JP2017174496A - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP2017174496A
JP2017174496A JP2016055564A JP2016055564A JP2017174496A JP 2017174496 A JP2017174496 A JP 2017174496A JP 2016055564 A JP2016055564 A JP 2016055564A JP 2016055564 A JP2016055564 A JP 2016055564A JP 2017174496 A JP2017174496 A JP 2017174496A
Authority
JP
Japan
Prior art keywords
electrode
movable
arc
vacuum valve
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016055564A
Other languages
Japanese (ja)
Other versions
JP6443369B2 (en
Inventor
木村 俊則
Toshinori Kimura
俊則 木村
知孝 矢野
Tomotaka Yano
知孝 矢野
安部 淳一
Junichi Abe
淳一 安部
大樹 道念
Daiki Donen
大樹 道念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016055564A priority Critical patent/JP6443369B2/en
Publication of JP2017174496A publication Critical patent/JP2017174496A/en
Application granted granted Critical
Publication of JP6443369B2 publication Critical patent/JP6443369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum valve capable of ensuring a high cutoff performance by attaining dispersion of arc energy by surely performing multi-point ignition with an electrode comprising multiple protrusions.SOLUTION: A vacuum valve comprises: a stationary electrode 24 that is fixed within a vacuum container; a stationary electrode rod 23 that supports the stationary electrode 24; a movable electrode 22 that is disposed oppositely to the stationary electrode 24; a movable electrode rod 21 that supports the movable electrode 22; and a magnetic substance enclosing at least of the stationary electrode rod and the movable electrode rod. At least one electrode of the stationary electrode and the movable electrode includes (n) ((n) is a natural number equal to or greater than 2) pieces of protrusions 36 on an opposing face between the electrodes. The stationary electrode rod 23 or the movable electrode rod 21 supporting the electrode including the protrusions 36 consists of (n) pieces of divided electrode rods 26 in an axial direction of the electrode rod. The magnetic substance encloses the electrode rod consisting of the divided electrode rods 26.SELECTED DRAWING: Figure 2

Description

この発明は、真空遮断器に搭載される真空バルブに関する。   The present invention relates to a vacuum valve mounted on a vacuum circuit breaker.

従来、真空遮断器に搭載される真空バルブの電極として、平板電極、スパイラル電極、縦磁界電極などが用いられている。   Conventionally, a plate electrode, a spiral electrode, a longitudinal magnetic field electrode, or the like is used as an electrode of a vacuum valve mounted on a vacuum circuit breaker.

平板電極は、平板状の電極であり、構造が単純であるため製造しやすいという特徴がある。しかしながら、遮断の際にアークエネルギーがアークの発弧した位置に集中するので、局所的に電極表面の温度が上昇して金属蒸気の発生量が大きくなるため大電流に対する遮断性能が低い。このため、平板電極は、主に定格遮断電流の小さい真空バルブに適用される。   The flat plate electrode is a flat plate electrode and has a feature that it is easy to manufacture because of its simple structure. However, since the arc energy is concentrated at the position where the arc is generated at the time of interruption, the temperature of the electrode surface rises locally and the amount of generated metal vapor increases, so that the interruption performance against a large current is low. For this reason, the plate electrode is mainly applied to a vacuum valve having a small rated breaking current.

スパイラル電極は、円板状の電極を中央部から周辺部まで伸びたスパイラル溝で電極を複数に区画した構造である。この構造によって、遮断の際に中央部から電極周辺端部への電流路で形成される磁界の作用によりアークを回転駆動させることができる。平板電極に比べてアークの停滞がないため、局所的な電極表面の温度上昇を抑制することができる。このため、電極表面からの金属蒸気の発生を抑制して遮断性能を向上させることができる。   The spiral electrode has a structure in which a disk-shaped electrode is divided into a plurality of electrodes by spiral grooves extending from the central portion to the peripheral portion. With this structure, the arc can be rotationally driven by the action of a magnetic field formed by a current path from the central portion to the electrode peripheral end portion at the time of interruption. Since there is no stagnation of the arc as compared with the flat plate electrode, it is possible to suppress a local temperature increase on the electrode surface. For this reason, generation | occurrence | production of the metal vapor | steam from an electrode surface can be suppressed and interruption | blocking performance can be improved.

縦磁界電極は、電極の外側などにコイルを設けた構造である。このコイルに電流を流すことでアークと平行な軸方向磁界、いわゆる縦磁界を発生させる。この縦磁界によってアークが拡散されるのでアークの電流密度が低下し、スパイラル電極以上に電極表面の温度上昇を抑制することができる。スパイラル電極に比べて金属蒸気の発生を抑制することができるので、電極とアークシールドとの距離を短縮して真空バルブの径を小形化できるという長所がある。   The longitudinal magnetic field electrode has a structure in which a coil is provided outside the electrode. By passing an electric current through this coil, an axial magnetic field parallel to the arc, a so-called longitudinal magnetic field is generated. Since the arc is diffused by the longitudinal magnetic field, the current density of the arc is reduced, and the temperature rise of the electrode surface can be suppressed more than the spiral electrode. Since generation of metal vapor can be suppressed as compared with the spiral electrode, there is an advantage that the distance between the electrode and the arc shield can be shortened to reduce the diameter of the vacuum valve.

縦磁界電極において、縦磁界によるアークへの拡散作用に加えてアークを移動させて遮断性能を向上させた真空バルブが開示されている(例えば、特許文献1参照)。この従来の真空バルブにおいては、縦磁界電極の電極表面に複数の突出部が電極を支持するリード棒の外径よりも周方向の外側に配置されている。この電極においては、遮断の際に複数の突出部に同時にアークが発生し、このアークの電流が複数の突出部からリード棒へ向かって径方向外側へ流れる。この径方向外側への電流路で形成される磁界の作用によりアークを移動させることができる。その結果、アークが拡散されることによるアークの電流密度の低下と、アークの移動による局所的な電極表面の温度上昇を抑制することができ、より遮断性能が向上するという効果が得られる。   In the longitudinal magnetic field electrode, a vacuum valve is disclosed in which the arc performance is improved by moving the arc in addition to the diffusion action to the arc by the longitudinal magnetic field (see, for example, Patent Document 1). In this conventional vacuum valve, a plurality of projecting portions are arranged on the surface of the longitudinal magnetic field electrode on the outer side in the circumferential direction with respect to the outer diameter of the lead rod supporting the electrode. In this electrode, an arc is simultaneously generated in the plurality of protrusions at the time of interruption, and the current of the arc flows radially outward from the plurality of protrusions toward the lead rod. The arc can be moved by the action of the magnetic field formed by the current path outward in the radial direction. As a result, it is possible to suppress a decrease in the current density of the arc due to the diffusion of the arc and a local temperature increase on the electrode surface due to the movement of the arc, and an effect of further improving the interruption performance can be obtained.

特開平1−173531号公報(3−4頁、第2図)Japanese Patent Laid-Open No. 1-173531 (page 3-4, FIG. 2)

従来の電極表面に複数の突出部を備えた電極では、多点発弧させアークエネルギーの分散を図ることで電極表面の温度上昇を抑制している。しかしながら、真空バルブを開極および閉極したときの衝撃が突出部にかかるため、長期的な使用で開閉動作を繰り返すと、突出部先端の高さや電極の平行度にずれが生じて、複数の突出部に接触荷重の不均衡が生じる。この結果、開極動作時に複数の突出部の離隔するタイミングにずれが生じる。すると、先に離隔する突出部は他の突出部より接圧が小さくなるため、接触抵抗が大きくなる。さらに、先に離隔した突出部に発生するアークのアーク電圧は、後に離隔する突出部の接触抵抗によって発生する電圧よりも大きい。このため、先に離隔した突出部に発生したアークは後に離隔する突出部に転流し、結局アークは最後に離隔する突出部に集約し、多点発弧とはならずに1個のみのアーク発生となるという問題があった。   In an electrode having a plurality of protrusions on a conventional electrode surface, the temperature rise on the electrode surface is suppressed by igniting multiple points to achieve a dispersion of arc energy. However, since the impact when the vacuum valve is opened and closed is applied to the protruding portion, if the opening and closing operation is repeated over a long period of use, the height of the protruding portion and the parallelism of the electrodes will be displaced, resulting in a plurality of An imbalance of contact load occurs at the protrusion. As a result, a deviation occurs in the timing at which the plurality of protrusions are separated during the opening operation. Then, since the contact portion of the projecting portion that is separated first has a smaller contact pressure than the other projecting portions, the contact resistance is increased. Furthermore, the arc voltage of the arc generated at the protrusions separated earlier is larger than the voltage generated by the contact resistance of the protrusions separated later. For this reason, the arc generated in the projection part separated earlier is commutated to the projection part separated later, and eventually the arc is concentrated in the projection part separated in the end, so that there is only one arc instead of multipoint firing. There was a problem that it occurred.

