JP2017171961A - Operation method of converter - Google Patents

Operation method of converter Download PDF

Info

Publication number
JP2017171961A
JP2017171961A JP2016056427A JP2016056427A JP2017171961A JP 2017171961 A JP2017171961 A JP 2017171961A JP 2016056427 A JP2016056427 A JP 2016056427A JP 2016056427 A JP2016056427 A JP 2016056427A JP 2017171961 A JP2017171961 A JP 2017171961A
Authority
JP
Japan
Prior art keywords
air
converter
oxygen
gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016056427A
Other languages
Japanese (ja)
Inventor
恵介 山本
Keisuke Yamamoto
恵介 山本
陽介 星野
Yosuke Hoshino
陽介 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016056427A priority Critical patent/JP2017171961A/en
Publication of JP2017171961A publication Critical patent/JP2017171961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a converter operation method capable of suppressing significant wear of tuyere bricks by stabilizing the oxygen concentration of a mixed gas fed into a converter.SOLUTION: In an operation method of a converter 1 where a mixed gas comprising air and oxygen gas separately supplied through an air supply system 10 and an oxygen gas supply system 20 including supply sources having mutually different pressures, such as a centrifugal blower 11 and an oxygen production apparatus 21, is blown into a melt from a tuyere 1a, after adjusting the flow rate of the air supply system 10 by air flow rate control means 13 so that the air or mixed gas is supplied at a predetermined flow rate, the required supply amount of the oxygen gas is calculated based on the adjusted supply amount of the air and the predetermined required oxygen concentration of preferably about 21 to 24 vol% in the mixed gas, and the flow rate of the oxygen gas supply system 20 is adjusted by oxygen gas flow rate control means 23 to be the required supply amount.SELECTED DRAWING: Figure 1

Description

本発明は、非鉄金属製錬において酸素を含んだガスを熔体に吹き込んで酸化処理を行う転炉の操業方法に関するものである。   The present invention relates to a converter operating method in which oxygen-containing gas is blown into a melt in non-ferrous metal smelting to perform oxidation treatment.

非鉄金属の乾式製錬では、熔融金属に空気や酸素を吹き込んで不純物を除去する精製処理が行われている。例えば乾式銅製錬では、先ず銅精鉱などの製錬原料を自熔炉などの熔錬炉で熔解した後、比重差によりスラグ及びこれより重いマット(銅や鉄の硫化物)に分離して別々に熔錬炉から抜き出し、スラグについては高圧水による水砕処理によってコンクリート向け細骨材などに使われる水砕スラグの生成を行う。一方、マットについてはレードルを用いて酸化処理を行う転炉に搬送し、炉口から転炉内に流し込む。この転炉には更に珪石などのフラックスが炉口から装入される。   In the dry smelting of non-ferrous metals, a purification process is performed in which air or oxygen is blown into a molten metal to remove impurities. For example, in dry copper smelting, smelting raw materials such as copper concentrate are first melted in a smelting furnace such as a self-smelting furnace, and then separated into slag and a heavier mat (copper or iron sulfide) due to the difference in specific gravity. The slag is extracted from the smelting furnace, and granulated slag used for fine aggregate for concrete is generated by granulating with high-pressure water. On the other hand, the mat is transported to a converter that performs oxidation treatment using a ladle and poured into the converter from the furnace port. The converter is further charged with a flux of silica or the like from the furnace port.

転炉内では、上記装入したマット及びフラックスからなる熔体に対して、先端部が該熔体内に浸漬している羽口から空気や酸素ガスの吹き込みを行う。これによりマット中のFeSを酸化処理して転炉スラグを生成すると共に、マット中の硫化銅(CuS)を白カワとして沈降させて転炉スラグから分離させる。このマットから転炉スラグを生成する工程は造かん期と称される。生成した転炉スラグは転炉を傾けて炉口から流し出し、熔錬炉に繰り返す。一方、転炉内に残存する白カワ(硫化銅)に対しては、羽口から再び空気や酸素ガスを吹き込むことにより酸化処理して粗銅を生成する。この硫化銅を粗銅にする工程は造銅期と称される。 In the converter, air or oxygen gas is blown into the melt composed of the above-mentioned mat and flux from the tuyere whose tip is immersed in the melt. As a result, the FeS in the mat is oxidized to produce converter slag, and copper sulfide (Cu 2 S) in the mat is allowed to settle as white leather and separated from the converter slag. The process of generating converter slag from this mat is referred to as the making period. The generated converter slag is tilted from the converter and drained from the furnace port, and is repeated in the smelting furnace. On the other hand, white copper (copper sulfide) remaining in the converter is oxidized by blowing air or oxygen gas again from the tuyere to produce crude copper. This process of turning copper sulfide into crude copper is called the copper making stage.

