JP2017173001A - Information terminal, position estimation method, and position estimation program - Google Patents

Information terminal, position estimation method, and position estimation program Download PDF

Info

Publication number
JP2017173001A
JP2017173001A JP2016056139A JP2016056139A JP2017173001A JP 2017173001 A JP2017173001 A JP 2017173001A JP 2016056139 A JP2016056139 A JP 2016056139A JP 2016056139 A JP2016056139 A JP 2016056139A JP 2017173001 A JP2017173001 A JP 2017173001A
Authority
JP
Japan
Prior art keywords
information
region
particles
unit
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016056139A
Other languages
Japanese (ja)
Other versions
JP6653507B2 (en
Inventor
至寛 菅谷
Yoshihiro Sugaya
至寛 菅谷
健人 外崎
Kento Tonosaki
健人 外崎
真一郎 大町
Shinichiro Omachi
真一郎 大町
智 宮崎
Satoshi Miyazaki
智 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2016056139A priority Critical patent/JP6653507B2/en
Publication of JP2017173001A publication Critical patent/JP2017173001A/en
Application granted granted Critical
Publication of JP6653507B2 publication Critical patent/JP6653507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Navigation (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an information terminal, etc., with which it is possible to accurately estimate the position of the device itself even when map data is used that does not include a scale or direction.SOLUTION: An information terminal comprises: a sensor for outputting ambient information as sensor information; a display unit for displaying map data having a plurality of areas including a passage area a user passes through; an operation unit for outputting a signal that corresponds to user operation; a position estimation unit for estimating the position of the device itself on the map data; and a control unit for causing display of the estimated position to be displayed by superimposition on the map data by the display unit. The position estimation unit outputs, on the basis of the sensor information, DR information for estimating the current position of the device itself on the map data, acquires information pertaining to the scale of the map data and information pertaining to a direction on the basis of the DR information and information indicating a position on the map data that is inputted via the operation unit, and estimates a position to which the device itself moves, on the basis of the DR information, the information pertaining to the scale, and the information pertaining to the direction.SELECTED DRAWING: Figure 4

Description

本発明は、移動した際の自装置の位置を推定する情報端末、位置推定方法、および位置推定プログラムに関する。   The present invention relates to an information terminal, a position estimation method, and a position estimation program that estimate the position of the own apparatus when it has moved.

従来から、歩行者であるユーザを目的地まで案内する歩行者ナビゲーションシステムがスマートフォン等の情報端末に搭載され、広く利用されている。このような歩行者ナビゲーションシステムでは、GPS(Global Positioning System)から受信するGPS信号に含まれている位置情報により、情報端末の位置を測位し、地図データ上に表示させる。   2. Description of the Related Art Conventionally, a pedestrian navigation system that guides a user who is a pedestrian to a destination is mounted on an information terminal such as a smartphone and widely used. In such a pedestrian navigation system, the position of the information terminal is measured based on the position information included in the GPS signal received from the GPS (Global Positioning System) and displayed on the map data.

しかしながら、歩行者ナビゲーションシステムは、GPS信号を受信可能な場所においては、高精度に情報端末の位置を測位することができるが、例えば屋内などのGPS信号が受信できない場所では、情報端末の位置を正確に推定することができない。   However, the pedestrian navigation system can measure the position of the information terminal with high accuracy in a place where the GPS signal can be received, but the position of the information terminal can be determined in a place where the GPS signal cannot be received such as indoors. It cannot be estimated accurately.

そのため、最近では、様々な手法を用いて屋内での情報端末の位置を推定する方法が提案され、実用化されている。例えば、Wi−Fi(Wireless Fidelity)(登録商標、以下省略)のアクセスポイント、BLE(Bluetooth(登録商標) Low Energy)技術を用いたビーコン等の機器が屋内に設置されている場合には、これらを利用することにより、屋内であっても情報端末の位置を正確に推定することができる。   Therefore, recently, a method for estimating the position of an information terminal indoors using various methods has been proposed and put into practical use. For example, when devices such as Wi-Fi (Wireless Fidelity) (registered trademark, hereinafter omitted) access points and beacons using BLE (Bluetooth (registered trademark) Low Energy) technology are installed indoors, By using, the position of the information terminal can be accurately estimated even indoors.

しかしながら、Wi−Fiアクセスポイント等の機器を屋内に設置して情報端末の位置推定に利用する場合には、事前にデータベースを構築しておく必要があることもあり、設置コストおよび管理コストがかかってしまう。また、Wi−Fiアクセスポイント等の機器をすべての屋内に設置することは非常に困難であるため、利用できる場所が制限されてしまう。   However, when a device such as a Wi-Fi access point is installed indoors and used for position estimation of an information terminal, it may be necessary to construct a database in advance, which requires installation cost and management cost. End up. In addition, since it is very difficult to install devices such as Wi-Fi access points indoors, places where they can be used are limited.

そこで、このような特別な機器を設置することなく、情報端末に搭載されている各種センサ等を用いて自装置の位置を推定する方法が提案されている(例えば、非特許文献1および非特許文献2参照)。   In view of this, there has been proposed a method for estimating the position of the own apparatus using various sensors or the like mounted on the information terminal without installing such special equipment (for example, Non-Patent Document 1 and Non-Patent Document 1). Reference 2).

W.Hang and Y.Han,"SmartPDR:Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization," IEEE Sensor Journal,Vol.15,pp2906-2916,no.5,May 2015W. Hang and Y. Han, "SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization," IEEE Sensor Journal, Vol.15, pp2906-2916, no.5, May 2015 O.Woodman and R.Harle,"Pedestrian Localisation for Indoor Environments," in Proc.10th Int.Conf.UbiComp,2008,pp114-123.O. Woodman and R. Harle, "Pedestrian Localization for Indoor Environments," in Proc. 10th Int. Conf. UbiComp, 2008, pp114-123.

しかしながら、従来の方法では、縮尺および方位を示す情報を含む正確な地図データを用いることを前提としている。そのため、縮尺および方位が不明な不正確な地図データを用いた場合には、情報端末の位置を正確に推定することができないという問題点があった。   However, the conventional method is based on the assumption that accurate map data including information indicating the scale and direction is used. Therefore, when inaccurate map data whose scale and direction are unknown is used, there is a problem that the position of the information terminal cannot be accurately estimated.

そこで、本発明の目的は、上記従来の技術における問題点に鑑みてなされたものであって、縮尺および方位に関する情報を含まない地図データを用いた場合であっても、自装置の位置を正確に推定することが可能な情報端末、位置推定方法、および位置推定プログラムを提供することにある。   Therefore, an object of the present invention is made in view of the problems in the conventional technology described above, and the position of the device itself is accurately determined even when map data that does not include information on the scale and orientation is used. It is an object of the present invention to provide an information terminal, a position estimation method, and a position estimation program.

本発明に係る情報端末は、環境情報を取得し、センサ情報として出力するセンサと、ユーザが通行する領域である通路領域および該通路領域とは異なる非通路領域を含む複数の領域を有する地図データを表示する表示部と、ユーザの操作に応じた操作信号を出力する操作部と、前記地図データ上での自装置の位置を推定する位置推定部を有するとともに、前記推定された自装置の位置を示す表示を前記地図データに重畳させて前記表示部に表示させる制御部とを備え、前記位置推定部は、前記センサから出力された前記センサ情報に基づき、前記地図データ上での自装置の現在位置を推定するためのデッドレコニング情報を出力し、前記デッドレコニング情報、および前記操作部を介して入力された前記地図データ上での位置を示す情報に基づき、前記地図データの縮尺に関する情報および方位に関する情報を取得し、前記デッドレコニング情報、前記縮尺に関する情報および前記方位に関する情報に基づき、自装置が移動する位置を推定するものである。   The information terminal according to the present invention is a map data having a plurality of areas including a sensor that acquires environmental information and outputs it as sensor information, a passage area that is a user-passing area, and a non-passage area that is different from the passage area. A display unit that displays a signal, an operation unit that outputs an operation signal in accordance with a user operation, and a position estimation unit that estimates the position of the device on the map data, and the estimated position of the device And a control unit that superimposes the display indicating the map data on the map data and displays it on the display unit, the position estimation unit based on the sensor information output from the sensor, Output dead reckoning information for estimating the current position, and based on the dead reckoning information and information indicating the position on the map data input via the operation unit. Come, the acquired information about information and orientation about the scale of the map data, based on the dead reckoning information, the information about the information and the orientation about the scale, and estimates the position where the own device is moved.

また、本発明に係る情報端末は、地図データとしての画像データを取得する画像データ取得部と、前記画像データから通路領域を推定する画像解析部とを備え、前記画像解析部は、前記画像データから、該画像データ中のエッジを検出するエッジ検出処理部と、前記画像データ中の画像を複数の領域に分割し、それぞれの領域を形成する画素の画素値を共通の画素値に変換した領域分割画像データを生成する領域分割処理部と、前記エッジおよび前記領域分割画像データに基づき、該領域分割画像データ中のそれぞれの領域のうち、同一領域とすべき複数の領域を統合し、統合された前記複数の領域を形成する画素に対して、画素値に応じて共通の領域を形成する画素であることを示す同一のラベルを付与し、前記同一のラベルが付与された複数の画素で形成された複数のラベリング領域を有するラベリング画像データを生成するラベリング処理部と、前記ラベリング画像データに含まれる前記複数のラベリング領域からユーザが通行する領域である通路領域を推定し、該通路領域を示す情報を含む画像情報を生成する通路領域推定部とを有するものである。   The information terminal according to the present invention includes an image data acquisition unit that acquires image data as map data, and an image analysis unit that estimates a passage area from the image data, and the image analysis unit includes the image data An edge detection processing unit for detecting edges in the image data, and an area obtained by dividing an image in the image data into a plurality of areas and converting pixel values of pixels forming each area into a common pixel value Based on the edge and the region divided image data, a plurality of regions that should be the same region are integrated and integrated based on the edge and the region divided image data. In addition, the same label indicating that the pixels form a common area is given to the pixels forming the plurality of areas according to pixel values, and the same label is given. A labeling processing unit for generating labeling image data having a plurality of labeling regions formed of a plurality of pixels, and estimating a passage region which is a region through which a user passes from the plurality of labeling regions included in the labeling image data, A passage area estimation unit that generates image information including information indicating the passage area.

以上のように、本発明によれば、地図データの縮尺および方位に関する情報を取得し、取得した縮尺および方位の情報に基づき、自装置が移動する位置を推定するため、縮尺および方位に関する情報を含まない地図データを用いた場合であっても、自装置の位置を正確に推定することが可能になる。   As described above, according to the present invention, information on the scale and orientation of map data is acquired, and the information on the scale and orientation is obtained in order to estimate the position where the device moves based on the acquired information of scale and orientation. Even when map data not included is used, the position of the device itself can be accurately estimated.

実施の形態1について説明するための概略図である。3 is a schematic diagram for explaining the first embodiment. FIG. 実施の形態1に係る情報端末の構成の一例を示すブロック図である。3 is a block diagram illustrating an example of a configuration of an information terminal according to Embodiment 1. FIG. 図2の画像解析部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the image analysis part of FIG. 図2の位置推定部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the position estimation part of FIG. 図3のエッジ検出処理部で生成されるエッジ画像データについて説明するための概略図である。It is the schematic for demonstrating the edge image data produced | generated by the edge detection process part of FIG. 図3の領域分割処理部で生成される領域分割画像データについて説明するための概略図である。It is the schematic for demonstrating the area division | segmentation image data produced | generated by the area division process part of FIG. 図3のラベリング処理部で行われるラベリング処理について説明するための概略図である。It is the schematic for demonstrating the labeling process performed in the labeling process part of FIG. 図3の通路領域推定部で行われる通路領域推定処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the passage area estimation process performed in the passage area estimation part of FIG. 図4の粒子初期化部で行われる粒子初期化処理について説明するための概略図である。It is the schematic for demonstrating the particle initialization process performed in the particle | grain initialization part of FIG. 実施の形態1に係る位置推定処理について説明するための概略図である。6 is a schematic diagram for explaining position estimation processing according to Embodiment 1. FIG.

実施の形態1.
以下、本発明の実施の形態1に係る情報端末について説明する。
本実施の形態1では、情報端末に設けられたカメラ等の撮像装置を用いて撮像して得られる画像データである地図データ、または予め取得した地図データを用い、この地図データ上における情報端末の現在位置を推定して情報端末に表示させる。
Embodiment 1 FIG.
Hereinafter, the information terminal according to Embodiment 1 of the present invention will be described.
In the first embodiment, map data that is image data obtained by imaging using an imaging device such as a camera provided in the information terminal, or map data acquired in advance is used, and the information terminal on the map data is displayed. The current position is estimated and displayed on the information terminal.

概略的には、情報端末は、この情報端末に一般的に搭載されている各種センサの検出結果に基づき、地図データ上での自装置の現在位置を推定するための情報であるデッドレコニング情報(詳細は後述する)を出力する。
そして、情報端末は、このデッドレコニング情報と、ユーザによって入力された地図データ上での位置を示す情報とに基づき、地図データの縮尺および方位に関する情報を取得し、これらの情報とデッドレコニング情報とに基づき、情報端末が移動する位置を推定する。
Schematically, an information terminal uses dead reckoning information (information for estimating the current position of its own device on map data based on detection results of various sensors generally mounted on the information terminal. The details will be described later).
Then, the information terminal acquires information on the scale and direction of the map data based on the dead reckoning information and the information indicating the position on the map data input by the user, and the information, the dead reckoning information, Based on the above, the position where the information terminal moves is estimated.

図1は、本実施の形態1について説明するための概略図である。
図1に示すように、本実施の形態1では、例えばユーザが携帯する情報端末の撮像装置によって施設に設置されている図1(a)に示すような案内図等を撮像する。この場合、情報端末には、図1(b)に示すように、撮像によって得られた画像データである屋内地図データ上に、この情報端末の推定した現在位置(以下、「推定現在位置」と適宜称する)を重畳させて表示することができる。
なお、図1(b)に示す例では、推定した現在位置の履歴を残した状態で表示されているが、これに限らず、例えば現時点での推定現在位置のみを表示させるようにしてもよい。
FIG. 1 is a schematic diagram for explaining the first embodiment.
As shown in FIG. 1, in the first embodiment, for example, a guide map as shown in FIG. 1A installed in a facility is imaged by an imaging device of an information terminal carried by a user. In this case, as shown in FIG. 1 (b), the information terminal displays the current position estimated by the information terminal (hereinafter referred to as “estimated current position”) on indoor map data that is image data obtained by imaging. Can be superimposed and displayed.
In the example shown in FIG. 1B, the history of the estimated current position is displayed, but not limited to this. For example, only the estimated current position at the current time may be displayed. .

