JP2017170532A - Thermal displacement correction method for machine tool, and machine tool - Google Patents

Thermal displacement correction method for machine tool, and machine tool Download PDF

Info

Publication number
JP2017170532A
JP2017170532A JP2016055852A JP2016055852A JP2017170532A JP 2017170532 A JP2017170532 A JP 2017170532A JP 2016055852 A JP2016055852 A JP 2016055852A JP 2016055852 A JP2016055852 A JP 2016055852A JP 2017170532 A JP2017170532 A JP 2017170532A
Authority
JP
Japan
Prior art keywords
thermal displacement
amount
displacement estimation
switching
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016055852A
Other languages
Japanese (ja)
Other versions
JP6561003B2 (en
Inventor
祐司 溝口
Yuji Mizoguchi
祐司 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2016055852A priority Critical patent/JP6561003B2/en
Publication of JP2017170532A publication Critical patent/JP2017170532A/en
Application granted granted Critical
Publication of JP6561003B2 publication Critical patent/JP6561003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To cancel a rapid change in thermal displacement correction amount generated when switching a thermal displacement estimation formula and improve machining accuracy by switching the thermal displacement estimation formula according to need even in the process of machining.SOLUTION: A thermal displacement correction unit 10 of an NC lathe 1 includes a correction amount arithmetic unit 12 which determines a thermal displacement estimation amount using a thermal displacement estimation formula stored in a storage unit 14 on the basis of temperature information obtained from temperature sensors 5-7 via a temperature measuring unit 11 and corrects a shaft command value of an NC device 13. The correction amount arithmetic unit 12 has a switching function capable of switching from a first thermal displacement estimation amount estimated on the basis of a first thermal displacement estimation formula to a second thermal displacement estimation amount estimated on the basis of a second thermal displacement estimation formula, determines a difference between the first thermal displacement estimation amount and the second thermal displacement estimation amount at the time of switching when switching the thermal displacement estimation amount, and determines a correction amount of the shaft command value on the basis of the difference and the second thermal displacement estimation amount.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械において温度情報を元に熱変位を推定して軸指令値を補正する熱変位補正方法と、当該方法を実施する工作機械とに関する。   The present invention relates to a thermal displacement correction method that corrects an axis command value by estimating thermal displacement based on temperature information in a machine tool, and a machine tool that implements the method.

工作機械を用いて加工を行う場合、主軸や送り軸動作などの機械発熱、及び工作機械の設置環境の温度変化や、クーラントの温度変化などの影響により、工作機械各部が熱変形を起こす。こうした熱変位は、工具とワークとの相対位置を変化させることになるため、加工中に工作機械に熱変位が生じると、ワークの加工精度が悪化してしまう。
加工精度を確保する方法として、特に同一ワークを繰り返し加工する量産加工においては、ワーク寸法を計測し、それを機械の補正量にフィードバックする方法が一般に用いられている。しかしながら、フィードバックの頻度を増やすと生産性が低下する場合がある。特に、加工精度の必要な箇所が複数ある場合にはそれらを全て測定し、それぞれの部位について補正をかける必要がある。そのため計測に要する時間が長くなり、処理も複雑になるという問題もある。また、量産加工でない場合には、計測フィードバックを行うことが困難な場合が多い。
When machining using a machine tool, each part of the machine tool undergoes thermal deformation due to machine heat generation such as spindle and feed axis operations, temperature changes in the machine tool installation environment, and coolant temperature changes. Since such thermal displacement changes the relative position between the tool and the workpiece, if thermal displacement occurs in the machine tool during machining, the workpiece machining accuracy deteriorates.
As a method for ensuring machining accuracy, in particular in mass production machining in which the same workpiece is repeatedly machined, a method of measuring the workpiece dimension and feeding it back to the correction amount of the machine is generally used. However, increasing the frequency of feedback may reduce productivity. In particular, when there are a plurality of parts that require machining accuracy, it is necessary to measure all of them and to correct each part. Therefore, there are problems that the time required for measurement becomes long and the processing becomes complicated. In addition, it is often difficult to perform measurement feedback when it is not mass production processing.

そのような理由から、工作機械の熱変位を抑制する方法としては、工作機械の構造体各部に取り付けた温度センサにより測定した温度、あるいは主軸や送り軸などの運転条件から、予めプログラムされた熱変位推定式に基づいて変位量を推定し、それに応じて軸移動量を変化させる熱変位補正が有効であり広く用いられている。例えば特許文献1には、センサで検出したワークまたはスケールの温度と基準温度との温度差に線膨張係数と距離を掛けることで熱変位量を推定し、熱変位補正を行う方法が開示されている。
しかし、実際の加工においては、機台差による機械発熱のばらつきや、加工するワークの材質や大きさの違いなど様々な要因により、予めプログラムされた熱変位推定式では熱変位量がうまく推定できず、補正誤差が大きくなってしまうことがある。この問題に対処するため、特許文献2では、実測結果に基づいて、熱変位推定式における係数を修正し、それによって主軸および送り軸の発熱による熱変位の推定精度を向上させる方法を開示している。
For this reason, as a method of suppressing thermal displacement of the machine tool, pre-programmed heat is measured based on the temperature measured by the temperature sensor attached to each part of the machine tool structure or the operating conditions such as the spindle and feed shaft. Thermal displacement correction that estimates the amount of displacement based on the displacement estimation formula and changes the amount of axial movement accordingly is effective and widely used. For example, Patent Document 1 discloses a method of correcting a thermal displacement by estimating a thermal displacement amount by multiplying a temperature difference between a workpiece or scale temperature detected by a sensor and a reference temperature by a linear expansion coefficient and a distance. Yes.
However, in actual machining, the pre-programmed thermal displacement estimation formula can estimate the thermal displacement well due to various factors, such as variations in machine heat generation due to machine differences and differences in the material and size of the workpiece to be machined. However, the correction error may increase. In order to cope with this problem, Patent Document 2 discloses a method of correcting the coefficient in the thermal displacement estimation formula based on the actual measurement result, thereby improving the estimation accuracy of the thermal displacement due to the heat generation of the main shaft and the feed shaft. Yes.