この発明は、上述のような課題を解決するためになされたもので、複数の突出部を備えた電極で確実に多点発弧させてアークエネルギーの分散を図ることで高い遮断性能を確保できる真空バルブを得ることを目的とする。   The present invention has been made to solve the above-described problems, and it is possible to ensure a high interruption performance by ensuring multi-point ignition with an electrode having a plurality of protrusions and thereby distributing arc energy. The purpose is to obtain a vacuum valve.

この発明に係る真空バルブにおいては、真空容器と、この真空容器の内部に固定された固定電極と、この固定電極を支持する固定電極棒と、前記固定電極に対向して配置された可動電極と、この可動電極を支持する可動電極棒と、前記真空容器の内部に固定され、前記固定電極棒および前記可動電極棒の少なくとも一方を取り囲む磁性体とを備え、前記固定電極および前記可動電極の少なくとも一方の電極は、電極間の対向面にn個(nは2以上の自然数)の突出部を備えており、前記突出部を備えた電極を支持する前記固定電極棒または前記可電極棒は、その電極棒の軸方向に沿ってn個に分割された分割電極棒で構成されおり、前記磁性体は、前記分割電極棒で構成された電極棒を取り囲んでいるものである。 In the vacuum valve according to the present invention, a vacuum vessel, a fixed electrode fixed inside the vacuum vessel, a fixed electrode rod that supports the fixed electrode, and a movable electrode disposed to face the fixed electrode, A movable electrode rod that supports the movable electrode, and a magnetic body that is fixed inside the vacuum vessel and surrounds at least one of the fixed electrode rod and the movable electrode rod, and includes at least the fixed electrode and the movable electrode. One electrode has n (n is a natural number of 2 or more) protrusions on the opposing surfaces between the electrodes, and the fixed electrode bar or the electrode bar that supports the electrode including the protrusions is: The electrode is composed of n divided electrode rods divided along the axial direction of the electrode rod, and the magnetic body surrounds the electrode rod composed of the divided electrode rods.

この発明は、
固定電極および可動電極の少なくとも一方の電極は、電極間の対向面にn個の突出部を備え、突出部を備えた電極を支持する電極棒は軸方向に沿ってn個に分割された分割電極棒で構成され、磁性体は、前記分割電極棒で構成された電極棒を取り囲んでいるので、確実に多点発弧させてアークエネルギーの分散を図ることができる。
This invention
At least one of the fixed electrode and the movable electrode has n protrusions on the opposed surfaces between the electrodes, and the electrode rod supporting the electrode having the protrusions is divided into n pieces along the axial direction. Since it is composed of electrode rods and the magnetic body surrounds the electrode rod composed of the divided electrode rods, the arc energy can be dispersed by reliably firing multiple points.

この発明の実施の形態1を示す開閉装置の断面模式図である。It is a cross-sectional schematic diagram of the switchgear which shows Embodiment 1 of this invention. この発明の実施の形態1を示す真空バルブの断面模式図である。It is a cross-sectional schematic diagram of the vacuum valve which shows Embodiment 1 of this invention. この発明の実施の形態1における真空バルブの断面図である。It is sectional drawing of the vacuum valve in Embodiment 1 of this invention. この発明の実施の形態1における可動電極の斜視図を示す。The perspective view of the movable electrode in Embodiment 1 of this invention is shown. この発明の実施の形態1における電極の上面図を示す。The top view of the electrode in Embodiment 1 of this invention is shown. この発明の実施の形態1における真空バルブの開極状態の模式図である。It is a schematic diagram of the opening state of the vacuum valve in Embodiment 1 of this invention. この発明の実施の形態1における真空バルブの開極状態の回路図である。It is a circuit diagram of the opening state of the vacuum valve in Embodiment 1 of this invention. この発明の実施の形態1における真空バルブの電流特性図である。It is a current characteristic figure of the vacuum valve in Embodiment 1 of this invention. この発明の実施の形態1における電極の上面図および断面図を示す。The top view and sectional drawing of the electrode in Embodiment 1 of this invention are shown. この発明の実施の形態2を示す真空バルブの断面模式図である。It is a cross-sectional schematic diagram of the vacuum valve which shows Embodiment 2 of this invention. この発明の実施の形態2における真空バルブの断面図である。It is sectional drawing of the vacuum valve in Embodiment 2 of this invention. この発明の実施の形態2を示す真空バルブの断面模式図である。It is a cross-sectional schematic diagram of the vacuum valve which shows Embodiment 2 of this invention.

実施の形態1.
図1は、この発明を実施するための実施の形態1における開閉装置の断面模式図である。図1に示すように、本実施の形態の開閉装置1は、遮断部2と開閉機構部3とで構成されている。開閉機構部3の駆動力発生部3aの駆動力は、ピン4を介して駆動レバー5に伝達される。駆動レバー5は、支持台7に固定された水平軸6を中心として回転可能である。駆動レバー5の端部には、連結部材8が取り付けられており、駆動レバー5の回転により連結部材8は上下方向に駆動される。この連結部材8の上下方向の駆動によって、連結部材8の上部に取り付けられた操作ロッド9を介して絶縁ロッド10が上下方向に駆動される。絶縁ロッド10の上部には、接続部材11を介して真空バルブ20の可動電極棒21が取り付けられている。真空バルブ20の可動電極棒21の先端部には、可動電極22が取り付けられている。真空バルブ20の固定電極棒23の先端部には、固定電極24が取り付けられており、この固定電極24と可動電極22とが接触および離隔することで、遮断部2において電流の投入および遮断が行われる。なお、後述するが、可動電極棒21および固定電極棒23は、それぞれ可動電極22および固定電極24との接続側で複数の分割電極棒に分割されている。
Embodiment 1 FIG.
1 is a schematic cross-sectional view of a switchgear according to Embodiment 1 for carrying out the present invention. As shown in FIG. 1, the opening / closing device 1 of the present embodiment includes a blocking unit 2 and an opening / closing mechanism unit 3. The driving force of the driving force generator 3 a of the opening / closing mechanism 3 is transmitted to the driving lever 5 via the pin 4. The drive lever 5 is rotatable around a horizontal axis 6 fixed to the support base 7. A connecting member 8 is attached to the end of the drive lever 5, and the connecting member 8 is driven in the vertical direction by the rotation of the drive lever 5. By driving the connecting member 8 in the vertical direction, the insulating rod 10 is driven in the vertical direction via the operation rod 9 attached to the upper part of the connecting member 8. A movable electrode rod 21 of a vacuum valve 20 is attached to the upper portion of the insulating rod 10 via a connecting member 11. A movable electrode 22 is attached to the tip of the movable electrode rod 21 of the vacuum valve 20. A fixed electrode 24 is attached to the distal end portion of the fixed electrode rod 23 of the vacuum valve 20, and when the fixed electrode 24 and the movable electrode 22 are brought into contact with and separated from each other, current is supplied and cut off in the cut-off portion 2. Done. As will be described later, the movable electrode bar 21 and the fixed electrode bar 23 are divided into a plurality of divided electrode bars on the connection side with the movable electrode 22 and the fixed electrode 24, respectively.

真空バルブ20の固定電極棒23は、引出端子13aを挟んで真空バルブの固定部14に固定されている。また、真空バルブ20の可動電極棒21には、フレッキシブル導体15の一端が接続されている。フレッキシブル導体15の他端は、端子支持部16に固定されている。フレッキシブル導体15は、端子支持部16で引出端子13bと電気的に接続されている。引出端子13aおよび引出端子13bは、それぞれ端子入出力部17a、17bにより絶縁フレーム18に固定されている。引出端子13aおよび引出端子13bは、絶縁フレーム18によって支持台7とは電気的に絶縁されている。   The fixed electrode rod 23 of the vacuum valve 20 is fixed to the fixed portion 14 of the vacuum valve with the lead terminal 13a interposed therebetween. One end of the flexible conductor 15 is connected to the movable electrode rod 21 of the vacuum valve 20. The other end of the flexible conductor 15 is fixed to the terminal support 16. The flexible conductor 15 is electrically connected to the lead terminal 13b at the terminal support 16. The lead terminal 13a and the lead terminal 13b are fixed to the insulating frame 18 by terminal input / output portions 17a and 17b, respectively. The lead terminal 13 a and the lead terminal 13 b are electrically insulated from the support base 7 by the insulating frame 18.