また、本実施の形態1においては、主に、複数の店舗が収容された施設内の様子を示す画像データを屋内地図データとして扱う。この屋内地図データは、例えば、施設内に設置された案内板等の屋内地図を撮像したものであり、このような施設において、各店舗と店舗の間に設けられた通路とを含むデータとする。   Moreover, in this Embodiment 1, the image data which shows the mode in the facility where the some store was accommodated mainly are handled as indoor map data. The indoor map data is, for example, an image of an indoor map such as a guide board installed in the facility, and in such a facility, the indoor map data is data including passages provided between the stores. .

[情報端末の構成]
図2は、本実施の形態1に係る情報端末1の構成の一例を示すブロック図である。
情報端末1は、例えば、携帯電話、スマートフォン、タブレット、PDA(Personal Digital Assistant)等の、各種情報の表示、再生および記録が可能であり、ユーザが移動する際に、共に移動可能な端末である。
図2に示すように、情報端末1は、画像データ取得部としての撮像部2、画像信号処理部3、表示部4、操作部5、加速度センサ6、地磁気センサ7、ジャイロセンサ8、記憶部9および制御部10を備えている。なお、図2に示す例では、本実施の形態1の特徴に関連する部分についてのみ図示し、それ以外の部分については、図示を省略する。
[Configuration of information terminal]
FIG. 2 is a block diagram showing an example of the configuration of the information terminal 1 according to the first embodiment.
The information terminal 1 is a terminal that can display, reproduce, and record various types of information such as a mobile phone, a smartphone, a tablet, and a PDA (Personal Digital Assistant), and can move together when the user moves. .
As shown in FIG. 2, the information terminal 1 includes an imaging unit 2 as an image data acquisition unit, an image signal processing unit 3, a display unit 4, an operation unit 5, an acceleration sensor 6, a geomagnetic sensor 7, a gyro sensor 8, and a storage unit. 9 and a control unit 10. In the example shown in FIG. 2, only the parts related to the features of the first embodiment are shown, and the other parts are not shown.

撮像部2は、例えばCCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像素子に受光された光を撮像信号に変換し、サンプリングおよびノイズ除去等の処理を行うことによって撮像信号を出力する。
この例において、撮像部2は、被写体として施設内に設けられた屋内地図を撮像する。
The imaging unit 2 converts light received by an imaging element such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) image sensor into an imaging signal, and performs imaging and processing such as noise removal. Output a signal.
In this example, the imaging unit 2 images an indoor map provided in a facility as a subject.

画像信号処理部3は、撮像信号に対してAGC(Auto Gain Control)処理、ホワイトバランス処理、γ(ガンマ)補正、色調補正、シャープネス補正等の信号処理を行うとともに、この撮像信号を、例えば輝度信号と色差信号とからなる画像データに変換する。   The image signal processing unit 3 performs signal processing such as AGC (Auto Gain Control) processing, white balance processing, γ (gamma) correction, color tone correction, and sharpness correction on the image pickup signal, and converts the image pickup signal into, for example, luminance Conversion into image data composed of a signal and a color difference signal.

表示部4は、例えばLCD(Liquid Crystal Display)、有機EL(Electro Luminescence)等によって構成され、画像信号処理部3から供給された画像データを表示可能な形式に変換して表示する。表示部4としては、例えば、LCDまたは有機EL上にタッチセンサを有するタッチパネルが積層されたタッチパネルディスプレイを用いることができる。   The display unit 4 is configured by, for example, an LCD (Liquid Crystal Display), an organic EL (Electro Luminescence), and the like, and converts the image data supplied from the image signal processing unit 3 into a displayable format and displays it. As the display unit 4, for example, a touch panel display in which a touch panel having a touch sensor is stacked on an LCD or an organic EL can be used.

操作部5は、この情報端末1を操作するために用いられる各種の操作子が設けられ、各操作子に対する操作に応じた操作信号を出力する。操作部5には、例えば、電源のONおよびOFFを切り替える電源キー、撮影モードや再生モードといった情報端末1における動作モードを切り替えるモード切替キー等が設けられている。これらの各種キーは、例えば、情報端末1の筐体にハードウェアキーとして設けるようにしてもよいし、表示部4がタッチパネルディスプレイの場合には、各種キーがソフトウェアキーとして表示部4に表示されるようにしてもよい。   The operation unit 5 is provided with various operators used for operating the information terminal 1, and outputs an operation signal corresponding to an operation on each operator. The operation unit 5 is provided with, for example, a power key for switching the power ON and OFF, a mode switching key for switching an operation mode in the information terminal 1 such as a shooting mode and a playback mode. These various keys may be provided as hardware keys on the housing of the information terminal 1, for example. When the display unit 4 is a touch panel display, the various keys are displayed on the display unit 4 as software keys. You may make it do.

加速度センサ6、地磁気センサ7およびジャイロセンサ8は、情報端末1に入力される各種の環境情報を取得するためのセンサである。
加速度センサ6は、例えば、この情報端末1のローカル座標系(LCS;Local Coordinate System)における表示部4での表示画面の法線方向を示すz軸方向と、当該表示画面の横方向を示すx軸方向と、当該表示画面の縦方向を示すy軸方向との3方向の加速度を検出し、センサ情報として出力する。
地磁気センサ7は、ローカル座標系におけるx軸方向、y軸方向およびz軸方向の3方向の地磁気の強さを検出し、センサ情報として出力する。
ジャイロセンサ8は、ローカル座標系における角速度を検出し、センサ情報として出力する。
The acceleration sensor 6, the geomagnetic sensor 7, and the gyro sensor 8 are sensors for acquiring various environmental information input to the information terminal 1.
The acceleration sensor 6 includes, for example, a z-axis direction indicating the normal direction of the display screen on the display unit 4 in the local coordinate system (LCS) of the information terminal 1 and x indicating the horizontal direction of the display screen. The acceleration in three directions, that is, the axial direction and the y-axis direction indicating the vertical direction of the display screen, is detected and output as sensor information.
The geomagnetic sensor 7 detects the strength of geomagnetism in the three directions of the x-axis direction, the y-axis direction, and the z-axis direction in the local coordinate system, and outputs it as sensor information.
The gyro sensor 8 detects the angular velocity in the local coordinate system and outputs it as sensor information.

記憶部9は、例えばフラッシュメモリ、HDD(Hard Disc Drive)等で構成され、後述する制御部10の制御に基づき、撮像部2によって撮像された画像データ等を記憶する。なお、記憶部9としては、これに限らず、例えば外部に設けられたUSB(Universal Serial Bus)メモリ、SD(Secure Digital)メモリカード等のフラッシュメモリを用いることもできる。   The storage unit 9 is configured by, for example, a flash memory, an HDD (Hard Disc Drive), and the like, and stores image data and the like captured by the imaging unit 2 based on control of the control unit 10 described later. The storage unit 9 is not limited to this, and a flash memory such as an externally provided USB (Universal Serial Bus) memory or SD (Secure Digital) memory card can also be used.

制御部10は、図示しないRAM(Random Access Memory)をワークメモリとして用い、図示しないROM(Read Only Memory)に予め記憶されたプログラムに従い、この情報端末1の全体の動作を制御する。   The control unit 10 uses a RAM (Random Access Memory) (not shown) as a work memory, and controls the entire operation of the information terminal 1 according to a program stored in a ROM (Read Only Memory) (not shown).

また、制御部10は、画像解析部20および位置推定部30を備えている。
画像解析部20は、入力された画像データを構成する複数の画素のうち、画素の色を示す画素値が同等である画素によってブロックを形成する処理を行う。これにより、例えば屋内地図データを画像データとして用いた場合に、施設内の同一店舗および通路を示す領域がそれぞれ同一のブロックとして形成され、施設内の店舗および通路の位置関係を取得することができる。そして、本実施の形態1における画像解析部20は、これらのブロック化された領域から、ユーザが通行する領域である通路領域を推定し、推定した通路領域を示す通路情報を含む画像情報を生成する。
なお、「画素値が同等である」とは、比較する複数の画素における画素値が予め設定された範囲内である場合のことをいう。
In addition, the control unit 10 includes an image analysis unit 20 and a position estimation unit 30.
The image analysis unit 20 performs a process of forming a block with pixels having the same pixel value indicating the pixel color among the plurality of pixels constituting the input image data. Thus, for example, when indoor map data is used as image data, areas indicating the same store and passage in the facility are formed as the same block, and the positional relationship between the store and passage in the facility can be acquired. . Then, the image analysis unit 20 according to the first embodiment estimates a passage area, which is a region where the user passes, from these blocked areas, and generates image information including passage information indicating the estimated passage area. To do.
“Pixel values are equivalent” means a case where pixel values in a plurality of pixels to be compared are within a preset range.

位置推定部30は、デッドレコニングおよび粒子フィルタを用いて、画像データ上での情報端末1の現在位置を推定する処理を行う。
デッドレコニングは、加速度センサ6、地磁気センサ7およびジャイロセンサ8などによって得られるセンサ情報に基づき、情報端末1の位置を推定する手法である。
粒子フィルタは、現在位置として推定された範囲内に、後述する算出方法を用いて得られる状態を有する、情報端末1の位置を推定するためのモデルとしての複数の粒子を配置し、配置されたそれぞれの粒子を情報端末1の移動に応じて移動させることによって、情報端末1の位置を推定する手法である。
The position estimation unit 30 performs processing for estimating the current position of the information terminal 1 on the image data using dead reckoning and a particle filter.
Dead reckoning is a method of estimating the position of the information terminal 1 based on sensor information obtained by the acceleration sensor 6, the geomagnetic sensor 7, the gyro sensor 8, and the like.
The particle filter is arranged by arranging a plurality of particles as a model for estimating the position of the information terminal 1 having a state obtained by using a calculation method described later within the range estimated as the current position. This is a technique for estimating the position of the information terminal 1 by moving each particle according to the movement of the information terminal 1.

制御部10は、位置推定部30で推定された現在位置を示す表示を、画像信号処理部3から出力された画像データ上に重畳させ、得られた画像データを、画像信号処理部3を介して表示部4に表示させる。   The control unit 10 superimposes the display indicating the current position estimated by the position estimation unit 30 on the image data output from the image signal processing unit 3, and transmits the obtained image data via the image signal processing unit 3. Are displayed on the display unit 4.

制御部10は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、上述した画像解析部20および位置推定部30における処理を実現する回路デバイスなどのハードウェア等で構成される。   The control unit 10 is, for example, software executed on an arithmetic device such as a microcomputer or a CPU (Central Processing Unit), or hardware such as a circuit device that realizes the processing in the image analysis unit 20 and the position estimation unit 30 described above. Composed.

(画像解析部)
図3は、図2の画像解析部20の構成の一例を示すブロック図である。
図3に示すように、画像解析部20は、エッジ検出処理部21、領域分割処理部22、ラベリング処理部23および通路領域推定部24を備えている。なお、各部における処理の詳細については、後述する。
(Image Analysis Department)
FIG. 3 is a block diagram illustrating an example of the configuration of the image analysis unit 20 of FIG.
As shown in FIG. 3, the image analysis unit 20 includes an edge detection processing unit 21, a region division processing unit 22, a labeling processing unit 23, and a passage region estimation unit 24. Details of processing in each unit will be described later.

エッジ検出処理部21は、入力された画像データに対してエッジ検出処理を行い、画像データを構成する複数の画素のうち隣接する画素との間で画素値が大きく変化している部分、すなわち変化点を示すエッジを検出する。そして、エッジ検出処理部21は、検出されたエッジを画像化したエッジ画像データを生成して出力する。   The edge detection processing unit 21 performs edge detection processing on the input image data, and a portion where the pixel value changes greatly between adjacent pixels among a plurality of pixels constituting the image data, that is, changes An edge indicating a point is detected. Then, the edge detection processing unit 21 generates and outputs edge image data obtained by imaging the detected edge.

領域分割処理部22は、入力された画像データに対して領域分割処理を行い、画像データ中の複数の画素で一つの領域を形成し、同一領域を構成する画素の画素値を共通の画素値に変換する。これにより、領域分割処理部22は、画像データを複数の領域に分割した領域分割画像データを生成して出力する。   The area division processing unit 22 performs area division processing on the input image data, forms one area with a plurality of pixels in the image data, and sets the pixel values of the pixels constituting the same area as a common pixel value. Convert to Thereby, the area division processing unit 22 generates and outputs area divided image data obtained by dividing the image data into a plurality of areas.

ラベリング処理部23は、エッジ画像データおよび領域分割画像データに基づき、領域分割画像データ中の各領域のうち同一領域とすべき複数の領域を統合し、この領域内の画素に対して同一のラベルを付与するラベリング処理を行う。そして、ラベリング処理部23は、同一のラベルが付与された複数の画素で形成される複数のラベリング領域を有するラベリング画像データを生成して出力する。
ここで、ラベルとは、1つのラベリング領域を形成する複数の画素が、互いに共通する領域であるラベリング領域を形成する画素であることを示す情報のことをいう。また、ラベリング画像データには、それぞれのラベリング領域に関するラベリング情報が含まれている。
The labeling processing unit 23 integrates a plurality of regions that should be the same among the regions in the region-divided image data based on the edge image data and the region-divided image data, and applies the same label to the pixels in the region. The labeling process to give Then, the labeling processing unit 23 generates and outputs labeling image data having a plurality of labeling regions formed by a plurality of pixels assigned the same label.
Here, the label refers to information indicating that a plurality of pixels forming one labeling region are pixels forming a labeling region that is a common region. Further, the labeling image data includes labeling information related to each labeling area.

通路領域推定部24は、ラベリング処理部23から出力されたラベリング画像データに基づき、ラベリング画像データ中のラベリング領域の中から、通路領域を示すラベルを推定する通路領域推定処理を行う。そして、通路領域推定部24は、通路領域を示す通路情報を含む画像情報を出力する。   The passage region estimation unit 24 performs passage region estimation processing for estimating a label indicating a passage region from the labeling regions in the labeling image data based on the labeling image data output from the labeling processing unit 23. Then, the passage area estimation unit 24 outputs image information including passage information indicating the passage area.