特許第4359573号公報Japanese Patent No. 4359573 特許第3405965号公報Japanese Patent No. 3405965

しかしながら、特許文献2で提案されている熱変位推定式における係数の修正を加工の途中で実施することは以下の理由により困難であると思われる。すなわち、加工途中の主軸や送り軸の発熱がある状態で熱変位推定式を変更(切替)した場合、変更を行った時点で大きく補正量が変化することにより寸法が急激に変化したり、段差が生じて加工目が悪化したりする恐れがあるからである。そのため、一旦加工を終了し、発熱した主軸や送り軸が十分冷却された後で係数の修正を実施する必要がある。   However, it seems that it is difficult to correct the coefficient in the thermal displacement estimation formula proposed in Patent Document 2 during the processing for the following reason. In other words, if the thermal displacement estimation formula is changed (switched) while there is heat generation in the main spindle or feed axis in the middle of machining, the correction amount will change greatly at the time of the change, the dimension will change suddenly, This is because there is a risk that the processed eyes will deteriorate. Therefore, it is necessary to correct the coefficient after the machining is finished once and the main shaft and the feed shaft that have generated heat are sufficiently cooled.

そこで、本発明は、熱変位推定式を切り替えた場合に生じる熱変位補正量の急激な変化をキャンセルする処理を行うことにより、熱変位推定式の切替による熱変位の推定精度向上のメリットを維持しつつ、加工の途中等であっても必要に応じて熱変位推定式を切り替えて加工精度を向上させることができる工作機械の熱変位補正方法及び、当該方法を実施する工作機械を提供することを目的としたものである。   Therefore, the present invention maintains the merit of improving the accuracy of thermal displacement estimation by switching the thermal displacement estimation formula by performing processing to cancel the sudden change in the thermal displacement correction amount that occurs when the thermal displacement estimation formula is switched. However, it is possible to provide a thermal displacement correction method for a machine tool capable of improving a processing accuracy by switching a thermal displacement estimation formula as necessary even during the processing or the like, and a machine tool for executing the method. It is aimed at.

上記目的を達成するために、請求項1に記載の発明は、所定位置に設置した温度センサから得られる温度情報に基づいて所定の熱変位推定式を用いて熱変位推定量を求め、前記熱変位推定量に基づいて軸指令値を補正する熱変位補正手段を有し、前記熱変位補正手段が、前記熱変位推定量を、第1の熱変位推定式に基づいて推定した第1の熱変位推定量から、第2の熱変位推定式に基づいて推定した第2の熱変位推定量に切替可能な切替機能を備える工作機械において、前記軸指令値を補正する方法であって、
所定の座標位置で前記熱変位推定量を切り替える際、当該切替時点における前記第1の熱変位推定量と前記第2の熱変位推定量との差分を求め、前記差分と前記第2の熱変位推定量とに基づいて前記軸指令値の補正量を決定することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記熱変位推定量の差分は、ワーク原点の座標位置で求めることを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記熱変位推定量の切替時点は、前記所定の座標位置での加工開始時点であり、前記第1の熱変位推定量は、当該加工開始時点以前に取得した前記温度情報に基づいて求めることを特徴とする。
上記目的を達成するために、請求項4に記載の発明は、所定位置に設置した温度センサから得られる温度情報に基づいて所定の熱変位推定式を用いて熱変位推定量を求め、前記熱変位推定量に基づいて軸指令値を補正する熱変位補正手段を有し、前記熱変位補正手段が、前記熱変位推定量を、第1の熱変位推定式に基づいて推定した第1の熱変位推定量から、第2の熱変位推定式に基づいて推定した第2の熱変位推定量に切替可能な切替機能を有する工作機械であって、
前記熱変位補正手段は、所定の座標位置で前記熱変位推定量を切り替える際、当該切替時点における前記第1の熱変位推定量と前記第2の熱変位推定量との差分を求め、前記差分と前記第2の熱変位推定量とに基づいて前記軸指令値の補正量を決定することを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to obtaining a thermal displacement estimation amount using a predetermined thermal displacement estimation formula based on temperature information obtained from a temperature sensor installed at a predetermined position, and Thermal displacement correction means for correcting the axis command value based on the estimated displacement amount, wherein the thermal displacement correction means estimates the thermal displacement estimated amount based on a first thermal displacement estimation formula. In a machine tool having a switching function capable of switching from a displacement estimation amount to a second thermal displacement estimation amount estimated on the basis of a second thermal displacement estimation formula, the shaft command value is corrected.
When switching the thermal displacement estimated amount at a predetermined coordinate position, a difference between the first thermal displacement estimated amount and the second thermal displacement estimated amount at the switching time is obtained, and the difference and the second thermal displacement are calculated. The correction amount of the axis command value is determined based on the estimated amount.
According to a second aspect of the present invention, in the configuration of the first aspect, the difference in the estimated thermal displacement amount is obtained from a coordinate position of a work origin.
According to a third aspect of the present invention, in the configuration of the first or second aspect, the switching point of the thermal displacement estimated amount is a processing start time at the predetermined coordinate position, and the first thermal displacement estimated amount is Further, it is obtained based on the temperature information acquired before the processing start time.
In order to achieve the above-mentioned object, the invention according to claim 4 obtains a thermal displacement estimation amount using a predetermined thermal displacement estimation formula based on temperature information obtained from a temperature sensor installed at a predetermined position, and Thermal displacement correction means for correcting the axis command value based on the estimated displacement amount, wherein the thermal displacement correction means estimates the thermal displacement estimated amount based on a first thermal displacement estimation formula. A machine tool having a switching function capable of switching from a displacement estimation amount to a second thermal displacement estimation amount estimated based on a second thermal displacement estimation formula,
The thermal displacement correction means obtains a difference between the first thermal displacement estimated amount and the second thermal displacement estimated amount at the time of switching when switching the thermal displacement estimated amount at a predetermined coordinate position, and calculates the difference. And a correction amount of the axis command value is determined based on the second estimated amount of thermal displacement.

