JP2017168488A - Manufacturing method of multilayer ceramic capacitor - Google Patents

Manufacturing method of multilayer ceramic capacitor Download PDF

Info

Publication number
JP2017168488A
JP2017168488A JP2016049358A JP2016049358A JP2017168488A JP 2017168488 A JP2017168488 A JP 2017168488A JP 2016049358 A JP2016049358 A JP 2016049358A JP 2016049358 A JP2016049358 A JP 2016049358A JP 2017168488 A JP2017168488 A JP 2017168488A
Authority
JP
Japan
Prior art keywords
conductive paste
component body
multilayer ceramic
ceramic capacitor
unfired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016049358A
Other languages
Japanese (ja)
Other versions
JP6769055B2 (en
Inventor
孝太郎 清水
Kotaro Shimizu
孝太郎 清水
武久 笹林
Takehisa Sasabayashi
武久 笹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2016049358A priority Critical patent/JP6769055B2/en
Priority to CN201611059442.9A priority patent/CN107195459B/en
Priority to KR1020170018183A priority patent/KR101896286B1/en
Publication of JP2017168488A publication Critical patent/JP2017168488A/en
Application granted granted Critical
Publication of JP6769055B2 publication Critical patent/JP6769055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material

Abstract

PROBLEM TO BE SOLVED: To maintain the thickness of an external electrode, in a manufacturing method of multilayer ceramic capacitor, where an unbaked component body and a conductive paste film, formed on the surface thereof and becoming an external electrode, are fired at the same time.SOLUTION: Prior to a process for forming a conductive paste film becoming external electrodes 12 and 13, a process for heat-treating an unbaked component body 2 in the unfired stage of the component body 2, and removing an organic material exposed to the surface of the unbaked component body 2 is carried out. As a result, fine irregularities and holes are generated on the surface of the unbaked component body 2, and the surface of the component body 2 can be made porous. Consequently, conductive paste becomes hard to flow, and the conductive paste film is less likely to become thin locally at specific parts, e.g., the edge line and corner of the component body 2.SELECTED DRAWING: Figure 1

Description

この発明は、積層セラミックコンデンサの製造方法に関するもので、特に、積層セラミックコンデンサを製造するにあたって、導電性ペーストを用いて形成される外部電極が部品本体と同時に焼成される、積層セラミックコンデンサの製造方法に関するものである。   The present invention relates to a method for manufacturing a multilayer ceramic capacitor, and in particular, in manufacturing a multilayer ceramic capacitor, an external electrode formed using a conductive paste is fired simultaneously with a component body. It is about.

一般的な積層セラミックコンデンサは、複数の積層された誘電体セラミック層および誘電体セラミック層間の特定の界面に沿って形成された内部電極を含む、部品本体と、内部電極の特定のものの端縁に電気的に接続されるように部品本体の端部上に形成された外部電極とを備えている。   A typical multilayer ceramic capacitor includes a plurality of laminated dielectric ceramic layers and an inner electrode formed along a specific interface between the dielectric ceramic layers, at the edge of a component body and a specific one of the internal electrodes. And an external electrode formed on the end of the component main body so as to be electrically connected.

このような積層セラミックコンデンサの製造方法の一例として、特開2001−15376号公報(特許文献1)および特開2006−86400号公報(特許文献2)には、部品本体の未焼成の段階で、外部電極となるべき導電性ペースト膜を部品本体の表面上に形成し、次いで、未焼成の部品本体と導電性ペースト膜とを同時に焼成する方法がある。   As an example of a method for manufacturing such a multilayer ceramic capacitor, Japanese Patent Application Laid-Open No. 2001-15376 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-86400 (Patent Document 2) include an unfired stage of a component body. There is a method in which a conductive paste film to be an external electrode is formed on the surface of a component main body, and then an unfired component main body and the conductive paste film are simultaneously fired.

特開2001−15376号公報JP 2001-15376 A 特開2006−86400号公報JP 2006-86400 A

積層セラミックコンデンサの小型化または薄型化を図ろうとするとき、外部電極についても、その厚みを薄くすることが有効である。しかし、外部電極を薄くするため、外部電極となるべき導電性ペースト膜を薄く形成すると、未焼成の部品本体との同時焼成の結果、外部電極が、特に部品本体の稜線上または角上で薄くなりやすく、極端な場合には、途切れることがある。このことは、積層セラミックコンデンサの信頼性の低下を招く。   When attempting to reduce the thickness or thickness of a multilayer ceramic capacitor, it is effective to reduce the thickness of the external electrodes. However, if the conductive paste film to be the external electrode is thinly formed in order to make the external electrode thin, the external electrode becomes thin particularly on the ridge line or corner of the component body as a result of simultaneous firing with the unfired component body. It is easy to become, and in extreme cases, it may be interrupted. This leads to a decrease in the reliability of the multilayer ceramic capacitor.

そこで、この発明の目的は、外部電極の厚みを安定的に維持できる、積層セラミックコンデンサの製造方法を提供しようとすることである。   Accordingly, an object of the present invention is to provide a method for manufacturing a multilayer ceramic capacitor capable of stably maintaining the thickness of an external electrode.

この発明は、セラミック原料および有機物を含む未焼成の部品本体を作製する工程と、未焼成の部品本体の表面上に外部電極となるべき導電性ペースト膜を形成する工程と、未焼成の部品本体および導電性ペースト膜を同時に焼成する工程と、を備える、積層セラミックコンデンサの製造方法に向けられるものであって、上述した技術的課題を解決するため、導電性ペースト膜を形成する工程の前に、未焼成の部品本体の表面に露出する有機物を除去する工程をさらに備えることを特徴としている。   The present invention includes a step of producing an unfired component body containing a ceramic raw material and an organic material, a step of forming a conductive paste film to be an external electrode on the surface of the unfired component body, and an unfired component body And a step of simultaneously firing the conductive paste film, the method is directed to a method for manufacturing a multilayer ceramic capacitor, and in order to solve the above technical problem, before the step of forming the conductive paste film The method further comprises the step of removing organic substances exposed on the surface of the unfired component body.

上述した有機物は主としてバインダであるが、未焼成の部品本体の表面に露出する有機物を除去した結果、部品本体の表面に微細な凹凸や穴ぼこが生じ、部品本体の表面をポーラスな状態とすることができる。   The organic matter described above is mainly a binder, but as a result of removing the organic matter exposed on the surface of the unfired component body, fine irregularities and pits are generated on the surface of the component body, making the surface of the component body porous. can do.

なお、有機物を除去する工程において、有機物はその少なくとも一部が除去されればよく、すべて除去される必要はない。   In the step of removing the organic matter, it is sufficient that at least a part of the organic matter is removed, and it is not necessary to remove all the organic matter.