図1において、支持台7、開閉機構部3、駆動レバー5、連結部材8および操作ロッド9は電気的に接地されている。系統電流の流れる経路は、引出端子13a、固定電極棒23、固定電極24、可動電極22、可動電極棒21、フレッキシブル導体15および引出端子13bの経路である。電流投入状態では、固定電極24と可動電極22とが接触しており、上述した経路で電流が流れる。電流遮断時には、開閉機構部3の駆動力が駆動レバー5などを介して伝わり、可動電極22が、例えば1m/sという高速度で下に動くことで固定電極24と可動電極22とが離隔される。   In FIG. 1, the support base 7, the opening / closing mechanism 3, the drive lever 5, the connecting member 8, and the operation rod 9 are electrically grounded. The path through which the system current flows is the path of the extraction terminal 13a, the fixed electrode bar 23, the fixed electrode 24, the movable electrode 22, the movable electrode bar 21, the flexible conductor 15, and the extraction terminal 13b. In the current input state, the fixed electrode 24 and the movable electrode 22 are in contact with each other, and current flows through the above-described path. When the current is interrupted, the driving force of the opening / closing mechanism unit 3 is transmitted through the driving lever 5 and the like, and the movable electrode 22 moves downward at a high speed of 1 m / s, for example, so that the fixed electrode 24 and the movable electrode 22 are separated from each other. The

開閉装置は、定格電圧や通電電流などに応じて必要な性能が規格によって定められている。ここで、開極ギャップ長を、開閉装置が「開状態」にあるときの固定電極24と可動電極22との間の距離とする。この開極ギャップ長は開閉装置に必要な耐電圧性能が確保される距離である。ここで、開閉装置に開極指令を出したときの開極動作時間を、固定電極24から可動電極22が離れた瞬間から、可動電極22が固定電極24から開極ギャップ長だけ離れた位置まで移動するのに要する時間と定義する。したがって、開極ギャップ長が10mmで、可動電極22の開極速度が一定値1m/sであると、開極動作時間は10msとなる。   The required performance of the switchgear is determined by the standard in accordance with the rated voltage, energization current, and the like. Here, the opening gap length is a distance between the fixed electrode 24 and the movable electrode 22 when the switchgear is in the “open state”. The opening gap length is a distance at which the withstand voltage performance necessary for the switchgear is ensured. Here, the opening operation time when the opening command is issued to the switchgear is from the moment when the movable electrode 22 is separated from the fixed electrode 24 to the position where the movable electrode 22 is separated from the fixed electrode 24 by the opening gap length. It is defined as the time required to move. Accordingly, when the opening gap length is 10 mm and the opening speed of the movable electrode 22 is a constant value of 1 m / s, the opening operation time is 10 ms.

図2は、本実施の形態に係わる真空バルブ20の断面模式図である。図2に示すように、本実施の形態の真空バルブ20は、絶縁筒28と絶縁筒28の各端部の開口を塞ぐ固定側端板29と可動側端板30とで真空容器が構成されており、内部が高真空状態になっている。   FIG. 2 is a schematic cross-sectional view of the vacuum valve 20 according to the present embodiment. As shown in FIG. 2, the vacuum valve 20 of the present embodiment includes an insulating cylinder 28, a fixed side end plate 29 that closes the opening of each end of the insulating cylinder 28, and a movable side end plate 30. The inside is in a high vacuum state.

真空バルブ20の内部では、固定側端板29を貫通した固定電極棒23は、分割されていない部位27の先端に固定側の分割電極棒26が設けられている。さらに、固定電極24の表面であって可動電極22と対向する面に複数の突出部36が設けられている。固定側の分割電極棒26の各々は、固定電極24の各突出部36の裏側で固定電極24に固着されている。なお、固定電極および可動電極は、それぞれ固定接点および可動接点という場合もある。   Inside the vacuum valve 20, the fixed electrode rod 23 penetrating the fixed side end plate 29 is provided with a fixed divided electrode rod 26 at the tip of a non-divided portion 27. Further, a plurality of protrusions 36 are provided on the surface of the fixed electrode 24 and the surface facing the movable electrode 22. Each of the fixed-side divided electrode rods 26 is fixed to the fixed electrode 24 on the back side of each protruding portion 36 of the fixed electrode 24. The fixed electrode and the movable electrode may be referred to as a fixed contact and a movable contact, respectively.

同様に、可動側端板30を貫通した可動電極棒21は、分割されていない部位27の先端に可動側の分割電極棒25が設けられている。さらに、可動電極22の表面であって固定電極24と対向する面に複数の突出部36が設けられている。可動側の分割電極棒25の各々は、可動電極22の各突出部36の裏側で可動電極22に固着されている。   Similarly, the movable electrode bar 21 penetrating through the movable side end plate 30 is provided with a movable divided electrode bar 25 at the tip of a non-divided portion 27. In addition, a plurality of protrusions 36 are provided on the surface of the movable electrode 22 that faces the fixed electrode 24. Each of the movable-side divided electrode rods 25 is fixed to the movable electrode 22 on the back side of each protrusion 36 of the movable electrode 22.

なお、本実施の形態においては、可動電極22および固定電極24にそれぞれ設けられた突出部36は3個であり、可動側の分割電極棒25および固定側の分割電極棒26もそれぞれ3本である。なお、突出部の個数は2個から5個程度であり、目安として遮断電流を突出部の数で割った値が約10kAとなるようにその個数を設定することが好ましい。   In the present embodiment, there are three protrusions 36 provided on the movable electrode 22 and the fixed electrode 24, respectively, and the movable-side divided electrode bar 25 and the fixed-side divided electrode bar 26 are also provided in three. is there. The number of protrusions is about 2 to 5, and as a guide, the number is preferably set so that the value obtained by dividing the cutoff current by the number of protrusions is about 10 kA.

可動電極棒の分割されていない部位27と可動側の分割電極棒25の接合部にベローズカバー32を設け、ベローズ31を介して可動側端板30と接合する。ベローズ31は伸縮可能であるので、図1の開閉機構部3の駆動により可動電極棒21が軸方向で移動するのを可能にしている。また、絶縁筒28の内面には、固定電極24、可動電極22、固定側の分割電極棒26および可動側の分割電極棒25を囲む円筒状のアークシールド33が設けられている。このアークシールド33は、電極間のアークで発生する金属蒸気が絶縁筒28の内面に付着して固定側端板29と可動側端板30との間の耐電圧性が低下するのを防ぐために設けられている。本実施の形態においては、このアークシールド33を鉄などの磁性体で構成している。   A bellows cover 32 is provided at the joint between the undivided portion 27 of the movable electrode rod and the movable divided electrode rod 25, and is joined to the movable side end plate 30 via the bellows 31. Since the bellows 31 can expand and contract, the movable electrode rod 21 can be moved in the axial direction by driving the opening / closing mechanism 3 in FIG. A cylindrical arc shield 33 surrounding the fixed electrode 24, the movable electrode 22, the fixed-side divided electrode rod 26, and the movable-side divided electrode rod 25 is provided on the inner surface of the insulating cylinder 28. The arc shield 33 is used to prevent the metal vapor generated by the arc between the electrodes from adhering to the inner surface of the insulating cylinder 28 and lowering the voltage resistance between the fixed side end plate 29 and the movable side end plate 30. Is provided. In the present embodiment, the arc shield 33 is made of a magnetic material such as iron.

また、アークシールド33は、絶縁筒28に内接して固定されており、電位を持つ固定電極24や可動電極22などとは接触していないため浮遊電位となっている。   The arc shield 33 is fixed in contact with the insulating cylinder 28 and has a floating potential because it is not in contact with the fixed electrode 24 or the movable electrode 22 having potential.

図3は、図2におけるA−A断面図である。図3に示すように、可動側の分割電極棒25は、3本で構成されており絶縁筒28の中心付近に各々が接触しないようにギャップを開けて配置されている。   3 is a cross-sectional view taken along line AA in FIG. As shown in FIG. 3, the movable-side divided electrode rod 25 is composed of three pieces, and is arranged with a gap so that they do not contact each other near the center of the insulating tube 28.