本発明によれば、切替時点における第1の熱変位推定量と第2の熱変位推定量との差分を求め、当該差分と第2の熱変位推定量とに基づいて軸指令値の補正量を決定することで、熱変位推定式を切り替えた場合に生じる熱変位補正量の急激な変化をキャンセルすることができる。よって、熱変位推定式の切替による熱変位の推定精度向上のメリットを維持しつつ、加工の途中等であっても必要に応じて熱変位推定式を切り替えて加工精度を向上させることができる。
請求項2に記載の発明によれば、上記効果に加えて、熱変位推定量の差分をワーク原点の座標位置で求めることで、ワーク全体の加工精度を向上させることができる。
請求項3に記載の発明によれば、上記効果に加えて、熱変位推定量の切替時点を所定の座標位置での加工開始時点として、第1の熱変位推定量を当該加工開始時点以前に取得した温度情報に基づいて求めることで、熱変位補正量の変更と同時にそれまでの基準寸法からのズレも修正されて加工精度を維持することができる。
According to the present invention, the difference between the first thermal displacement estimated amount and the second thermal displacement estimated amount at the time of switching is obtained, and the correction amount of the axis command value is based on the difference and the second thermal displacement estimated amount. Is determined, it is possible to cancel a rapid change in the thermal displacement correction amount that occurs when the thermal displacement estimation formula is switched. Therefore, while maintaining the merit of improving the thermal displacement estimation accuracy by switching the thermal displacement estimation formula, it is possible to improve the processing accuracy by switching the thermal displacement estimation formula as necessary even during the machining.
According to the second aspect of the present invention, in addition to the above effect, the processing accuracy of the entire workpiece can be improved by obtaining the difference in the estimated thermal displacement amount from the coordinate position of the workpiece origin.
According to the invention described in claim 3, in addition to the above effect, the first thermal displacement estimated amount is set before the processing start time, with the switching time of the thermal displacement estimated amount as the processing start time at the predetermined coordinate position. By obtaining based on the acquired temperature information, the deviation from the reference dimension so far can be corrected simultaneously with the change of the thermal displacement correction amount, and the machining accuracy can be maintained.

NC旋盤の説明図である。It is explanatory drawing of NC lathe. ある加工事例における寸法変化と熱変位補正結果とを示す図である。It is a figure which shows the dimensional change and thermal displacement correction result in a certain process example. ある加工事例における寸法変化と熱変位推定量とを示す図である。It is a figure which shows the dimensional change and thermal displacement estimated amount in a certain process example. 通常の方法で熱変位補正を行った結果を示す図である。It is a figure which shows the result of having performed thermal displacement correction | amendment by the normal method. 式(2)に基づいて熱変位推定式の切替を行った結果を示す図である。It is a figure which shows the result of having switched the thermal displacement estimation formula based on Formula (2). 式(4)に基づいて熱変位推定式の切替を行った結果を示す図である。It is a figure which shows the result of having switched the thermal displacement estimation formula based on Formula (4).