上述した外部電極となるべき導電性ペースト膜を形成する工程において、特に、部品本体の少なくとも2つの面が交差する稜線を跨ぐ状態で導電性ペースト膜を形成するようにされるとき、この発明が有利に適用される。外部電極は、部品本体の稜線または角上で薄くなったり、途切れたりしやすい傾向があるからである。   In the step of forming the conductive paste film to be the external electrode described above, particularly when the conductive paste film is formed in a state of straddling the ridgeline where at least two surfaces of the component body intersect, the present invention Applied advantageously. This is because the external electrode tends to be thin or broken on the ridgeline or corner of the component body.

この発明において、好ましくは、未焼成の部品本体は、セラミック原料および有機物を含む未焼成のセラミック層が積層された積層ブロックを作製する工程と、複数の未焼成の部品本体を得るため、積層ブロックをカットする工程と、を経て作製される。この場合、積層ブロックをカットする工程の前に、積層ブロックの状態で、未焼成の部品本体の表面に露出する有機物を除去する工程が実施されてもよい。この構成によれば、有機物を除去する工程を能率的に進めることができる。   In the present invention, preferably, the unfired component body includes a step of producing a laminate block in which an unfired ceramic layer containing a ceramic raw material and an organic material is laminated, and a laminate block for obtaining a plurality of unfired component bodies. And the step of cutting. In this case, before the step of cutting the laminated block, a step of removing organic substances exposed on the surface of the unfired component main body may be performed in the state of the laminated block. According to this structure, the process of removing organic substance can be advanced efficiently.

有機物を除去するため、たとえば、加熱が適用される。この場合、焼成する工程において適用される最高温度より低い温度で未焼成の部品本体を加熱することが好ましい。有機物除去のため、加熱を適用すると、多数の部品本体に対して、あるいは、大きな面積の積層ブロックに対して、一挙に有機物除去を進めることができる。また、加熱を、焼成する工程において適用される最高温度より低い温度で実施するようにすれば、セラミックの過焼結を防止することができる。   For example, heating is applied to remove organic matter. In this case, it is preferable to heat the green part body at a temperature lower than the maximum temperature applied in the firing step. When heating is applied to remove organic matter, removal of organic matter can be performed at once for a large number of component bodies or for a laminated block having a large area. Further, if the heating is performed at a temperature lower than the maximum temperature applied in the firing step, ceramic oversintering can be prevented.

より好ましくは、上記加熱は、100℃以上かつ900℃以下の温度で実施される。ここで、下限の100℃は有機物が焼失し始める温度であり、上限の900℃はセラミックが焼結し過ぎない温度である。   More preferably, the said heating is implemented at the temperature of 100 degreeC or more and 900 degrees C or less. Here, the lower limit of 100 ° C. is a temperature at which the organic substance starts to burn out, and the upper limit of 900 ° C. is a temperature at which the ceramic does not sinter excessively.

有機物を除去するため、上述した加熱に代えて、未焼成の部品本体を化学的エッチングまたは物理的エッチングするようにしてもよい。このような化学的エッチングまたは物理的エッチングは、特に、複数の未焼成の部品本体を取り出すことができる前述した積層ブロックに対して有利に適用される。なぜなら、積層ブロックに対して加熱工程が実施されると、積層ブロックが不所望にも反ることがあるためである。   In order to remove the organic matter, the unfired component body may be subjected to chemical etching or physical etching instead of the heating described above. Such chemical etching or physical etching is advantageously applied particularly to the above-described laminated block from which a plurality of green part bodies can be taken out. This is because when the heating step is performed on the laminated block, the laminated block may be undesirably warped.

外部電極となるべき導電性ペースト膜は、未焼成の部品本体との同時焼成を可能にするため、Ni粉末およびセラミック粉末を含むことが好ましい。   The conductive paste film to be the external electrode preferably contains Ni powder and ceramic powder in order to allow simultaneous firing with the unfired component body.

この発明に係る積層セラミックコンデンサの製造方法は、有機物を除去する工程の後、導電性ペースト膜を形成する工程の前に、未焼成の部品本体の表面にケイ素化合物またはフッ素化合物を吸着させる改質処理工程をさらに備えることが好ましい。この改質処理により、次に実施される導電性ペースト膜を形成する工程において、導電性ペースト膜の形状をより安定させることができる。   The method for manufacturing a multilayer ceramic capacitor according to the present invention is a modification in which a silicon compound or a fluorine compound is adsorbed on the surface of an unfired component body after a step of removing organic substances and before a step of forming a conductive paste film. It is preferable to further comprise a processing step. By this modification treatment, the shape of the conductive paste film can be further stabilized in the next step of forming the conductive paste film.

この発明によれば、未焼成の部品本体の表面に露出する有機物を除去し、その結果、部品本体の表面に微細な凹凸や穴ぼこが生じ、部品本体の表面をポーラスな状態とした上で、外部電極となるべき導電性ペースト膜が形成される。そのため、以下のような作用効果が奏される。   According to the present invention, the organic matter exposed on the surface of the unfired component body is removed. As a result, fine irregularities and pits are generated on the surface of the component body, and the surface of the component body is made porous. Thus, a conductive paste film to be an external electrode is formed. Therefore, the following effects are exhibited.

ポーラスな部品本体の表面におけるアンカー効果によって、導電性ペーストが部品本体の稜線および角の部分にも付着しやすく、付着後は流動しにくくなり、その場に保持されやすくなる。また、ポーラスな部品本体の表面における毛細管現象により、導電性ペースト中の溶剤が部品本体側に吸収され、それに応じて、導電性ペーストの粘度が上昇し、このことによっても、導電性ペーストは流動しにくくなり、その場に保持されやすくなる。   Due to the anchor effect on the surface of the porous component main body, the conductive paste tends to adhere to the ridgeline and corner portions of the component main body, and after adhering, the conductive paste is less likely to flow and is easily held in place. Also, due to the capillary action on the surface of the porous component body, the solvent in the conductive paste is absorbed by the component body side, and accordingly, the viscosity of the conductive paste increases, and this also causes the conductive paste to flow. It becomes difficult to hold, and it becomes easy to be held on the spot.

その結果、導電性ペースト膜が局所的に薄くなりにくく、たとえば、部品本体の稜線および角の部分上であっても、導電性ペースト膜の厚みを他の部分上と同様に維持することができる。   As a result, the conductive paste film is unlikely to become thin locally, and for example, the thickness of the conductive paste film can be maintained in the same manner as on other parts even on the ridge lines and corners of the component body. .