図4は可動電極22の斜視図を示す。可動電極22の表面には3つの突出部36が設けられている。可動側の分割電極棒25も3つに分かれており、それぞれが円柱状となっている。突出部36は可動電極22の縁部周辺に設けられ、突出高さhをもつ。可動電極22の裏面で可動側の分割電極棒25が可動電極22を挟んで突出部と対向する位置に取り付けられているが、この取り付け位置を突出部36と直列の位置と表現する。固定電極24と固定側の分割電極棒26との接続も同様で、固定電極24の裏面で突出部36と直列する位置に固定側の分割電極棒26が接続されている。なお、図4において、可動側の分割電極棒25には図2と対応が付きやすいように図2と同じハッチングを付けている。   FIG. 4 is a perspective view of the movable electrode 22. Three protrusions 36 are provided on the surface of the movable electrode 22. The movable divided electrode rod 25 is also divided into three parts, each of which has a cylindrical shape. The protrusion 36 is provided around the edge of the movable electrode 22 and has a protrusion height h. The movable divided electrode rod 25 is attached to the back surface of the movable electrode 22 at a position facing the protrusion with the movable electrode 22 in between, and this attachment position is expressed as a position in series with the protrusion 36. The connection between the fixed electrode 24 and the fixed-side divided electrode rod 26 is the same, and the fixed-side divided electrode rod 26 is connected to the back surface of the fixed electrode 24 at a position in series with the protruding portion 36. In FIG. 4, the movable divided electrode rod 25 is hatched in the same manner as in FIG. 2 so as to be easily associated with FIG.

図2および図4に示したように、固定電極と可動電極とに設けた突出部が対向するように配置されているので、閉極状態においては固定側の分割電極棒26−固定電極の突出部36−可動電極22の突出部36−可動側の分割電極棒25とが直列して3つの通電経路が形成されている。   As shown in FIG. 2 and FIG. 4, since the protrusions provided on the fixed electrode and the movable electrode are arranged so as to face each other, in the closed state, the divided electrode rod 26 on the fixed side-the protrusion of the fixed electrode The part 36-the protruding part 36 of the movable electrode 22-and the movable divided electrode rod 25 are connected in series to form three energization paths.

図5は固定電極24および可動電極22の上面図である。図5において、突出部36は紙面に対して手前側に突出しており、突出部36は灰色で示されている。図5(a)に示すように、突出部は電極の周辺部半径Rの扇形でありその外周部の長さをαとする。これは、この外周部の長さαと図3に示した突出高さhを調整して、固定電極24と可動電極22とが開極するときの最終離隔点が必ず突出部となるようにする。図5(b)では突出部の半径Rおよび外周部の長さαを図5(a)に示したRおよびαよりもそれぞれ大きくした例である。この例は、突出高さhが小さくても開極する時の最終離隔点が必ず突出部となるように突出部の面積を大きくしたものである。 FIG. 5 is a top view of the fixed electrode 24 and the movable electrode 22. In FIG. 5, the protruding portion 36 protrudes toward the near side with respect to the paper surface, and the protruding portion 36 is shown in gray. As shown in FIG. 5A, the projecting portion is a sector shape having a peripheral radius R 1 of the electrode, and the length of the outer peripheral portion is α 1 . This protruding height h shown in length alpha 1 and 3 of the outer peripheral portion is adjusted, so that the final separation point is always projecting portion at the time of opening the fixed electrode 24 and movable electrode 22 transgressions To. FIG. 5B shows an example in which the radius R 2 of the protruding portion and the length α 2 of the outer peripheral portion are made larger than R 1 and α 2 shown in FIG. 5A, respectively. In this example, the area of the projecting portion is increased so that the final separation point at the time of opening is always the projecting portion even if the projecting height h is small.

突出部は円板状の接点材料から削り出しで形成することが可能である。すなわち、図5の白い部分を機械加工で削り、突出部36を残す。このため、突出高さhが小さい方が電極の加工の手間が省けるという効果がある。また、後述する遮断時のアークによるエネルギー注入による突出部36の温度上昇を抑制するという点でも、図5(b)の方が突出部36から電極本体に熱を拡散する効率が高いため有利である。   The protrusion can be formed by cutting out from a disk-shaped contact material. That is, the white portion in FIG. 5 is cut by machining, and the protruding portion 36 is left. For this reason, there exists an effect that the one where the protrusion height h is smaller can save the effort of an electrode process. 5B is also advantageous because the efficiency of diffusing heat from the protrusions 36 to the electrode body is higher in that the temperature rise of the protrusions 36 due to energy injection by arcs at the time of interruption described later is suppressed. is there.

なお、図5(a)に示したように、本実施の形態においては、突出部の面積すなわち固定電極24と可動電極22との接触面積が小さいため、単位面積当たりの圧接力が大きくなるので、小さい接圧で接触抵抗が確保できるという利点がある。このため、遮断電流が小さい真空バルブでは、図5(a)の構造とすることで開閉機構を小形化できる。   As shown in FIG. 5A, in this embodiment, since the area of the protrusion, that is, the contact area between the fixed electrode 24 and the movable electrode 22 is small, the pressure contact force per unit area increases. There is an advantage that the contact resistance can be secured with a small contact pressure. For this reason, in the vacuum valve having a small breaking current, the opening / closing mechanism can be miniaturized by adopting the structure shown in FIG.

図1に示したように、真空バルブ20は可動電極棒21の軸方向の移動に追従して可動電極22が固定電極24側に移動することで電流の投入(閉極)および遮断(開極)が行われる。遮断の際には、固定電極24と可動電極22とが離れ、固定電極24の突出部36と、可動電極22の突出部36との間にアークが点弧する。アークが発生した状態において、固定側の分割電極棒26−固定電極の突出部36−アーク34−可動電極22の突出部36−可動側の分割電極棒25が直列し、3つの通電経路を形成する。この時、アークによって加熱された電極接触面から金属蒸気が発生するが、真空バルブ20は、アークシールド33を備えているので、金属蒸気が絶縁筒28の内面に付着して、沿面耐電圧が低下するのを防止している。   As shown in FIG. 1, the vacuum valve 20 follows the movement of the movable electrode rod 21 in the axial direction, and the movable electrode 22 moves to the fixed electrode 24 side. ) Is performed. At the time of interruption, the fixed electrode 24 and the movable electrode 22 are separated from each other, and an arc is ignited between the protruding portion 36 of the fixed electrode 24 and the protruding portion 36 of the movable electrode 22. In the state where the arc is generated, the fixed divided electrode rod 26 -the fixed electrode protruding portion 36 -the arc 34 -the protruding portion 36 of the movable electrode 22 -the movable divided electrode rod 25 are connected in series to form three energization paths. To do. At this time, metal vapor is generated from the electrode contact surface heated by the arc. However, since the vacuum valve 20 includes the arc shield 33, the metal vapor adheres to the inner surface of the insulating tube 28, and the creeping withstand voltage is reduced. Prevents the decline.

図6は、本実施の形態の真空バルブにおいて、遮断のために固定電極24と可動電極22とが開極し始めた瞬間の模式図である。突出部36の高さや電極22、24の平行度にずれが生じた結果、開極動作時に3つの突出部36の離隔するタイミングにずれが生じる。図6では、3本の分割電極棒をそれぞれA、B、Cで示しており、その内の一つであるAに対応する突出部が最初に離隔してアーク34が点弧した状態を示す。   FIG. 6 is a schematic diagram at the moment when the fixed electrode 24 and the movable electrode 22 start to open for blocking in the vacuum valve of the present embodiment. As a result of the deviation in the height of the protruding portion 36 and the parallelism of the electrodes 22 and 24, the timing at which the three protruding portions 36 are separated during the opening operation is shifted. In FIG. 6, three divided electrode bars are indicated by A, B, and C, respectively, and a projection corresponding to one of them A is first separated to indicate a state where the arc 34 is ignited. .