上記のように造かん期や造銅期に吹き込まれる空気や酸素ガスに含まれる酸素分は、酸化剤として炉内の酸化反応に消費されるが、この酸化反応は発熱を伴うため、転炉に内張りされているレンガ、特に羽口近傍のいわゆる羽口レンガを顕著に消耗させることがあった。この対策として、特許文献1には銅転炉に装入する物量情報と羽口から吹き込む空気又は酸素富化空気中の酸素量とから熔体の温度を推測する転炉の操業方法が示されている。   As described above, oxygen contained in the air and oxygen gas blown during the steelmaking and coppermaking periods is consumed as an oxidant in the oxidation reaction in the furnace. In some cases, bricks lined in the wall, particularly so-called tuyere bricks near the tuyere, are significantly consumed. As a countermeasure, Patent Document 1 discloses a converter operating method for estimating the temperature of the melt from the information on the amount of material charged into the copper converter and the amount of oxygen in the air blown from the tuyere or oxygen-enriched air. ing.

また、特許文献2には銅転炉に空気を制御して吹き込むと共に所定の酸素濃度となるように窒素ガスを制御して吹き込む方法が提案されている。常温の窒素ガスは、大気中に含まれる窒素分と同様に炉内を冷却する働きがあるので、窒素ガスの供給量を調節することで銅転炉内の温度を適正な範囲内に抑えることができる。また、上記の空気の供給量と窒素ガスの供給量とを制御することに代えて、空気の供給量と酸素ガスの供給量とを制御する方法も提案されている。   Patent Document 2 proposes a method in which air is controlled and blown into a copper converter and nitrogen gas is controlled and blown so as to obtain a predetermined oxygen concentration. Normal temperature nitrogen gas works to cool the inside of the furnace in the same way as the nitrogen content in the atmosphere, so the temperature inside the copper converter must be kept within the proper range by adjusting the supply amount of nitrogen gas. Can do. Further, instead of controlling the air supply amount and the nitrogen gas supply amount, a method of controlling the air supply amount and the oxygen gas supply amount has been proposed.

特許3680024号公報Japanese Patent No. 3680024 特許4686659号公報Japanese Patent No. 4686659

上記した特許文献1の方法は転炉内の熔体の平均的な温度を推測することはできても、羽口レンガ近傍の熔体の温度分布を把握するのは困難である。また、転炉では造かん期や造銅期が進むにつれて転炉内の鉄分の分布や熔体の温度分布等が変化して熔体の粘度が変動するので、特許文献2等のように空気の供給量と酸素又は窒素の供給量とを同時に制御して転炉に吹き込む場合は、これらの制御が不安定になることがあった。   Although the method of Patent Document 1 described above can estimate the average temperature of the melt in the converter, it is difficult to grasp the temperature distribution of the melt near the tuyere brick. In the converter, the iron distribution in the converter and the temperature distribution of the melt change and the viscosity of the melt fluctuates with the progress of the steelmaking period and the coppermaking period. When the supply amount of oxygen and the supply amount of oxygen or nitrogen are simultaneously controlled and blown into the converter, these controls may become unstable.

すなわち、一般に転炉に吹き込む空気は遠心式送風機で昇圧した大気を流量制御しながら供給するのに対して、酸素ガスは酸素製造装置で製造した液体酸素や気体酸素を加圧状態で貯蔵する酸素貯蔵容器内の酸素ガスを流量制御しながら供給するため、転炉内の熔体の粘度が高くなって吹き込みに要する圧力が高くなると、送風機の吐出圧が不足ぎみになって空気の供給系と酸素ガスの供給系の圧力バランスが不安定になることがあった。本発明は上記した従来の問題に鑑みてなされたものであり、空気と酸素ガスとからなる混合ガスの吹き込みを行う転炉において、当該混合ガスの酸素濃度を安定化させて羽口レンガの著しい消耗を抑制することが可能な転炉の操業方法を提供することを目的とする。   That is, in general, the air blown into the converter is supplied while controlling the flow of atmospheric pressure increased by a centrifugal blower, while the oxygen gas is oxygen that stores liquid oxygen produced by an oxygen production device or gaseous oxygen in a pressurized state. In order to supply oxygen gas in the storage container while controlling the flow rate, if the viscosity of the melt in the converter increases and the pressure required for blowing increases, the discharge pressure of the blower becomes insufficient and the air supply system The pressure balance of the oxygen gas supply system may become unstable. The present invention has been made in view of the above-described conventional problems, and in a converter that blows in a mixed gas composed of air and oxygen gas, the oxygen concentration of the mixed gas is stabilized and the tuyere bricks are remarkably used. It aims at providing the operating method of the converter which can suppress consumption.

銅転炉内の精製処理では酸素分の供給量が律速となるため、本発明者らは空気と酸素ガスとの混合ガスを転炉に供給する際、酸素ガス流量の時間的なばらつきや混合ガス中の酸素濃度の時間的なばらつきを抑制することによって、羽口レンガの寿命を延ばすことを考えた。この場合、酸素ガスの流量だけを調節するのであれば、酸素ガスの供給系が有する流量調節弁の開度を調節するだけでよいので比較的容易である。しかし、混合ガス中の酸素濃度を調節する場合は、調節した酸素ガスの流量にあわせて空気の流量を調節することが必要になるため、容易ではない。   Since the amount of oxygen supplied in the refining process in the copper converter is rate-limiting, when the present inventors supply a mixed gas of air and oxygen gas to the converter, the oxygen gas flow rate varies over time and is mixed. We considered extending the life of tuyere bricks by suppressing temporal variations in oxygen concentration in the gas. In this case, if only the flow rate of the oxygen gas is adjusted, it is relatively easy because it is only necessary to adjust the opening degree of the flow rate control valve of the oxygen gas supply system. However, adjusting the oxygen concentration in the mixed gas is not easy because it is necessary to adjust the air flow rate in accordance with the adjusted oxygen gas flow rate.

その主な理由としては、以下の2点が考えられる。1点目は、転炉内では羽口レンガに悪影響を及ぼしにくい適正な温度を維持するための混合ガス中の酸素濃度は20〜30vol%程度であることが多いが、空気中には酸素が約21vol%含まれているので、空気の流量を多少変動させた程度では混合ガス中の酸素濃度を感度よく変化させることができないことによるものである。2点目は、前述したように酸素ガスは高圧のガス供給源から供給されるのに対して、空気のガス供給源である一般的な遠心式送風機の吐出圧は性能曲線上の制限があるので、転炉内への吹き込みに要する圧力が高くなると酸素ガスに合わせて空気の供給圧を高めることが困難になることによるものである。   The main two reasons are as follows. The first point is that the oxygen concentration in the mixed gas for maintaining an appropriate temperature that does not adversely affect the tuyere bricks in the converter is often about 20-30 vol%, but oxygen is present in the air. Since about 21 vol% is contained, the oxygen concentration in the mixed gas cannot be changed with high sensitivity if the air flow rate is slightly changed. Second, as described above, oxygen gas is supplied from a high-pressure gas supply source, whereas the discharge pressure of a general centrifugal blower that is an air gas supply source is limited on the performance curve. Therefore, when the pressure required for blowing into the converter becomes high, it becomes difficult to increase the supply pressure of air in accordance with the oxygen gas.

このような状況の下、本発明者らは空気と酸素ガスとからなる混合ガスの酸素濃度を安定化させる方法について鋭意検討を重ねた結果、当該混合ガスを用いる転炉の操業において重要と考えられていた酸素ガスの流量制御を空気の流量制御よりも優先させるのではなく、空気の流量制御を酸素ガスの流量制御よりも優先させることにより意外にも混合ガス中の酸素濃度を安定的に制御できることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted extensive studies on a method for stabilizing the oxygen concentration of a mixed gas composed of air and oxygen gas, and as a result, consider it important in the operation of a converter using the mixed gas. The oxygen concentration in the mixed gas is unexpectedly stabilized by giving priority to the air flow control over the oxygen gas flow control instead of giving priority to the oxygen gas flow control over the air flow control. The present inventors have found that it can be controlled and have completed the present invention.

すなわち、本発明の銅製錬方法は、互いに圧力の異なる供給源を有する供給系を介して別々に供給される空気及び酸素ガスを混合してなる混合ガスを羽口から熔体に吹き込む転炉の操業方法であって、前記空気の供給系において制御された空気の供給量と予め定めた混合ガス中の必要酸素濃度とに基づいて酸素ガスの必要供給量を算出し、この必要供給量となるように前記酸素ガスの供給系の流量を制御することを特徴としている。   That is, the copper smelting method of the present invention is a converter for blowing a mixed gas obtained by mixing air and oxygen gas separately supplied through supply systems having supply sources having different pressures from a tuyere into a melt. In this operation method, the required supply amount of oxygen gas is calculated based on the supply amount of air controlled in the air supply system and the required oxygen concentration in the predetermined mixed gas, and this required supply amount is obtained. Thus, the flow rate of the oxygen gas supply system is controlled.

本発明によれば、転炉内の熔体の物性が変動しても酸素濃度の安定した混合ガスを供給することができるので、羽口レンガの著しい消耗を抑えることができる。   According to the present invention, even if the physical properties of the melt in the converter fluctuate, it is possible to supply a mixed gas having a stable oxygen concentration, so that significant consumption of tuyere bricks can be suppressed.

本発明の転炉の操業方法を実施可能な制御系の一例を示す概略のフロー図である。It is a general | schematic flowchart which shows an example of the control system which can implement the operating method of the converter of this invention.

本発明は、造かん期や造銅期において、空気及び酸素ガスからなる混合ガスを銅転炉内の熔体に羽口から吹き込んで銅の精製を行う際、混合ガス又は空気の供給量を調節しながら空気の供給量と酸素ガスの供給量の比率を保つことによって、当該混合ガスの酸素濃度が予め定められた目標値になるように操業するものである。以下、かかる本発明の転炉の操作方法の一具体例として、空気の供給量を調節しながら空気と酸素ガスの比率を保つ場合を例にあげて説明する。   The present invention provides a mixed gas or air supply amount when refining copper by blowing a mixed gas composed of air and oxygen gas into a melt in a copper converter from a tuyere during a casting or copper making period. By maintaining the ratio between the supply amount of air and the supply amount of oxygen gas while adjusting, the operation is performed so that the oxygen concentration of the mixed gas becomes a predetermined target value. Hereinafter, as a specific example of the operation method of the converter of the present invention, a case where the ratio of air and oxygen gas is maintained while adjusting the supply amount of air will be described as an example.

空気と酸素ガスとの混合ガスが吹き込まれる銅転炉においては、造かん期や造銅期における理想の操業状態は、吹き込まれる混合ガス中の酸素濃度がその目標値に一致し、且つ混合ガスの供給量もその目標値に一致している状態である。この理想の状態から外れた場合にとりうる措置としては、次の操作が考えられる。すなわち、混合ガス中の酸素濃度が目標値を下回る場合は、酸素ガスの供給量を増加させるか、空気の供給量を減少させる操作を行う。混合ガス中の酸素濃度が目標値を上回る場合はこの逆の操作になる。また、混合ガスの供給量が目標値を下回る場合は、酸素ガス及び空気の供給量をそれらの比率を変えずに増加させる操作を行う。混合ガスの供給量が目標値を上回る場合はこの逆の操作になる。   In copper converters in which a mixed gas of air and oxygen gas is blown, the ideal operating state in the casting and copper making periods is that the oxygen concentration in the blown mixed gas matches the target value and the mixed gas The supply amount is also in a state that matches the target value. The following operations can be considered as measures that can be taken when the ideal state is deviated. That is, when the oxygen concentration in the mixed gas is lower than the target value, an operation of increasing the supply amount of oxygen gas or decreasing the supply amount of air is performed. When the oxygen concentration in the mixed gas exceeds the target value, the operation is reversed. Moreover, when the supply amount of mixed gas is less than a target value, operation which increases the supply amount of oxygen gas and air, without changing those ratios is performed. When the supply amount of the mixed gas exceeds the target value, the operation is reversed.

しかしながら、銅転炉の羽口から熔体に吹き込む混合ガスを構成する空気及び酸素ガスが、互いに圧力の異なる供給源を有する供給系を介して別々に供給される場合、すなわち前述したように空気の供給系が供給源として遠心式送風機で昇圧した大気を用いるのに対して酸素ガスの供給系が供給源として酸素製造装置で製造した高圧の酸素ガスを用いる場合は、これら両ガス供給系の圧力バランスが不安定になって転炉の温度を安定的に制御するのが困難になることがあった。   However, when the air and oxygen gas constituting the mixed gas blown into the melt from the tuyeres of the copper converter are separately supplied via supply systems having supply sources having different pressures, that is, as described above, the air When the oxygen gas supply system uses high-pressure oxygen gas produced by an oxygen production apparatus as the supply source, while the supply system of the above uses the air pressurized by the centrifugal blower as the supply source, both of these gas supply systems The pressure balance may become unstable, making it difficult to stably control the temperature of the converter.

そこで、本発明の一具体例の転炉の操業方法においては、図1に示すように、転炉1の羽口1aに空気供給系10及び酸素ガス供給系20のそれぞれから供給される空気及び酸素ガスを混合して吹き込みを行う場合、遠心式送風機11をガス供給源とする空気供給系10では、所定流量の空気が供給されるように空気配管12に設けた空気流量制御手段13で空気の供給量を制御し、この制御された空気の供給量と予め定めた混合ガス中の必要酸素濃度とに基づいて演算手段14で酸素ガスの必要供給量を算出する。そして、この算出した必要供給量となるように、酸素製造装置21をガス供給源とする酸素ガス供給系20の酸素配管22に設けた酸素ガス流量制御手段23で酸素ガスの流量を制御する。この制御−算出−制御は、繰り返し行うことができる。   Therefore, in the converter operating method of one specific example of the present invention, as shown in FIG. 1, the air supplied to the tuyere 1 a of the converter 1 from each of the air supply system 10 and the oxygen gas supply system 20, and When oxygen gas is mixed and blown, the air supply system 10 using the centrifugal blower 11 as a gas supply source supplies air with air flow control means 13 provided in the air pipe 12 so that a predetermined flow rate of air is supplied. The required supply amount of oxygen gas is calculated by the calculation means 14 based on the controlled supply amount of air and the required oxygen concentration in the predetermined mixed gas. Then, the flow rate of oxygen gas is controlled by the oxygen gas flow rate control means 23 provided in the oxygen pipe 22 of the oxygen gas supply system 20 using the oxygen production apparatus 21 as a gas supply source so that the calculated required supply amount is obtained. This control-calculation-control can be performed repeatedly.

このように、本発明一具体例の操業方法では、混合ガス中の酸素濃度を調節するための操作量として空気の供給量ではなく酸素ガスの供給量を用いているため、転炉内の熔体の物性が変動しても、当該酸素濃度を容易に調節できる。上記の空気流量制御手段13で設定する空気量は、例えば銅精鉱などの製錬原料の装入量やバッチで操作される転炉の運転時間等によって予め定められる。また、上記の必要酸素濃度は例えば上記の製錬原料の組成や転炉内の温度から定められる。   As described above, in the operation method of one specific example of the present invention, the oxygen gas supply amount is used instead of the air supply amount as the operation amount for adjusting the oxygen concentration in the mixed gas. Even if the physical properties of the body fluctuate, the oxygen concentration can be easily adjusted. The amount of air set by the air flow rate control means 13 is determined in advance by, for example, the charging amount of a smelting raw material such as copper concentrate, the operation time of a converter operated in a batch, or the like. Moreover, said required oxygen concentration is defined, for example from the composition of said smelting raw material, and the temperature in a converter.

より具体的に説明すると、例えば転炉1内の熔体の粘度が上昇して羽口1aへの吹き込みに要する圧力が上昇すると、空気の供給配管12に設けられている空気流量制御手段13では、流量を一定に維持すべく流量調節弁13aの開度を開く方向に調整されるが、この開度がほぼ全開になって流量を一定に維持するのが困難になると、送風機11では吐出側圧力が高くなるため性能曲線に沿って風量が徐々に低下する。空気流量制御手段13からこの低下した空気量の信号を入力した演算手段14は、この低下した空気量A[Nm/h]と予め定められた混合ガス中の必要酸素濃度C[vol%]に基づいて下記の式1から酸素ガス供給量O[Nm/h]を演算する。 More specifically, for example, when the viscosity of the melt in the converter 1 increases and the pressure required to blow into the tuyere 1a increases, the air flow rate control means 13 provided in the air supply pipe 12 In order to keep the flow rate constant, the flow rate adjustment valve 13a is adjusted to open in an opening direction. However, when the opening degree is almost fully opened and it becomes difficult to keep the flow rate constant, the blower 11 has a discharge side. Since the pressure increases, the air volume gradually decreases along the performance curve. The calculation means 14 that has input the signal of the reduced air amount from the air flow rate control means 13 and the reduced air amount A [Nm 3 / h] and the required oxygen concentration C [vol%] in the predetermined mixed gas. The oxygen gas supply amount O [Nm 3 / h] is calculated from the following equation 1 based on

[式1]
O={(C−21)/(100−C)}・A
[Formula 1]
O = {(C-21) / (100-C)} · A

演算手段14からこの酸素ガス供給量Oの信号を入力した酸素ガス流量制御手段23は、この酸素ガス供給量Oとなるように流量調節弁23aの開度を閉じる方向に調整する。これにより、混合ガス中の酸素濃度を上記した必要酸素濃度Cにすることが可能になる。転炉1内の熔体の粘度が低下する場合は上記とは逆の操作になる。   The oxygen gas flow rate control means 23 that has received this oxygen gas supply amount O signal from the arithmetic means 14 adjusts the opening degree of the flow rate adjusting valve 23a in the closing direction so that the oxygen gas supply amount O is obtained. Thereby, the oxygen concentration in the mixed gas can be set to the above-described required oxygen concentration C. When the viscosity of the melt in the converter 1 decreases, the operation is the reverse of the above.

このように、本発明の転炉の操業方法では、転炉内の熔体の物性が変動しても混合ガス中の酸素濃度を安定的に制御することが可能になる。この場合、空気の供給量を酸素の供給量に基づいて制御するものではないので、空気の流量不足による混合ガス中の酸素濃度が大きくオーバーシュートしにくくなる。これにより、混合ガス中の酸素濃度を目標値にほぼ一定に保つことができるので、転炉内の発熱量を安定させて熔体の温度変化を抑制することができる。よって、羽口レンガの過度の加熱が抑えられ、羽口レンガの寿命を延ばすことが可能になる。   As described above, in the converter operating method of the present invention, the oxygen concentration in the mixed gas can be stably controlled even if the physical properties of the melt in the converter fluctuate. In this case, since the supply amount of air is not controlled based on the supply amount of oxygen, the oxygen concentration in the mixed gas due to the insufficient air flow rate is large, and overshooting is difficult. As a result, the oxygen concentration in the mixed gas can be kept substantially constant at the target value, so that the amount of heat generated in the converter can be stabilized and the temperature change of the melt can be suppressed. Therefore, excessive heating of the tuyere brick can be suppressed, and the life of the tuyere brick can be extended.

上記混合ガス中の酸素濃度の目標値(必要酸素濃度C)は、21〜24vol%の範囲に制御するのが好ましい。大気中には酸素が約21vol%含まれているので、混合ガス中の酸素濃度の目標値の下限値は21vol%となる。一方、酸素濃度の目標値の上限を24vol%とすることで羽口レンガの交換頻度を転炉の前または後工程の操業に支障のない程度に抑えることができる。   The target value of oxygen concentration (necessary oxygen concentration C) in the mixed gas is preferably controlled in the range of 21 to 24 vol%. Since the atmosphere contains about 21 vol% oxygen, the lower limit of the target value of the oxygen concentration in the mixed gas is 21 vol%. On the other hand, by setting the upper limit of the target value of the oxygen concentration to 24 vol%, the replacement frequency of tuyere bricks can be suppressed to an extent that does not hinder the operation before or after the converter.

転炉の熔体内への混合ガスの吹き込み量は、羽口1本あたり600〜900Nm/hの範囲内にするのが好ましい。600Nm/h以上であれば、混合ガスが熔体内で実質的に拡散する位置を羽口レンガに悪影響を及ぼさない程度に羽口から離間させることができるので、羽口レンガの寿命をより一層延ばすことができる。また、600Nm/h以上にすることで混合ガスの吹き込みによる熔体の撹拌混合効果が期待できる。ただし、900Nm/hを超えると、熔体の飛散のおそれがあるので好ましくない。 The amount of mixed gas blown into the converter melt is preferably in the range of 600 to 900 Nm 3 / h per tuyere. If it is 600 Nm 3 / h or more, the position where the mixed gas substantially diffuses in the melt can be separated from the tuyere so as not to adversely affect the tuyere brick. It can be extended further. Moreover, the stirring and mixing effect of the melt by blowing mixed gas can be expected by setting it to 600 Nm 3 / h or more. However, if it exceeds 900 Nm 3 / h, there is a risk of melting of the melt, which is not preferable.

上記の混合ガスの吹き込み量の基準となる羽口管の内径は、好適には40〜60mmであり、より好適には45〜50mmである。なお、羽口管の内径が40〜60mm程度であれば、固化した熔体が管内壁に固着して徐々に管内を狭窄又は閉塞しても容易に打開することができ、上記した混合ガスの供給量を適切に維持できる。   The inner diameter of the tuyere tube serving as a reference for the amount of the mixed gas blown is preferably 40 to 60 mm, and more preferably 45 to 50 mm. In addition, if the inner diameter of the tuyere tube is about 40 to 60 mm, it can be easily opened even if the solidified melt adheres to the inner wall of the tube and gradually narrows or closes the inside of the tube. The supply amount can be maintained appropriately.

上記した空気の供給配管と酸素ガスの供給配管との合流部は、転炉の羽口から0.3m以上の上流側に位置しているのが好ましい。これにより当該合流部よりも下流側の配管内で空気と酸素ガスとを適度に混合させることができ、均一な酸素濃度を有する混合ガスを羽口から熔体内に吹き込むことができる。   The junction between the air supply pipe and the oxygen gas supply pipe is preferably located at an upstream side of 0.3 m or more from the tuyere of the converter. As a result, air and oxygen gas can be appropriately mixed in the pipe on the downstream side of the junction, and a mixed gas having a uniform oxygen concentration can be blown into the melt from the tuyere.

以上、本発明の転炉の操業方法について一具体例を挙げて説明したが、本発明はかかる一具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施することが可能である。例えば、空気の供給量の制御は、上記した一般的な流量調節弁を用いた制御のほか、送風機の回転数、ダンパーの角度、可変翼の翼角度等を変化させることによって制御してもよい。   The converter operating method of the present invention has been described with a specific example, but the present invention is not limited to such a specific example, and can be implemented in various modes without departing from the gist of the present invention. Is possible. For example, the control of the air supply amount may be controlled by changing the rotational speed of the blower, the angle of the damper, the blade angle of the variable blade, etc., in addition to the control using the general flow control valve described above. .