この発明に係る製造方法によって得られた第1の例としての積層セラミックコンデンサ1の外観を示す斜視図である。1 is a perspective view showing an appearance of a multilayer ceramic capacitor 1 as a first example obtained by the manufacturing method according to the present invention. 図1の線A−Aに沿う断面図である。It is sectional drawing which follows the line AA of FIG. 未焼成の部品本体の表面を電界放出形走査電子顕微鏡にて撮影した図面代用写真であって、(A)は有機物を除去する前の状態を示し、(B)は有機物を除去した後の状態を示す。It is the drawing substitute photograph which image | photographed the surface of the unbaked component main body with the field emission type scanning electron microscope, (A) shows the state before removing organic substance, (B) is the state after removing organic substance Indicates. この発明に係る製造方法によって得られた第2の例としての積層セラミックコンデンサ21の外観を示す斜視図である。It is a perspective view which shows the external appearance of the multilayer ceramic capacitor 21 as a 2nd example obtained by the manufacturing method which concerns on this invention. この発明に係る製造方法によって得られた第3の例としての積層セラミックコンデンサ31の外観を示す平面図である。It is a top view which shows the external appearance of the multilayer ceramic capacitor 31 as a 3rd example obtained by the manufacturing method which concerns on this invention.

図1および図2を参照して、この発明に係る製造方法によって得られた積層セラミックコンデンサ1について説明する。   A multilayer ceramic capacitor 1 obtained by the manufacturing method according to the present invention will be described with reference to FIGS.

積層セラミックコンデンサ1は、部品本体2を備えている。部品本体2は、6面を有する略直方体状であり、高さ方向Hに相対する第1および第2の主面3および4、幅方向Wに相対する第1および第2の側面5および6、ならびに長さ方向Lに相対する第1および第2の端面7および8を有している。ここで、高さ方向Hと幅方向Wと長さ方向Lとは互いに他のものに対して直交する。部品本体2の略直方体形状は、直方体の角や稜線が丸められた形状を含み、また、表面にわずかな凹凸が形成された形状をも含む。   The multilayer ceramic capacitor 1 includes a component body 2. The component main body 2 has a substantially rectangular parallelepiped shape having six surfaces, and first and second main surfaces 3 and 4 opposed to the height direction H, and first and second side surfaces 5 and 6 opposed to the width direction W. , And first and second end faces 7 and 8 facing in the length direction L. Here, the height direction H, the width direction W, and the length direction L are orthogonal to each other. The substantially rectangular parallelepiped shape of the component body 2 includes a shape in which corners and ridge lines of the rectangular parallelepiped are rounded, and also includes a shape in which slight irregularities are formed on the surface.

部品本体2は、複数の積層されたセラミック層9と、複数のセラミック層9間の特定の界面に沿って形成された複数の内部電極10および11とを備えている。   The component body 2 includes a plurality of laminated ceramic layers 9 and a plurality of internal electrodes 10 and 11 formed along a specific interface between the plurality of ceramic layers 9.

セラミック層9の各々は、たとえば、0.5μm〜4μmの平均厚みを有している。セラミック層9は、たとえば、チタン酸バリウム(BaTiO)、チタン酸カルシウム(CaTiO)、チタン酸ストロンチウム(SrTiO)、またはジルコン酸カルシウム(CaZrO)等を主成分とする誘電体セラミックからなる。セラミック層9は、また、上記主成分よりも含有量の少ない副成分として、Mn、Mg、Si、Co、Ni、または希土類元素等を含んでいてもよい。 Each ceramic layer 9 has an average thickness of 0.5 μm to 4 μm, for example. The ceramic layer 9 is made of, for example, a dielectric ceramic mainly composed of barium titanate (BaTiO 3 ), calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), or calcium zirconate (CaZrO 3 ). . The ceramic layer 9 may also contain Mn, Mg, Si, Co, Ni, a rare earth element, or the like as an auxiliary component having a smaller content than the main component.

内部電極10および11は、その端縁が部品本体2の端面7および8のいずれかに露出するように形成されるが、部品本体2の第1の端面7に露出する第1の内部電極10と第2の端面8に露出する第2の内部電極11とは、部品本体2の内部において、セラミック層3を介して静電容量を取得できるように高さ方向Hにおいて交互に配置されている。   The internal electrodes 10 and 11 are formed so that the edge of the internal electrodes 10 and 11 is exposed to one of the end surfaces 7 and 8 of the component body 2, but the first internal electrode 10 exposed to the first end surface 7 of the component body 2. And the second internal electrodes 11 exposed on the second end face 8 are alternately arranged in the height direction H so that the electrostatic capacity can be obtained through the ceramic layer 3 inside the component body 2. .

内部電極10および11は、高さ方向Hに平面視して、略矩形状である。内部電極10および11の各々は、たとえば、0.2μm〜2μmの平均厚みを有している。内部電極10および11は、たとえば、Ni、Cu、Ag、Pd、Ag−Pd合金、またはAu等の金属材料を含む。   The internal electrodes 10 and 11 have a substantially rectangular shape in plan view in the height direction H. Each of internal electrodes 10 and 11 has an average thickness of 0.2 μm to 2 μm, for example. The internal electrodes 10 and 11 include, for example, a metal material such as Ni, Cu, Ag, Pd, an Ag—Pd alloy, or Au.

上述した静電容量を取り出すため、部品本体2の相対向する第1および第2の端面7および8上には、それぞれ、第1の内部電極10に電気的に接続される第1の外部電極12、および第2の内部電極11に電気的に接続される第2の外部電極13が形成されている。外部電極12および13は、たとえば、Ni粉末およびセラミック粉末を含む導電性ペーストの焼付けによって形成されたものであり、後述するように、部品本体2と同時焼成により形成される。   In order to take out the capacitance described above, first external electrodes electrically connected to the first internal electrode 10 are respectively provided on the first and second end faces 7 and 8 facing each other of the component body 2. 12 and a second external electrode 13 electrically connected to the second internal electrode 11 are formed. The external electrodes 12 and 13 are formed, for example, by baking a conductive paste containing Ni powder and ceramic powder, and are formed by simultaneous firing with the component body 2 as described later.

なお、第1および第2の外部電極12および13は、それぞれ、部品本体2の第1および第2の端面7および8上だけでなく、端面7および8に隣接する主面3および4ならびに側面5および6の各一部にまで延びるように形成されている。言い換えると、外部電極12および13は、部品本体2の稜線を跨ぐ状態で形成されている。また、部品本体2の稜線を跨ぐ状態で形成される外部電極12および13は、当然のことながら、部品本体2の角を覆う状態となっている。   The first and second external electrodes 12 and 13 are not only on the first and second end surfaces 7 and 8 of the component main body 2 but also the main surfaces 3 and 4 and side surfaces adjacent to the end surfaces 7 and 8, respectively. 5 and 6 are formed so as to extend to each part. In other words, the external electrodes 12 and 13 are formed so as to straddle the ridge line of the component body 2. Further, the external electrodes 12 and 13 formed in a state straddling the ridge line of the component main body 2 naturally cover the corners of the component main body 2.