図7は、図6に示した真空バルブの開極開始の状態を等価回路で示した回路図である。図7において、上述の3つの通電経路をそれぞれの分割電極棒のA、B、Cに対応させて電流路A、電流路B、電流路Cで示している。それぞれの電流路において、分割電極棒とアークシールド間に形成されたインダクタンスをLとして示している。それぞれの分割電極棒とアークシールドとの距離は同じとして各電流路のインダクタンスの大きさは等しい(L)とする。真空バルブ20にはAC電源が接続されており、閉極状態では電流Iが流れているとする。図6に示すように電流路Aにアークが発生し、電流Iは分割電極棒により分流され、電流路Aには電流Iが流れているとする。このとき、電流路Aにアーク電圧Uが発生したとする。アークの発生していない電流路Bおよび電流路Cを流れる電流を合計してIB+Cとすると、次の(1)式が成り立つ。
I=I+IB+C (1)
FIG. 7 is a circuit diagram showing an equivalent circuit of the opening start state of the vacuum valve shown in FIG. In FIG. 7, the above-described three energization paths are indicated by a current path A, a current path B, and a current path C corresponding to A, B, and C of the respective divided electrode bars. In each current path, L represents the inductance formed between the split electrode bar and the arc shield. The distance between each divided electrode bar and the arc shield is the same, and the magnitude of the inductance of each current path is equal (L). It is assumed that an AC power source is connected to the vacuum valve 20 and a current I flows in a closed state. Arc is generated in a current path A as shown in FIG. 6, the current I is shunted by split electrode rod, the current path A and the current I A flowing. At this time, the arc voltage U A is generated in a current path A. When the currents flowing through the current path B and the current path C where no arc is generated are summed as I B + C , the following equation (1) is established.
I = I A + I B + C (1)

電流路A、BおよびCの両端の電圧は等しいので、次の(2)式が成り立つ。
+L・dI/dt=L/2・dIB+C/dt (2)
ここで、電流路Aに対応する突出部が最初に離隔してアークが点孤した瞬間を時間t=0とする。
Since the voltages at both ends of the current paths A, B and C are equal, the following equation (2) is established.
U A + L · dI A / dt = L / 2 · dI B + C / dt (2)
Here, it is assumed that a time t = 0 is a moment when the protrusion corresponding to the current path A is first separated and the arc is lit up.

(1)式と(2)式とからIB+Cを消去すると、(3)式が成り立つ。
dI/dt=1/3・dI/dt−2/(3L)・U (3)
When IB + C is eliminated from the expressions (1) and (2), the expression (3) is established.
dI A / dt = 1/3 · dI / dt−2 / (3L) · U A (3)

AC電源の電流Iは60Hzの交流電流とし、ピーク電流値をIとすると、
I=I・sin(ωt+α) (4)
となる。ここで、ωは角速度60×2π(rad)であり、αを開極位相(rad)とする。
The AC power supply current I is an AC current of 60 Hz, and the peak current value is Ip .
I = I p · sin (ωt + α) (4)
It becomes. Here, ω is an angular velocity of 60 × 2π (rad), and α is an opening phase (rad).

(3)式と(4)式とからIの時間特性を求めると、次の(5)式が得られる。
=1/3・I・sin(ωt+α)−2/(3L)・U・t (5)
(3) from equation (4) When determining the time characteristic of the I A, the following (5) is obtained.
I A = 1/3 · I p · sin (ωt + α) −2 / (3L) · U A · t (5)

図8は、Iの時間変化を(5)式から算出して示したものである。ここで、I=40kA(実効値)、U=20Vとしている。図8には、合わせてIB+Cの時間変化も示している。図8において、Iは実線、IB+Cは破線で示している。図8の時間軸の0における開極位相αは、開閉装置の遮断時の最も厳しい条件として、電流ピーク時(I・sin(ωt+α)=±I、すなわちα=π/2、3π/2)としている。また、図8において、図8(a)はL=0.1μH、図8(b)はL=0.5μH、図8(c)はL=1μHとした場合である。 Figure 8 is a diagram showing by calculating a time variation of I A from (5). Here, I p = 40 kA (effective value) and U A = 20V. FIG. 8 also shows the time change of I B + C. In FIG. 8, I A solid line, I B + C is indicated by a broken line. The opening phase α at 0 on the time axis in FIG. 8 is, as the most severe condition when the switchgear is shut off, at the current peak (I p · sin (ωt + α) = ± I p , that is, α = π / 2, 3π / 2). In FIG. 8, FIG. 8A shows a case where L = 0.1 μH, FIG. 8B shows a case where L = 0.5 μH, and FIG. 8C shows a case where L = 1 μH.

電流路Aに対応する突出部が離隔した直後は、アークプラズマによって対向する突出部間のギャップがアークで架橋された状態にある。しかし、電流Iが上述のように0.1msで減衰すると、アークプラズマの発生が継続しないため、離隔直後のアークプラズマは拡散してしまいアークが維持されない。開極距離が大きくなってもアークが維持されるためには、突出部間のギャップが0.5mmとなった時点において、ピーク電流値の1/10以上の電流が流れている必要がある。これは、電流路Aに対応する突出部間のギャップが0.5mm以上になると、電流路BおよびCに対応する突出部間も離隔してアークが発生するため、電流路A、B、Cの全てにアーク電圧Uが生じる。この結果、LとUとによる3つの電流路が並列する回路となるため、以後は電流路A、B、Cの全てに電流が流れ、アークが維持される。 Immediately after the protrusion corresponding to the current path A is separated, the gap between the protrusions facing each other by the arc plasma is in a state of being bridged by an arc. However, when the current I A is attenuated at 0.1ms as discussed above, since the generation of arc plasma does not continue, the arc plasma after separation is not maintained arc will diffuse. In order to maintain the arc even when the opening distance increases, a current of 1/10 or more of the peak current value needs to flow when the gap between the protrusions becomes 0.5 mm. This is because when the gap between the protrusions corresponding to the current path A is 0.5 mm or more, an arc is generated between the protrusions corresponding to the current paths B and C, so that the current paths A, B, C Arc voltage U A occurs in all of the above. As a result, a circuit in which three current paths of L and U A are arranged in parallel is obtained, and thereafter, current flows through all of the current paths A, B, and C, and the arc is maintained.

なお、これ以降アーク電流がピーク電流値から1/10の電流に減衰するまでの時間をアーク電流の減衰時間と呼ぶ。可動電極22の開極速度が1m/sとすると、突出部間のギャップが0.5mmとなるのは、電流路Aで固定電極と可動電極とが離隔してから0.5ms後であり、この間アークが発生している必要がある。   Hereafter, the time until the arc current decays from the peak current value to 1/10 of the current is called the arc current decay time. When the opening speed of the movable electrode 22 is 1 m / s, the gap between the protrusions is 0.5 mm after 0.5 ms from the separation of the fixed electrode and the movable electrode in the current path A. During this time, an arc must be generated.

L=0.1μHでは図8(a)のように、電流路Aの電流Iは0.1ms後にピーク値の1/10まで減衰している。この時間の間にIB+Cが立ち上がっている。これは、電流路Aを流れていた電流が0.1ms後には電流路BやCに転流していることを示す。したがって、電流路Aのアークは長時間維持されず、最後に離隔する突出部にアークが移動することを示している。 When L = 0.1 μH, as shown in FIG. 8A, the current IA in the current path A is attenuated to 1/10 of the peak value after 0.1 ms. IB + C rises during this time. This indicates that the current flowing in the current path A is commutated to the current paths B and C after 0.1 ms. Therefore, the arc of the current path A is not maintained for a long time, indicating that the arc moves to the projecting portion that is finally separated.

L=0.5μHでは図8(b)のように、電流路Aの電流Iはアーク電流の減衰時間0.5ms、すなわち、アークが発生してから0.5ms後にピーク電流値の1/10まで減衰している。電流路Aの電流Iが維持される時間がアーク維持のために必要な時間0.5msと同等のため、3つの突出部にアークが並列して発生することになる。 When L = 0.5 μH, as shown in FIG. 8B, the current IA in the current path A is 0.5 ms after the arc current decay time, that is, 0.5 ms after the arc is generated. It has attenuated to 10. Since the time which the current I A of the current path A is maintained equal time 0.5ms and necessary for arc maintained, so that the arc is generated in parallel to the three protrusions.

L=1μHでは図8(c)のように、電流路Aの電流Iは約1.0msの間ピーク値の1/10以上維持され、約0.6msの間電流10kA(Iのピーク値の約20%)以上が電流路Aを流れていることを示している。この間IB+C電流が徐々に増加するが、電流路Bおよび電流路Cに対応する突出部が離隔してアーク電圧Uが発生するため、電流路Aの電流Iが維持され確実に3点でアークが点弧することになる。 At L = 1 μH, as shown in FIG. 8C, the current I A in the current path A is maintained at 1/10 or more of the peak value for about 1.0 ms, and the current 10 kA (I p peak) for about 0.6 ms. It shows that about 20% or more of the value flows through the current path A. During this time although I B + C current increases gradually, the current path for B and current path C arc voltage spaced apart protruding portions corresponding to the U A occurs, a current path current I A is maintained reliably three points A The arc will ignite.