(位置推定部)
図4は、図2の位置推定部30の構成の一例を示すブロック図である。
図4に示すように、位置推定部30は、デッドレコニングに対応するDR(Dead Reckoning)処理部31と、粒子フィルタに対応する粒子初期化部32、予測計算部33、尤度計算部34、リサンプリング部35および位置計算部36とを備えている。なお、各部における処理の詳細については、後述する。
(Position estimation part)
FIG. 4 is a block diagram illustrating an example of the configuration of the position estimation unit 30 in FIG.
As shown in FIG. 4, the position estimation unit 30 includes a DR (Dead Reckoning) processing unit 31 corresponding to dead reckoning, a particle initialization unit 32 corresponding to a particle filter, a prediction calculation unit 33, a likelihood calculation unit 34, A resampling unit 35 and a position calculation unit 36 are provided. Details of processing in each unit will be described later.

DR処理部31は、加速度センサ6、地磁気センサ7およびジャイロセンサ8などによって得られるセンサ情報に基づき、画像データ上での情報端末1の現在位置を推定するためのデッドレコニング情報(以下、「DR情報」と適宜称する)を取得するDR処理を行う。このDR処理部31においてDR処理を行う場合には、例えば、スマートPDR(Smartphone-Based Pedestrian Dead Reckoning)と称する手法を用いる。   The DR processing unit 31 is based on sensor information obtained by the acceleration sensor 6, the geomagnetic sensor 7, the gyro sensor 8, and the like, and dead reckoning information (hereinafter referred to as “DR”) for estimating the current position of the information terminal 1 on the image data. DR process is performed to obtain “information” as appropriate. When the DR processing unit 31 performs DR processing, for example, a technique called smart PDR (Smartphone-Based Pedestrian Dead Reckoning) is used.

スマートPDRは、情報端末1として例えばスマートフォンを用いた場合に、このスマートフォンに一般的に搭載されている機能および演算装置を用いて情報端末1の位置を推定する手法である。具体的には、スマートPDR処理では、スマートフォンに一般的に搭載されている加速度センサ6、地磁気センサ7およびジャイロセンサ8などを用いる。そして、スマートPDR処理では、これらの各種センサによって得られるセンサ情報に基づき、情報端末1を携帯するユーザの歩数を示すステップイベント回数、ユーザの進行方向、1ステップあたりの移動距離であるユーザの歩幅を検出または推定する。すなわち、スマートPDR処理では、情報端末1を携帯するユーザがどの方向にどれだけ移動したのかを示すDR情報を1歩毎に出力する。
なお、以下の説明では、「情報端末1(ユーザ)の移動」を「ステップイベント」と称し、例えば、「ユーザが1歩だけ歩いたことを検出する」ことを、「1ステップイベントを検出する」のように記載するものとする。
The smart PDR is a method for estimating the position of the information terminal 1 using a function and a calculation device that are generally mounted on the smartphone when, for example, a smartphone is used as the information terminal 1. Specifically, in the smart PDR process, an acceleration sensor 6, a geomagnetic sensor 7, a gyro sensor 8, and the like that are generally mounted on a smartphone are used. In the smart PDR process, the number of step events indicating the number of steps of the user carrying the information terminal 1 based on the sensor information obtained by these various sensors, the user's traveling direction, and the user's stride that is the moving distance per step. Is detected or estimated. That is, in the smart PDR process, DR information indicating how much the user carrying the information terminal 1 has moved in which direction is output for each step.
In the following description, “movement of the information terminal 1 (user)” is referred to as a “step event”. For example, “detecting that the user has walked only one step” is detected as “detecting a one-step event”. ".

粒子初期化部32は、DR処理部31から出力されるDR情報に基づき、情報端末1の最初の位置を示す位置情報と、次に移動した際の位置を示す位置情報とを取得し、現在位置に対して配置すべき複数の粒子を初期化して配置する粒子初期化処理を行う。   Based on the DR information output from the DR processing unit 31, the particle initialization unit 32 acquires position information indicating the first position of the information terminal 1 and position information indicating the position when the information terminal 1 has moved next. A particle initialization process is performed to initialize and arrange a plurality of particles to be arranged with respect to the position.

予測計算部33は、DR処理部31から出力されるDR情報に基づき、1ステップイベントが検出される毎に、粒子初期化部32または後述するリサンプリング部35における処理によって配置されている複数の粒子が移動する位置を推定する予測計算処理を行う。そして、予測計算部33は、予測計算処理による推定結果に応じて配置されている複数の粒子を移動させる。   The prediction calculation unit 33 is based on the DR information output from the DR processing unit 31, and each time a one-step event is detected, the prediction calculation unit 33 is arranged by a plurality of processes arranged in the particle initialization unit 32 or the processing in the resampling unit 35 described later. Predictive calculation processing is performed to estimate the position where particles move. And the prediction calculation part 33 moves the some particle | grains arrange | positioned according to the estimation result by a prediction calculation process.

尤度計算部34は、画像解析部20から出力された画像情報に含まれる通路情報に基づき、予測計算部33による予測計算処理の結果に応じて移動した複数の粒子の尤度を算出する尤度計算処理を行い、尤度の低い粒子、すなわち複数の粒子のうち適切に移動しなかった粒子を除外する。   The likelihood calculation unit 34 calculates the likelihood of the plurality of particles that have moved according to the result of the prediction calculation process by the prediction calculation unit 33 based on the path information included in the image information output from the image analysis unit 20. A degree calculation process is performed to exclude particles having low likelihood, that is, particles that have not moved appropriately among a plurality of particles.

リサンプリング部35は、尤度計算部34での尤度計算処理によって残った複数の粒子の中から1つの粒子だけをランダムに選択し、選択した粒子を複製して再配置する処理を予め設定された回数だけ行うリサンプリング処理を行う。そして、リサンプリング部35は、複製された複数の粒子を予測計算部33に出力するとともに、リサンプリング処理で用いた、尤度計算処理によって残った複数の粒子を破棄する。   The resampling unit 35 randomly selects only one particle from the plurality of particles remaining after the likelihood calculation process in the likelihood calculation unit 34, and sets a process of replicating and rearranging the selected particle. Resampling processing is performed as many times as specified. Then, the resampling unit 35 outputs the plurality of duplicated particles to the prediction calculation unit 33 and discards the plurality of particles remaining in the likelihood calculation process used in the resampling process.

位置計算部36は、尤度計算部34での尤度計算処理によって残った複数の粒子の位置および方位を含む状態を示す情報に基づき、情報端末1の推定現在位置を決定する。   The position calculation unit 36 determines the estimated current position of the information terminal 1 based on information indicating a state including the positions and orientations of the plurality of particles remaining by the likelihood calculation process in the likelihood calculation unit 34.

なお、上述では、図2〜図4に示す情報端末1の各部がそれぞれハードウェアで構成されるように説明したが、これはこの例に限定されない。すなわち、情報端末1における画像信号処理部3、制御部10、画像解析部20および位置推定部30、ならびに、画像解析部20および位置推定部30が有する各部の全てまたは一部を、CPU上でプログラムを実行させることで構成することも可能である。
プログラムは、情報端末1が有する図示しないROMに予め記憶させておいてもよいし、SDメモリカードといった記録媒体に記録された状態で提供されてもよい。インターネットなどの通信ネットワークを介してプログラムを提供することもできる。提供されたプログラムは、情報端末1が有する図示されない記憶部9などに記憶され、CPUに読み込まれて実行される。
In the above description, each unit of the information terminal 1 illustrated in FIGS. 2 to 4 is configured by hardware, but this is not limited to this example. That is, all or part of the image signal processing unit 3, the control unit 10, the image analysis unit 20 and the position estimation unit 30, and each unit included in the image analysis unit 20 and the position estimation unit 30 in the information terminal 1 are executed on the CPU. It is also possible to configure by executing a program.
The program may be stored in advance in a ROM (not shown) included in the information terminal 1 or may be provided in a state recorded in a recording medium such as an SD memory card. The program can also be provided via a communication network such as the Internet. The provided program is stored in a storage unit 9 (not shown) of the information terminal 1 and is read and executed by the CPU.

[情報端末における各種処理]
次に、画像解析部20の各部で行われる処理について説明する。
ここでは、エッジ検出処理部21におけるエッジ検出処理、領域分割処理部22における領域分割処理、ラベリング処理部23におけるラベリング処理、および通路領域推定部24における通路領域推定処理について説明する。
[Various processing in information terminals]
Next, processing performed in each unit of the image analysis unit 20 will be described.
Here, the edge detection processing in the edge detection processing unit 21, the region division processing in the region division processing unit 22, the labeling processing in the labeling processing unit 23, and the passage region estimation processing in the passage region estimation unit 24 will be described.

(エッジ検出処理)
エッジ検出処理を行う場合には、例えば、従来から知られているキャニー法を用いる。
キャニー法は、入力された画像データを平滑化した画像データに基づきDoG(Difference of Gaussian)画像データを生成し、このDoG画像に対して細線化処理を行う。そして、細線化処理が行われた画像データに対するヒステリシス閾値処理により、DoG画像データ中に残ったエッジ部分候補のうち、まとめられるものを1つに連結することによってエッジ画像データを生成するという手法である。これにより、エッジ部分の画素値が例えば「255」であり、それ以外の部分の画素値が例えば「0」であるエッジ画像データ、すなわちエッジ部分のみが白画素で構成され、それ以外の部分が黒画素で構成されたエッジ画像データを生成することができる。
(Edge detection processing)
When performing edge detection processing, for example, a conventionally known canny method is used.
In the Canny method, DoG (Difference of Gaussian) image data is generated based on image data obtained by smoothing input image data, and thinning processing is performed on the DoG image. Then, by the hysteresis threshold processing for the image data that has been subjected to thinning processing, edge image data is generated by concatenating one of the edge portion candidates remaining in the DoG image data into a single one. is there. Thereby, edge image data whose pixel value of the edge part is “255” and the pixel value of the other part is “0”, for example, only the edge part is composed of white pixels, and the other parts are Edge image data composed of black pixels can be generated.

なお、エッジ検出処理の方法は、上述したキャニー法を用いる場合に限られない。例えば、入力画像データからエッジを抽出することができれば、これ以外の方法を用いてもよい。   Note that the edge detection processing method is not limited to the case where the above-described Canny method is used. For example, other methods may be used as long as an edge can be extracted from input image data.

図5は、図3のエッジ検出処理部21で生成されるエッジ画像データについて説明するための概略図である。
エッジ検出処理部21は、図5(a)に示す入力画像データに対してエッジ検出処理を行うことにより、図5(b)に示すエッジ画像データを生成する。このエッジ画像データにおいて、エッジとして検出された画素は、例えば画素値が「255」の白画素となる。また、それ以外の画素は、例えば画素値が「0」の黒画素となる。
FIG. 5 is a schematic diagram for explaining edge image data generated by the edge detection processing unit 21 of FIG.
The edge detection processing unit 21 generates edge image data shown in FIG. 5B by performing edge detection processing on the input image data shown in FIG. In this edge image data, a pixel detected as an edge is, for example, a white pixel having a pixel value of “255”. The other pixels are black pixels having a pixel value of “0”, for example.

(領域分割処理)
領域分割処理を行う場合には、例えば、従来から知られている平均値シフト法(Mean Shift法)を用いるが、これに限らず、入力画像データから複数の分割領域を形成することができれば、平均値シフト法以外の方法を用いてもよい。
(Area division processing)
When performing region division processing, for example, a conventionally known average value shift method (Mean Shift method) is used, but not limited to this, if a plurality of divided regions can be formed from input image data, A method other than the average value shift method may be used.

図6は、図3の領域分割処理部22で生成される領域分割画像データについて説明するための概略図である。
領域分割処理部22は、図6(a)に示す入力画像データに対して領域分割処理を行うことにより、図6(b)に示すような、領域毎に同一の画素値を有する画素からなる複数の分割領域が形成された領域分割画像データを生成する。
FIG. 6 is a schematic diagram for explaining the area division image data generated by the area division processing unit 22 of FIG.
The area division processing unit 22 includes pixels having the same pixel value for each area as shown in FIG. 6B by performing area division processing on the input image data shown in FIG. Region divided image data in which a plurality of divided regions are formed is generated.

(ラベリング処理)
図7は、図3のラベリング処理部23で行われるラベリング処理について説明するための概略図である。
ラベリング処理は、エッジ画像データおよび領域分割画像データに基づき行われ、領域分割画像データ中の複数に分割されたそれぞれの領域において、同一の領域と判断された領域内の画素に対して同一のラベルを付与する。
(Labeling process)
FIG. 7 is a schematic diagram for explaining the labeling process performed by the labeling processing unit 23 of FIG.
The labeling process is performed based on the edge image data and the area division image data, and in each area divided into a plurality of areas in the area division image data, the same label is applied to the pixels in the area determined to be the same area. Is granted.

具体的には、ラベリング処理では、まず、領域分割画像データに対して左上の画素からラスタスキャンし、ラベルが付与されていない画素(以下、「注目画素」と適宜称する)の探索を行う。
次に、注目画素を検出した場合には、領域分割処理によって得られる画素値等の画素に関する情報に基づき、この注目画素の上下左右に隣接する4つの画素(以下、「4近傍画素」と適宜称する)を調査する。そして、調査した4近傍画素中に、注目画素の画素値と同一または近い画素値を有する対象画素が存在した場合には、この対象画素に付与されたラベルと同一のラベルを注目画素に付与する。
Specifically, in the labeling process, first, the region-divided image data is raster-scanned from the upper left pixel, and a pixel to which no label is attached (hereinafter referred to as “target pixel” as appropriate) is searched.
Next, when a pixel of interest is detected, based on information about the pixel such as a pixel value obtained by the region division process, four pixels adjacent to the pixel of interest (hereinafter referred to as “four neighboring pixels”) are appropriately selected. Survey). If a target pixel having a pixel value that is the same as or close to the pixel value of the pixel of interest exists among the four neighboring pixels that have been investigated, the same label as the label assigned to the target pixel is assigned to the pixel of interest. .

ここで、注目画素および対象画素の画素値が近いか否かは、例えば、2つの画素におけるRGB色空間上での各成分R(Red)、G(Green)およびB(Blue)の画素値の差分と、予め設定された距離dとを、以下の式(1)に基づいて比較することによって判断する。なお、式(1)における「i」および「k」は、画像データ中の画素の横方向の座標を示す。また、「j」および「l」は、縦方向の座標を示す。すなわち、例えばR(i,j)は、座標(i,j)の画素におけるR成分の画素値を示す。   Here, whether or not the pixel values of the target pixel and the target pixel are close is determined by, for example, the pixel values of the components R (Red), G (Green), and B (Blue) in the RGB color space in the two pixels. The difference is determined by comparing the preset distance d based on the following equation (1). Note that “i” and “k” in Equation (1) indicate the horizontal coordinates of the pixels in the image data. “J” and “l” indicate vertical coordinates. That is, for example, R (i, j) indicates the pixel value of the R component in the pixel at coordinates (i, j).