(実施例1)
転炉を用いて、自熔炉から産出するマットに珪石を加えてなる熔体に対して空気と酸素の混合ガス(供給ガス)を吹き込んで処理する銅製錬を10バッチ行った。1バッチはマット等を装入してから、造かん期と造銅期の処理を行い、粗銅を排出して転炉が空になるまでである。転炉への供給ガスは、羽口1本あたり供給量の目標値を600Nm/hに、酸素濃度の目標値を、造かん期では24%に、造銅期では21%にした。供給ガスの制御方法は、まず、羽口1本あたり供給ガス供給量が目標値になるように空気の流量を調節したあと、実際の供給量を測定し、この供給量と酸素濃度の目標値とから酸素ガスの必要供給量を算出し、この必要供給量となるように酸素ガスの流量を調節するというものである。
Example 1
Using a converter, 10 batches of copper smelting were performed in which a mixed gas (feed gas) of air and oxygen was blown into a melt formed by adding silica to a mat produced from a flash furnace. One batch is from the charging of mats and the like to the processing of the steelmaking and coppermaking periods until the crude copper is discharged and the converter is emptied. Regarding the supply gas to the converter, the target value of the supply amount per tuyere was set to 600 Nm 3 / h, and the target value of the oxygen concentration was set to 24% in the steelmaking period and 21% in the coppermaking period. The supply gas control method is as follows. First, after adjusting the air flow rate so that the supply gas supply amount per tuyere becomes the target value, the actual supply amount is measured, and this supply amount and the target value of oxygen concentration From this, the required supply amount of oxygen gas is calculated, and the flow rate of oxygen gas is adjusted so as to be the required supply amount.

羽口のすぐ上流位置で、実際の酸素濃度を1バッチあたり4回(造かん期の前半、造かん期の後半、造銅期の前半、造銅期の後半)、合計40回測定したところ、いずれも目標値の±0.1%以内に収まった。羽口レンガの長さを10バッチの前後で比較したところ、13mmの損耗がみられた。   At the position just upstream of the tuyere, the actual oxygen concentration was measured 4 times per batch (the first half of the steelmaking period, the second half of the steelmaking period, the first half of the coppermaking period, and the second half of the coppermaking period). , Both were within ± 0.1% of the target value. When the lengths of tuyere bricks were compared before and after 10 batches, a wear of 13 mm was observed.

(実施例2)
羽口1本あたり供給量の目標値を900Nm/hとしたこと以外は実施例1と同様にして操業した。実施例1と同様に測定した実際の酸素濃度では、いずれも目標値の±0.1%以内に収まった。羽口レンガの長さを10バッチの前後で比較したところ、13mmの損耗がみられた。
(Example 2)
The operation was performed in the same manner as in Example 1 except that the target value of the supply amount per tuyere was set to 900 Nm 3 / h. The actual oxygen concentrations measured in the same manner as in Example 1 were all within ± 0.1% of the target values. When the lengths of tuyere bricks were compared before and after 10 batches, a wear of 13 mm was observed.

(比較例1)
供給ガスの制御方法を次のようにしたこと以外は実施例1と同様にして操業した。供給ガスの制御方法は、まず、羽口1本あたり供給ガス供給量が目標値になるように酸素ガスの流量を調節したあと、実際の供給量を測定し、この供給量と酸素濃度の目標値とから空気の必要供給量を算出し、この必要供給量となるように空気の流量を調節するというものである。実施例1と同様に測定した実際の酸素濃度では、造かん期の測定の10回において目標値の±0.1%の範囲を外れた。羽口レンガの長さを10バッチの前後で比較したところ、15mmの損耗がみられた。
(Comparative Example 1)
The operation was performed in the same manner as in Example 1 except that the supply gas control method was as follows. The supply gas control method is as follows. First, after adjusting the flow rate of oxygen gas so that the supply gas supply amount per tuyere becomes the target value, the actual supply amount is measured, and this supply amount and oxygen concentration target The required supply amount of air is calculated from the value, and the flow rate of air is adjusted so as to be the required supply amount. The actual oxygen concentration measured in the same manner as in Example 1 deviated from the range of ± 0.1% of the target value in 10 measurements during the period of formation. When the lengths of tuyere bricks were compared before and after 10 batches, 15 mm of wear was observed.

(比較例2)
羽口1本あたり供給量の目標値を900Nm/hとしたこと以外は比較例1と同様にして操業した。実施例1と同様に測定した実際の酸素濃度では、造かん期の測定のすべてにおいて目標値の±0.1%の範囲を外れた。羽口レンガの長さを10バッチの前後で比較したところ、19mmの損耗がみられた。
(Comparative Example 2)
The operation was performed in the same manner as in Comparative Example 1 except that the target value of the supply amount per tuyere was set to 900 Nm 3 / h. The actual oxygen concentration measured in the same manner as in Example 1 was outside the range of ± 0.1% of the target value in all measurements during the period of preparation. When the length of the tuyere brick was compared before and after 10 batches, 19 mm of wear was found.

1 転炉
1a 羽口
10 空気供給系
11 遠心式送風機
12 空気配管
13 空気流量制御手段
14 演算手段
20 酸素ガス供給系
21 酸素製造装置
22 酸素配管
23 酸素ガス流量制御手段
DESCRIPTION OF SYMBOLS 1 Converter 1a tuyere 10 Air supply system 11 Centrifugal blower 12 Air piping 13 Air flow control means 14 Calculation means 20 Oxygen gas supply system 21 Oxygen production apparatus 22 Oxygen piping 23 Oxygen gas flow control means

Claims (4)

互いに圧力の異なる供給源を有する供給系を介して別々に供給される空気及び酸素ガスからなる混合ガスを羽口から熔体に吹き込む転炉の操業方法であって、所定流量の空気又は混合ガスが供給されるように前記空気の供給系の流量を調節した後、この調節された空気の供給量と予め定めた混合ガス中の必要酸素濃度とに基づいて酸素ガスの必要供給量を算出し、この必要供給量となるように前記酸素ガスの供給系の流量を調節することを特徴とする転炉の操業方法。   A method of operating a converter in which a mixed gas composed of air and oxygen gas separately supplied via supply systems having different pressure sources is blown into a melt from a tuyere, wherein the air or mixed gas has a predetermined flow rate. After adjusting the flow rate of the air supply system so that is supplied, the required supply amount of oxygen gas is calculated based on the adjusted supply amount of air and the required oxygen concentration in the predetermined mixed gas. The converter operating method is characterized in that the flow rate of the oxygen gas supply system is adjusted so that the required supply amount is obtained. 前記混合ガス中の必要酸素濃度が21〜24vol%であることを特徴とする、請求項1に記載の転炉の操業方法。   The method for operating a converter according to claim 1, wherein the required oxygen concentration in the mixed gas is 21 to 24 vol%. 前記混合ガスの吹き込み量が、羽口1本あたり600〜900Nm/hの範囲内にあることを特徴とする、請求項1又は2に記載の転炉の操業方法。 The blowing amount of the gas mixture, characterized in that in the range of the tuyere per one 600 to 900 nm 3 / h, operating method of the converter according to claim 1 or 2. 前記空気の供給系と前記酸素ガスの供給系の合流部分が転炉の羽口より0.3m以上上流側に位置することを特徴とする、請求項1〜3のいずれか1項に記載の転炉の操業方法。


The merging portion of the air supply system and the oxygen gas supply system is located at least 0.3 m upstream from the tuyere of the converter, according to any one of claims 1 to 3. Converter operation method.


JP2016056427A 2016-03-22 2016-03-22 Operation method of converter Pending JP2017171961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056427A JP2017171961A (en) 2016-03-22 2016-03-22 Operation method of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056427A JP2017171961A (en) 2016-03-22 2016-03-22 Operation method of converter

Publications (1)

Publication Number Publication Date
JP2017171961A true JP2017171961A (en) 2017-09-28

Family

ID=59972919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056427A Pending JP2017171961A (en) 2016-03-22 2016-03-22 Operation method of converter

Country Status (1)

Country Link
JP (1) JP2017171961A (en)

Similar Documents

Publication Publication Date Title
JP5541423B1 (en) Steelmaking slag reduction treatment device and steelmaking slag reduction treatment system
WO2015012354A1 (en) Exhaust gas treatment method and exhaust gas treatment device
RU2573849C2 (en) Method of direct melting
JP2015218338A (en) Molten iron refining method by converter type refining furnace
JP2008540832A (en) Continuous steelmaking process and continuous steelmaking equipment
JP2013537259A (en) Direct smelting process
CN113930575A (en) Converter double-slag smelting method for high-silicon high-phosphorus molten iron
JP2017171961A (en) Operation method of converter
US4419128A (en) Continuous melting, refining and casting process
RU2674186C1 (en) Procedure for melting steel in converter
RU2146650C1 (en) Method of refining silicon and its alloys
CN114015894B (en) Full-thermal-state copper matte converting method
JP5386972B2 (en) Hot metal dephosphorization method
US724770A (en) Art of making steel.
US693062A (en) Manufacture of pig-iron.
US801500A (en) Apparatus for making steel.
JP5047634B2 (en) Method for producing simulated hot metal
JPH01268823A (en) Method of operating flash smelting furnace
KR102326869B1 (en) Manufacturing method of molten material
RU2071982C1 (en) Method for continuous converting of copper sulfide materials
JP4277819B2 (en) Heating method of molten steel
RU2588926C2 (en) Method for production of vanadium-bearing slag suitable for producing directly commercial ferrovanadium therefrom
JP2008240127A (en) Pig iron storing furnace and operating method therefor
EP0160375A2 (en) System and method for producing steel in a top-blown vessel
CN116875810A (en) Converting method for copper smelting of bottom blowing continuous converting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303