図8(c)に示すように電流路Aの電流Iは約1.5ms維持されこの間IB+C電流が徐々に増加する状態であれば、さらに確実に3つの突出部でアークが点孤しているので、アークによる電極へのエネルギー注入を3箇所に分散させることができる。その結果、アークが1箇所集中したときのような局所的な電極表面の温度上昇を抑制し、遮断性能を向上させることができる。 If state current I A is about 1.5ms maintained during this period I B + C current increases gradually current path A as shown in FIG. 8 (c), the arc is Tenko with more certainly three protrusions Therefore, the energy injection into the electrode by the arc can be dispersed in three places. As a result, it is possible to suppress the local temperature increase of the electrode surface as when the arc is concentrated at one place, and to improve the interruption performance.

本実施の形態における開閉装置において、アークが維持されるために必要な減衰時間は0.5msで、開極ギャップ長までの開極動作時間は10msである。したがって、アーク電流の減衰時間が開極動作時間の1/20以上であれば、アークが多点で点孤してアークによる電極へのエネルギー注入を複数の箇所に分散させることができる。   In the switchgear according to the present embodiment, the decay time required to maintain the arc is 0.5 ms, and the opening operation time until the opening gap length is 10 ms. Therefore, if the decay time of the arc current is 1/20 or more of the opening operation time, the arc can be lit up at multiple points, and energy injection into the electrode by the arc can be distributed to a plurality of locations.

なお、本実施の形態の真空バルブにおいては、3個の突出部を固定電極および可動電極の両方の設けた例を示したが、どちらか一方の電極のみに突出部を設けてもよい。同様に、3本の分割電極棒を固定電極および可動電極の両方に設けた例を示したが、どちらか一方の突出部を設けた電極側に設けてもよい。   In the vacuum valve according to the present embodiment, the example in which the three protruding portions are provided as both the fixed electrode and the movable electrode is shown, but the protruding portion may be provided only in one of the electrodes. Similarly, although an example in which three divided electrode bars are provided on both the fixed electrode and the movable electrode has been shown, the electrode may be provided on the electrode side on which one of the protrusions is provided.

以上説明したように、本実施の形態の真空バルブにおいては、固定電極および可動電極の少なくとも一方の電極に電極間の対向面にn個の突出部を設け、突出部を備えた電極を支持する電極棒を軸方向に沿ってn個に分割された分割電極棒で構成し、この分割電極棒で構成された電極棒を取り囲む磁性体を配置しているので、確実に多点発弧させてアークエネルギーの分散を図ることができる。   As described above, in the vacuum valve of the present embodiment, at least one of the fixed electrode and the movable electrode is provided with n protrusions on the facing surface between the electrodes, and the electrode including the protrusions is supported. The electrode rod is composed of divided electrode rods divided into n pieces along the axial direction, and the magnetic body surrounding the electrode rod composed of the divided electrode rods is disposed, so that it is possible to reliably ignite multiple points. Dispersion of arc energy can be achieved.

また、分割電極棒と磁性体との間に発生するインダクタンスの値と電極間に発生するアークのアーク電圧と電極間に印加される交流電力の時間特性とで算出されるアーク電流の減衰時間を開極動作時間の1/20以上となるように設定しているので、アークが多点で点孤してアークによる電極へのエネルギー注入を複数の箇所に分散させることができる。   Also, the arc current decay time calculated from the value of the inductance generated between the divided electrode rod and the magnetic material, the arc voltage of the arc generated between the electrodes, and the time characteristics of the AC power applied between the electrodes is calculated. Since it is set to be 1/20 or more of the opening operation time, the arc is lit up at multiple points, and the energy injection to the electrode by the arc can be distributed to a plurality of locations.

さらには、分割電極棒で構成された電極棒を取り囲む磁性体としてアークシールドを用いているので、新たな部材を追加する必要もない。   Furthermore, since the arc shield is used as the magnetic body surrounding the electrode rod composed of the divided electrode rods, it is not necessary to add a new member.

なお、本実施の形態において、固定電極および可動電極の突出部は図5に示したように電極の周辺部に扇形の形状で形成したが、別の形状であってもよい。図9は、本実施の形態における別の形状をもつ電極の上面図および断面図を示す。図9(a)は上面図であり、灰色に塗った突出部36が上側(手前側)に位置している。図9(b)はB−B断面図である。この別の形状をもつ電極の突出部は図9(a)に示すように帯状であり、図9(b)に示すように電極22、24と滑らかな段差で接続されている。鋭角的な突起部がないため電極表面の電界緩和が向上するので、定格電圧の高い真空バルブに適している。また、図5に示した突出部に比べて、突出部を形成するための電極の削り量が減るため、電極の材料に無駄が少なく加工しやすいという長所をもつ。突出部36の周辺長さα3を長くすることで、固定電極24と可動電極22が開極する時の最終離間点が必ず突出部となるように調整することもできる。さらには、遮断時のアークによるエネルギー注入によって発生する突出部の熱を電極本体へ拡散する効率も高くなる。   In the present embodiment, the protruding portions of the fixed electrode and the movable electrode are formed in a fan shape at the peripheral portion of the electrode as shown in FIG. FIG. 9 shows a top view and a cross-sectional view of an electrode having another shape in the present embodiment. FIG. 9A is a top view, and the protruding portion 36 painted in gray is positioned on the upper side (near side). FIG. 9B is a BB cross-sectional view. The protruding portion of the electrode having another shape has a strip shape as shown in FIG. 9A and is connected to the electrodes 22 and 24 with a smooth step as shown in FIG. 9B. Since there is no sharp protrusion, the electric field relaxation on the electrode surface is improved, which is suitable for a vacuum valve having a high rated voltage. Further, as compared with the protruding portion shown in FIG. 5, the amount of shaving of the electrode for forming the protruding portion is reduced, so that there is an advantage that the material of the electrode is less waste and easy to process. By making the peripheral length α3 of the protrusion 36 longer, the final separation point when the fixed electrode 24 and the movable electrode 22 are opened can be adjusted to be the protrusion. Furthermore, the efficiency of diffusing the heat of the protrusion generated by the energy injection by the arc at the time of interruption to the electrode body is also increased.

また、本実施の形態において、アークシールド33は絶縁筒28に内接している。これは、電極棒に交流電流が流れることで、磁性体で形成されたアークシールドにうず電流が流れて発生する熱を、絶縁筒に拡散させることで温度上昇を抑制するためである。   In the present embodiment, the arc shield 33 is inscribed in the insulating cylinder 28. This is for suppressing an increase in temperature by diffusing the heat generated by the eddy current flowing through the arc shield formed of the magnetic material to the insulating cylinder due to the alternating current flowing through the electrode rod.

実施の形態2.
図10は、実施の形態2に係わる真空バルブ20の断面模式図である。図10に示すように、本実施の形態の真空バルブ20は、図2で示した実施の形態1の真空バルブの構造と同様であるが、実施の形態1と異なる点が二つある。一つは、分割電極棒25、26を囲む磁性体として実施の形態1では磁性体で構成されたアークシールドが配置されていたが、本実施の形態においては、アークシールド33は磁性体ではない金属、例えばステンレス鋼や銅で形成されている点である。もう一つは、分割電極棒25、26を囲む磁性体として分割電極棒25,26を軸方向に覆う円筒状の電極棒カバー37が設けられている点である。なお、電極棒カバー37は、可動電極22および固定電極24と電気的に接続されている。
Embodiment 2. FIG.
FIG. 10 is a schematic sectional view of the vacuum valve 20 according to the second embodiment. As shown in FIG. 10, the vacuum valve 20 of the present embodiment is the same as the structure of the vacuum valve of the first embodiment shown in FIG. 2, but there are two differences from the first embodiment. One is that an arc shield made of a magnetic material is disposed as a magnetic material surrounding the divided electrode rods 25 and 26 in the first embodiment. However, in this embodiment, the arc shield 33 is not a magnetic material. It is a point formed of a metal such as stainless steel or copper. The other is that a cylindrical electrode rod cover 37 is provided as a magnetic body surrounding the divided electrode rods 25 and 26 so as to cover the divided electrode rods 25 and 26 in the axial direction. The electrode bar cover 37 is electrically connected to the movable electrode 22 and the fixed electrode 24.