Figure 2017173001
Figure 2017173001

2つの画素におけるR、GおよびBの各成分の画素値の差分が式(1)を満足する場合には、注目画素および対象画素の色が同一または近いと判断し、対象画素に付与されたラベルと同一のラベルを注目画素に付与する。   When the difference between the pixel values of the R, G, and B components in the two pixels satisfies the expression (1), it is determined that the colors of the target pixel and the target pixel are the same or close, and are given to the target pixel The same label as the label is assigned to the target pixel.

なお、注目画素に対する4近傍画素を調査する際には、エッジ画像データを参照し、エッジ画像中のエッジを形成しているエッジ画素の座標に対応する座標上の画素を、調査の対象から除外する。すなわち、注目画素に対する4近傍画素中にエッジ画素が含まれる場合、このエッジ画素の画素値については考慮しないようにする。これは、エッジ画素によって形成されたエッジが分割された各領域の境界を示すためである。   When investigating the four neighboring pixels with respect to the target pixel, the edge image data is referred to, and the pixels on the coordinates corresponding to the coordinates of the edge pixels forming the edges in the edge image are excluded from the investigation target. To do. That is, when an edge pixel is included in four neighboring pixels with respect to the target pixel, the pixel value of the edge pixel is not considered. This is for showing the boundary of each area | region where the edge formed by the edge pixel was divided | segmented.

このようにして領域分割画像データ中のすべての画素に対してラベルを付与することにより、図7(c)に示すように、分割されたラベリング領域毎に異なるラベルを付与することができる。
また、画素値が近い画素に対して同一のラベルを付与することにより、本来同一の領域とされるべきであるにもかかわらず分割されてしまっていた領域同士を、同一のラベリング領域とすることができる。
By assigning labels to all the pixels in the area-divided image data in this way, different labels can be assigned to the divided labeling areas as shown in FIG. 7C.
In addition, by assigning the same label to pixels with similar pixel values, areas that have been divided even though they should have been the same area should be the same labeling area. Can do.

(通路領域推定処理)
通路領域推定処理では、ラベリング処理によってラベルが付与されたそれぞれのラベリング領域のうち、どのラベリング領域が通路領域であるのかを推定する。
ここでは、通路領域推定処理について説明する前に、まず、施設内の通路がどのようなものであるのかについて説明する。
(Passage area estimation process)
In the passage area estimation process, it is estimated which labeling area is a passage area among the labeling areas to which labels are given by the labeling process.
Here, before explaining the passage area estimation processing, first, what kind of passage is in the facility will be described.

通常、複数の店舗が収容された施設においては、ユーザが店舗間を自由に行き来できるように通路が設けられている。そして、このような通路は、以下に示すような第1〜第3の特徴を有しているものと推定することができる。   Usually, in a facility in which a plurality of stores are accommodated, a passage is provided so that a user can freely move between stores. And such a channel | path can be estimated to have the 1st-3rd characteristics as shown below.

第1の特徴は、通路の「面積」である。
上述したように、通路は、ユーザが店舗間を自由に行き来できるようにするために設けられている。そのため、通路は、施設内の各店舗に必ず隣接するように設けられており、また、ほとんどの通路が連続した領域を形成している。従って、通路領域は、各店舗等の領域よりも大きいものと考えることができる。
The first feature is the “area” of the passage.
As described above, the passage is provided so that the user can freely move between the stores. Therefore, the passage is provided so as to be adjacent to each store in the facility, and most passages form a continuous region. Therefore, it can be considered that the passage area is larger than the area of each store or the like.

第2の特徴は、施設内に設置された案内板における通路の「色」である。
通常の案内板では、施設内に複数の通路が設けられている場合でも、同一の色を用いて複数の通路を表示することが多い。そのため、例えば、案内板に基づく画像データ中に、面積の大きさの差が小さい2つの領域が存在している場合で、これら2つの領域の色の差が小さいときには、両方の領域がともに通路領域であると考えることができる。
The second feature is the “color” of the passage in the guide plate installed in the facility.
In a normal guide plate, even when a plurality of passages are provided in a facility, a plurality of passages are often displayed using the same color. Therefore, for example, in the case where there are two regions with a small difference in area size in the image data based on the guide plate, and when the difference in color between these two regions is small, both regions are both passages. It can be considered an area.

第3の特徴は、「通路を囲む矩形の面積」である。
第1の特徴でも説明したように、通路は、施設内の各店舗に必ず隣接するように設けられている。また、このような通路は、通常、施設全体に行き渡るように設けられている。そのため、通路領域全体を囲むような矩形を考えた場合、この面積は、店舗等のそれぞれの領域を囲むような矩形の面積よりも大きいものと考えることができる。
このとき設定される矩形は、通路領域の「最大横長さ」および「最大縦長さ」によって定義することができる。「最大横長さ」は、通路領域における画像座標系でのx軸方向の最大座標値および最小座標値の差によって得ることができる。また、「最大縦長さ」は、当該通路領域における画像座標系でのy軸方向の最大座標値および最小座標値の差によって得ることができる。なお、このように定義された矩形は、すべての辺において通路領域の一部と接するため、以下の説明では、「通路を囲む矩形」を「外接矩形」と適宜称するものとする。
The third feature is “a rectangular area surrounding the passage”.
As described in the first feature, the passage is always provided adjacent to each store in the facility. In addition, such a passage is usually provided so as to reach the entire facility. Therefore, when a rectangle surrounding the entire passage area is considered, this area can be considered to be larger than the area of the rectangle surrounding each area such as a store.
The rectangle set at this time can be defined by “maximum horizontal length” and “maximum vertical length” of the passage area. The “maximum lateral length” can be obtained by the difference between the maximum coordinate value and the minimum coordinate value in the x-axis direction in the image coordinate system in the passage area. The “maximum vertical length” can be obtained by the difference between the maximum coordinate value and the minimum coordinate value in the y-axis direction in the image coordinate system in the passage area. In addition, since the rectangle defined in this way is in contact with a part of the passage area on all sides, in the following description, the “rectangle surrounding the passage” is appropriately referred to as a “circumscribed rectangle”.

そこで、本実施の形態1では、ラベルが付与された各ラベリング領域において、上述した第1〜第3の特徴を順次比較することにより、画像データ中の通路領域を推定する。   Therefore, in the first embodiment, the passage area in the image data is estimated by sequentially comparing the first to third features described above in each labeling area to which a label is assigned.

図8は、図3の通路領域推定部24で行われる通路領域推定処理の流れの一例を示すフローチャートである。
まず、ステップS1において、通路領域推定部24は、領域毎にラベルが付与されたラベリング画像データから、面積が最大となる第1のラベリング領域Lと、この第1のラベリング領域Lの次に面積が大きい第2のラベリング領域Lを抽出する。
FIG. 8 is a flowchart showing an example of the flow of the passage area estimation process performed by the passage area estimation unit 24 of FIG.
First, in step S1, the passage area estimation unit 24, the labeling image data label is assigned to each region, a first labeling region L 1 which area is maximized, the first labeling region L 1 following area is extracted second labeling region L 2 large.

次に、通路領域推定部24は、第1のラベリング領域Lの面積を示す画素数と、第2のラベリング領域Lの面積を示す画素数に予め設定された係数αを乗じた値とを比較し、式(2)を満足するか否かを判断する(ステップS2)。ここでは、上述した第1の特徴についての判断を行う。なお、式(2)における「L」および「L」は、第1のラベリング領域Lおよび第2のラベリング領域Lの画素数を示す。また、係数αは、1より大きい値とする。 Next, the passage area estimation unit 24 calculates the number of pixels indicating the area of the first labeling area L1, and the value obtained by multiplying the number of pixels indicating the area of the second labeling area L2 by a preset coefficient α. Are compared to determine whether or not the expression (2) is satisfied (step S2). Here, the first feature described above is determined. Note that “L 1 ” and “L 2 ” in Expression (2) indicate the number of pixels in the first labeling region L 1 and the second labeling region L 2 . The coefficient α is a value greater than 1.

Figure 2017173001
Figure 2017173001

式(2)を満足すると判断した場合(ステップS2;Yes)、通路領域推定部24は、第1のラベリング領域Lが通路領域であると判断し、第1のラベリング領域Lが通路領域であることを示す通路情報を含む画像情報を出力する(ステップS3)。
一方、式(2)を満足しないと判断した場合(ステップS2;No)には、処理がステップS4に移行する。
If it is determined to satisfy equation (2) (Step S2; Yes), the passage area estimation unit 24, a first labeling region L 1 is determined to be the passage area, the first labeling region L 1 a passage area The image information including the passage information indicating that is output (step S3).
On the other hand, if it is determined that the expression (2) is not satisfied (step S2; No), the process proceeds to step S4.

次に、通路領域推定部24は、第1のラベリング領域Lおよび第2のラベリング領域Lの色について、式(3)を満足するか否かを判断する(ステップS4)。ここでは、上述した第2の特徴についての判断を行う。なお、式(3)における「L」および「L」は、第1のラベリング領域Lおよび第2のラベリング領域L内のすべての画素における画素値の平均を示す。 Next, the passage area estimation unit 24, the first labeling region L 1 and the second color labeling region L 2, determines whether to satisfy Equation (3) (step S4). Here, the above-described second feature is determined. Note that “L 1 ” and “L 2 ” in Equation (3) indicate the average of the pixel values of all the pixels in the first labeling region L 1 and the second labeling region L 2 .

Figure 2017173001
Figure 2017173001

式(3)を満足すると判断した場合(ステップS4;Yes)、通路領域推定部24は、第1のラベリング領域Lおよび第2のラベリング領域Lが通路領域であると判断し、第1のラベリング領域Lおよび第2のラベリング領域Lが通路領域であることを示す通路情報を含む画像情報を出力する(ステップS5)。
一方、式(3)を満足しないと判断した場合(ステップS4;No)には、処理がステップS6に移行する。
If it is determined to satisfy the equation (3) (step S4; Yes), the passage area estimation unit 24, a first labeling region L 1 and the second labeling region L 2 is determined to be the passage area, the first labeling region L 1 and the second labeling region L 2 and outputs the image information including the path information indicating a path area of the (step S5).
On the other hand, when it is determined that Expression (3) is not satisfied (step S4; No), the process proceeds to step S6.

ステップS6において、通路領域推定部24は、第1のラベリング領域Lおよび第2のラベリング領域Lのそれぞれを囲む外接矩形の面積を示す画素数を比較し、式(4)を満足するか否かを判断する。ここでは、上述した第3の特徴についての判断を行う。なお、式(4)における「L」は、第1のラベリング領域Lを囲む外接矩形の領域における画素数を示す。また、「L」は、第2のラベリング領域Lを囲む外接矩形の領域における画素数を示す。 In step S6, whether the passage area estimation unit 24 compares the number of pixels indicating the area of the circumscribed rectangle surrounding the respective first labeling region L 1 and the second labeling region L 2, satisfying the formula (4) Judge whether or not. Here, the above-described third feature is determined. Note that “L 1 ” in Expression (4) indicates the number of pixels in a circumscribed rectangular region surrounding the first labeling region L 1 . “L 2 ” indicates the number of pixels in a circumscribed rectangular area surrounding the second labeling area L 2 .

Figure 2017173001
Figure 2017173001

式(4)を満足すると判断した場合(ステップS6;Yes)、通路領域推定部24は、第1のラベリング領域Lが通路領域であると判断し、第1のラベリング領域Lが通路領域であることを示す通路情報を含む画像情報を出力する(ステップS7)。
一方、式(4)を満足しないと判断した場合(ステップS6;No)、通路領域推定部24は、第2のラベリング領域Lが通路領域であると判断し、第2のラベリング領域Lが通路領域であることを示す通路情報を含む画像情報を出力する(ステップS8)。
If it is determined to satisfy the equation (4) (Step S6; Yes), the passage area estimation unit 24, a first labeling region L 1 is determined to be the passage area, the first labeling region L 1 a passage area The image information including the passage information indicating that is output (step S7).
On the other hand, when it is determined not to satisfy the equation (4) (Step S6; No), the passage area estimation unit 24, the second labeling region L 2 is determined to be channel area, the second labeling region L 2 Image information including passage information indicating that is a passage region is output (step S8).

次に、位置推定部30で行われる位置推定処理について説明する。
なお、ここでは、位置推定部30を構成する粒子初期化部32、予測計算部33、尤度計算部34、リサンプリング部35および位置計算部36のそれぞれで行われる処理を含む全体的な処理を総称して「位置推定処理」と称する。
Next, the position estimation process performed by the position estimation unit 30 will be described.
Here, overall processing including processing performed by each of the particle initialization unit 32, the prediction calculation unit 33, the likelihood calculation unit 34, the resampling unit 35, and the position calculation unit 36 constituting the position estimation unit 30 is described. Are collectively referred to as “position estimation processing”.

(粒子の状態)
まず、各部で行われる処理を説明する前に、位置推定処理を行う際に用いられる粒子について説明する。
位置推定部30では、上述したように粒子フィルタを用い、現在位置と推定された範囲内に複数の粒子を配置する。また、位置推定部30は、配置された複数の粒子を情報端末1の移動に応じて移動させることにより、移動後の現在位置を推定する。
(Particle state)
First, before explaining the process performed in each part, the particle | grains used when performing a position estimation process are demonstrated.
The position estimation unit 30 uses a particle filter as described above and arranges a plurality of particles within the range estimated as the current position. In addition, the position estimation unit 30 estimates the current position after the movement by moving the arranged particles according to the movement of the information terminal 1.

DR処理部31におけるスマートPDR処理によってk番目のステップイベントが検出された場合、複数の粒子のそれぞれは、式(5)に示す状態sを有している。
なお、式(5)において、「x」および「y」は、画像座標系(ICS;Image Coordinate System)における粒子の位置である座標を示す。また、「mpp(meter per pixel)」は、1画素あたりのグローバル座標系(GCS;Global Coordinate System)における距離、すなわち画像データである屋内地図データの縮尺を示す。「θ」は、画像座標系におけるx軸方向をグローバル座標系に変換した際の方位を示す。
When the k-th step event is detected by the smart PDR process in the DR processing unit 31, each of the plurality of particles has a state s k shown in Expression (5).
In Expression (5), “x k ” and “y k ” indicate coordinates that are the positions of particles in an image coordinate system (ICS). “Mpp k (meter per pixel)” indicates a distance in a global coordinate system (GCS) per pixel, that is, a scale of indoor map data as image data. “Θ k ” indicates an orientation when the x-axis direction in the image coordinate system is converted into the global coordinate system.