外部電極12および13上には、必要に応じて、めっき膜が形成される。めっき膜は、たとえば、Cuめっき膜から構成されたり、Cuめっき層、その上のNiめっき層およびその上のSnめっき層から構成されたりする。この積層セラミックコンデンサ1が、たとえば多層基板に埋め込まれる場合には、めっき膜としてはCuめっき膜のみとされ、表面実装部品として用いられる場合には、Cuめっき層、Niめっき層およびSnめっき層からなるめっき膜が適用される。   A plating film is formed on the external electrodes 12 and 13 as necessary. The plating film is composed of, for example, a Cu plating film, or a Cu plating layer, a Ni plating layer thereon, and a Sn plating layer thereon. When this multilayer ceramic capacitor 1 is embedded in, for example, a multilayer substrate, only the Cu plating film is used as the plating film, and when it is used as a surface mount component, the Cu plating layer, the Ni plating layer, and the Sn plating layer are used. A plating film is applied.

なお、上述したCuめっき膜またはCuめっき層は、2層構造とされてもよい。この場合、外部電極12および13を直接覆う第1のCuめっき層のCu粒子の平均粒径より、第1のCuめっき層を直接覆う第2のCuめっき層のCu粒子の平均粒径の方が小さくされる。また、第1および第2のCuめっき層の各々の平均厚みは、たとえば、1μm〜15μm程度とされる。   Note that the above-described Cu plating film or Cu plating layer may have a two-layer structure. In this case, the average particle diameter of the Cu particles of the second Cu plating layer directly covering the first Cu plating layer is larger than the average particle diameter of the Cu particles of the first Cu plating layer directly covering the external electrodes 12 and 13. Is reduced. The average thickness of each of the first and second Cu plating layers is, for example, about 1 μm to 15 μm.

積層セラミックコンデンサ1が小型化または薄型化される場合、以下のような寸法関係が満たされることが好ましい。すなわち、部品本体2の高さ方向Hの寸法をDH、幅方向Wの寸法をDWとしたとき、(1/5)DW≦DH≦(1/2)DW、または、DH<0.3mmが満たされることが好ましい。   When the multilayer ceramic capacitor 1 is reduced in size or thickness, it is preferable that the following dimensional relationship is satisfied. That is, when the dimension in the height direction H of the component body 2 is DH and the dimension in the width direction W is DW, (1/5) DW ≦ DH ≦ (1/2) DW or DH <0.3 mm. Preferably it is satisfied.

また、外部電極12および13の各々の長さ方向Lの寸法はできるだけ長い方が好ましい。これによって、表面実装される積層セラミックコンデンサ1が薄型であっても実装基板との固着力を増やすことができ、あるいは、多層基板に埋め込まれる積層セラミックコンデンサ1のビア接続が容易になる。   In addition, it is preferable that the length of each of the external electrodes 12 and 13 in the length direction L is as long as possible. As a result, even if the surface-mounted multilayer ceramic capacitor 1 is thin, the adhesion force to the mounting substrate can be increased, or via connection of the multilayer ceramic capacitor 1 embedded in the multilayer substrate is facilitated.

このような積層セラミックコンデンサ1を製造するため、次のような工程が実施される。   In order to manufacture such a multilayer ceramic capacitor 1, the following steps are performed.

セラミック原料粉末と有機物および溶媒等とが混合されたセラミックスラリーを、キャリアフィルム上に印刷、スプレーコーティング、ダイコーティング等によってシート状に成形して、セラミック層9となるべきセラミックグリーンシートを得る。得られたセラミックグリーンシートには、セラミック原料粉末、有機物、および残留溶媒が含まれている。上記有機物は、たとえば、ポリビニルブチラール系樹脂、フタル酸エステル系樹脂などのバインダとして機能するものである。   A ceramic slurry in which a ceramic raw material powder, an organic material, a solvent, and the like are mixed is formed on a carrier film by printing, spray coating, die coating, or the like to obtain a ceramic green sheet to be the ceramic layer 9. The obtained ceramic green sheet contains ceramic raw material powder, organic matter, and residual solvent. The organic substance functions as a binder such as a polyvinyl butyral resin or a phthalate resin.

次に、セラミックグリーンシートに、スクリーン印刷またはグラビア印刷等によって内部電極10および11となるべき導電膜を形成する。   Next, a conductive film to be the internal electrodes 10 and 11 is formed on the ceramic green sheet by screen printing or gravure printing.

次に、導電膜が形成されたセラミックグリーンシートを必要数積層するとともに、導電膜が形成されていないセラミックグリーンシートをその上下に適当数積層し、これらを剛体プレスまたは静水圧プレス等により積層方向にプレスし、積層ブロックを得る。   Next, the required number of ceramic green sheets with conductive films are stacked, and an appropriate number of ceramic green sheets without conductive films are stacked on the top and bottom, and these are stacked in a stacking direction by rigid press or isostatic pressing. To obtain a laminated block.

次に、積層ブロックを押し切りやダイシング等によりカットし、それによって、チップ状の複数の未焼成の部品本体2を得る。   Next, the laminated block is cut by pressing, dicing, or the like, thereby obtaining a plurality of chip-shaped unfired component bodies 2.

次に、この発明の特徴的構成である、有機物を除去する工程が実施される。具体的には、未焼成の部品本体2を加熱し、当該部品本体2の表面に露出する有機物を焼失させる。加熱温度は、後で実施される焼成工程において適用される最高温度より低い温度とされる。好ましくは、加熱温度は、有機物が焼失し始める温度であって、有機物を除去させるのに十分な温度である100℃以上、かつセラミックが焼結し過ぎない温度である900℃以下であることが好ましい。   Next, a step of removing organic substances, which is a characteristic configuration of the present invention, is performed. Specifically, the unfired component main body 2 is heated to burn off organic substances exposed on the surface of the component main body 2. The heating temperature is set to a temperature lower than the maximum temperature applied in the baking step to be performed later. Preferably, the heating temperature is a temperature at which the organic substance starts to be burned out, which is a temperature sufficient to remove the organic substance, which is 100 ° C. or higher, and a temperature at which the ceramic does not sinter too much, or 900 ° C. or lower. preferable.

図3は、未焼成の部品本体の表面を電界放出形走査電子顕微鏡(FE-SEM)にて撮影した図面代用写真であって、(A)は有機物を除去する前の状態を示し、(B)は有機物を除去した後の状態を示す。(A)と(B)とを比較したとき、有機物を除去した後の(B)では、表面の有機物(樹脂)が飛んで、セラミック粒子がより明瞭に現れ、表面がザラザラした状態となっていることがわかる。   FIG. 3 is a drawing-substituting photograph in which the surface of an unfired component main body is photographed with a field emission scanning electron microscope (FE-SEM), and (A) shows a state before organic substances are removed. ) Shows the state after removing organic matter. When (A) and (B) are compared, in (B) after removing the organic matter, the surface organic matter (resin) flies, the ceramic particles appear more clearly, and the surface becomes rough. I understand that.