図11は、図10におけるC−C断面図である。図11に示すように、可動側の分割電極棒25は、3本で構成されており絶縁筒28の中心にギャップを開けて配置されている。電極棒カバー37は、分割電極棒25の外周を取り囲んでいる。   11 is a cross-sectional view taken along the line CC in FIG. As shown in FIG. 11, the movable-side divided electrode rod 25 is composed of three pieces, and is arranged with a gap in the center of the insulating tube 28. The electrode rod cover 37 surrounds the outer periphery of the divided electrode rod 25.

このように構成された真空バルブは、実施の形態1と同様に、固定電極および可動電極の少なくとも一方の電極に電極間の対向面にn個の突出部を設け、突出部を備えた電極を支持する電極棒を軸方向に沿ってn個に分割された分割電極棒で構成し、この前記分割電極棒で構成された電極棒を取り囲む磁性体を配置しているので、確実に多点発弧させてアークエネルギーの分散を図ることができる。   As in the first embodiment, the vacuum valve configured as described above is provided with n protrusions on the opposing surface between the electrodes on at least one of the fixed electrode and the movable electrode, and an electrode including the protrusions is provided. The supporting electrode rod is composed of divided electrode rods divided into n pieces along the axial direction, and the magnetic body surrounding the electrode rod composed of the divided electrode rods is arranged, so that it is possible to reliably generate multiple points. Arc energy can be distributed by arcing.

また、分割電極棒と電極棒カバーとの間の距離が分割電極棒とアークシールドとの間の距離より短くなるので、磁性体を同じ厚さでかつ長さとした場合、実施の形態1よりもインダクタンスLを大きくすることができるという効果がある。   In addition, since the distance between the divided electrode bar and the electrode bar cover is shorter than the distance between the divided electrode bar and the arc shield, when the magnetic body has the same thickness and length, it is more than that of the first embodiment. There is an effect that the inductance L can be increased.

なお、電極棒カバーはアークシールドに比べると、遮断の際に電極間のアークで発生する金属蒸気の付着量が少ない。このため、電極棒カバーでは、高温の金属蒸気による変形や損傷が起こらないので、分割電極棒と電極棒カバーとの間のインダクタンスの値の変動が小さい。また、磁性体としての電極棒カバーを可動電極または固定電極と同電位としているので、たとえ金属蒸気の付着が起こったとしても分割電極棒と電極棒カバーとの間のインダクタンスの値の変動は小さい。さらには、可動電極側の分割電極棒と電極棒カバーとは同時に動くので、電流の投入および遮断動作による分割電極棒と電極棒カバーとの間のインダクタンスの値の変動はない。これらのことにより、分割電極棒と電極棒カバーとの間のインダクタンスの値の変動が少なく、安定したアークの転流抑制効果が得られる。   The electrode bar cover has a smaller amount of metal vapor generated by the arc between the electrodes when interrupted than the arc shield. For this reason, in the electrode bar cover, since deformation or damage due to high-temperature metal vapor does not occur, the variation in the inductance value between the divided electrode bar and the electrode bar cover is small. In addition, since the electrode bar cover as a magnetic body has the same potential as the movable electrode or the fixed electrode, even if metal vapor adheres, the variation in the inductance value between the divided electrode bar and the electrode bar cover is small. . Furthermore, since the split electrode bar and the electrode bar cover on the movable electrode side move at the same time, there is no fluctuation in the inductance value between the split electrode bar and the electrode bar cover due to the turning on and off of the current. By these things, the fluctuation | variation of the inductance value between a division | segmentation electrode rod and an electrode rod cover is small, and the stable commutation suppression effect of an arc is acquired.

実施の形態3.
図12は、実施の形態3に係わる真空バルブ20の断面模式図である。図12に示すように、本実施の形態の真空バルブ20は、図2で示した実施の形態1の真空バルブの構造と同様であるが、実施の形態1と異なる点が二つある。一つは、実施の形態1ではアークシールドの断面形状は直線状となっているが、本実施の形態ではアークシールド33の両端に直径が小さい部位39が設けられている点である。なお、アークシールド33は、実施の形態1と同様、磁性体で構成されている。もう一つは、実施の形態1は固定側の分割電極棒と可動側の分割電極棒とはが直線的な円柱状となっているが、本実施の形態では固定側の分割電極棒26と可動側の分割電極棒25とに屈曲部38が設けられている点である。屈曲部38によって固定電極24または可動電極22に近い側の分極電極棒同士の間隔が、電極棒の分割されていない部位27に近い側の分極電極棒同士の間隔よりも広くなっている。屈曲部38が設けられていることで電極棒の分割されていない部位27よりも固定電極24および可動電極22の直径を大きくすることができる。
Embodiment 3 FIG.
FIG. 12 is a schematic cross-sectional view of the vacuum valve 20 according to the third embodiment. As shown in FIG. 12, the vacuum valve 20 of the present embodiment is similar to the structure of the vacuum valve of the first embodiment shown in FIG. 2, but there are two differences from the first embodiment. One is that the cross-sectional shape of the arc shield is linear in the first embodiment, but in this embodiment, portions 39 having a small diameter are provided at both ends of the arc shield 33. Note that the arc shield 33 is made of a magnetic material as in the first embodiment. The other is that in the first embodiment, the fixed-side divided electrode rod and the movable-side divided electrode rod are linear cylinders, but in this embodiment, the fixed-side divided electrode rod 26 and The bent portion 38 is provided on the movable divided electrode rod 25 on the movable side. Due to the bent portion 38, the interval between the polarized electrode rods on the side close to the fixed electrode 24 or the movable electrode 22 is wider than the interval between the polarized electrode rods on the side close to the portion 27 where the electrode rod is not divided. By providing the bent portion 38, the diameters of the fixed electrode 24 and the movable electrode 22 can be made larger than the portion 27 where the electrode rod is not divided.

このように構成された真空バルブにおいては、実施の形態1と同様に、固定電極および可動電極の少なくとも一方の電極に電極間の対向面にn個の突出部を設け、突出部を備えた電極を支持する電極棒を軸方向に沿ってn個に分割された分割電極棒で構成し、この前記分割電極棒で構成された電極棒を取り囲む磁性体を配置しているので、確実に多点発弧させてアークエネルギーの分散を図ることができる。   In the vacuum valve configured as described above, as in the first embodiment, at least one of the fixed electrode and the movable electrode is provided with n protrusions on the facing surface between the electrodes, and the electrode having the protrusions The electrode rod that supports the electrode rod is composed of divided electrode rods divided into n pieces along the axial direction, and a magnetic body that surrounds the electrode rod composed of the divided electrode rods is disposed. The arc energy can be distributed by generating an arc.

また、固定電極24および可動電極22の直径を大きくすることで、突出部36の一つ当りの表面積が大きくなり突出部の熱容量が増大する。その結果、電極表面からの金属蒸気の発生を抑制することができるので、遮断性能が向上するという効果がある。   Further, by increasing the diameters of the fixed electrode 24 and the movable electrode 22, the surface area per protrusion 36 is increased, and the heat capacity of the protrusion is increased. As a result, since generation of metal vapor from the electrode surface can be suppressed, there is an effect that the blocking performance is improved.

さらに、アークシールド33の両端に直径が小さい部位39を設けることで、遮断の際に固定電極24および可動電極22から発生する金属蒸気を捕捉する機能が向上する。これにより、絶縁筒28の内面に金属蒸気が付着して絶縁筒28の沿面耐電圧が低下するのを抑制する効果が向上する。   Further, by providing the portions 39 having a small diameter at both ends of the arc shield 33, the function of capturing the metal vapor generated from the fixed electrode 24 and the movable electrode 22 at the time of interruption is improved. Thereby, the effect which suppresses that metal vapor adheres to the inner surface of the insulation cylinder 28 and the creeping withstand voltage of the insulation cylinder 28 falls is improved.

1 開閉装置、 2 遮断部、 3 開閉機構部、 4 ピン、 5 駆動レバー
6 水平軸、 7 支持台、 8 連結部材、 9 操作ロッド
10 絶縁ロッド、 11 接続部材、 14 固定部、 15 フレッキシブル導体
16 端子支持部、 18 絶縁フレーム
20 真空バルブ、 21 可動電極棒、 22 可動電極、 23 固定電極棒
24 固定電極、 25、26 分割電極棒、 28 絶縁筒
29 固定側端板、 30 可動側端板、 31 ベローズ、 32 ベローズカバー
33 アークシールド、34 アーク、 36 突出部、 38 屈曲部
DESCRIPTION OF SYMBOLS 1 Opening / closing device, 2 Blocking part, 3 Opening / closing mechanism part, 4 Pin, 5 Drive lever 6 Horizontal axis, 7 Support base, 8 Connecting member, 9 Operation rod 10 Insulating rod, 11 Connecting member, 14 Fixing part, 15 Flexible conductor 16 Terminal support, 18 Insulating frame 20 Vacuum valve, 21 Movable electrode rod, 22 Movable electrode, 23 Fixed electrode rod 24 Fixed electrode, 25, 26 Divided electrode rod, 28 Insulating tube 29 Fixed side end plate, 30 Movable side end plate, 31 Bellows, 32 Bellows cover 33 Arc shield, 34 Arc, 36 Protruding part, 38 Bending part

Claims (7)

真空容器と、
この真空容器の内部に固定された固定電極と、
この固定電極を支持する固定電極棒と、
前記固定電極に対向して配置された可動電極と、
この可動電極を支持する可動電極棒と、
前記真空容器の内部に固定され、前記固定電極棒および前記可動電極棒の少なくとも一方を取り囲む磁性体と
を備えた真空バルブであって、
前記固定電極および前記可動電極の少なくとも一方の電極は、電極間の対向面にn個(nは2以上の自然数)の突出部を備えており、
前記突出部を備えた電極を支持する前記固定電極棒または前記可動電極棒は、その電極棒の軸方向に沿ってn個に分割された分割電極棒で構成されおり、
前記磁性体は、前記分割電極棒で構成された電極棒を取り囲んでいる
ことを特徴とする真空バルブ。
A vacuum vessel;
A fixed electrode fixed inside the vacuum vessel;
A fixed electrode rod for supporting the fixed electrode;
A movable electrode disposed opposite the fixed electrode;
A movable electrode rod that supports the movable electrode;
A vacuum valve comprising a magnetic body fixed inside the vacuum vessel and surrounding at least one of the fixed electrode rod and the movable electrode rod;
At least one of the fixed electrode and the movable electrode includes n (n is a natural number of 2 or more) protrusions on the opposing surface between the electrodes,
The fixed electrode rod or the movable electrode rod that supports the electrode having the protruding portion is composed of divided electrode rods divided into n pieces along the axial direction of the electrode rod,
The vacuum valve characterized in that the magnetic body surrounds an electrode rod composed of the divided electrode rods.
前記分割電極棒と前記磁性体との間に発生するインダクタンスの値は、
当該インダクタンスの値と電極間に発生するアークのアーク電圧と電極間に印加される交流電力の時間特性とで算出されるアーク電流の減衰時間が開極動作時間の1/20以上となるように設定される
ことを特徴とする請求項1に記載の真空バルブ。
The value of the inductance generated between the divided electrode bar and the magnetic body is
The decay time of the arc current calculated by the inductance value, the arc voltage of the arc generated between the electrodes, and the time characteristics of the AC power applied between the electrodes is set to be 1/20 or more of the opening operation time. The vacuum valve according to claim 1, wherein the vacuum valve is set.
前記分割電極棒と前記磁性体との間に発生するインダクタンスの値は、0.1μHより大きい
ことを特徴とする請求項2に記載の真空バルブ。
The vacuum valve according to claim 2, wherein a value of inductance generated between the divided electrode bar and the magnetic body is larger than 0.1 μH.
n個の前記電極棒とn個の前記突出部とは、前記突出部を備えた電極を挟んでそれぞれ対向配置されている
ことを特徴とする請求項1に記載の真空バルブ。
2. The vacuum valve according to claim 1, wherein the n electrode rods and the n protrusions are arranged to face each other with an electrode provided with the protrusions interposed therebetween.
前記磁性体は、前記固定電極および前記可動電極の外周部並びに前記分割電極棒を取り囲むアークシールドである
ことを特徴とする請求項1に記載の真空バルブ。
The vacuum valve according to claim 1, wherein the magnetic body is an arc shield that surrounds the outer periphery of the fixed electrode and the movable electrode and the divided electrode rod.
前記磁性体は、前記前記分割電極棒を取り囲む電極棒カバーである
ことを特徴とする請求項1に記載の真空バルブ。
The vacuum valve according to claim 1, wherein the magnetic body is an electrode bar cover that surrounds the divided electrode bar.
前記分割電極棒は、前記固定電極および前記可動電極に近い側で前記分極電極棒同士の間隔が拡大するように屈曲部が設けられており、
前記アークシールドの両端に直径が小さい部位が設けられている
ことを特徴とする請求項5に記載の真空バルブ。
The split electrode rod is provided with a bent portion so that the interval between the polarization electrode rods is enlarged on the side close to the fixed electrode and the movable electrode,
The vacuum valve according to claim 5, wherein portions having a small diameter are provided at both ends of the arc shield.
JP2016055564A 2016-03-18 2016-03-18 Vacuum valve Active JP6443369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055564A JP6443369B2 (en) 2016-03-18 2016-03-18 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055564A JP6443369B2 (en) 2016-03-18 2016-03-18 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2017174496A true JP2017174496A (en) 2017-09-28
JP6443369B2 JP6443369B2 (en) 2018-12-26

Family

ID=59971454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055564A Active JP6443369B2 (en) 2016-03-18 2016-03-18 Vacuum valve

Country Status (1)

Country Link
JP (1) JP6443369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059435A1 (en) * 2018-09-21 2020-03-26 三菱電機株式会社 Vacuum valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565341U (en) * 1979-06-27 1981-01-17
JPS60121636A (en) * 1983-09-23 1985-06-29 シ−メンス・アクチエンゲセルシヤフト Contactor unit of vacuum breaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565341U (en) * 1979-06-27 1981-01-17
JPS60121636A (en) * 1983-09-23 1985-06-29 シ−メンス・アクチエンゲセルシヤフト Contactor unit of vacuum breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059435A1 (en) * 2018-09-21 2020-03-26 三菱電機株式会社 Vacuum valve

Also Published As

Publication number Publication date
JP6443369B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
CN108320997B (en) Multipolar system transverse direction magnet structure direct current cut-offs vacuum interrupter and application
US4117288A (en) Vacuum type circuit interrupter with a contact having integral axial magnetic field means
RU2507624C2 (en) Vacuum interrupter for vacuum circuit breaker
US8164019B2 (en) Contact for a medium-voltage vacuum circuit-breaker with improved arc extinction, and an associated circuit-breaker or vacuum circuit-breaker, such as an AC generator disconnector circuit-breaker
US3014109A (en) Alternating current vacuum switch
US3372259A (en) Vacuum-type electric circuit interrupter with arc-voltage limiting means
JP6443369B2 (en) Vacuum valve
Schellekens 50 years of TMF contacts design considerations
US3792214A (en) Vacuum interrupter for high voltage application
CA3040399C (en) Electrical interruption device
US8835790B2 (en) Winding for a contact of a medium-voltage vacuum circuit-breaker with improved arc extinction, and an associated circuit-breaker and vacuum circuit-breaker, such as an AC generator disconnector circuit-breaker
JP2012248379A (en) Vacuum circuit breaker
JP5602607B2 (en) Vacuum valve
JP3812711B2 (en) Vacuum valve
JP2009289660A (en) Vacuum valve
US2439952A (en) Circuit interrupter
KR101268309B1 (en) Electrode for vacuum interrupter
CN220914103U (en) Arcing mechanism for vacuum arc-extinguishing chamber and vacuum arc-extinguishing chamber comprising same
JP6138601B2 (en) Electrode for vacuum circuit breaker and vacuum valve using the same
Na et al. Investigation on the axial magnetic field of cup type vacuum interrupter considering the geometry of contact support
JP3615562B2 (en) Power generator
Dingyu et al. Effect of initial opening speed on the behavior of vacuum arcs driven by transverse magnetic fields (TMF)
JP5038661B2 (en) Vacuum valve
Kacor et al. Solving of an Electric Arc Motion in a Vacuum Interrupter
JPH04155721A (en) Vacuum bulb

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6443369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250