Figure 2017173001
Figure 2017173001

本実施の形態1では、式(5)のように示される粒子の状態に含まれる各種の情報を用いることにより、情報端末1の位置を推定する。   In the first embodiment, the position of the information terminal 1 is estimated by using various kinds of information included in the state of particles represented by the equation (5).

次に、粒子初期化部32における粒子初期化処理、予測計算部33における予測計算処理、尤度計算部34における尤度計算処理、リサンプリング部35におけるリサンプリング処理、および位置計算部36における位置計算処理について説明する。   Next, particle initialization processing in the particle initialization unit 32, prediction calculation processing in the prediction calculation unit 33, likelihood calculation processing in the likelihood calculation unit 34, resampling processing in the resampling unit 35, and position in the position calculation unit 36 The calculation process will be described.

(粒子初期化処理)
位置推定部30で行われる位置推定処理を最初に行う際には、屋内地図データ上での情報端末1の初期位置が不明である。そこで、この粒子初期化処理では、情報端末1の初期位置を推定し、この初期位置に対応する、予め設定された数の複数の粒子を配置するための処理を行う。
ここで、複数の粒子のうちi番目の粒子における初期状態s (i)は、上述した式(5)に基づき、式(6)のように示すことができる。なお、粒子の初期状態を示す各種の値に付された「(i)」は、その値がi番目の粒子のものであることを示す。
(Particle initialization process)
When the position estimation process performed by the position estimation unit 30 is first performed, the initial position of the information terminal 1 on the indoor map data is unknown. Therefore, in this particle initialization process, an initial position of the information terminal 1 is estimated, and a process for arranging a predetermined number of particles corresponding to the initial position is performed.
Here, the initial state s 0 (i) in the i-th particle among the plurality of particles can be expressed as in Expression (6) based on Expression (5) described above. Note that “(i)” attached to various values indicating the initial state of the particle indicates that the value is that of the i-th particle.

Figure 2017173001
Figure 2017173001

粒子初期化処理は、例えばユーザによって情報端末1の現在位置が指定されることによって行われる。具体的には、まず、ユーザが情報端末1の表示部4に表示された屋内地図データ上の2点をタップすることにより、情報端末1の現在位置が指定される。ここで、「タップ」とは、ユーザが指等を表示部4に接触させることをいう。   The particle initialization process is performed by, for example, designating the current position of the information terminal 1 by the user. Specifically, first, when the user taps two points on the indoor map data displayed on the display unit 4 of the information terminal 1, the current position of the information terminal 1 is designated. Here, “tapping” means that the user brings a finger or the like into contact with the display unit 4.

まず、本実施の形態1における位置推定を行う際には、情報端末1の表示部4に表示された屋内地図データ上の現在位置に対応する位置がユーザによってタップされる。その後、ユーザが任意の歩数だけ移動した際に、移動先の現在位置に対応する屋内地図データ上の位置がタップされる。   First, when performing position estimation in the first embodiment, a position corresponding to the current position on the indoor map data displayed on the display unit 4 of the information terminal 1 is tapped by the user. Thereafter, when the user moves by an arbitrary number of steps, the position on the indoor map data corresponding to the current position of the movement destination is tapped.

図9は、図4の粒子初期化部32で行われる粒子初期化処理について説明するための概略図である。
ユーザによってタップされた屋内地図データ上の2つ地点におけるそれぞれの座標は、図9のように示すことができるが、タップされた地点は、実際の地点からずれている可能性がある。そのため、n点目のタップの際に実際の地点に位置する確率Pは、このようなずれをガウス分布Nのエラーモデルとした場合に、式(7)に基づき算出することができる。なお、式(7)における「σtap」は、ガウス分布Nの分散を示す。
FIG. 9 is a schematic diagram for explaining the particle initialization process performed by the particle initialization unit 32 of FIG.
The coordinates at two points on the indoor map data tapped by the user can be shown as shown in FIG. 9, but the tapped point may be deviated from the actual point. Therefore, the probability P of being located at the actual point at the time of the n-th tap can be calculated based on the equation (7) when such a deviation is used as an error model of the Gaussian distribution N. Note that “σ tap ” in Equation (7) indicates the variance of the Gaussian distribution N.

Figure 2017173001
Figure 2017173001

そして、タップされた2点間の距離ltapおよび方位θtapは、式(8)に基づき算出することができる。 Then, the distance l tap and the azimuth θ tap between the tapped two points can be calculated based on Expression (8).

Figure 2017173001
Figure 2017173001

一方、1点目をタップしてから2点目をタップするまでの間に、k´回のステップイベントが検出された場合、情報端末1がグローバル座標系におけるx軸方向およびy軸方向に移動した距離は、式(9)に基づき算出することができる。なお、式(9)における「l」は、s回目のステップにおける歩幅を示す。また、「h」は、s回目のステップにおける進行方向を示す。これらの値は、スマートPDR処理によって得られるDR情報に基づいて取得することができる。 On the other hand, if k ′ step events are detected between the first point and the second point, the information terminal 1 moves in the x-axis direction and the y-axis direction in the global coordinate system. The calculated distance can be calculated based on Expression (9). Note that “l s ” in Expression (9) indicates the stride in the s-th step. “H s ” indicates the traveling direction in the s-th step. These values can be acquired based on DR information obtained by smart PDR processing.

Figure 2017173001
Figure 2017173001

また、1点目をタップしてから2点目をタップするまでの間に、実際に情報端末1が移動した距離lmoveおよび方位θmoveは、式(9)を用いて式(10)に基づき算出することができる。なお、この距離lmoveおよび方位θmoveは、DR処理部31におけるスマートPDR処理によって算出される。 In addition, the distance l move and the azimuth θ move that the information terminal 1 has actually moved between tapping the first point and tapping the second point are expressed in Equation (10) using Equation (9). Can be calculated. The distance l move and the direction θ move are calculated by smart PDR processing in the DR processing unit 31.

Figure 2017173001
Figure 2017173001

従って、式(6)に示すi番目の粒子における初期状態sは、式(7)〜式(10)に基づき、式(11)のように算出することができる。これにより、初期位置での縮尺および方位に関する情報を取得することができる。
なお、式(11)において、i番目の粒子における初期状態の座標x (i)およびy (i)は、2点目にタップされた際の画像座標系での座標(xtap,2 ICS(i),ytap,2 ICS(i))に基づき算出される。この座標(xtap,2 ICS(i),ytap,2 ICS(i))は、2点目をタップした際の画像座標系での座標(xtap,2 ICS´,ytap,2 ICS´)の値に、式(7)を用いてノイズを付加することによって算出することができる。また、距離ltap (i)および方位θtap (i)は、式(7)によってノイズが付加された画像座標系でのタップ地点の座標(xtap,1 ICS(i),ytap,1 ICS(i))および(xtap,2 ICS(i),ytap,2 ICS(i))に基づき、式(8)を用いて算出することができる。
Thus, the initial state s k at the i-th particle shown in equation (6), based formula (7) to Formula (10) can be calculated by the equation (11). Thereby, the information regarding the reduced scale and azimuth | direction in an initial position is acquirable.
In equation (11), the coordinates x 0 (i) and y 0 (i) in the initial state of the i-th particle are the coordinates (x tap, 2 ) in the image coordinate system when tapped at the second point. ICS (i) , y tap, 2 ICS (i) ). The coordinates (x tap, 2 ICS (i) , y tap, 2 ICS (i) ) are the coordinates (x tap, 2 ICS ′, y tap, 2 ICS ) in the image coordinate system when the second point is tapped. It can be calculated by adding noise to the value of ′) using equation (7). Further, the distance l tap (i) and the azimuth θ tap (i) are the coordinates of the tap point (x tap, 1 ICS (i) , y tap, 1 ) in the image coordinate system to which noise is added according to the equation (7). ICS (i) ) and (x tap, 2 ICS (i) , y tap, 2 ICS (i) ) can be calculated using equation (8).

Figure 2017173001
Figure 2017173001

粒子初期化処理では、このようにして得られる算出結果に基づき、初期状態の粒子を配置する。そして、粒子初期化処理では、式(11)による計算を複数回行うことによって複数の粒子の状態を算出し、算出結果に応じた位置に複数の粒子を配置する。このときの複数の粒子は、2点目にタップされた位置の周囲に配置されることになる。   In the particle initialization process, the particles in the initial state are arranged based on the calculation result thus obtained. In the particle initialization process, the state of the plurality of particles is calculated by performing the calculation according to the expression (11) a plurality of times, and the plurality of particles are arranged at positions corresponding to the calculation result. The plurality of particles at this time are arranged around the position tapped at the second point.

(予測計算処理)
予測計算処理は、情報端末1が移動した場合に、初期値として配置されている複数の粒子の移動先を推定する処理である。この処理は、例えばユーザが1歩歩く毎に行われる。
具体的には、予測計算部33は、スマートPDR処理によってステップイベントが検出されると、このスマートPDR処理によって得られるDR情報に基づき、ステップイベント後におけるそれぞれの粒子の状態を算出して推定する。そして、予測計算部33は、推定結果に応じた位置にそれぞれの粒子を配置する。
(Prediction calculation process)
The prediction calculation process is a process for estimating the movement destinations of a plurality of particles arranged as initial values when the information terminal 1 moves. This process is performed, for example, every time the user walks one step.
Specifically, when a step event is detected by the smart PDR process, the prediction calculation unit 33 calculates and estimates the state of each particle after the step event based on the DR information obtained by the smart PDR process. . And the prediction calculation part 33 arrange | positions each particle | grain in the position according to an estimation result.

例えば、k回目のステップイベント後におけるi番目の粒子の状態は、式(12)で表すことができる。   For example, the state of the i-th particle after the k-th step event can be expressed by Expression (12).

Figure 2017173001
Figure 2017173001

また、式(12)にける各値は、式(13)に基づき算出することができる。なお、式(13)において、縮尺mpp (i)および方位θ (i)には、ガウス分布Nをノイズとしてそれぞれの値に加算している。これにより、複数の粒子のそれぞれが、次に移動する際に、互いに異なる距離および方向に移動することになる。 Moreover, each value in Formula (12) can be calculated based on Formula (13). In Expression (13), the Gaussian distribution N is added as noise to each value for the scale mpp k (i) and the direction θ k (i) . As a result, each of the plurality of particles moves to a different distance and direction when moving next time.

Figure 2017173001
Figure 2017173001

このようにして、予測計算処理では、すべての粒子に対する状態を算出し、算出結果に応じた位置に複数の粒子を移動させる。   In this way, in the prediction calculation process, the state for all particles is calculated, and a plurality of particles are moved to positions according to the calculation results.

(尤度計算処理)
尤度計算処理は、予測計算処理の結果に応じて移動した粒子に対して尤度を設定するための処理である。
例えば、ユーザが施設内を移動する場合には、通常、通路を移動するので、ユーザが携帯している情報端末1も通路領域内を移動することになる。そのため、予測計算処理による推定結果に基づいて移動した複数の粒子のうち、屋内地図データ中の通路領域以外の非通路領域に移動したり、壁などの領域を通過したりする粒子は、推定結果として適切ではない。
そこで、この尤度計算処理では、画像解析部20によって得られた画像情報に含まれる通路情報に基づき、予測計算処理の推定結果に応じて移動した複数の粒子のうち、適切でない移動を行う粒子を除外する処理を行う。
(Likelihood calculation processing)
The likelihood calculation process is a process for setting the likelihood for particles that have moved according to the result of the prediction calculation process.
For example, when the user moves in a facility, the user usually moves in the passage, so the information terminal 1 carried by the user also moves in the passage area. Therefore, out of the multiple particles that have moved based on the estimation results from the prediction calculation process, particles that move to non-passage areas other than the passage areas in the indoor map data or pass through areas such as walls are estimated results. Not as appropriate.
Therefore, in this likelihood calculation process, based on the path information included in the image information obtained by the image analysis unit 20, among the plurality of particles that have moved according to the estimation result of the prediction calculation process, particles that perform inappropriate movement Process to exclude.

粒子に対して尤度を設定する場合には、例えば、それぞれの粒子に対して重み付けを行う。情報端末1が通路領域から外れないと仮定した場合に、複数の粒子のうちi番目の粒子に対する重みw(i)は、式(14)で算出することができる。このような重み付けは、例えば、配置されている複数の粒子のそれぞれの座標情報と、通路領域の座標情報とを比較し、粒子が通路領域内に位置するか否かを判断することによって行われる。なお、式(14)における値「M」は、この処理によって除外されなかった粒子の数を示す。 In the case where the likelihood is set for each particle, for example, each particle is weighted. When it is assumed that the information terminal 1 does not deviate from the passage area, the weight w (i) for the i-th particle among the plurality of particles can be calculated by Expression (14). Such weighting is performed, for example, by comparing the coordinate information of each of a plurality of arranged particles with the coordinate information of the passage region and determining whether the particle is located in the passage region. . The value “M” in the equation (14) indicates the number of particles that are not excluded by this process.

Figure 2017173001
Figure 2017173001

このように、通路領域外に配置された粒子に対して値が「0」となる重みw(i)を付加することにより、適切でない動作をした粒子を、位置推定処理から除外することができる。 As described above, by adding the weight w (i) having a value of “0” to the particles arranged outside the passage region, it is possible to exclude particles that have performed an inappropriate operation from the position estimation process. .

なお、この例では、除外されなかった複数の粒子に対して付加される重みw(i)の値を一様としているが、これに限らず、例えば粒子毎に異なる値の重みw(i)を付加してもよい。具体的には、例えば、動きが実際の情報端末1の動きにより近い粒子に対して、他の粒子よりも値の大きい重みw(i)を付加する。これにより、位置推定の精度をより向上させることができる。 In this example, the value of the weight w (i) added to the plurality of particles that are not excluded is uniform. However, the present invention is not limited to this. For example, the weight w (i) having a different value for each particle. May be added. Specifically, for example, a weight w (i) having a larger value than other particles is added to the particles whose movement is closer to the actual movement of the information terminal 1. Thereby, the accuracy of position estimation can be further improved.