次に、たとえば、溶液への浸漬やプラズマ処理などの方法を用いて、未焼成の部品本体2の表面にケイ素化合物またはフッ素化合物を物理吸着または化学吸着させる改質処理工程を実施することが好ましい。この改質処理により、次に実施される外部電極12および13となるべき導電性ペースト膜を形成する工程において、導電性ペースト膜の形状をより安定させることができる。   Next, it is preferable to carry out a modification treatment step in which a silicon compound or a fluorine compound is physically adsorbed or chemically adsorbed on the surface of the unfired component body 2 by using a method such as immersion in a solution or plasma treatment, for example. . By this modification treatment, the shape of the conductive paste film can be further stabilized in the step of forming the conductive paste film to be the next external electrodes 12 and 13.

次に、未焼成の部品本体2の表面上に、外部電極12および13となるべき導電性ペースト膜が、たとえば浸漬法によって形成される。ここで用いられる導電性ペーストとしては、有機溶媒にNi粉末とセラミック粉末とを添加した導電性ペーストが用いられる。   Next, a conductive paste film to be the external electrodes 12 and 13 is formed on the surface of the unfired component body 2 by, for example, a dipping method. As the conductive paste used here, a conductive paste in which Ni powder and ceramic powder are added to an organic solvent is used.

次に、導電性ペースト膜が形成された未焼成の部品本体2が焼成される。すなわち、未焼成の部品本体2と導電性ペースト膜とが同時に焼成される。これによって、外部電極12および13が形成された部品本体2が得られる。焼成温度は、セラミックが焼結するに十分な温度である1000℃以上かつ1500℃以下が好ましい。   Next, the unfired component body 2 on which the conductive paste film is formed is fired. That is, the unfired component body 2 and the conductive paste film are fired simultaneously. Thereby, the component main body 2 in which the external electrodes 12 and 13 are formed is obtained. The firing temperature is preferably 1000 ° C. or higher and 1500 ° C. or lower, which is a temperature sufficient for sintering the ceramic.

その後、必要に応じて、前述したように、外部電極12および13上に、Cuめっき膜、またはCuめっき層、Niめっき層およびSnめっき層からなるめっき膜が形成される。   Thereafter, as described above, a Cu plating film or a plating film made of a Cu plating layer, a Ni plating layer, and a Sn plating layer is formed on the external electrodes 12 and 13 as necessary.

以上のようにして、積層セラミックコンデンサ1が完成される。   The multilayer ceramic capacitor 1 is completed as described above.

前述した有機物を除去する工程による効果を確認するため、以下のような実験を実施した。   In order to confirm the effect of the above-described organic substance removing step, the following experiment was performed.

試料として、焼成後の長さ方向寸法×幅方向寸法×高さ方向寸法が1.0mm×0.6mm×0.25mmとなる積層セラミックコンデンサを選択した。   As a sample, a multilayer ceramic capacitor having a length direction dimension × width direction dimension × height direction dimension after firing of 1.0 mm × 0.6 mm × 0.25 mm was selected.

未焼成の部品本体の段階で、150℃で120分の熱処理を施した後に、外部電極となる導電性ペースト膜を形成し、導電性ペースト膜と部品本体とを同時に焼成して得られた積層セラミックコンデンサを実施例とした。他方、未焼成の部品本体の段階で、熱処理を施さず、外部電極となる導電性ペースト膜を形成し、導電性ペースト膜と部品本体とを同時に焼成して得られた積層セラミックコンデンサを比較例とした。   A laminate obtained by performing a heat treatment at 150 ° C. for 120 minutes at the stage of an unfired component body, then forming a conductive paste film to be an external electrode, and simultaneously firing the conductive paste film and the component body A ceramic capacitor was taken as an example. On the other hand, a comparative example of a multilayer ceramic capacitor obtained by forming a conductive paste film to be an external electrode without performing heat treatment at the stage of an unfired component body and firing the conductive paste film and the component body simultaneously It was.

得られた実施例に係る積層セラミックコンデンサ20個および比較例に係る積層セラミックコンデンサ20個について、部品本体の稜線部分での外部電極の途切れの有無をチェックしたところ、実施例では、20個の試料のすべてで外部電極の途切れが認められなかったのに対し、比較例では、20個の試料のすべてで外部電極の途切れが認められた。   When 20 multilayer ceramic capacitors according to the obtained example and 20 multilayer ceramic capacitors according to the comparative example were checked for discontinuity of the external electrode at the ridge line portion of the component body, 20 samples were obtained in the example. In all of the samples, no disconnection of the external electrode was observed, whereas in the comparative example, the disconnection of the external electrode was observed in all 20 samples.

以下、他の実施形態について説明する。   Hereinafter, other embodiments will be described.

まず、有機物を除去するため、上述した加熱に代えて、未焼成の部品本体2を化学的エッチングまたは物理的エッチングするようにしてもよい。化学的エッチングには、有機物を溶解させる溶液やOラジカルを利用したプラズマ洗浄などがある。プラズマ洗浄(Oラジカル処理)では、未焼成の部品本体2の表面のCとOとが反応し、Cが取り除かれる。物理的エッチング(プラズマ処理)では、たとえば、Arイオンを未焼成の部品本体2の表面にぶつけて、エッチングするプラズマ洗浄(Arエッチング処理)が適用される。 First, in order to remove organic substances, the unfired component body 2 may be subjected to chemical etching or physical etching instead of the above-described heating. Chemical etching includes a solution for dissolving organic substances and plasma cleaning using O 2 radicals. In plasma cleaning (O 2 radical treatment), C and O on the surface of the unfired component body 2 react to remove C. In the physical etching (plasma treatment), for example, plasma cleaning (Ar etching treatment) is performed in which Ar ions are hit against the surface of the unfired component body 2 and etched.

また、前述した製造方法では、積層ブロックをカットして、複数の未焼成の部品本体2を得た後に、未焼成の部品本体2の表面に露出する有機物を除去する工程が実施されたが、積層ブロックをカットする工程の前に、積層ブロックの状態で、未焼成の部品本体2の表面に露出する有機物を除去する工程が実施されてもよい。この工程順に従えば、有機物を除去する工程を能率的に進めることができる。   In the manufacturing method described above, the step of removing the organic substances exposed on the surface of the unfired component body 2 was performed after the laminated block was cut to obtain a plurality of unfired component bodies 2. Before the step of cutting the laminated block, a step of removing organic substances exposed on the surface of the unfired component body 2 may be performed in the state of the laminated block. If this process order is followed, the process of removing an organic substance can be advanced efficiently.