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、工作機械の一例であるNC旋盤の説明図であるが、本発明はこれに限らず、マシニングセンタ、複合加工機のような他の形態の工作機械にも適用可能である。
NC旋盤1は、刃物台2、土台となるベッド3、主軸台4を構造体として備えた周知の構造で、これらの構造体には、温度センサ5〜7がそれぞれ取り付けられている。
一般に機械が冷えた状態から加工を開始すると、主軸発熱や切削液の温度変化により、熱変位が生じる。そこで、NC旋盤1では、熱変位補正部10を設けて、各温度センサ5〜7による検出信号を、温度測定部11によって温度数値として取得し、補正量演算部12によって熱変位補正量を演算し、演算された熱変位補正量に基づいてNC装置13が軸指令値の補正を行って図示しない送り軸モータ等を制御するようになっている。14は、補正量演算部12において熱変位補正量の演算に用いる熱変位推定式や演算された熱変位補正量、温度情報等を記憶するための記憶部である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of an NC lathe which is an example of a machine tool. However, the present invention is not limited to this, and can be applied to other forms of machine tools such as a machining center and a multi-task machine.
The NC lathe 1 has a known structure including a tool post 2, a bed 3 serving as a base, and a headstock 4 as structures, and temperature sensors 5 to 7 are attached to these structures, respectively.
Generally, when machining is started from a cold state, thermal displacement occurs due to spindle heat generation or temperature change of the cutting fluid. Therefore, in the NC lathe 1, the thermal displacement correction unit 10 is provided, the detection signals from the temperature sensors 5 to 7 are acquired as temperature numerical values by the temperature measurement unit 11, and the thermal displacement correction amount is calculated by the correction amount calculation unit 12. The NC device 13 corrects the axis command value based on the calculated thermal displacement correction amount to control a feed shaft motor (not shown). Reference numeral 14 denotes a storage unit for storing the thermal displacement estimation formula used for calculating the thermal displacement correction amount in the correction amount calculation unit 12, the calculated thermal displacement correction amount, temperature information, and the like.

図2は、NC旋盤1によってある加工を行って熱変位が生じたときの寸法変化の例、図3はそのときの熱変位推定量変化を示す図である。以下、これらの図を用いて、熱変位補正手段となる熱変位補正部10による熱変位補正量(以下単に「補正量」という。)の決定方法について詳述する。
図2の例では、加工時間が15分のワークを4時間稼動、1時間停止、4時間稼動のサイクルで繰り返し加工している。熱変位補正なしの場合では、主軸や切削液の温度上昇による熱変位の影響により時間の経過とともにワークの加工寸法が三角点線1のように大きく変化していく。熱変位補正を適用した場合、熱変位推定式が適切であれば、図3の太実線3のように図2の三角点線1の変化と一致するように熱変位が推定でき、これに基づいて補正を行うことで、図2の丸点線3のように寸法変化を抑制することができる。
FIG. 2 shows an example of a dimensional change when a certain displacement is performed by the NC lathe 1 and FIG. 3 shows a change in the estimated amount of thermal displacement at that time. Hereinafter, a method for determining a thermal displacement correction amount (hereinafter simply referred to as “correction amount”) by the thermal displacement correction unit 10 serving as a thermal displacement correction unit will be described in detail with reference to these drawings.
In the example of FIG. 2, a workpiece with a machining time of 15 minutes is repeatedly machined in a cycle of 4 hours operation, 1 hour stop, and 4 hours operation. In the case of no thermal displacement correction, the machining dimension of the workpiece changes greatly as the triangular dotted line 1 over time due to the influence of thermal displacement due to the temperature rise of the spindle and the cutting fluid. When the thermal displacement correction is applied, if the thermal displacement estimation formula is appropriate, the thermal displacement can be estimated so as to match the change of the triangular dotted line 1 in FIG. 2 as shown by the thick solid line 3 in FIG. By performing the correction, a dimensional change can be suppressed as indicated by a dotted line 3 in FIG.

しかし、熱変位推定式の精度が悪いと、図3の細実線2のように刃先の変化と推定した熱変位推定量とに差が生じ、補正を行ったとしても図2の四角点線2のように寸法変化が残ってしまう。あるいはこの例とは逆に実際の熱変位に対して推定された熱変位が大きすぎるために逆方向に寸法が変化してしまう場合も起こりえる。こうした推定誤差は加工するワークの大きさや材質、切削液のかかり方、使用環境など様々な要因で生じ、完全になくすことは難しい。   However, if the accuracy of the thermal displacement estimation formula is poor, there is a difference between the change in the blade edge and the estimated thermal displacement estimation amount as indicated by the thin solid line 2 in FIG. 3, and even if correction is performed, the square dotted line 2 in FIG. Thus, the dimensional change remains. Or, conversely to this example, the thermal displacement estimated with respect to the actual thermal displacement is too large, and the dimension may change in the reverse direction. Such an estimation error is caused by various factors such as the size and material of the workpiece to be machined, how the cutting fluid is applied, and the usage environment, and it is difficult to eliminate them completely.

そこで、熱変位補正部10は、熱変位推定精度が悪い場合には、実際に加工した寸法変化のデータに基づいて熱変位推定式を修正する切替機能を備えている。このように熱変位推定式を切り替えれば、加工での寸法変化を抑制できる。まず、この切替機能について説明する。
熱変位推定式は、例えば以下のような式(1)で表される。
Therefore, the thermal displacement correction unit 10 includes a switching function for correcting the thermal displacement estimation formula based on the actually processed dimensional change data when the thermal displacement estimation accuracy is poor. By switching the thermal displacement estimation formula in this way, it is possible to suppress dimensional changes during processing. First, this switching function will be described.
The thermal displacement estimation formula is represented by the following formula (1), for example.

Figure 2017170532
Figure 2017170532

ここで、θ〜θは各部の温度、θは寸法を必要とする基準温度(例えば20℃での寸法が必要な場合はθ=20℃)、xは機械の座標、k〜kは各部の温度に対する比例係数、l〜lは各部の温度と機械の座標に対する比例係数、Sは定数項である。
式(1)の熱変位推定式は温度の一次式となっており、各部の温度および機械の座標によって熱変位推定量が求められ、これが補正量となって熱変位補正が実施される。ただし、式(1)は熱変位推定式の一例であり、座標によらず温度のみに依存する式としても良い。また二次式や微分要素や積分要素を含んだ式など、さらに複雑な式を設定したとしても、本発明の手法は適用可能である。
Here, θ 1 to θ 3 are the temperatures of the respective parts, θ 0 is a reference temperature that requires a dimension (for example, θ 0 = 20 ° C. when a dimension at 20 ° C. is required), x is a machine coordinate, and k 1 ˜k 3 is a proportional coefficient with respect to the temperature of each part, l 1 ˜l 3 are proportional coefficients with respect to the temperature of each part and machine coordinates, and S is a constant term.
The thermal displacement estimation formula of Formula (1) is a linear expression of temperature, and the thermal displacement estimation amount is obtained from the temperature of each part and the machine coordinates, and this is used as a correction amount to perform thermal displacement correction. However, equation (1) is an example of a thermal displacement estimation equation, and may be an equation that depends only on temperature, regardless of coordinates. Even if a more complicated expression such as a quadratic expression, an expression including a differential element, or an integral element is set, the method of the present invention can be applied.

予め寸法変化と温度変化を分析し、式(1)での比例係数k〜kとl〜lを決定すれば、加工するワークに合わせた熱変位推定式を決定できる。例えば、図3の三角点線1のような寸法変化に対し、最初は細実線2のような熱変位推定量変化となる熱変位推定式Aが設定されていたとする。この場合、熱変位推定量変化(グラフの線の傾き)が、三角点線1の寸法変化と一致していないため、図2の四角点線2のように熱変位補正を行っても寸法変化が残ってしまう。
しかし、加工結果の寸法変化と温度変化のデータから、重回帰分析のような公知の多変量解析手法を用いて、式(1)の係数k〜kとl〜lを決定することにより、実際の加工結果に基づいた最適な熱変位推定式を構築できる。
Previously analyzed the dimensional change and the temperature change, be determined proportionality coefficient k 1 to k 3 and l 1 to l 3 in the formula (1) can be determined and the combined thermal displacement estimation equation to the work to be processed. For example, it is assumed that a thermal displacement estimation formula A is initially set for a dimensional change such as the triangular dotted line 1 in FIG. In this case, the estimated change in thermal displacement (the slope of the line in the graph) does not match the dimensional change of the triangular dotted line 1, so that the dimensional change remains even if the thermal displacement correction is performed as indicated by the square dotted line 2 in FIG. End up.
However, from the data of the dimensional change and the temperature change of the processing result, using known multivariate analysis techniques such as multiple regression analysis, to determine the coefficients k 1 to k 3 and l 1 to l 3 of the formula (1) This makes it possible to construct an optimum thermal displacement estimation formula based on actual machining results.

このようにして図3の太実線3のような熱変位推定量変化となる最適な熱変位推定式Bを設定してこれに切り替えれば、熱変位推定量変化が寸法変化と一致するため、図2の丸点線3のように寸法変化を抑制することができる。寸法変化と温度変化の相関に再現性があれば、ある日の加工結果の寸法変化と温度変化のデータから、最適な熱変位推定式を決定し、それ以降は決定した熱変位推定式を補正に適用することで加工精度を高めることが可能である。   In this way, if the optimum thermal displacement estimation formula B that becomes the thermal displacement estimated amount change as shown by the thick solid line 3 in FIG. 3 is set and switched to this, the thermal displacement estimated amount change coincides with the dimensional change. The dimensional change can be suppressed as indicated by 2 round dotted lines 3. If the correlation between the dimensional change and the temperature change is reproducible, the optimum thermal displacement estimation formula is determined from the dimensional change and temperature change data of the machining result on one day, and thereafter the determined thermal displacement estimation formula is corrected. It is possible to improve the processing accuracy by applying to.

次に、加工の途中において、熱変位推定式を切り替えることを考える。
例えば加工開始2時間後において、最初に設定されていた熱変位推定式A(第1の熱変位推定式)から最適化された熱変位推定式B(第2の熱変位推定式)に切り替えたとする。この場合、図4の丸点線3のように、切替時点(2時間経過時点)での熱変位推定式Aの補正量と熱変位推定式Bの補正量との差分だけ補正量が変化することになる。このとき、切り替えた後は変化が小さくなるが、切替時点では寸法が大きく変化してしまうため、変更してすぐのワークは精度不良になってしまうと考えられる。
そこで、このような急激な補正量変化を防ぐためには、切替時点での熱変位推定式Aによる熱変位推定量(第1の熱変位推定量)と熱変位推定式Bによる熱変位推定量(第2の熱変位推定量)との差分を求め、その分をシフトさせた量を切替後の熱変位推定量(第2の熱変位推定量)に加算して補正量とすればよい。このときある時点tとある座標xでの補正量は以下の式(2)で表される。
Next, consider switching the thermal displacement estimation formula in the middle of machining.
For example, two hours after the start of machining, when the thermal displacement estimation formula A (first thermal displacement estimation formula) set first is switched to the optimized thermal displacement estimation formula B (second thermal displacement estimation formula). To do. In this case, as indicated by a dotted line 3 in FIG. 4, the correction amount changes by the difference between the correction amount of the thermal displacement estimation formula A and the correction amount of the thermal displacement estimation formula B at the switching time (two hours have elapsed). become. At this time, the change is small after switching, but the dimension changes greatly at the time of switching, so it is considered that the workpiece immediately after the change becomes inaccurate.
Therefore, in order to prevent such a sudden change in the correction amount, the thermal displacement estimation amount (first thermal displacement estimation amount) based on the thermal displacement estimation formula A at the time of switching (the first thermal displacement estimation amount) and the thermal displacement estimation amount based on the thermal displacement estimation formula B ( What is necessary is just to obtain | require the difference with 2nd thermal displacement estimated amount), and to add the amount which shifted the part to the thermal displacement estimated amount after switching (2nd thermal displacement estimated amount), and to make a correction amount. At this time, the correction amount at a certain time point t and a certain coordinate x is expressed by the following equation (2).

Figure 2017170532
Figure 2017170532

式(2)に基づいて補正量の変更を実行したとき、加工結果は図5の丸点線3のようになり、加工開始2時間後での突然の寸法変化の問題はなくなる。
ここで、以上の補正量の変更に加えて、熱変位推定式の切替時点での基準寸法からのズレ分をワーク原点オフセットの再設定あるいは工具補正量の変更により修正すれば、以降の加工は計測によるフィードバックを行わなくても熱変位補正を有効にしておくだけで基準寸法に近い値で加工することができる。
When the correction amount is changed based on the expression (2), the machining result is as shown by a dotted line 3 in FIG. 5, and the problem of sudden dimensional change after 2 hours from the machining is eliminated.
Here, in addition to the above correction amount change, if the deviation from the reference dimension at the time of switching the thermal displacement estimation formula is corrected by resetting the workpiece origin offset or changing the tool correction amount, the subsequent machining will be Even if feedback by measurement is not performed, it is possible to perform processing with a value close to the reference dimension only by enabling thermal displacement correction.

なお、式(2)の例では、寸法を合わせたい位置の座標xでの熱変位推定量の差分を計算してシフトさせている。寸法を合わせたい位置が1箇所の場合はこの方法が有効であるが、加工精度を必要とする箇所が複数ある場合には、以下の式(3)のようにワーク原点の座標xでの熱変位推定量の差分を計算して補正した方がワーク全体の加工精度を向上させるのに都合がよい。 In the example of equation (2), which is shifted by calculating the difference between the thermal displacement estimation amount at coordinates x 1 position to tune the dimensions. Although the case to tune the size position of one place this method is effective, when there are a plurality of positions that require the processing accuracy, the coordinates x 0 of the workpiece zero as shown in the following expression (3) It is convenient to improve the machining accuracy of the entire workpiece by calculating and correcting the difference of the estimated thermal displacement.

Figure 2017170532
Figure 2017170532

但し、式(3)の方法では、ワーク原点の再測定を実施し、ワーク原点オフセットの値を再設定することにより、補正量変更時点での基準からのズレ分を修正する必要がある。この手間を省き、変更時点での基準からのズレ分についても補正量の変更で対応するためには、以下のような方法がある。   However, in the method of Formula (3), it is necessary to correct the deviation from the reference at the time of changing the correction amount by re-measuring the workpiece origin and resetting the workpiece origin offset value. In order to save this time and to cope with the deviation from the reference at the time of change by changing the correction amount, there are the following methods.

図2のグラフの丸点線3は、加工開始時点から切替後の熱変位推定式ΔCを適用した場合の加工結果であり、この場合の結果に一致するように補正量をシフトさせることを考える。これを実現するには、変更後の補正量を以下の式(4)のように決定すればよい。この式(4)は、加工開始時点における、切替前(加工前)の熱変位推定式で求められる熱変位推定量と切替後の熱変位推定式で求められる熱変位推定量とをそれぞれ計算し、その差分をオフセットさせることを表している。座標位置は式(3)と同じワーク原点位置である。 Round dotted 3 of the graph of FIG. 2 is a processing result of applying the thermal displacement estimation equation [Delta] C B after switching from the machining start point, considering that shifting the correction amount to match the result of the case . In order to realize this, the corrected amount after the change may be determined as in the following equation (4). This equation (4) calculates the thermal displacement estimation amount obtained by the thermal displacement estimation formula before switching (before machining) and the thermal displacement estimation amount obtained by the thermal displacement estimation formula after switching at the start of machining, respectively. Represents that the difference is offset. The coordinate position is the same work origin position as that in Expression (3).

Figure 2017170532
Figure 2017170532

この式(4)により、補正量を変更した場合は、加工結果は図6の丸点線3のようになる。変更後の寸法変化は、図2のグラフの丸点線3で示した加工開始時点から切替後の熱変位推定式ΔCを適用した場合の結果に一致し、補正量変更と同時にそれまでの基準寸法からのズレも修正され加工精度が維持されていることが分かる。 When the correction amount is changed according to this equation (4), the processing result is as shown by a round dotted line 3 in FIG. Dimensional change after the change the reference from the machining start point indicated by a circle dotted 3 in the graph of FIG. 2 match results of applying the thermal displacement estimation equation [Delta] C B after switching, and until it simultaneously correction amount changing It can be seen that the deviation from the dimension is also corrected and the machining accuracy is maintained.

ただし、式(4)を実現するためには、加工開始時点における補正量を遡って計算できるようにする必要がある。そのため、補正量の計算に必要な温度情報を予め記憶部14に記録しておく必要がある。加工開始時点の設定としては、加工に使用するワーク原点オフセットを設定した時刻とする方法や、電源投入時、あるいはプログラム起動時とする方法が考えられる。加工開始時点に設定するタイミングで、補正量の計算に必要な温度情報をNC装置13のメモリなどに記録するシステムとしてもよい。あるいは必要な温度情報を予め一定の時間間隔で記録するシステムとしておけば、基準となるタイミングを後から任意に設定することも可能である。   However, in order to realize Equation (4), it is necessary to be able to calculate retroactively the correction amount at the time of starting machining. Therefore, it is necessary to record temperature information necessary for calculating the correction amount in the storage unit 14 in advance. As the setting of the machining start time, a method of setting a workpiece origin offset used for machining is set, a method of turning on the power, or starting a program. The temperature information necessary for calculating the correction amount may be recorded in the memory of the NC device 13 or the like at the timing set at the machining start time. Alternatively, if a system for recording necessary temperature information at a predetermined time interval is used in advance, the reference timing can be arbitrarily set later.

このように、上記形態の熱変位補正方法及びNC旋盤1によれば、所定の座標位置で熱変位推定量を切り替える際、当該切替時点における切替前の熱変位推定量と切替後の熱変位推定量との差分を求め、当該差分と切替後の熱変位推定量とに基づいて軸指令値の補正量を決定することで、熱変位推定式を切り替えた場合に生じる熱変位補正量の急激な変化をキャンセルすることができる。よって、熱変位推定式の切替による熱変位の推定精度向上のメリットを維持しつつ、加工の途中等であっても必要に応じて熱変位推定式を切り替えて加工精度を向上させることができる。   As described above, according to the thermal displacement correction method and the NC lathe 1 of the above embodiment, when switching the thermal displacement estimation amount at a predetermined coordinate position, the thermal displacement estimation amount before switching and the thermal displacement estimation after switching at the switching time point. The amount of thermal displacement correction that occurs when the thermal displacement estimation formula is switched is determined by determining the correction amount of the axis command value based on the difference and the estimated thermal displacement after switching. Changes can be cancelled. Therefore, while maintaining the merit of improving the thermal displacement estimation accuracy by switching the thermal displacement estimation formula, it is possible to improve the processing accuracy by switching the thermal displacement estimation formula as necessary even during the machining.

なお、温度センサの設置位置や数は工作機械の形態に応じて適宜変更することができる。また、補正量を求める式(2)〜(4)の選択も任意である。   In addition, the installation position and number of temperature sensors can be appropriately changed according to the form of the machine tool. Further, selection of the equations (2) to (4) for obtaining the correction amount is also arbitrary.

1・・NC旋盤、2・・刃物台、3・・ベッド、4・・主軸台、5〜7・・温度センサ。   1 .... NC lathe, 2 .... Cutter, 3 .... Bed, 4 .... Spindle, 5-7 ...... Temperature sensor.

Claims (4)

所定位置に設置した温度センサから得られる温度情報に基づいて所定の熱変位推定式を用いて熱変位推定量を求め、前記熱変位推定量に基づいて軸指令値を補正する熱変位補正手段を有し、前記熱変位補正手段が、前記熱変位推定量を、第1の熱変位推定式に基づいて推定した第1の熱変位推定量から、第2の熱変位推定式に基づいて推定した第2の熱変位推定量に切替可能な切替機能を備える工作機械において、前記軸指令値を補正する方法であって、
所定の座標位置で前記熱変位推定量を切り替える際、当該切替時点における前記第1の熱変位推定量と前記第2の熱変位推定量との差分を求め、前記差分と前記第2の熱変位推定量とに基づいて前記軸指令値の補正量を決定することを特徴とする工作機械の熱変位補正方法。
Thermal displacement correction means for obtaining a thermal displacement estimation amount using a predetermined thermal displacement estimation formula based on temperature information obtained from a temperature sensor installed at a predetermined position and correcting an axis command value based on the thermal displacement estimation amount. And the thermal displacement correction means estimates the thermal displacement estimation amount from the first thermal displacement estimation amount estimated based on the first thermal displacement estimation equation based on the second thermal displacement estimation equation. In a machine tool having a switching function that can be switched to a second thermal displacement estimated amount, a method of correcting the axis command value,
When switching the thermal displacement estimated amount at a predetermined coordinate position, a difference between the first thermal displacement estimated amount and the second thermal displacement estimated amount at the switching time is obtained, and the difference and the second thermal displacement are calculated. A method of correcting a thermal displacement of a machine tool, wherein a correction amount of the axis command value is determined based on an estimated amount.
前記熱変位推定量の差分は、ワーク原点の座標位置で求めることを特徴とする請求項1に記載の工作機械の熱変位補正方法。   The method according to claim 1, wherein the difference between the estimated thermal displacement amounts is obtained from a coordinate position of a workpiece origin. 前記熱変位推定量の切替時点は、前記所定の座標位置での加工開始時点であり、前記第1の熱変位推定量は、当該加工開始時点以前に取得した前記温度情報に基づいて求めることを特徴とする請求項1又は2に記載の工作機械の熱変位補正方法。   The switching time of the thermal displacement estimated amount is a processing start time at the predetermined coordinate position, and the first thermal displacement estimated amount is obtained based on the temperature information acquired before the processing starting time. The thermal displacement correction method for a machine tool according to claim 1 or 2, wherein the thermal displacement correction method is used. 所定位置に設置した温度センサから得られる温度情報に基づいて所定の熱変位推定式を用いて熱変位推定量を求め、前記熱変位推定量に基づいて軸指令値を補正する熱変位補正手段を有し、前記熱変位補正手段が、前記熱変位推定量を、第1の熱変位推定式に基づいて推定した第1の熱変位推定量から、第2の熱変位推定式に基づいて推定した第2の熱変位推定量に切替可能な切替機能を有する工作機械であって、
前記熱変位補正手段は、所定の座標位置で前記熱変位推定量を切り替える際、当該切替時点における前記第1の熱変位推定量と前記第2の熱変位推定量との差分を求め、前記差分と前記第2の熱変位推定量とに基づいて前記軸指令値の補正量を決定することを特徴とする工作機械。
Thermal displacement correction means for obtaining a thermal displacement estimation amount using a predetermined thermal displacement estimation formula based on temperature information obtained from a temperature sensor installed at a predetermined position and correcting an axis command value based on the thermal displacement estimation amount. And the thermal displacement correction means estimates the thermal displacement estimation amount from the first thermal displacement estimation amount estimated based on the first thermal displacement estimation equation based on the second thermal displacement estimation equation. A machine tool having a switching function that can be switched to the second estimated thermal displacement amount,
The thermal displacement correction means obtains a difference between the first thermal displacement estimated amount and the second thermal displacement estimated amount at the time of switching when switching the thermal displacement estimated amount at a predetermined coordinate position, and calculates the difference. And a correction amount of the axis command value is determined based on the second estimated amount of thermal displacement.
JP2016055852A 2016-03-18 2016-03-18 Machine tool thermal displacement correction method, machine tool Active JP6561003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055852A JP6561003B2 (en) 2016-03-18 2016-03-18 Machine tool thermal displacement correction method, machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055852A JP6561003B2 (en) 2016-03-18 2016-03-18 Machine tool thermal displacement correction method, machine tool

Publications (2)

Publication Number Publication Date
JP2017170532A true JP2017170532A (en) 2017-09-28
JP6561003B2 JP6561003B2 (en) 2019-08-14

Family

ID=59969974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055852A Active JP6561003B2 (en) 2016-03-18 2016-03-18 Machine tool thermal displacement correction method, machine tool

Country Status (1)

Country Link
JP (1) JP6561003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11630434B2 (en) 2018-10-12 2023-04-18 Fanuc Corporation Thermal displacement compensation device and numerical controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589476B1 (en) * 2019-08-22 2023-10-16 주식회사 디엔솔루션즈 Method and apparatus for correcting thermal deformation of machine tool spindle, machine tools using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985581A (en) * 1995-09-22 1997-03-31 Okuma Mach Works Ltd Correcting method for thermal displacement of machine tool
JP2012240137A (en) * 2011-05-17 2012-12-10 Jtekt Corp Method and device for correcting thermal displacement of machine tool
JP2013027946A (en) * 2011-07-27 2013-02-07 Citizen Holdings Co Ltd Controller of machine tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985581A (en) * 1995-09-22 1997-03-31 Okuma Mach Works Ltd Correcting method for thermal displacement of machine tool
JP2012240137A (en) * 2011-05-17 2012-12-10 Jtekt Corp Method and device for correcting thermal displacement of machine tool
JP2013027946A (en) * 2011-07-27 2013-02-07 Citizen Holdings Co Ltd Controller of machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11630434B2 (en) 2018-10-12 2023-04-18 Fanuc Corporation Thermal displacement compensation device and numerical controller
DE102019215634B4 (en) 2018-10-12 2024-02-08 Fanuc Corporation Thermal displacement compensation device and numerical control

Also Published As

Publication number Publication date
JP6561003B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
US7778725B2 (en) Method for estimating thermal displacement in machine tool
JP6001211B1 (en) Machine tool with thermal displacement correction amount setting change device
JP5811102B2 (en) Thermal displacement correction apparatus and thermal displacement correction method
US7245983B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JP2018103274A (en) Machine tool temperature estimation method and thermal displacement correction method
JP2015006721A (en) Machine tool including measuring apparatus
JP6561003B2 (en) Machine tool thermal displacement correction method, machine tool
JP6648500B2 (en) Thermal displacement compensator for machine tools
JP4720774B2 (en) Processing equipment
US20200292394A1 (en) Temperature interpolation device
JP2007015094A (en) Thermal displacement estimating method of machine tool
US20150012126A1 (en) Thermal displacement correction method and thermal displacement correction unit
JP2001259966A (en) Method and device for correction of tool position
CN112828682A (en) Error measurement method for machine tool and machine tool
JP3756793B2 (en) Machine tool thermal displacement compensation device
JP4469681B2 (en) Method for correcting machining errors of machine tools
JP6656945B2 (en) Compensation method for thermal displacement of machine tools
JP3422462B2 (en) Estimation method of thermal displacement of machine tools
JP4358705B2 (en) Method for correcting thermal deformation error of machine tool
JP2009248209A (en) Method of estimating thermal displacement of machine tool
JP7098544B2 (en) Machine tool thermal displacement correction method and thermal displacement compensation device
TWI410767B (en) Parameter learning controller in a machine device and learning method thereof
JP2004148443A (en) Method for correcting thermal displacement of tool
JP2002052439A (en) Thermal displacement correcting method for lathe
JP5127603B2 (en) Processing method and processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6561003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150