(リサンプリング処理)
リサンプリング処理は、尤度計算処理によって除外されなかった粒子に基づき、初期値として配置された複数の粒子と同数の粒子を再配置する処理である。
このリサンプリング処理では、まず、残った複数の粒子から1つの粒子だけを選択し、選択した粒子を複製する。そして、複製された粒子を、この粒子が有する状態に含まれる座標情報が示す屋内地図データ上での位置に再配置する。このとき、粒子の選択は、尤度分布に基づき行われ、例えば、それぞれに付加された重みw(i)の値が大きい粒子ほど、選択される可能性が高くなる。ただし、この例では、残った粒子に対する重みの値が一様であるため、選択される粒子はランダムとなる。
(Resampling process)
The resampling process is a process of rearranging the same number of particles as a plurality of particles arranged as initial values based on the particles not excluded by the likelihood calculation process.
In this resampling process, first, only one particle is selected from the plurality of remaining particles, and the selected particle is duplicated. Then, the duplicated particles are rearranged at the positions on the indoor map data indicated by the coordinate information included in the state of the particles. At this time, the selection of the particles is performed based on the likelihood distribution. For example, the larger the value of the weight w (i) added to each particle, the higher the possibility of selection. However, in this example, since the weight values for the remaining particles are uniform, the selected particles are random.

次に、リサンプリング処理では、上述したような1つの粒子だけを選択するとともに、選択された粒子を複製して再配置する処理を、再配置された粒子の数が粒子初期化処理によって配置された粒子の数と同数となるまで繰り返す。これにより、残った粒子を利用して、最初に配置された粒子数と同数の粒子を得ることができる。そして、予め設定された数の粒子が再配置されると、複製に利用した、尤度計算処理によって残った粒子を破棄する。   Next, in the resampling process, only one particle as described above is selected, and the process of replicating and rearranging the selected particle is arranged by the particle initialization process. Repeat until the number of particles is the same. Thereby, the same number of particles as the number of initially arranged particles can be obtained using the remaining particles. When a preset number of particles are rearranged, the particles remaining in the likelihood calculation process used for replication are discarded.

このようにして得られた複数の粒子は、予測計算部33に対して出力され、次のステップイベントが発生した際の予測計算処理における粒子の初期値として用いられる。   The plurality of particles obtained in this way are output to the prediction calculation unit 33 and are used as initial values of particles in the prediction calculation process when the next step event occurs.

(位置計算処理)
位置計算処理は、情報端末1の推定現在位置を決定するための処理である。
この位置計算処理は、尤度計算処理によって残った複数の粒子の位置および方位を含む状態を示す情報に基づき、例えば配置されているそれぞれの粒子の平均または重心の位置および方位を推定現在位置として決定する。
(Position calculation processing)
The position calculation process is a process for determining the estimated current position of the information terminal 1.
This position calculation process is based on information indicating a state including the positions and orientations of a plurality of particles remaining by the likelihood calculation process, for example, using the average or the center of gravity position and orientation of each arranged particle as the estimated current position. decide.

[位置推定処理による動作]
図10は、実施の形態1に係る位置推定処理について説明するための概略図である。
まず、図10(a)に示すように、予測計算部33の予測計算処理により、実際の現在位置に対する現在位置の範囲Rが推定されているものとする。この場合には、図10(b)に示すように、範囲R内に複数の粒子sが配置されている。
[Operation by position estimation processing]
FIG. 10 is a schematic diagram for explaining the position estimation process according to the first embodiment.
First, as shown in FIG. 10A, it is assumed that the range R of the current position with respect to the actual current position is estimated by the prediction calculation processing of the prediction calculation unit 33. In this case, as shown in FIG. 10B, a plurality of particles s are arranged in the range R.

次に、図10(c)に示すように、情報端末1を携帯しているユーザが移動する。このとき、スマートPDR処理によってステップイベントが検出される毎に、予測計算部33の予測計算処理により、配置されているそれぞれの粒子sの移動距離および方位が推定される。そして、図10(d)に示すように、それぞれの粒子sが推定結果に基づいて移動する。
次に、尤度計算部34における尤度計算処理により、それぞれの粒子sに対して尤度を設定し、図10(e)に示すように、適切でない動きによって移動した粒子sを除外する。この例では、通路間の壁に相当する領域を通過した粒子sが、適切でない動きを行ったと判断され、除外される。
Next, as shown in FIG. 10C, the user carrying the information terminal 1 moves. At this time, every time a step event is detected by the smart PDR process, the movement distance and direction of each arranged particle s are estimated by the prediction calculation process of the prediction calculation unit 33. Then, as shown in FIG. 10D, each particle s moves based on the estimation result.
Next, likelihood is set for each particle s by likelihood calculation processing in the likelihood calculation unit 34, and the particle s moved by an inappropriate motion is excluded as shown in FIG. 10 (e). In this example, it is determined that the particle s that has passed through the region corresponding to the wall between the passages has moved inappropriately, and is excluded.

最後に、リサンプリング部35におけるリサンプリング処理により、図10(f)に示すように、残ったすべての粒子sを利用して、粒子初期化処理によって配置された粒子の数と同数の複数の粒子sを再配置する。   Finally, by the resampling process in the resampling unit 35, as shown in FIG. 10 (f), a plurality of particles having the same number as the number of particles arranged by the particle initialization process are used using all the remaining particles s. Rearrange particles s.

以上のように、本実施の形態1に係る情報端末1は、環境情報を取得し、センサ情報として出力するセンサと、ユーザが通行する領域である通路領域および通路領域とは異なる非通路領域を含む複数の領域を有する地図データを表示する表示部4と、ユーザの操作に応じた操作信号を出力する操作部5と、地図データ上での自装置の位置を推定する位置推定部30を有するとともに、推定された自装置の位置を示す表示を地図データに重畳させて表示部4に表示させる制御部10とを備えている。また、位置推定部30は、センサから出力されたセンサ情報に基づき、地図データ上での自装置の現在位置を推定するためのDR情報を出力し、DR情報、および操作部5を介して入力された地図データ上での位置を示す情報に基づき、地図データの縮尺に関する情報および方位に関する情報を取得し、DR情報、縮尺に関する情報および方位に関する情報に基づき、自装置が移動する位置を推定する。   As described above, the information terminal 1 according to the first embodiment obtains environmental information and outputs a sensor information as a sensor area and a passage area that is a user-passing area and a non-passage area that is different from the passage area. A display unit 4 for displaying map data having a plurality of areas including the operation unit 5 for outputting an operation signal according to a user operation, and a position estimation unit 30 for estimating the position of the own device on the map data. In addition, a control unit 10 is provided that displays on the display unit 4 a display indicating the estimated position of the device itself on the map data. Further, the position estimation unit 30 outputs DR information for estimating the current position of the own device on the map data based on the sensor information output from the sensor, and is input via the DR information and the operation unit 5. Based on the information indicating the position on the map data, the information about the scale of the map data and the information about the direction are acquired, and the position where the device moves is estimated based on the DR information, the information about the scale, and the information about the direction. .

このように、本実施の形態1では、各種センサからのセンサ情報に基づき得られるDR情報を用いて、地図データの縮尺および方位に関する情報を取得し、取得した縮尺および方位に関する情報に基づき、情報端末1の位置を推定する。そのため、縮尺および方位が不明な屋内地図データを用いて情報端末1の位置を推定する場合であっても、地図データの縮尺および方位に関する情報を取得することができ、情報端末1の位置を正確に推定することができる。   As described above, in the first embodiment, using the DR information obtained based on the sensor information from various sensors, the information about the scale and direction of the map data is acquired, and based on the acquired information about the scale and direction, the information The position of the terminal 1 is estimated. Therefore, even when the position of the information terminal 1 is estimated using indoor map data whose scale and direction are unknown, information regarding the scale and direction of the map data can be acquired, and the position of the information terminal 1 can be accurately determined. Can be estimated.

また、位置推定部30は、DR情報に基づき、操作部5を介して入力された地図データ上での位置の周囲に、座標に関する情報、縮尺に関する情報、および方位に関する情報を少なくとも含む状態を有する複数の粒子を初期値として配置する粒子初期化部32と、DR情報に基づき、配置された複数の粒子が自装置の移動に応じて移動する位置を推定して移動させる予測計算部33と、移動した複数の粒子のうち、非通路領域に移動した粒子を除外する尤度計算部34と、尤度計算部34の処理によって残った複数の粒子に基づき、現在位置を推定する位置計算部36と、尤度計算部34の処理によって残った複数の粒子に基づき、初期値の複数の粒子と同数の粒子を、粒子の状態に含まれる座標に関する情報が示す位置に再配置するリサンプリング部35とを有し、予測計算部33は、リサンプリング部35によって再配置された複数の粒子を次回の処理の初期値として用いている。   Further, the position estimation unit 30 has a state including at least information on coordinates, information on scales, and information on directions around the position on the map data input via the operation unit 5 based on the DR information. A particle initialization unit 32 that arranges a plurality of particles as an initial value, a prediction calculation unit 33 that estimates and moves positions where the plurality of arranged particles move according to the movement of the device, based on DR information; A likelihood calculation unit 34 that excludes particles that have moved to the non-passage region among the plurality of particles that have moved, and a position calculation unit 36 that estimates the current position based on the plurality of particles remaining after the processing of the likelihood calculation unit 34. Based on the plurality of particles remaining by the processing of the likelihood calculation unit 34, the resampling unit relocates the same number of particles as the plurality of initial value particles at the position indicated by the information regarding the coordinates included in the particle state. And a ring portion 35, the prediction calculating unit 33 uses a plurality of particles which are rearranged by the re-sampling unit 35 as the initial value of the next process.

このように、本実施の形態1では、DR処理部31からのDR情報に基づき、縮尺および方位に関する情報を含む状態を有する複数の粒子を初期値として配置し、この複数の粒子に基づき、情報端末1の移動に応じて複数の粒子を移動させる。そのため、縮尺および方位が不明な屋内地図データを用いて情報端末1の位置を推定する場合であっても、情報端末1の位置を正確に推定することができる。   As described above, in the first embodiment, based on the DR information from the DR processing unit 31, a plurality of particles having a state including information on the scale and the orientation are arranged as initial values, and the information is based on the plurality of particles. A plurality of particles are moved according to the movement of the terminal 1. Therefore, even when the position of the information terminal 1 is estimated using indoor map data whose scale and orientation are unknown, the position of the information terminal 1 can be accurately estimated.

さらに、本実施の形態1に係る情報端末1は、地図データとしての画像データを取得する画像データ取得部としての撮像部2と、画像データから通路領域を推定する画像解析部20とを備えている。また、画像解析部20は、画像データから、画像データ中のエッジを検出するエッジ検出処理部21と、画像データ中の画像を複数の領域に分割し、それぞれの領域を形成する画素の画素値を共通の画素値に変換した領域分割画像データを生成する領域分割処理部22と、エッジおよび領域分割画像データに基づき、領域分割画像データ中のそれぞれの領域のうち、同一領域とすべき複数の領域を統合し、統合された複数の領域を形成する画素に対して同一のラベルを付与し、同一のラベルが付与された複数の画素で形成された複数のラベリング領域を有するラベリング画像データを生成するラベリング処理部23と、ラベリング画像データに含まれる複数のラベリング領域からユーザが通行する領域である通路領域を推定し、通路領域を示す情報を含む画像情報を生成する通路領域推定部24とを有している。   Furthermore, the information terminal 1 according to the first embodiment includes an imaging unit 2 as an image data acquisition unit that acquires image data as map data, and an image analysis unit 20 that estimates a passage area from the image data. Yes. In addition, the image analysis unit 20 divides an image in the image data into a plurality of regions from the image data, an edge detection processing unit 21 that detects edges in the image data, and pixel values of pixels forming each region A region division processing unit 22 that generates region-divided image data obtained by converting the pixel value into a common pixel value, and a plurality of regions that should be the same among the regions in the region-divided image data based on the edge and the region-divided image data Integrate the regions, assign the same label to the pixels forming the integrated multiple regions, and generate labeling image data with multiple labeling regions formed by multiple pixels with the same label And a path area which is an area through which the user passes from a plurality of labeling areas included in the labeling image data, and indicates the path area. And a passage area estimation part 24 generates image information including the information.

このように、本実施の形態1では、施設の案内板等を撮像して得られる画像データを地図データとして取得し、取得した画像データからエッジを検出するとともに、画像データ中の領域を分割した領域分割画像データを生成する。そして、エッジおよび領域分割画像データに基づきラベリング画像データを生成し、付与されたラベルが異なる領域同士の面積等の状態を比較し、通路領域を推定する。そのため、正確な地図データがない場合であっても、通路領域を容易に推定することができる。   As described above, in the first embodiment, image data obtained by imaging a facility information board or the like is acquired as map data, an edge is detected from the acquired image data, and an area in the image data is divided. Region divided image data is generated. Then, labeling image data is generated on the basis of the edge and the region-divided image data, and the states such as areas of regions having different labels are compared to estimate the passage region. Therefore, even if there is no accurate map data, the passage area can be easily estimated.

以上、本実施の形態1について説明したが、本発明は、上述した実施の形態1に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
本実施の形態1では、施設に設けられた案内板等の屋内地図を撮像して得られる画像データを屋内地図データとして取得した場合を例にとって説明したが、実施例としてはこの例に限られない。例えば、通路領域を推定する際に使用する屋内地図データは、予め取得した地図データを用いてもよい。このような地図データは、縮尺および方位を示す情報を含まない屋内地図データであってもよく、また、画像データでなくてもよい。
Although the first embodiment has been described above, the present invention is not limited to the above-described first embodiment, and various modifications and applications are possible without departing from the gist of the present invention.
In the first embodiment, the case where image data obtained by capturing an indoor map such as a guide board provided in a facility is acquired as indoor map data is described as an example. However, the embodiment is limited to this example. Absent. For example, map data acquired in advance may be used as indoor map data used when estimating a passage area. Such map data may be indoor map data that does not include information indicating the scale and orientation, and may not be image data.

また、本実施の形態1では、画像データ取得部として撮像部2を用いて地図データとしての画像データを取得するように説明したが、これに限らず、例えばインターネット等を介して地図データを取得してもよい。   In the first embodiment, the image data is acquired as the map data using the imaging unit 2 as the image data acquisition unit. However, the present invention is not limited to this, and for example, the map data is acquired via the Internet or the like. May be.