なお、上記の工程順を採用すると、積層ブロックをカットして得られた未焼成の部品本体2において、主面3および4のみについて、有機物が除去され、カット面に相当する端面7および8ならびに側面5および6については、有機物が除去されていない。このことから、主面3および4においてのみ、有機物が除去されていれば、この発明の効果を十分に期待できると理解すべきである。   In addition, when the above-described process order is adopted, in the unfired component body 2 obtained by cutting the laminated block, the organic matter is removed from only the main surfaces 3 and 4, and the end surfaces 7 and 8 corresponding to the cut surface and For the side surfaces 5 and 6, the organic matter is not removed. From this, it should be understood that the effects of the present invention can be sufficiently expected if the organic substances are removed only on the main surfaces 3 and 4.

前述した化学的エッチングまたは物理的エッチングは、特に、複数の未焼成の部品本体2を取り出すことができる積層ブロックに対して有利に適用される。なぜなら、積層ブロックに対して加熱工程が実施されると、積層ブロックが不所望にも反ることがあるためである。   The above-described chemical etching or physical etching is advantageously applied particularly to a laminated block from which a plurality of unfired component bodies 2 can be taken out. This is because when the heating step is performed on the laminated block, the laminated block may be undesirably warped.

この発明が適用され得る積層セラミックコンデンサは、図1および図2に示した積層セラミックコンデンサ1のような設計のものに限られない。たとえば、図4に示した積層セラミックコンデンサ21や、図5に示した積層セラミックコンデンサ31に対しても、この発明を適用することができる。なお、図4および図5において、図1に示す要素に相当する要素には同様の参照符号を付し、重複する説明を省略する。   The multilayer ceramic capacitor to which the present invention can be applied is not limited to the one such as the multilayer ceramic capacitor 1 shown in FIGS. For example, the present invention can be applied to the multilayer ceramic capacitor 21 shown in FIG. 4 and the multilayer ceramic capacitor 31 shown in FIG. 4 and 5, elements corresponding to those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図4に示した積層セラミックコンデンサ21は、部品本体2の長さ方向Lの中間位置に形成された第3の外部電極22および23をさらに備え、3端子タイプのコンデンサを構成していることを特徴としている。このような積層セラミックコンデンサ21を製造するにあたっても、未焼成の部品本体2の表面に露出する有機物を除去する工程の後に、外部電極12、13、22および23とそれぞれなるべき導電性ペースト膜が形成され、これら導電性ペースト膜と部品本体2とが同時に焼成される。   The multilayer ceramic capacitor 21 shown in FIG. 4 further includes third external electrodes 22 and 23 formed at an intermediate position in the length direction L of the component body 2, and constitutes a three-terminal type capacitor. It is a feature. In manufacturing such a multilayer ceramic capacitor 21, the conductive paste film to be the external electrodes 12, 13, 22, and 23 is formed after the step of removing organic substances exposed on the surface of the unfired component body 2. The conductive paste film and the component body 2 are fired at the same time.

第3の外部電極22および23は、それぞれ、第1および第2の側面5および6上から第1および第2の主面3および4の各一部上にまで延びるように形成されている。すなわち、部品本体2が未焼成の段階では、第3の外部電極22および23となるべき導電性ペースト膜は、第1および第2の側面5および6の各々と第1および第2の主面3および4の各々とが交差する稜線を跨ぐ状態で形成される。そして、前述した有機物を除去する工程が実施されることにより、第3の外部電極22および23についても、部品本体2の上記稜線上での導電性ペースト膜の厚みを所定以上に維持することができ、そのため、途切れを生じにくくすることができる。   Third external electrodes 22 and 23 are formed so as to extend from above first and second side surfaces 5 and 6 to a part of each of first and second main surfaces 3 and 4. That is, at the stage where the component body 2 is not fired, the conductive paste films to be the third external electrodes 22 and 23 are the first and second main surfaces and the first and second side surfaces 5 and 6, respectively. It is formed in a state straddling the ridgeline where each of 3 and 4 intersects. And by carrying out the step of removing the organic matter described above, the thickness of the conductive paste film on the ridgeline of the component body 2 can be maintained at a predetermined level or more for the third external electrodes 22 and 23 as well. Therefore, it is possible to make it difficult to generate interruptions.

なお、第3の外部電極22および23が、図4において二点鎖線で示すように、部品本体2の側面5および6ならびに主面3および4を周回するように配置されている場合にも、その製造工程の途中で未焼成の部品本体の表面に露出する有機物を除去する工程を実施すれば、同様の効果が奏される。   Even when the third external electrodes 22 and 23 are arranged so as to go around the side surfaces 5 and 6 and the main surfaces 3 and 4 of the component main body 2 as shown by a two-dot chain line in FIG. If a step of removing organic substances exposed on the surface of the unfired component main body is performed during the manufacturing process, the same effect can be obtained.

図5に示した積層セラミックコンデンサ31は、部品本体2の第1の主面3上に、各々アイランド状の第1および第2の外部電極32および33を形成している。すなわち、ここでは、外部電極32および33となるべき導電性ペースト膜は、2つの面が交差する稜線を跨ぐ状態で形成されていない。このような場合にも、前述した有機物を除去する工程が実施されることにより、第1および第2の外部電極32および33となるべき導電性ペースト膜の厚みを均一に所定以上に維持することができる。そのため、外部電極32および33の形状のばらつきを低減することができ、良好な再現性をもって外部電極32および33を形成することができる。   The multilayer ceramic capacitor 31 shown in FIG. 5 has island-shaped first and second external electrodes 32 and 33 formed on the first main surface 3 of the component body 2. That is, here, the conductive paste film to be the external electrodes 32 and 33 is not formed so as to straddle the ridge line where the two surfaces intersect. Even in such a case, the thickness of the conductive paste film to be the first and second external electrodes 32 and 33 is uniformly maintained at a predetermined value or more by performing the above-described step of removing the organic matter. Can do. Therefore, variation in the shape of the external electrodes 32 and 33 can be reduced, and the external electrodes 32 and 33 can be formed with good reproducibility.

なお、上述の第1および第2の外部電極32および33は、それぞれ、図示しない第1および第2の内部電極とたとえばビア導体で接続される。   The first and second external electrodes 32 and 33 described above are connected to first and second internal electrodes (not shown), for example, by via conductors.

以上、この発明を図示した実施形態に基づき説明したが、この明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。   As described above, the present invention has been described based on the illustrated embodiments. However, each embodiment described in this specification is an exemplification, and a partial replacement or combination of configurations is possible between different embodiments. I point out that there is.

1,21,31 積層セラミックコンデンサ
2 部品本体
3,4 主面
5,6 側面
7,8 端面
9 セラミック層
12,13,22,23,32,33 外部電極
1, 21, 31 Multilayer ceramic capacitor 2 Component body 3, 4 Main surface 5, 6 Side surface 7, 8 End surface 9 Ceramic layer 12, 13, 22, 23, 32, 33 External electrode

Claims (8)

セラミック原料および有機物を含む未焼成の部品本体を作製する工程と、
前記未焼成の部品本体の表面上に外部電極となるべき導電性ペースト膜を形成する工程と、
前記未焼成の部品本体および前記導電性ペースト膜を同時に焼成する工程と、
を備える、積層セラミックコンデンサの製造方法であって、
前記導電性ペースト膜を形成する工程の前に、前記未焼成の部品本体の表面に露出する前記有機物を除去する工程をさらに備える、積層セラミックコンデンサの製造方法。
Producing an unfired component body containing ceramic raw materials and organic matter;
Forming a conductive paste film to be an external electrode on the surface of the green component body;
Simultaneously firing the unfired component body and the conductive paste film;
A method for producing a multilayer ceramic capacitor comprising:
A method for producing a multilayer ceramic capacitor, further comprising a step of removing the organic matter exposed on the surface of the unfired component body before the step of forming the conductive paste film.
前記導電性ペースト膜を形成する工程は、前記部品本体の少なくとも2つの面が交差する稜線を跨ぐ状態で前記導電性ペースト膜を形成する工程を含む、請求項1または2に記載の積層セラミックコンデンサの製造方法。   The multilayer ceramic capacitor according to claim 1, wherein the step of forming the conductive paste film includes a step of forming the conductive paste film in a state of straddling a ridge line intersecting at least two surfaces of the component main body. Manufacturing method. 前記未焼成の部品本体を作製する工程は、
セラミック原料および有機物を含む未焼成のセラミック層が積層された積層ブロックを作製する工程と、
複数の前記未焼成の部品本体を得るため、前記積層ブロックをカットする工程と、
を備え、
前記有機物を除去する工程は、前記積層ブロックをカットする工程の前に、前記積層ブロックの状態で、前記未焼成の部品本体の表面に露出する前記有機物を除去する工程を含む、
請求項1または2に記載の積層セラミックコンデンサの製造方法。
The step of producing the unfired component main body includes:
Producing a laminated block in which an unfired ceramic layer containing a ceramic raw material and an organic material is laminated;
In order to obtain a plurality of unfired component bodies, a step of cutting the laminated block;
With
The step of removing the organic matter includes a step of removing the organic matter exposed on the surface of the unfired component main body in the state of the laminated block before the step of cutting the laminated block.
The manufacturing method of the multilayer ceramic capacitor of Claim 1 or 2.
前記有機物を除去する工程は、前記焼成する工程において適用される最高温度より低い温度で前記未焼成の部品本体を加熱する工程を含む、請求項1ないし3のいずれかに記載の積層セラミックコンデンサの製造方法。   4. The multilayer ceramic capacitor according to claim 1, wherein the step of removing the organic substance includes a step of heating the unfired component body at a temperature lower than a maximum temperature applied in the firing step. 5. Production method. 前記加熱する工程は、100℃以上かつ900℃以下の温度で加熱する工程を含む、請求項4に記載の積層セラミックコンデンサの製造方法。   The method for manufacturing a multilayer ceramic capacitor according to claim 4, wherein the heating step includes a step of heating at a temperature of 100 ° C. or more and 900 ° C. or less. 前記有機物を除去する工程は、前記未焼成の部品本体を化学的エッチングまたは物理的エッチングする工程を含む、請求項1ないし3のいずれかに記載の積層セラミックコンデンサの製造方法。   The method for producing a multilayer ceramic capacitor according to claim 1, wherein the step of removing the organic substance includes a step of chemically etching or physically etching the unfired component body. 前記外部電極となるべき導電性ペースト膜は、Ni粉末およびセラミック粉末を含む、請求項1ないし6のいずれかに記載の積層セラミックコンデンサの製造方法。   The method of manufacturing a multilayer ceramic capacitor according to claim 1, wherein the conductive paste film to be the external electrode includes Ni powder and ceramic powder. 前記有機物を除去する工程の後、前記導電性ペースト膜を形成する工程の前に、前記未焼成の部品本体の表面にケイ素化合物またはフッ素化合物を吸着させる改質処理工程をさらに備える、請求項1ないし7のいずれかに記載の積層セラミックコンデンサの製造方法。   The method further comprises a modification treatment step of adsorbing a silicon compound or a fluorine compound on the surface of the unfired component main body after the step of removing the organic matter and before the step of forming the conductive paste film. The manufacturing method of the multilayer ceramic capacitor in any one of thru | or 7.
JP2016049358A 2016-03-14 2016-03-14 Manufacturing method of multilayer ceramic capacitors Active JP6769055B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016049358A JP6769055B2 (en) 2016-03-14 2016-03-14 Manufacturing method of multilayer ceramic capacitors
CN201611059442.9A CN107195459B (en) 2016-03-14 2016-11-24 The manufacturing method of laminated ceramic capacitor
KR1020170018183A KR101896286B1 (en) 2016-03-14 2017-02-09 Method for manufacturing multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049358A JP6769055B2 (en) 2016-03-14 2016-03-14 Manufacturing method of multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JP2017168488A true JP2017168488A (en) 2017-09-21
JP6769055B2 JP6769055B2 (en) 2020-10-14

Family

ID=59871614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049358A Active JP6769055B2 (en) 2016-03-14 2016-03-14 Manufacturing method of multilayer ceramic capacitors

Country Status (3)

Country Link
JP (1) JP6769055B2 (en)
KR (1) KR101896286B1 (en)
CN (1) CN107195459B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200115303A (en) 2019-03-28 2020-10-07 가부시키가이샤 무라타 세이사쿠쇼 Multilayer Ceramic Capacitor and Method of Manufacturing Multilayer Ceramic Capacitor
US20210327649A1 (en) * 2020-04-20 2021-10-21 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US11315734B2 (en) 2019-03-28 2022-04-26 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
US11482378B2 (en) 2019-03-28 2022-10-25 Murata Manufacturing Co., Ltd. Three-terminal multilayer ceramic capacitor and method for manufacturing three-terminal multilayer ceramic capacitor
US11636982B2 (en) 2020-04-20 2023-04-25 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component including multilayer external electrodes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919232A (en) * 2017-10-27 2018-04-17 广东风华高新科技股份有限公司 A kind of small size electronic component and preparation method thereof
KR102436222B1 (en) * 2017-11-10 2022-08-25 삼성전기주식회사 Embedded multilayer ceramic electronic component, manufacturing method thereof and print circuit board having embedded multilayer ceramic electronic component
CN112185704B (en) * 2019-07-04 2023-02-17 三星电机株式会社 Multilayer ceramic capacitor
KR102333086B1 (en) 2019-08-19 2021-12-01 삼성전기주식회사 Multi-layered ceramic capacitor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253502A (en) * 1990-03-02 1991-11-12 Komatsu Ltd Degreasing method
JPH06116043A (en) * 1992-10-06 1994-04-26 Matsushita Electric Ind Co Ltd Production of ceramic substrate
JPH07297556A (en) * 1994-04-28 1995-11-10 Murata Mfg Co Ltd Manufacture of multilayer ceramic electronic part
JP2002260952A (en) * 2001-02-27 2002-09-13 Taiyo Yuden Co Ltd Manufacturing method of laminated ceramic electronic component
JP2002270459A (en) * 2001-03-06 2002-09-20 Taiyo Yuden Co Ltd Manufacturing method for laminated ceramic electronic component
JP2004079880A (en) * 2002-08-21 2004-03-11 Murata Mfg Co Ltd Method for manufacturing electronic component
JP2008186933A (en) * 2007-01-29 2008-08-14 Tdk Corp Method for manufacturing laminated electronic component
JP2010010457A (en) * 2008-06-27 2010-01-14 Tdk Corp Method of manufacturing chip component
JP2012004236A (en) * 2010-06-15 2012-01-05 Tdk Corp Ceramic electronic component and manufacturing method therefor
JP2013138108A (en) * 2011-12-28 2013-07-11 Murata Mfg Co Ltd Molded body defatting method and ceramic electronic component manufacturing method
JP2014197666A (en) * 2013-03-07 2014-10-16 株式会社村田製作所 Electronic component and manufacturing method therefor
JP2015053495A (en) * 2014-10-07 2015-03-19 株式会社村田製作所 Ceramic electronic component and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053647A1 (en) * 2006-10-31 2008-05-08 Ngk Insulators, Ltd. Method of honeycomb molding pretreatment for burning and system for honeycomb molding pretreatment for burning
JP5349807B2 (en) * 2008-01-29 2013-11-20 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP5382144B2 (en) * 2010-02-01 2014-01-08 株式会社村田製作所 Manufacturing method of electronic parts
JP5397553B2 (en) * 2010-11-24 2014-01-22 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
KR20120083725A (en) * 2011-01-18 2012-07-26 삼성전기주식회사 Manufacturing method of ceramic electronic components

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253502A (en) * 1990-03-02 1991-11-12 Komatsu Ltd Degreasing method
JPH06116043A (en) * 1992-10-06 1994-04-26 Matsushita Electric Ind Co Ltd Production of ceramic substrate
JPH07297556A (en) * 1994-04-28 1995-11-10 Murata Mfg Co Ltd Manufacture of multilayer ceramic electronic part
JP2002260952A (en) * 2001-02-27 2002-09-13 Taiyo Yuden Co Ltd Manufacturing method of laminated ceramic electronic component
JP2002270459A (en) * 2001-03-06 2002-09-20 Taiyo Yuden Co Ltd Manufacturing method for laminated ceramic electronic component
JP2004079880A (en) * 2002-08-21 2004-03-11 Murata Mfg Co Ltd Method for manufacturing electronic component
JP2008186933A (en) * 2007-01-29 2008-08-14 Tdk Corp Method for manufacturing laminated electronic component
JP2010010457A (en) * 2008-06-27 2010-01-14 Tdk Corp Method of manufacturing chip component
JP2012004236A (en) * 2010-06-15 2012-01-05 Tdk Corp Ceramic electronic component and manufacturing method therefor
JP2013138108A (en) * 2011-12-28 2013-07-11 Murata Mfg Co Ltd Molded body defatting method and ceramic electronic component manufacturing method
JP2014197666A (en) * 2013-03-07 2014-10-16 株式会社村田製作所 Electronic component and manufacturing method therefor
JP2015053495A (en) * 2014-10-07 2015-03-19 株式会社村田製作所 Ceramic electronic component and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200115303A (en) 2019-03-28 2020-10-07 가부시키가이샤 무라타 세이사쿠쇼 Multilayer Ceramic Capacitor and Method of Manufacturing Multilayer Ceramic Capacitor
US11315734B2 (en) 2019-03-28 2022-04-26 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
US11393626B2 (en) 2019-03-28 2022-07-19 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
US11482378B2 (en) 2019-03-28 2022-10-25 Murata Manufacturing Co., Ltd. Three-terminal multilayer ceramic capacitor and method for manufacturing three-terminal multilayer ceramic capacitor
US20210327649A1 (en) * 2020-04-20 2021-10-21 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US11557437B2 (en) * 2020-04-20 2023-01-17 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component including external electrode with multilayer structure
US11636982B2 (en) 2020-04-20 2023-04-25 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component including multilayer external electrodes

Also Published As

Publication number Publication date
CN107195459A (en) 2017-09-22
CN107195459B (en) 2019-09-27
KR101896286B1 (en) 2018-09-07
JP6769055B2 (en) 2020-10-14
KR20170106901A (en) 2017-09-22

Similar Documents

Publication Publication Date Title
JP6769055B2 (en) Manufacturing method of multilayer ceramic capacitors
TWI623000B (en) Laminated coil parts
JP5483498B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
US11875945B2 (en) Capacitor component including connection portion between external electrode and body
JP5825322B2 (en) Multilayer ceramic capacitor, method for manufacturing the same, and mounting substrate for multilayer ceramic capacitor
JP2015146454A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP6954519B2 (en) Multilayer ceramic capacitors
TWI781115B (en) Ceramic electronic part and its manufacturing method
JP6904309B2 (en) Electronic components and manufacturing methods for electronic components
JP6933881B2 (en) Manufacturing method of ceramic electronic components
JP2022116342A (en) Multilayer capacitor and method for manufacturing the same
JP2023015365A (en) Laminated ceramic capacitor and method for manufacturing the same
JP2017183468A (en) Multilayer ceramic electronic component, and manufacturing method for the same
JP2001044066A (en) Multilayer electronic component and manufacture thereof
JP2005159056A (en) Laminated ceramic electronic component
JP2005101317A (en) Ceramic electronic component and its manufacturing method
US7180155B2 (en) Method for manufacturing thin-film multilayer electronic component and thin-film multilayer electronic component
JP7215410B2 (en) Multilayer ceramic capacitor and method for manufacturing the same
JP2016048803A (en) Multilayer ceramic capacitor
JP2023118621A (en) Laminated ceramic capacitor and method for manufacturing laminated ceramic capacitor
JP2023079976A (en) Ceramic electronic component
JP2023098821A (en) Laminate-type electronic component
KR20130049362A (en) Manufacturing method of multilayer ceramic capacitor
CN114649145A (en) Electronic component and method of manufacturing electronic component
JP2021072325A (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200622

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6769055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150