration in the flow path by the apparatus shown in FIG. 3. 図3に示す装置による、粒子の分離を示した図(模式図)である。FIG. 4 is a diagram (schematic diagram) showing separation of particles by the apparatus shown in FIG. 3. 本発明の装置の別の態様を示した図である。It is the figure which showed another aspect of the apparatus of this invention. 実施例2の結果を示した図である。(A)は往復振動前の流路状態であり、(B)は往復振動後の流路状態である。FIG. 6 is a diagram showing the results of Example 2. (A) is a flow path state before reciprocating vibration, and (B) is a flow path state after reciprocating vibration. 実施例3の結果を示した図である。It is the figure which showed the result of Example 3.

以下、図面を用いて本発明を詳細に説明する。
本発明の装置に備える流路(流路構造体)の一態様を図1に示す。図1に示す流路構造体10は、粒子を含む液体が流れる流路11と、流路11へ粒子を含む液体を導入するための液体導入口12と、液体を系外に排出するための液体排出口13と、を設けている。液体導入口12および液体排出口13は、チューブと接続するためのグロメット(ハトメ)をさらに設けている。なお図1に示す流路(流路構造体)では、液体中に含まれる粒子をその径に基づき選択的に排出させるために、液体排出口13は3箇所設けている(13a、13b、13c)。
Hereinafter, the present invention will be described in detail with reference to the drawings.
One mode of a flow path (flow path structure) provided in the apparatus of the present invention is shown in FIG. A flow path structure 10 shown in FIG. 1 includes a flow path 11 through which a liquid containing particles flows, a liquid inlet 12 for introducing a liquid containing particles into the flow path 11, and a liquid for discharging the liquid out of the system. And a liquid discharge port 13. The liquid inlet 12 and the liquid outlet 13 are further provided with grommets (eyelets) for connecting to the tubes. In the flow path (flow path structure) shown in FIG. 1, three liquid discharge ports 13 are provided (13a, 13b, 13c) in order to selectively discharge particles contained in the liquid based on the diameter thereof. ).

本発明の装置に備える流動発生手段の一態様を図2に示す。図2に示す流動発生手段20は、
上面基板部材24、下面基板部材25および側面部材26により空間が画定されたチャンバー23と、
上面基板部材24の押下位置27で押下することによりチャンバー23内に振動を発生させる圧電素子21と、
圧電素子21によりチャンバー23内に発生した振動を外部へ伝えるための貫通口22と、
を設けている。
One mode of the flow generation means provided in the apparatus of the present invention is shown in FIG. The flow generating means 20 shown in FIG.
A chamber 23 in which a space is defined by the upper surface substrate member 24, the lower surface substrate member 25 and the side surface member 26;
A piezoelectric element 21 that generates vibration in the chamber 23 by being pressed at a pressing position 27 of the upper surface substrate member 24;
A through hole 22 for transmitting vibration generated in the chamber 23 by the piezoelectric element 21 to the outside;
Is provided.

側面部材26はチャンバー23を画定可能な部材であれば特に限定はないが、上面基板部材24への圧電素子21の押下により振動を発生させることから、伸縮性のある部材(例えばシリコーンゴム)を用いると好ましい。側面部材26の態様は、伸縮部材(例えばゴムシート)のうちチャンバー23となる部分をくり抜いた態様としてもよいし、下面基板部材25の面上にパッキン状に設けた態様としてもよい。圧電素子21へ印加する信号の波形に特に限定はなく、点対称、非点対称、線対称、非線対称、いずれの波形であってもよい。一例として、正弦波、三角波、方形波、台形波、ノコギリ波があげられる。なお圧電素子21の押下により発生する往復流動の形成を阻害しないよう、流れの方向を制限するチェックバルブや振動発生装置20に同期した電動バルブを貫通口22にさらに設けると好ましい。   The side member 26 is not particularly limited as long as it can define the chamber 23. However, since the vibration is generated by pressing the piezoelectric element 21 to the upper substrate member 24, a stretchable member (for example, silicone rubber) is used. It is preferable to use it. The aspect of the side member 26 may be an aspect in which a portion that becomes the chamber 23 is cut out of an elastic member (for example, a rubber sheet), or may be provided in a packing shape on the surface of the lower surface substrate member 25. The waveform of the signal applied to the piezoelectric element 21 is not particularly limited, and may be any waveform such as point symmetry, non-point symmetry, line symmetry, or non-line symmetry. Examples include a sine wave, a triangular wave, a square wave, a trapezoidal wave, and a sawtooth wave. In addition, it is preferable to further provide a check valve for restricting the flow direction and an electric valve synchronized with the vibration generator 20 in the through-hole 22 so as not to disturb the formation of the reciprocating flow generated by pressing the piezoelectric element 21.

図1に示す流路(流路構造体)10と、図2に示す流動発生手段20とを備えた、本発明の装置の一態様を図3に示す。流路(流路構造体)10と流動発生手段20とは可撓性チューブ30を介して液密に接続されており、流動発生手段20から発生した振動を、チャンバー23−貫通孔22−液体導入口12を通じて流路11へ伝達できる。液体導入口12と流動発生手段20とが液密に接続されている場合、液体排出口13を閉じると流動発生手段20による粒子移動操作(粒子分離操作)をバッチ式で行なうことができる。一方、液体排出口13を開けたままにすると流動発生手段20による粒子移動操作(粒子分離操作)を連続式で行なうことができる。   FIG. 3 shows an embodiment of the apparatus of the present invention including the flow path (flow path structure) 10 shown in FIG. 1 and the flow generation means 20 shown in FIG. The flow path (flow path structure) 10 and the flow generation means 20 are liquid-tightly connected via a flexible tube 30, and vibration generated from the flow generation means 20 is applied to the chamber 23 -through hole 22 -liquid. It can be transmitted to the flow path 11 through the introduction port 12. When the liquid introduction port 12 and the flow generation means 20 are connected in a liquid-tight manner, the particle movement operation (particle separation operation) by the flow generation means 20 can be performed in a batch manner when the liquid discharge port 13 is closed. On the other hand, if the liquid discharge port 13 is left open, the particle movement operation (particle separation operation) by the flow generation means 20 can be performed continuously.

流路(流路構造体)10を構成する部材のうち、上面基板部材14および下面基板部材15は、流路粒子の観察(例えば後述する粒子検出手段40を用いた観察)が容易な点で透過性を有した材が好ましく、好ましい材の例として上面基板部材14はポリジメチルシロキサン(PDMS)が、下面基板部材15はガラスや透明樹脂(ポリカーボネートなど)が、それぞれあげられる。   Among the members constituting the flow path (flow path structure) 10, the upper surface substrate member 14 and the lower surface substrate member 15 are easy to observe flow path particles (for example, observation using particle detection means 40 described later). A material having permeability is preferable, and examples of preferable materials include polydimethylsiloxane (PDMS) for the upper substrate member 14 and glass and transparent resin (polycarbonate, etc.) for the lower substrate member 15.

図3に示す本発明の装置のように、レンズ41およびカメラ42を有した粒子観察手段40をさらに備えると、流路11内の粒子の挙動を観察でき、また当該挙動から振動(周波数信号印加)や流速などを適切な値に設定できる点で好ましい。粒子検出手段40を備える位置は、流路11内の粒子の挙動が観察可能な位置であれば特に限定はなく、一例として、流路構造体10の上方(図3)、下方または側方があげられる。   If the particle observation means 40 having the lens 41 and the camera 42 is further provided as in the apparatus of the present invention shown in FIG. 3, the behavior of the particles in the channel 11 can be observed, and vibration (frequency signal application) can be observed from the behavior. ) And the flow velocity are preferable in that they can be set to appropriate values. The position where the particle detection means 40 is provided is not particularly limited as long as the behavior of the particles in the flow path 11 can be observed. As an example, the position above the flow path structure 10 (FIG. 3), the lower side or the side is provided. can give.

なお図3に示す本発明の装置は、流路(流路構造体)10と、流動発生手段20とを、それぞれ1つずつ備えた態様であるが、1つの流路(流路構造体)に対し、流動発生手段20を複数備えた態様であっても本発明の装置に含まれる。一例として、図1に示す流路(流路構造体)10を1つ、および図2に示す流動発生手段20を2つ備えた、本発明の装置の別の態様を図6に示す。図6に示す装置のように流動発生手段20を複数備える場合、その振動の波形は同期していてもよいし、同期していなくてもよい。また時間軸に対して線対称の波形を用いてもよい。   The apparatus of the present invention shown in FIG. 3 is an aspect in which each of the flow path (flow path structure) 10 and the flow generation means 20 is provided one by one. On the other hand, even the aspect provided with a plurality of flow generation means 20 is included in the apparatus of the present invention. As an example, FIG. 6 shows another aspect of the apparatus of the present invention including one flow path (flow path structure) 10 shown in FIG. 1 and two flow generation means 20 shown in FIG. When a plurality of flow generating means 20 are provided as in the apparatus shown in FIG. 6, the vibration waveform may be synchronized or may not be synchronized. A waveform that is line-symmetric with respect to the time axis may be used.

図3に示す装置による、流路内への往復振動の発生を示した図(模式図)を図4に示す。印加される電圧に対応した距離で圧電素子21が上面基板部材24を押下すると、チャンバー23内空間が圧縮され、チャンバー23−可撓性チューブ30−流路11、という流れが形成される(図4(A))。一方、印加された電圧が解除され圧電素子21の上面基板部材24への押下が解除されると、チャンバー23内空間が元の状態に戻り、逆に流路11−可撓性チューブ30−チャンバー23、という流れが形成される(図4(B))。これらの動作を圧電素子21へ印加する周波数信号に基づき交互に行なうことで、流路11内の往復信号を発生させる。   FIG. 4 shows a diagram (schematic diagram) showing the occurrence of reciprocal vibration in the flow path by the apparatus shown in FIG. When the piezoelectric element 21 depresses the upper substrate member 24 at a distance corresponding to the applied voltage, the inner space of the chamber 23 is compressed and a flow of chamber 23 -flexible tube 30 -channel 11 is formed (FIG. 4 (A)). On the other hand, when the applied voltage is released and the pressing of the upper surface substrate member 24 of the piezoelectric element 21 is released, the inner space of the chamber 23 returns to the original state, and conversely, the flow path 11 -flexible tube 30 -chamber. 23 is formed (FIG. 4B). These operations are alternately performed based on the frequency signal applied to the piezoelectric element 21 to generate a reciprocating signal in the flow path 11.

図3に示す装置による、粒子の分離を示した図(模式図)を図5に示す。粒子51・52を含む液体を流路11に導入後(図5(A))、流動発生手段により流路11内に往復流動を発生させる。そうすると、径の大きい粒子51は流路11の中央側に、径の小さい粒子は流路11の外側に、それぞれ整列する(図5(B))。その後、整列した粒子が流路11の分岐位置まで到達する(図5(C))と、径の大きさに基づき粒子が各分岐流路へと流れる。具体的には、径の大きい粒子51は液体排出口13aにつながる分岐流路へ、径の小さい粒子52は液体排出口13bおよび液体排出口13cにつながる分岐流路へ、それぞれ流れる(図5(D))。結果として、各液体排出口から排出される液体中に含まれる粒子は一定の径を有した粒子のみとなり、液体中に含まれる粒子をその径に基づき分離できる。   FIG. 5 shows a diagram (schematic diagram) showing the separation of particles by the apparatus shown in FIG. After the liquid containing the particles 51 and 52 is introduced into the flow path 11 (FIG. 5A), a reciprocating flow is generated in the flow path 11 by the flow generation means. Then, the large-diameter particles 51 are aligned on the center side of the channel 11 and the small-diameter particles are aligned on the outside of the channel 11 (FIG. 5B). Thereafter, when the aligned particles reach the branch position of the flow path 11 (FIG. 5C), the particles flow to each branch flow path based on the size of the diameter. Specifically, the particles 51 having a large diameter flow to the branch flow path connected to the liquid discharge port 13a, and the particles 52 having a small diameter flow to the branch flow channel connected to the liquid discharge port 13b and the liquid discharge port 13c, respectively (FIG. 5 ( D)). As a result, the particles contained in the liquid discharged from each liquid outlet become only particles having a certain diameter, and the particles contained in the liquid can be separated based on the diameter.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to these examples.

実施例1 本発明の装置の作製
以下に示す方法で、以降の実施例で用いる流路構造体および流動発生手段を作製した。
(1)流路構造体
(1−1)4インチシリコンウェハー(フィルテック製)を150℃のホットプレート上で30分間加熱し、冷却後、フォトレジスト(SU−8 3050、日本化薬製)をシリコンウェハー上に滴下し、スピンコーターを用いて薄膜形成した。
Example 1 Production of the Device of the Present Invention The flow path structure and the flow generation means used in the following examples were produced by the following method.
(1) Channel structure (1-1) A 4-inch silicon wafer (manufactured by Filtech) is heated on a hot plate at 150 ° C. for 30 minutes, and after cooling, a photoresist (SU-8 3050, manufactured by Nippon Kayaku) Was dropped on a silicon wafer, and a thin film was formed using a spin coater.

(1−2)ホットプレート上で65℃で10分間、その後95℃で30分間加熱することで、フォトレジストを十分に硬化させた。
(1−3)UV露光機でパターン形成後、SU−8Developer(日本化薬製)を用いて現像し、イソプロパノールで十分に洗浄後、乾燥させることで流路作製のためのモールドを作製した。
(1−4)作製したモールドと、100μLのTrichloro(1H,1H,2H,2H−perfluorooctyl)silane(Sigma Aldrich製)とを、真空デシケーター内へ載置し、真空ポンプで減圧後、15分静置することでモールド表面を撥水処理した。
(1−5)Sylgard(登録商標) 184 SILICONE ELASTOMER KIT(東レ・ダウコーニング社製)のBASEと硬化剤を重量比10:1で混合したものを、撥水処理したモールドへ流し込み、65℃で4時間硬化させることで、微細パターンが転写されたポリジメチルシロキサン(PDMS)製の流路を形成した。
(1−6)作製したPDMS流路をモールドから剥した後、ソフトプラズマエッチング装置(メイワフォーシス製)によりPDMS表面とガラス表面を活性化し、その後両者を密着させることで化学的に接合し、図1に示す流路構造体10を作製した。
(1-2) The photoresist was sufficiently cured by heating on a hot plate at 65 ° C. for 10 minutes and then at 95 ° C. for 30 minutes.
(1-3) After pattern formation with a UV exposure machine, development was performed using SU-8 Developer (manufactured by Nippon Kayaku Co., Ltd.), and after sufficiently washing with isopropanol, drying was performed to produce a mold for producing a flow path.
(1-4) The prepared mold and 100 μL of Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane (manufactured by Sigma Aldrich) were placed in a vacuum desiccator, and the pressure was reduced by a vacuum pump for 15 minutes. The mold surface was subjected to water repellent treatment.
(1-5) A mixture of BASE of Sylgard (registered trademark) 184 SILICON ELASTOMER KIT (manufactured by Toray Dow Corning Co., Ltd.) and a curing agent in a weight ratio of 10: 1 was poured into a water-repellent treated mold at 65 ° C. By curing for 4 hours, a flow path made of polydimethylsiloxane (PDMS) to which a fine pattern was transferred was formed.
(1-6) After the produced PDMS channel is peeled from the mold, the PDMS surface and the glass surface are activated by a soft plasma etching apparatus (manufactured by Meiwa Forsys), and then chemically bonded by bringing them into close contact with each other. 1 was produced.

(2)流動発生手段
(2−1)縦7cm(図2(B)の(a))×横4cm(図2(B)の(b))×厚さ1mmの青板ガラスに、直径1mmの貫通孔22を加工により設けた後、貫通孔22上にチューブ接続のためのグロメットを接着剤で貼りつけることで上面基板部材24を作製した。
(2−2)縦7cm(図2(B)の(a))×横4cm(図2(B)の(b))×厚さ1mmのシリコーンゴムシートを、直径2.2cm(図2(B)の(d))の半円形部2つと縦3cm(図2(B)の(c))×横2.2cm(図2(B)の(d))の長方形から構成される空間が形成されるよう切り抜くことで側面部材26を作製した。
(2−3)(2−1)で作製した上面基板部材24と、(2−2)で作製した側面部材26と、縦7cm(図2(B)の(a))×横4cm(図2(B)の(b))×厚さ1mmの青板ガラスである下面基板部材25とを液漏れが発生しないよう、接着剤で貼り合わせた。
(2) Flow generation means (2-1) 7 cm in length ((a) in FIG. 2 (B)) × 4 cm in width ((b) in FIG. 2 (B)) × Blue plate glass having a thickness of 1 mm After providing the through hole 22 by processing, a grommet for connecting a tube was stuck on the through hole 22 with an adhesive to produce an upper surface substrate member 24.
(2-2) 7 cm in length ((a) in FIG. 2B) × 4 cm in width ((b) in FIG. 2B) × 1 mm thick silicone rubber sheet with a diameter of 2.2 cm (FIG. 2 ( A space composed of two semicircular portions of (D)) of B) and a rectangle of 3 cm in length ((c) in FIG. 2 (B)) × 2.2 cm in width ((d) in FIG. 2 (B)). The side member 26 was produced by cutting out so that it might be formed.
(2-3) The upper surface substrate member 24 produced in (2-1), the side member 26 produced in (2-2), 7 cm in length ((a) in FIG. 2B) × 4 cm in width (FIG. 2 (B) (b)) × bottom substrate member 25, which is a blue plate glass having a thickness of 1 mm, was bonded with an adhesive so that no liquid leakage occurred.

(2−4)上面基板部材24の中央部(押下位置27)上方に、印加電圧に対応して最大100μmまで変位可能な圧電素子21(翔栄システム製)を設けることで、図2に示す流動発生手段20を作製した。なお圧電素子21へ電圧を印加するために、ピエゾドライバー(SSL−140−1CH、翔栄システム製)および波形信号生成器(WF1646B、NF回路ブロック製)を圧電素子21に設けた。   (2-4) A piezoelectric element 21 (manufactured by Shoei System) that can be displaced up to a maximum of 100 μm corresponding to the applied voltage is provided above the center portion (pressing position 27) of the upper surface substrate member 24, as shown in FIG. A flow generating means 20 was produced. In order to apply a voltage to the piezoelectric element 21, a piezoelectric driver (SSL-140-1CH, manufactured by Shoei System) and a waveform signal generator (WF 1646B, manufactured by NF circuit block) were provided in the piezoelectric element 21.

実施例2 本発明の装置を用いた粒子分離
(1)直径10μmのポリスチレン標準粒子(JSR社製)を2×10個/mLとなるよう室温(25℃)の純水(粘性係数8.94×10−4kg/(m・s)、密度997kg/m)に懸濁した溶液を、実施例1(1)で作製した、幅200μm×高さ50μm×(分岐部までの)長さ40mmの流路11(アスペクト比4)に導入した。なお流路11の水力直径は80μmであり、分離対象粒子の径(10μm)に対し8倍である。
(2)実施例1(1)で作製した流路構造体の液体導入口12と実施例1(2)で作製した流動発生手段の貫通口22とを可撓性チューブ30(PTFEチューブ)で接続し、液体排出口13をプラグで封止した後、圧電素子21を駆動させることで流路11内へ往復する流動を発生させた。なお圧電素子の駆動電圧は2V(圧電素子の伸長40μm)、周波数は5Hzとした。
(3)流路11内の粒子の挙動を、レンズ41およびカメラ42を有した粒子検出手段40で観察した。なおカメラ42は、Baumer製高速カメラHXC20を用いた。
Example 2 Particle Separation Using the Apparatus of the Present Invention (1) Pure water (viscosity coefficient: 8 ° C.) at room temperature (25 ° C.) so that polystyrene standard particles (manufactured by JSR) having a diameter of 10 μm are 2 × 10 7 particles / mL. 94 × 10 −4 kg / (m · s), density 997 kg / m 3 ), a solution suspended in Example 1 (1), 200 μm wide × 50 μm high × up to the branch portion It introduced into the flow path 11 (aspect ratio 4) of 40 mm. The hydraulic diameter of the flow path 11 is 80 μm, which is 8 times the diameter of the separation target particle (10 μm).
(2) A flexible tube 30 (PTFE tube) connects the liquid inlet 12 of the flow channel structure manufactured in Example 1 (1) and the through-hole 22 of the flow generating means manufactured in Example 1 (2). After connecting and sealing the liquid outlet 13 with a plug, the piezoelectric element 21 was driven to generate a reciprocating flow into the flow path 11. The drive voltage of the piezoelectric element was 2 V (elongation of piezoelectric element 40 μm), and the frequency was 5 Hz.
(3) The behavior of the particles in the flow path 11 was observed with a particle detection means 40 having a lens 41 and a camera 42. As the camera 42, a Baumer high-speed camera HXC20 was used.

結果を図7に示す。往復流動を発生させる前は粒子は流路上に広範囲に分布(図7(A))していたが、往復流動を発生させると当該粒子は徐々に流路中央側に整列するようになり、最終的には流路内の粒子が一列に並んだ(図7(B))。なお粒子観察手段による画像解析の結果、往復流動の発生による粒子の移動速度は1mm/sであった。また粒子の速度は流速と一致するとみなし粒子レイノルズ数を計算すると、流体の動粘性率(粘性率を密度で割ったもの)が8.97×10−7/sであることから、2.09×10−3となる。 The results are shown in FIG. Before the reciprocating flow was generated, the particles were distributed over a wide range on the flow path (FIG. 7A). However, when the reciprocating flow was generated, the particles gradually aligned to the center of the flow path. Specifically, the particles in the flow channel were arranged in a line (FIG. 7B). As a result of the image analysis by the particle observation means, the moving speed of the particles due to the reciprocating flow was 1 mm / s. Further, when the particle Reynolds number is calculated assuming that the velocity of the particle coincides with the flow velocity, the kinematic viscosity (viscosity divided by the density) of the fluid is 8.97 × 10 −7 m 2 / s. 0.09 × 10 −3 .

実施例3 本発明の装置を用いた、径に基づく粒子分離
実施例1(1)で作製した流路11に導入する溶液として、直径5μmのポリスチレン標準粒子(JSR社製)および直径10μmのポリスチレン標準粒子(JSR社製)をそれぞれ2×10個/mLとなるよう純水に懸濁した溶液とした他は、実施例2と同様な方法で径に基づく粒子分離を試みた。なお流路11の水力直径は、分離対象粒子の径に対しそれぞれ8倍(10μmの粒子)、16倍(5μmの粒子)である。
Example 3 Particle Separation Based on Diameter Using Apparatus of the Present Invention As a solution to be introduced into the channel 11 prepared in Example 1 (1), polystyrene standard particles having a diameter of 5 μm (manufactured by JSR) and polystyrene having a diameter of 10 μm Particle separation based on diameter was attempted in the same manner as in Example 2, except that the standard particles (manufactured by JSR) were each suspended in pure water so as to be 2 × 10 7 particles / mL. The hydraulic diameter of the channel 11 is 8 times (10 μm particles) and 16 times (5 μm particles), respectively, with respect to the diameter of the separation target particles.

結果を図8に示す。直径10μmのポリスチレン粒子は流路中央側に整列する一方、直径5μmのポリスチレン粒子は流路外側に整列していることが観察された。なお粒子観察手段による画像解析の結果、往復流動の発生による粒子の移動速度は1mm/sであった。本結果より、粒子を含む流体の流路と往復する流動を発生させる流動発生手段とを備え、かつ前記流路の水力直径が前記粒子の粒子径の20倍以下とした本発明の装置により、従来の装置では精度良い分離が困難であった数μmの粒子を明確に分離できることがわかる。また実施例2と同様に粒子レイノルズ数を計算すると、10μmの粒子は2.09×10−3となり、5μmの粒子は5.23×10−4となった。 The results are shown in FIG. It was observed that polystyrene particles having a diameter of 10 μm were aligned on the center side of the channel, while polystyrene particles having a diameter of 5 μm were aligned on the outside of the channel. As a result of the image analysis by the particle observation means, the moving speed of the particles due to the reciprocating flow was 1 mm / s. From this result, by the apparatus of the present invention comprising a flow generation means for generating a reciprocating flow with the flow path of the fluid containing the particles, and the hydraulic diameter of the flow path is 20 times or less the particle diameter of the particles, It can be seen that particles of several μm, which were difficult to separate with high accuracy by the conventional apparatus, can be clearly separated. Further, when the particle Reynolds number was calculated in the same manner as in Example 2, the particle size of 10 μm was 2.09 × 10 −3 and the particle size of 5 μm was 5.23 × 10 −4 .

10:流路構造体 10: Channel structure

11:流路
12:液体導入口
13:液体排出口
14、24:上面基板部材
15、25:下面基板部材
16、26:側面部材
20:流動発生手段
21:圧電素子
22:貫通口
23:チャンバー
27:圧電素子による振動押下位置
30:可撓性チューブ
40:粒子観察手段
41:レンズ
42:カメラ
51:径の大きい粒子
52:径の小さい粒子
11: Channel 12: Liquid inlet 13: Liquid outlet 14, 24: Upper substrate member 15, 25: Lower substrate member 16, 26: Side member 20: Flow generating means 21: Piezoelectric element 22: Through port 23: Chamber 27: Vibration pressing position by piezoelectric element 30: Flexible tube 40: Particle observation means 41: Lens 42: Camera 51: Particle with large diameter 52: Particle with small diameter

Claims (4)

流路と、前記流路に連通した粒子を導入するための液体導入口と、
前記流路から粒子を排出するための液体排出口と、
往復する流動を発生させる1または複数の流動発生手段と
を備えた粒子分離装置であって、
前記流路の水力直径が前記粒子の粒子径の20倍以下である、前記装置。
A flow path and a liquid inlet for introducing particles communicating with the flow path;
A liquid outlet for discharging particles from the flow path;
A particle separator comprising one or more flow generating means for generating a reciprocating flow,
The apparatus, wherein the hydraulic diameter of the flow path is 20 times or less the particle diameter of the particles.
前記流路と、往復する流動を発生させる1または複数の流動発生手段とを備えた当該粒子を濃縮する装置であって、
前記流路の水力直径が前記粒子の粒子径の20倍以下である、前記装置。
An apparatus for concentrating the particles comprising the flow path and one or more flow generating means for generating a reciprocating flow,
The apparatus, wherein the hydraulic diameter of the flow path is 20 times or less the particle diameter of the particles.
流動発生手段が、粒子を含む流体の流れる方向に対して平行方向に往復する流動を発生させる手段である、請求項1または2に記載の装置。 The apparatus according to claim 1 or 2, wherein the flow generation means is a means for generating a flow that reciprocates in a direction parallel to a flow direction of a fluid containing particles. 粒子レイノルズ数が5.0×10−4以上である、請求項1から3のいずれかに記載の装置。 The apparatus according to claim 1, wherein the particle Reynolds number is 5.0 × 10 −4 or more.
JP2016072999A 2016-03-31 2016-03-31 Particle separating device Pending JP2017177083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016072999A JP2017177083A (en) 2016-03-31 2016-03-31 Particle separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072999A JP2017177083A (en) 2016-03-31 2016-03-31 Particle separating device

Publications (1)

Publication Number Publication Date
JP2017177083A true JP2017177083A (en) 2017-10-05

Family

ID=60008085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072999A Pending JP2017177083A (en) 2016-03-31 2016-03-31 Particle separating device

Country Status (1)

Country Link
JP (1) JP2017177083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054196A1 (en) * 2018-09-10 2020-03-19 ソニー株式会社 Channel unit for fine particle isolation and fine particle isolation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538241A (en) * 2007-04-16 2010-12-09 ザ ジェネラル ホスピタル コーポレーション ドゥーイング ビジネス アズ マサチューセッツ ジェネラル ホスピタル Systems and methods for particle focusing in microchannels
JP2013152171A (en) * 2012-01-26 2013-08-08 Tohoku Univ Device for separating particle in blood
WO2016006642A1 (en) * 2014-07-08 2016-01-14 国立大学法人東北大学 Particle manipulation device and method for classifying particles using said device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538241A (en) * 2007-04-16 2010-12-09 ザ ジェネラル ホスピタル コーポレーション ドゥーイング ビジネス アズ マサチューセッツ ジェネラル ホスピタル Systems and methods for particle focusing in microchannels
JP2013152171A (en) * 2012-01-26 2013-08-08 Tohoku Univ Device for separating particle in blood
WO2016006642A1 (en) * 2014-07-08 2016-01-14 国立大学法人東北大学 Particle manipulation device and method for classifying particles using said device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054196A1 (en) * 2018-09-10 2020-03-19 ソニー株式会社 Channel unit for fine particle isolation and fine particle isolation device
JPWO2020054196A1 (en) * 2018-09-10 2021-08-30 ソニーグループ株式会社 Flow path unit for fine particle sorting and fine particle sorting device
JP7287399B2 (en) 2018-09-10 2023-06-06 ソニーグループ株式会社 Flow path unit for microparticle fractionation and microparticle fractionation device

Similar Documents

Publication Publication Date Title
US10900886B2 (en) Microfluidic particle analysis method, device and system
Zhang et al. Automated microfluidic instrument for label-free and high-throughput cell separation
Fu et al. An integrated microfabricated cell sorter
Cha et al. Multiphysics microfluidics for cell manipulation and separation: a review
US20110081674A1 (en) Continuous-flow deformability-based cell separation
JP2019211483A (en) Microfluidic methods and systems for isolating particle clusters
WO2020249131A1 (en) Method and device for controlling movement of micro-particles in solution using ultra-high frequency sound wave
JP6172711B2 (en) Fluid control device for microchip and use thereof
WO2011027832A1 (en) Nucleated red blood cell concentrating/collecting chip and nucleated red blood cell concentrating/collecting method
EP2809428A1 (en) Microfluidic manipulation and sorting of particles using tunable standing surface acoustic wave
JP2020533567A (en) Particle capture chamber, particle capture chip, particle capture method, equipment, particle analysis system
WO2020249130A1 (en) Method and device for cell or microvesicle isolation
WO2004046712A2 (en) Isolation of sperm cells from other biological materials using microfabricated devices and related methods thereof
Yoon et al. Automatically controlled microfluidic system for continuous separation of rare bacteria from blood
JP2017177083A (en) Particle separating device
JP6843420B2 (en) Fine particle separation device and fine particle separation method
Bayareh Active cell capturing for organ-on-a-chip systems: a review
JP6755178B2 (en) Particle manipulation device and particle classification method using the device
Pandey et al. Single-Cell Separation
JP2017159238A (en) Particle separating device
Yigit Developing New Classes of Acoustofluidic Systems
Suzuki et al. Development of a Dielectrophoretic Cell Sorter with a Three-Fold Symmetry Structure
Zhang Acoustic Isolation of Extracellular Vesicles
Han Lab-on-a-Chip Integration of Size-Based Separation Techniques for Isolation of Bacteria from Blood
Choi et al. Pneumatically Driven Microfluidic Platform and Fully Automated Particle Concentration System for the Capture and Enrichment of Pathogens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609