さらに、本実施の形態1では、位置推定部30で用いられるデッドレコニングとしてスマートPDRを適用したが、これに限らず、他のPDRを適用してもよい。また、本実施の形態1におけるDR情報に相当する情報を得られる方法であれば、Wi−Fiなどの他の方法を用いてもよい。   Furthermore, although the smart PDR is applied as dead reckoning used in the position estimation unit 30 in the first embodiment, the present invention is not limited to this, and other PDRs may be applied. Further, other methods such as Wi-Fi may be used as long as the method can obtain information corresponding to the DR information in the first embodiment.

さらにまた、本実施の形態1では、施設等の屋内における位置を推定する場合を例にとって説明したが、これに限らず、屋外、特にGPSによる位置情報を受信できない場所などにおいても、適用可能である。   Furthermore, in the first embodiment, the case where the indoor position of a facility or the like is estimated has been described as an example. However, the present invention is not limited to this, and can be applied to the outdoors, particularly in places where position information cannot be received by GPS. is there.

また、本実施の形態1では、地図データ上に情報端末1の現在位置を推定して表示する場合について説明したが、例えば、このように推定した位置の情報を用いて、情報端末1と共に移動するユーザを、指定された目的地まで案内するようにしてもよい。例えば、このような案内機能は、ユーザによって指定された目的地に情報端末1を案内するための案内機能部を制御部10に設けることによって実現可能である。   Moreover, in this Embodiment 1, although the case where the present position of the information terminal 1 was estimated and displayed on map data was demonstrated, for example, it moves with the information terminal 1 using the information of the position estimated in this way. The user may be guided to a designated destination. For example, such a guidance function can be realized by providing the control unit 10 with a guidance function unit for guiding the information terminal 1 to the destination designated by the user.

この場合、制御部10の案内機能部は、推定された現在位置からユーザが操作部5を操作することによって入力された目的地までの経路を探索する。そして、制御部10は、探索の結果得られた経路を地図データ上に重畳して表示部4に表示させる。情報端末1と共に移動するユーザは、表示部4に表示された経路に沿って移動することにより、入力した目的地まで容易に移動することができる。なお、ユーザが経路に沿って移動する際には、例えば音声による案内を行ってもよい。このような音声による案内は、情報端末1にスピーカ等の音声出力部を設けることによって実現可能である。   In this case, the guidance function unit of the control unit 10 searches for a route from the estimated current position to the destination input by the user operating the operation unit 5. Then, the control unit 10 causes the display unit 4 to display the route obtained as a result of the search on the map data. A user who moves with the information terminal 1 can easily move to the input destination by moving along the route displayed on the display unit 4. When the user moves along the route, for example, voice guidance may be provided. Such voice guidance can be realized by providing the information terminal 1 with a voice output unit such as a speaker.

1 情報端末、2 撮像部、3 画像信号処理部、4 表示部、5 操作部、6 加速度センサ、7 地磁気センサ、8 ジャイロセンサ、9 記憶部、10 制御部、20 画像解析部、21 エッジ検出処理部、22 領域分割処理部、23 ラベリング処理部、24 通路領域推定部、30 位置推定部、31 DR処理部、32 粒子初期化部、33 予測計算部、34 尤度計算部、35 リサンプリング部、36 位置計算部。   DESCRIPTION OF SYMBOLS 1 Information terminal, 2 Imaging part, 3 Image signal processing part, 4 Display part, 5 Operation part, 6 Acceleration sensor, 7 Geomagnetic sensor, 8 Gyro sensor, 9 Storage part, 10 Control part, 20 Image analysis part, 21 Edge detection Processing unit, 22 region division processing unit, 23 labeling processing unit, 24 passage region estimation unit, 30 position estimation unit, 31 DR processing unit, 32 particle initialization unit, 33 prediction calculation unit, 34 likelihood calculation unit, 35 resampling Part, 36 position calculation part.

Claims (16)

環境情報を取得し、センサ情報として出力するセンサと、
ユーザが通行する領域である通路領域および該通路領域とは異なる非通路領域を含む複数の領域を有する地図データを表示する表示部と、
ユーザの操作に応じた操作信号を出力する操作部と、
前記地図データ上での自装置の位置を推定する位置推定部を有するとともに、前記推定された自装置の位置を示す表示を前記地図データに重畳させて前記表示部に表示させる制御部と
を備え、
前記位置推定部は、
前記センサから出力された前記センサ情報に基づき、前記地図データ上での自装置の現在位置を推定するためのデッドレコニング情報を出力し、
前記デッドレコニング情報、および前記操作部を介して入力された前記地図データ上での位置を示す情報に基づき、前記地図データの縮尺に関する情報および方位に関する情報を取得し、
前記デッドレコニング情報、前記縮尺に関する情報および前記方位に関する情報に基づき、自装置が移動する位置を推定する
ことを特徴とする情報端末。
A sensor that acquires environmental information and outputs it as sensor information;
A display unit that displays map data having a plurality of areas including a passage area that is a user-passing area and a non-passage area different from the passage area;
An operation unit that outputs an operation signal according to a user operation;
A position estimation unit that estimates the position of the own device on the map data, and a control unit that superimposes a display indicating the estimated position of the own device on the map data and displays the display on the display unit. ,
The position estimation unit
Based on the sensor information output from the sensor, to output dead reckoning information for estimating the current position of the device on the map data,
Based on the dead reckoning information and information indicating the position on the map data input via the operation unit, obtain information on the scale of the map data and information on the orientation,
An information terminal characterized by estimating a position at which the device moves based on the dead reckoning information, information on the scale, and information on the orientation.
前記位置推定部は、
前記センサ情報に基づき、前記デッドレコニング情報を出力するデッドレコニング処理部と、
前記デッドレコニング情報に基づき、前記操作部を介して入力された前記地図データ上での位置の周囲に、前記地図データ上での位置を示す座標に関する情報、前記地図データの縮尺に関する情報、および方位に関する情報を少なくとも含む状態を有する複数の粒子を初期値として配置する粒子初期化部と、
前記デッドレコニング情報に基づき、配置された前記複数の粒子が自装置の移動に応じて移動する位置を推定し、推定した前記位置に前記複数の粒子を移動させる予測計算部と、
移動した前記複数の粒子のうち、前記非通路領域に移動した粒子を除外する尤度計算部と、
前記尤度計算部の処理によって残った複数の粒子に基づき、現在位置を推定する位置計算部と、
前記尤度計算部の処理によって残った複数の粒子に基づき、前記初期値の複数の粒子と同数の粒子を、該粒子が有する前記状態に含まれる前記座標に関する情報が示す前記地図データ上での位置に再配置するリサンプリング部と
を有し、
前記予測計算部は、
前記リサンプリング部によって再配置された複数の粒子を、次回の処理の初期値として用いる
ことを特徴とする請求項1に記載の情報端末。
The position estimation unit
A dead reckoning processing unit that outputs the dead reckoning information based on the sensor information;
Based on the dead reckoning information, around the position on the map data input via the operation unit, information about coordinates indicating the position on the map data, information about the scale of the map data, and direction A particle initialization unit that arranges a plurality of particles having a state including at least information on the initial value;
Based on the dead reckoning information, estimate the position where the plurality of arranged particles move according to the movement of its own device, a prediction calculation unit that moves the plurality of particles to the estimated position;
A likelihood calculator that excludes particles that have moved to the non-passage region among the plurality of particles that have moved, and
Based on a plurality of particles remaining by the processing of the likelihood calculation unit, a position calculation unit that estimates a current position;
Based on the plurality of particles remaining by the processing of the likelihood calculation unit, the same number of particles as the plurality of particles of the initial value on the map data indicated by the information regarding the coordinates included in the state of the particles And a resampling unit that rearranges the position,
The prediction calculation unit
The information terminal according to claim 1, wherein a plurality of particles rearranged by the resampling unit are used as initial values for a next process.
前記デッドレコニング処理部は、
前記センサ情報に基づき、自装置が移動したことを示すステップイベントを検出し、
前記ステップイベントが検出される毎に、前記ステップイベントの回数、前記ステップイベント毎の移動距離、および自装置の進行方向を前記デッドレコニング情報として出力し、
前記粒子初期化部は、
前記デッドレコニング情報と、前記操作部を介して入力された前記地図データ上での2点の座標情報とに基づき、初期値の前記複数の粒子のそれぞれにおける前記地図データ上での座標、縮尺および方位を算出し、
前記予測計算部は、
前記デッドレコニング情報と、配置されている前記複数の粒子の状態を示す情報とに基づき、前記複数の粒子を前記ステップイベント検出後に移動させる際の前記複数の粒子の座標、縮尺および方位を算出する
ことを特徴とする請求項2に記載の情報端末。
The dead reckoning processing unit
Based on the sensor information, a step event indicating that the device has moved is detected,
Each time the step event is detected, the number of step events, the distance traveled for each step event, and the traveling direction of the device itself are output as the dead reckoning information,
The particle initialization unit includes:
Based on the dead reckoning information and the coordinate information of two points on the map data input via the operation unit, the coordinates on the map data, the scale, and the initial value of each of the plurality of particles Calculate the direction,
The prediction calculation unit
Based on the dead reckoning information and information indicating the state of the plurality of arranged particles, the coordinates, scale and orientation of the plurality of particles when moving the plurality of particles after detecting the step event are calculated. The information terminal according to claim 2.
前記尤度計算部は、
前記通路領域の座標情報と、移動した前記複数の粒子の座標情報とに基づき、前記粒子が前記非通路領域に位置する場合に、前記粒子を除外する
ことを特徴とする請求項2または3に記載の情報端末。
The likelihood calculator is
The particle is excluded when the particle is located in the non-passage region based on the coordinate information of the passage region and the coordinate information of the moved particles. The described information terminal.
前記リサンプリング部は、
前記尤度計算部の処理によって残った複数の粒子から1つの粒子をランダムに選択するとともに、選択された粒子を複製して再配置する処理を、再配置された粒子の数が前記初期値の複数の粒子と同数となるまで行い、
前記残った複数の粒子を破棄する
ことを特徴とする請求項2〜4のいずれか一項に記載の情報端末。
The resampling unit
In the process of randomly selecting one particle from the plurality of particles remaining by the processing of the likelihood calculating unit and replicating the selected particle for rearrangement, the number of rearranged particles is equal to the initial value. Repeat until the number of particles is the same,
The information terminal according to any one of claims 2 to 4, wherein the plurality of remaining particles are discarded.
前記地図データとしての画像データを取得する画像データ取得部
をさらに備え、
前記制御部は、
前記画像データから通路領域を推定する画像解析部
をさらに有し、
前記画像解析部は、
前記画像データから、該画像データ中のエッジを検出するエッジ検出処理部と、
前記画像データ中の画像を複数の領域に分割し、それぞれの領域を形成する画素の画素値を共通の画素値に変換した領域分割画像データを生成する領域分割処理部と、
前記エッジおよび前記領域分割画像データに基づき、該領域分割画像データ中のそれぞれの領域のうち、同一領域とすべき複数の領域を統合し、統合された前記複数の領域を形成する画素に対して、画素値に応じて共通の領域を形成する画素であることを示す同一のラベルを付与し、前記同一のラベルが付与された複数の画素で形成された複数のラベリング領域を有するラベリング画像データを生成するラベリング処理部と、
前記ラベリング画像データに含まれる前記複数のラベリング領域から前記通路領域を推定し、該通路領域を示す情報を含む画像情報を生成する通路領域推定部と
を有する
ことを特徴とする請求項1〜5のいずれか一項に記載の情報端末。
An image data acquisition unit for acquiring image data as the map data;
The controller is
An image analysis unit for estimating a passage area from the image data;
The image analysis unit
An edge detection processing unit for detecting an edge in the image data from the image data;
An area division processing unit that divides an image in the image data into a plurality of areas and generates area-divided image data in which pixel values of pixels forming each area are converted into common pixel values;
Based on the edge and the region-divided image data, among the regions in the region-divided image data, a plurality of regions that should be the same region are integrated, and for the pixels that form the integrated plurality of regions Labeling image data having a plurality of labeling regions formed by a plurality of pixels to which the same label is assigned and the same label indicating that the pixels form a common region according to the pixel value A labeling processing unit to be generated;
6. A passage area estimation unit that estimates the passage area from the plurality of labeling areas included in the labeling image data and generates image information including information indicating the passage area. The information terminal according to any one of the above.
地図データとしての画像データを取得する画像データ取得部と、
前記画像データから通路領域を推定する画像解析部と
を備え、
前記画像解析部は、
前記画像データから、該画像データ中のエッジを検出するエッジ検出処理部と、
前記画像データ中の画像を複数の領域に分割し、それぞれの領域を形成する画素の画素値を共通の画素値に変換した領域分割画像データを生成する領域分割処理部と、
前記エッジおよび前記領域分割画像データに基づき、該領域分割画像データ中のそれぞれの領域のうち、同一領域とすべき複数の領域を統合し、統合された前記複数の領域を形成する画素に対して、画素値に応じて共通の領域を形成する画素であることを示す同一のラベルを付与し、前記同一のラベルが付与された複数の画素で形成された複数のラベリング領域を有するラベリング画像データを生成するラベリング処理部と、
前記ラベリング画像データに含まれる前記複数のラベリング領域からユーザが通行する領域である通路領域を推定し、該通路領域を示す情報を含む画像情報を生成する通路領域推定部と
を有する
ことを特徴とする情報端末。
An image data acquisition unit for acquiring image data as map data;
An image analysis unit for estimating a passage area from the image data,
The image analysis unit
An edge detection processing unit for detecting an edge in the image data from the image data;
An area division processing unit that divides an image in the image data into a plurality of areas and generates area-divided image data in which pixel values of pixels forming each area are converted into common pixel values;
Based on the edge and the region-divided image data, among the regions in the region-divided image data, a plurality of regions that should be the same region are integrated, and for the pixels that form the integrated plurality of regions Labeling image data having a plurality of labeling regions formed by a plurality of pixels to which the same label is assigned and the same label indicating that the pixels form a common region according to the pixel value A labeling processing unit to be generated;
A passage region estimation unit that estimates a passage region that is a region through which a user passes from the plurality of labeling regions included in the labeling image data, and generates image information including information indicating the passage region. Information terminal.
前記通路領域推定部は、
前記ラベリング画像データに含まれる前記複数のラベリング領域のうち、面積が最大となる第1の領域と、面積が前記第1の領域に次いで大きい第2の領域とを抽出し、
抽出された前記第1の領域および前記第2の領域における面積と、画素値の平均値と、前記第1の領域および前記第2の領域のそれぞれを囲み、すべての辺において前記第1の領域または前記第2の領域の一部と接する外接矩形の面積とのうち少なくとも1つを比較した結果に基づき、前記第1の領域および前記第2の領域の少なくとも一方のラベリング領域を前記通路領域として推定する
ことを特徴とする請求項6または7に記載の情報端末。
The passage area estimation unit includes:
Of the plurality of labeling regions included in the labeling image data, extract a first region having the largest area, and a second region having the largest area after the first region,
The extracted area in the first region and the second region, the average value of the pixel values, and each of the first region and the second region are enclosed, and the first region in all sides Alternatively, based on the result of comparing at least one of the circumscribed rectangle areas in contact with a part of the second region, the labeling region of at least one of the first region and the second region is used as the passage region. The information terminal according to claim 6, wherein the information terminal is estimated.
前記通路領域推定部は、
前記第1の領域の面積を示す値が前記第2の領域の面積を示す値に予め設定された係数を乗算した値よりも大きい場合に、前記第1の領域を前記通路領域として推定する
ことを特徴とする請求項8に記載の情報端末。
The passage area estimation unit includes:
When the value indicating the area of the first region is larger than the value indicating the area of the second region multiplied by a preset coefficient, the first region is estimated as the passage region. The information terminal according to claim 8.
前記通路領域推定部は、
前記第1の領域の面積を示す値が前記第2の領域の面積を示す値に予め設定された係数を乗算した値以下であり、
前記第1の領域の画素値の平均値と、前記第2の領域の画素値の平均値との差分値が予め設定された値よりも小さい場合に、前記第1の領域および前記第2の領域を前記通路領域として推定する
ことを特徴とする請求項8または9に記載の情報端末。
The passage area estimation unit includes:
A value indicating the area of the first region is not more than a value obtained by multiplying a value indicating the area of the second region by a preset coefficient;
When the difference value between the average value of the pixel values of the first region and the average value of the pixel values of the second region is smaller than a preset value, the first region and the second region The information terminal according to claim 8 or 9, wherein an area is estimated as the passage area.
前記通路領域推定部は、
前記第1の領域の面積を示す値が前記第2の領域の面積を示す値に予め設定された係数を乗算した値以下であり、
前記第1の領域の画素値の平均値と、前記第2の領域の画素値の平均値との差分値が予め設定された値以上であり、
前記第1の領域を囲む外接矩形の面積を示す値が前記第2の領域を囲む外接矩形の面積を示す値よりも大きい場合に、前記第1の領域を前記通路領域として推定する
ことを特徴とする請求項8〜10のいずれか一項に記載の情報端末。
The passage area estimation unit includes:
A value indicating the area of the first region is not more than a value obtained by multiplying a value indicating the area of the second region by a preset coefficient;
The difference value between the average value of the pixel values of the first region and the average value of the pixel values of the second region is not less than a preset value,
When the value indicating the area of the circumscribed rectangle surrounding the first region is larger than the value indicating the area of the circumscribed rectangle surrounding the second region, the first region is estimated as the passage region. The information terminal according to any one of claims 8 to 10.
前記通路領域推定部は、
前記第1の領域の面積を示す値が前記第2の領域の面積を示す値に予め設定された係数を乗算した値以下であり、
前記第1の領域の画素値の平均値と、前記第2の領域の画素値の平均値との差分値が予め設定された値以上であり、
前記第1の領域を囲む外接矩形の面積を示す値が前記第2の領域を囲む外接矩形の面積を示す値以下である場合に、前記第2の領域を前記通路領域として推定する
ことを特徴とする請求項8〜10のいずれか一項に記載の情報端末。
The passage area estimation unit includes:
A value indicating the area of the first region is not more than a value obtained by multiplying a value indicating the area of the second region by a preset coefficient;
The difference value between the average value of the pixel values of the first region and the average value of the pixel values of the second region is not less than a preset value,
When the value indicating the area of the circumscribed rectangle surrounding the first region is equal to or less than the value indicating the area of the circumscribed rectangle surrounding the second region, the second region is estimated as the passage region. The information terminal according to any one of claims 8 to 10.
前記画像データ取得部は、
地図を撮像して得られる撮像信号に基づき、前記画像データを取得する撮像部である
ことを特徴とする請求項6〜12のいずれか一項に記載の情報端末。
The image data acquisition unit
The information terminal according to any one of claims 6 to 12, wherein the information terminal is an imaging unit that acquires the image data based on an imaging signal obtained by imaging a map.
前記制御部は、
前記操作部を介して前記地図データ上での目的地が入力された場合に、現在地から入力された前記目的地までの経路を前記地図データ上に表示させ、自装置を前記目的地まで案内する案内機能を有する
ことを特徴とする請求項1〜13のいずれか一項に記載の情報端末。
The controller is
When a destination on the map data is input via the operation unit, a route from the current location to the input destination is displayed on the map data, and the device is guided to the destination. It has a guidance function, The information terminal as described in any one of Claims 1-13 characterized by the above-mentioned.
環境情報を取得するセンサからのセンサ情報に基づき、ユーザが通行する通路領域および該通路領域とは異なる非通路領域を含む複数の領域を有する地図データ上での自装置の現在位置を推定するためのデッドレコニング情報を出力するデッドレコニング処理ステップと、
前記デッドレコニング情報に基づき、ユーザの操作に応じて入力された前記地図データ上での位置の周囲に、前記地図データ上での位置を示す座標に関する情報、前記地図データの縮尺に関する情報、および方位に関する情報を少なくとも含む状態を有する複数の粒子を初期値として配置する粒子初期化ステップと、
配置した前記複数の粒子が自装置の移動に応じて移動する位置を前記デッドレコニング情報に基づき推定し、推定した前記位置に前記複数の粒子を移動させる予測計算ステップと、
移動した前記複数の粒子のうち、前記地図データに含まれる前記非通路領域に移動した粒子を除外する尤度計算ステップと、
前記尤度計算ステップの処理によって残った複数の粒子に基づき、現在位置を推定する位置計算ステップと、
前記尤度計算ステップの処理によって残った複数の粒子に基づき、前記初期値の複数の粒子と同数の粒子を、該粒子が有する前記状態に含まれる前記座標に関する情報が示す前記地図データ上での位置に再配置するリサンプリングステップと
を有し、
前記予測計算ステップは、
前記リサンプリングステップの処理によって再配置された複数の粒子を、次回の処理の初期値として用いる
ことを特徴とする位置推定方法。
In order to estimate the current position of the device on map data having a plurality of areas including a passage area where a user passes and a non-passage area different from the passage area based on sensor information from a sensor that acquires environmental information Dead reckoning processing step for outputting dead reckoning information of
Based on the dead reckoning information, around the position on the map data input according to the user's operation, information about coordinates indicating the position on the map data, information about the scale of the map data, and direction A particle initialization step of arranging, as an initial value, a plurality of particles having a state including at least information about
Predicting calculation step of estimating the position where the plurality of arranged particles move according to the movement of the device based on the dead reckoning information, and moving the plurality of particles to the estimated position;
A likelihood calculation step of excluding particles that have moved to the non-passage area included in the map data from among the plurality of particles that have moved,
A position calculating step for estimating a current position based on a plurality of particles remaining by the processing of the likelihood calculating step;
Based on the plurality of particles remaining in the likelihood calculating step, the same number of particles as the plurality of initial values on the map data indicated by the information about the coordinates included in the state of the particles Resampling step to reposition to a position;
The prediction calculation step includes:
A position estimation method using a plurality of particles rearranged by the processing of the resampling step as an initial value of a next processing.
コンピュータに、
環境情報を取得するセンサからのセンサ情報に基づき、ユーザが通行する通路領域および該通路領域とは異なる非通路領域を含む複数の領域を有する地図データ上での自装置の現在位置を推定するためのデッドレコニング情報を出力するデッドレコニング処理ステップと、
前記デッドレコニング情報に基づき、ユーザの操作に応じて入力された前記地図データ上での位置の周囲に、前記地図データ上での位置を示す座標に関する情報、前記地図データの縮尺に関する情報、および方位に関する情報を少なくとも含む状態を有する複数の粒子を初期値として配置する粒子初期化ステップと、
配置した前記複数の粒子が自装置の移動に応じて移動する位置を前記デッドレコニング情報に基づき推定し、推定した前記位置に前記複数の粒子を移動させる予測計算ステップと、
移動した前記複数の粒子のうち、前記地図データに含まれる前記非通路領域に移動した粒子を除外する尤度計算ステップと、
前記尤度計算ステップの処理によって残った複数の粒子に基づき、現在位置を推定する位置計算ステップと、
前記尤度計算ステップの処理によって残った複数の粒子に基づき、前記初期値の複数の粒子と同数の粒子を、該粒子が有する前記状態に含まれる前記座標に関する情報が示す前記地図データ上での位置に再配置するリサンプリングステップと
前記リサンプリングステップの処理によって再配置された複数の粒子を、前記予測計算ステップにおける次回の処理の初期値として用いるステップと
を実行させることを特徴とする位置推定プログラム。
On the computer,
In order to estimate the current position of the device on map data having a plurality of areas including a passage area where a user passes and a non-passage area different from the passage area based on sensor information from a sensor that acquires environmental information Dead reckoning processing step for outputting dead reckoning information of
Based on the dead reckoning information, around the position on the map data input according to the user's operation, information about coordinates indicating the position on the map data, information about the scale of the map data, and direction A particle initialization step of arranging, as an initial value, a plurality of particles having a state including at least information about
Predicting calculation step of estimating the position where the plurality of arranged particles move according to the movement of the device based on the dead reckoning information, and moving the plurality of particles to the estimated position;
A likelihood calculation step of excluding particles that have moved to the non-passage area included in the map data from among the plurality of particles that have moved,
A position calculating step for estimating a current position based on a plurality of particles remaining by the processing of the likelihood calculating step;
Based on the plurality of particles remaining in the likelihood calculating step, the same number of particles as the plurality of initial values on the map data indicated by the information about the coordinates included in the state of the particles Re-sampling step for rearranging the position, and using the plurality of particles rearranged by the process of the re-sampling step as initial values for the next process in the prediction calculation step. program.
JP2016056139A 2016-03-18 2016-03-18 Information terminal, position estimation method, and position estimation program Expired - Fee Related JP6653507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056139A JP6653507B2 (en) 2016-03-18 2016-03-18 Information terminal, position estimation method, and position estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056139A JP6653507B2 (en) 2016-03-18 2016-03-18 Information terminal, position estimation method, and position estimation program

Publications (2)

Publication Number Publication Date
JP2017173001A true JP2017173001A (en) 2017-09-28
JP6653507B2 JP6653507B2 (en) 2020-02-26

Family

ID=59973831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056139A Expired - Fee Related JP6653507B2 (en) 2016-03-18 2016-03-18 Information terminal, position estimation method, and position estimation program

Country Status (1)

Country Link
JP (1) JP6653507B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111815011A (en) * 2019-04-10 2020-10-23 财付通支付科技有限公司 Message sending method and device, computer equipment and storage medium
CN112747744A (en) * 2020-12-22 2021-05-04 浙江大学 Vehicle positioning method combining dead reckoning and multi-lane road network map
CN114222240A (en) * 2021-10-29 2022-03-22 中国石油大学(华东) Multi-source fusion positioning method based on particle filtering
CN114710745A (en) * 2022-04-12 2022-07-05 电子科技大学 Indoor positioning method with Bluetooth and PDR information deeply fused

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111815011A (en) * 2019-04-10 2020-10-23 财付通支付科技有限公司 Message sending method and device, computer equipment and storage medium
CN111815011B (en) * 2019-04-10 2024-03-22 财付通支付科技有限公司 Message sending method, device, computer equipment and storage medium
CN112747744A (en) * 2020-12-22 2021-05-04 浙江大学 Vehicle positioning method combining dead reckoning and multi-lane road network map
CN112747744B (en) * 2020-12-22 2022-11-18 浙江大学 Vehicle positioning method combining dead reckoning and multi-lane road network map
CN114222240A (en) * 2021-10-29 2022-03-22 中国石油大学(华东) Multi-source fusion positioning method based on particle filtering
CN114710745A (en) * 2022-04-12 2022-07-05 电子科技大学 Indoor positioning method with Bluetooth and PDR information deeply fused
CN114710745B (en) * 2022-04-12 2023-04-18 电子科技大学 Indoor positioning method with Bluetooth and PDR information deeply fused

Also Published As

Publication number Publication date
JP6653507B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US11710322B2 (en) Surveillance information generation apparatus, imaging direction estimation apparatus, surveillance information generation method, imaging direction estimation method, and program
KR101749017B1 (en) Speed-up template matching using peripheral information
KR101645613B1 (en) Pose estimation based on peripheral information
US8269643B2 (en) Positioning/navigation system using identification tag and position/navigation method
US8154616B2 (en) Data processing apparatus and method, and recording medium
JP2018163654A (en) System and method for telecom inventory management
JP6321570B2 (en) Indoor position information positioning system and indoor position information positioning method
CN104081433A (en) Transformation between image and map coordinates
JP6653507B2 (en) Information terminal, position estimation method, and position estimation program
TWI749532B (en) Positioning method and positioning device, electronic equipment and computer readable storage medium
EP3897003A1 (en) Information display method and apparatus
JP2011094992A (en) Navigation device, navigation method and navigation program
CN107193820B (en) Position information acquisition method, device and equipment
US12002237B2 (en) Position coordinate derivation device, position coordinate derivation method, position coordinate derivation program, and system
JP6165422B2 (en) Information processing system, information processing device, server, terminal device, information processing method, and program
US20220215576A1 (en) Information processing device, information processing method, and computer program product
JPWO2012133371A1 (en) Imaging position and imaging direction estimation apparatus, imaging apparatus, imaging position and imaging direction estimation method, and program
JP7001149B2 (en) Data provision system and data collection system
JP2011112364A (en) Map information processing device, method, and program
JPWO2016157802A1 (en) Information processing apparatus, information processing system, information processing method, and program
JP2020013382A (en) Information processing device, information processing method, and program
JP6727032B2 (en) Mobile terminal, self-position estimation system using the same, server and self-position estimation method
Bacchewar et al. Literature Survey: Indoor Navigation Using Augmented Reality
TWI382150B (en) Device and method for detecting object distance and computer program product thereof
KR20220166015A (en) Apparatus for visualizing the result of detecting pothole in aerial image based on deep-learning and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R150 Certificate of patent or registration of utility model

Ref document number: 6653507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees