JP2017161293A - Method for forming test piece reproducing ground material and method for evaluating permeability of ground material - Google Patents

Method for forming test piece reproducing ground material and method for evaluating permeability of ground material Download PDF

Info

Publication number
JP2017161293A
JP2017161293A JP2016044427A JP2016044427A JP2017161293A JP 2017161293 A JP2017161293 A JP 2017161293A JP 2016044427 A JP2016044427 A JP 2016044427A JP 2016044427 A JP2016044427 A JP 2016044427A JP 2017161293 A JP2017161293 A JP 2017161293A
Authority
JP
Japan
Prior art keywords
ground material
test
permeability
test piece
test body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016044427A
Other languages
Japanese (ja)
Other versions
JP6689629B2 (en
Inventor
裕介 平塚
Yusuke Hiratsuka
裕介 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2016044427A priority Critical patent/JP6689629B2/en
Publication of JP2017161293A publication Critical patent/JP2017161293A/en
Application granted granted Critical
Publication of JP6689629B2 publication Critical patent/JP6689629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the convenience in performing a permeability test on a ground material.SOLUTION: A test piece reproducing a ground material is formed by a 3D printer, and various types of permeability tests are performed using the test piece. If a clogging has occurred in the test piece due to salt water used for the permeability tests, the tests can be re-started using a new test piece. Also, forming the test piece of a transparent or semi-transparent material is preferable in that an inside fluid behavior can be seen.SELECTED DRAWING: Figure 1

Description

本発明は、岩石や、土(土粒子)などの地盤材の浸透性を評価するために行う、地盤材を再現した試験体の製造方法、および該試験体を用いた地盤材の浸透性評価方法に関する。   The present invention relates to a method for producing a test body that reproduces a ground material, and to evaluate the permeability of the ground material using the test body, in order to evaluate the permeability of ground materials such as rocks and soil (soil particles). Regarding the method.

岩石や、土(土粒子)などの地盤材について、水、塩水、CO2、ガスなどの浸透性についての評価試験を行う場合がある。
この試験方法の一例を、以下の非特許文献1に示す。
非特許文献1には、塩水飽和岩石にCO2を注入する際の岩石の浸透率や空隙率の評価を行う方法が開示されている。
In some cases, rocks and soil materials such as soil (soil particles) are evaluated for permeability of water, salt water, CO2, and gas.
An example of this test method is shown in Non-Patent Document 1 below.
Non-Patent Document 1 discloses a method for evaluating the permeability and porosity of rocks when CO2 is injected into salt water saturated rocks.

Experimental investigation into salt precipitation during CO2 injection in salineaquifers, Bacciら(2011)Experimental investigation into salt precipitation during CO2 injection in salineaquifers, Bacci et al. (2011)

しかし、上記方法では、以下の問題がある。
(1)同じ条件下で、何度も浸透性試験を実施することができない。
例えば、塩水の浸透性試験を行うと、析出した塩分が地盤材内で目詰まりを起こすため、次回以降の浸透性試験を同一条件下で行ったことにはならない。
(2)地盤材の内部で起きている現象の把握が難しい。
地盤材の内部を視認できないため、流体の挙動把握が推測の域に留まってしまう。
However, the above method has the following problems.
(1) The permeability test cannot be performed many times under the same conditions.
For example, when a salt water permeability test is performed, the deposited salt content is clogged in the ground material, and therefore the next and subsequent permeability tests are not performed under the same conditions.
(2) It is difficult to grasp the phenomenon occurring inside the ground material.
Since the inside of the ground material cannot be visually recognized, the behavioral understanding of the fluid remains within the range of estimation.

本発明は、地盤材の浸透性試験を行う際の利便性を向上することが可能な手段の提供を目的とする。   An object of this invention is to provide the means which can improve the convenience at the time of performing the permeability test of a ground material.

上記課題を解決すべくなされた本願発明は、地盤材を再現した試験体の製造方法であって、(a1)前記地盤材をX線CT装置でスキャンして得た3Dモデルデータ、または前記地盤材の空隙構造を模擬するように作成した3Dモデルデータ、を用意する工程と、(a2)前記3Dモデルデータを用い、3Dプリンタで試験体を製作する工程と、を少なくとも含むことを特徴とする。
また、本願の第2発明は、前記第1発明において、前記試験体を透明または半透明を呈する素材で製作することを特徴とする。
また、本願の第3発明は、地盤材の浸透性を評価するための方法であって、(a)前記第1発明または第2発明に記載の方法でもって、試験体を製作する工程と、(b)前記試験体を用いて、流体浸透実験を行う工程と、を少なくとも含むことを特徴とする。
また、本願の第4発明は、地盤材の浸透性を評価するための方法であって、(a)前記請求項1または2に記載の方法でもって、複数の試験体を製作する工程と、(b)前記地盤材および複数の試験体のうち何れか1つを用いて、それぞれ流体浸透実験を行う工程と、(c)両者の実験結果から、前記試験体に対する補正係数を求める工程と、(d)残る試験体に対して行った流体浸透試験結果に前記補正係数を適用する工程と、を少なくとも含むことを特徴とする。
The present invention to solve the above-mentioned problems is a method of manufacturing a test body reproducing a ground material, (a1) 3D model data obtained by scanning the ground material with an X-ray CT apparatus, or the ground A step of preparing 3D model data created so as to simulate the void structure of the material, and (a2) a step of producing a test body with a 3D printer using the 3D model data. .
The second invention of the present application is characterized in that, in the first invention, the test body is made of a material that is transparent or translucent.
Further, the third invention of the present application is a method for evaluating the permeability of the ground material, and (a) a step of producing a test body by the method described in the first invention or the second invention, (B) performing at least a fluid permeation experiment using the test body.
The fourth invention of the present application is a method for evaluating the permeability of the ground material, and (a) a step of producing a plurality of test bodies by the method according to claim 1 or 2, (B) a step of performing a fluid permeation experiment using any one of the ground material and a plurality of test bodies, and (c) a step of obtaining a correction coefficient for the test body from both experimental results; (D) including at least a step of applying the correction coefficient to the result of the fluid penetration test performed on the remaining specimen.

本発明によれば、以下に記載する効果を得ることができる。
(1)同じ状態の試験体で、何度も浸透性試験を実施することができる。
試験対象となる地盤材を再現した試験体を複製可能とすることにより、同じ試験体に対し、条件の異なる浸透性試験を何度でも実施することができ、多くの試験データを収集することができる。
(2)試験対象の地盤材の内部で起きている現象を把握することができる。
試験体を、透明または半透明の素材で製作することにより、試験体の内部における流体の挙動を視認によって把握することができる。
According to the present invention, the following effects can be obtained.
(1) The permeability test can be performed many times with the test specimen in the same state.
By making it possible to replicate a test specimen that reproduces the ground material to be tested, it is possible to conduct many different permeability tests on the same test specimen and collect a large amount of test data. it can.
(2) A phenomenon occurring inside the ground material to be tested can be grasped.
By manufacturing the test body with a transparent or translucent material, the behavior of the fluid inside the test body can be grasped visually.

本発明に係る方法の概略を示すイメージ図。The image figure which shows the outline of the method which concerns on this invention. 3Dモデルデータの生成イメージ図。FIG. 3 is a diagram illustrating generation of 3D model data.

以下、図面を参照しながら、本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<1>全体構成
図1は、本発明に係る方法の概略を示すイメージ図である。
地盤材Aを再現した試験体Bを製造する方法では、X線CT装置10または情報処理装置20と、3Dプリンタ30とを少なくとも使用する。
<1> Overall Configuration FIG. 1 is an image diagram showing an outline of a method according to the present invention.
In the method of manufacturing the test body B that reproduces the ground material A, at least the X-ray CT apparatus 10 or the information processing apparatus 20 and the 3D printer 30 are used.

<2>X線CT装置
X線CT装置10は、試験対象である地盤材Aから、該地盤材Aの3Dモデルデータを得るための装置である。
X線CT装置10は、X線の照射装置と、X線の検出器とを対向させて配置し、その間に設置した地盤材の周りを360度スキャンして、試験対象の3Dモデルデータを生成することができる。
X線撮影装置によって得る撮影画像の解像度は、測定対象の地盤材によって異なるが、概ねμm程度の解像度があれば足りる。
これは、マイクロスケールより微細なスケールで特定される微小な空隙は、透水性に与える影響は小さいと評価できるためである。
<2> X-ray CT apparatus The X-ray CT apparatus 10 is an apparatus for obtaining 3D model data of the ground material A from the ground material A to be tested.
The X-ray CT apparatus 10 arranges an X-ray irradiation device and an X-ray detector facing each other, scans around the ground material installed between them, and generates 3D model data of the test object can do.
The resolution of the captured image obtained by the X-ray imaging apparatus differs depending on the ground material to be measured, but a resolution of about μm is sufficient.
This is because it can be evaluated that a minute gap specified by a finer scale than a microscale has a small effect on water permeability.

<2.1>撮影画像の生成イメージ
図2は、X線撮影装置で撮影した撮影画像の情報処理を行う際のイメージ図である。
X線CT装置10によって撮影された各断面の画像(CT画像)では、基質はより白い方向へ、空隙はより黒い方向に表示される。このCT画像に対し、予め設定してある閾値を用いて、基質と空隙とに二値化した二値化画像を生成する。
なお、地盤材に土粒子が含まれている場合、この土粒子自体に含まれる空隙は、流体の移動に対して寄与が少ないため、無視することができる。
<2.1> Generation Image of Captured Image FIG. 2 is an image diagram when information processing of a captured image captured by the X-ray imaging apparatus is performed.
In each cross-sectional image (CT image) taken by the X-ray CT apparatus 10, the substrate is displayed in a whiter direction and the gap is displayed in a blacker direction. A binarized image binarized into a substrate and a gap is generated for this CT image using a preset threshold value.
In addition, when soil particles are included in the ground material, voids included in the soil particles themselves can be ignored because they contribute little to fluid movement.

<3>情報処理装置
情報処理装置20は、試験対象である地盤材Aを人為的に模擬した3Dモデルデータを作成するための装置である。
情報処理装置20は、3Dプリンタが読込可能な3Dモデルデータを作成可能なCADソフトを、PCにインストールして構成することができる。
情報処理装置による3Dモデルデータの作成は、実際の地盤材Aが存在せず、仮想上の地盤材Aを再現したい場合に有効である。
<3> Information Processing Device The information processing device 20 is a device for creating 3D model data that artificially simulates the ground material A that is a test target.
The information processing apparatus 20 can be configured by installing CAD software capable of creating 3D model data that can be read by a 3D printer on a PC.
The creation of 3D model data by the information processing apparatus is effective when there is no actual ground material A and it is desired to reproduce the virtual ground material A.

<4>3Dプリンタ
3Dプリンタ30は、前記3Dモデルデータに基づいて立体造形した試験体を製作するための装置である。
3Dプリンタ30を用いることで、試験体Bは任意の数だけ複製が可能となる。
<4> 3D Printer The 3D printer 30 is an apparatus for producing a three-dimensionally modeled test body based on the 3D model data.
By using the 3D printer 30, the specimen B can be copied in an arbitrary number.

<4.1>3Dプリンタの選定基準
3Dプリンタ30は公知の装置を用いることができるが、その選定方法として、3Dプリンタ30の造形解像度に着目した方法がある。
3Dプリンタ30の造形解像度が粗すぎると、地盤材Aの再現性が低下する恐れが考えられる。
そこで、地盤材Aの粒径や空隙径を基準に、適した造形解像度を設定する方法が考えられる。
経験式と知られている、Hazenの透水係数推定式は以下の通りである。
K=C(d10 または K=C‘(φ10
K:浸透率
10:通過質量百分率10%の粒径
φ10:全空隙体積の10%の空隙径
C:比例定数
<4.1> Selection Criteria for 3D Printer Although a known apparatus can be used for the 3D printer 30, there is a method that focuses on the modeling resolution of the 3D printer 30 as a selection method.
If the modeling resolution of the 3D printer 30 is too coarse, the reproducibility of the ground material A may be reduced.
Then, the method of setting the suitable modeling resolution on the basis of the particle size and the space | gap diameter of the ground material A can be considered.
Hazen's permeability coefficient estimation formula, which is known as an empirical formula, is as follows.
K = C (d 10 ) 2 or K = C ′ (φ 10 ) 2
K: Permeation rate d 10 : Particle size with a passing mass percentage of 10% φ 10 : Pore diameter of 10% of the total void volume C: Proportional constant

このd10またはφ10よりも値の小さい(造形解像度が細かい)3Dプリンタを用いれば、実質上、地盤材Aを忠実に再現した試験体Bを製作することができる。 With this smaller than d 10 or phi 10 (fine molding resolution) 3D printer, it is possible to manufacture a substantially, faithfully reproducing the test body B the soil material A.

<4.2>使用する材料
3Dプリンタ30によって製作する試験体Bの材料には、UV硬化性のアクリル系樹脂、その他のアクリル系樹脂、エポキシ樹脂、ゴムライク樹脂、ナイロン樹脂、石膏パウダー、PLA樹脂(トウモロコシ、イモ類の植物由来)等を用いることができる。
<4.2> Materials to be used Materials of the test body B manufactured by the 3D printer 30 include UV curable acrylic resins, other acrylic resins, epoxy resins, rubber-like resins, nylon resins, gypsum powder, PLA resins. (From corn and potato plants) can be used.

このとき、試験体Bを透明または半透明状を呈する素材で構成すると、浸透性試験の際の水や塩水、油などの流体が、試験体Bの内部でどのように挙動しているのかを視認することができる。
また、流体が無色に近い場合には、挙動が視認しやすいように着色を施しておいても良い。
At this time, if the specimen B is made of a transparent or translucent material, how the fluid such as water, salt water, and oil in the permeability test behaves inside the specimen B. It can be visually recognized.
In addition, when the fluid is nearly colorless, it may be colored so that the behavior is easily visible.

<5>使用例1
本発明に係る試験体の製造方法および、該方法によって得られる試験体を用いた浸透性評価方法の手順の一例について説明する。
<5> Usage example 1
An example of the procedure of the method for producing a test body according to the present invention and the permeability evaluation method using the test body obtained by the method will be described.

(1)3Dモデルデータの取得
浸透性試験の試験対象である地盤材Aの3Dモデルデータを取得する。
この3Dモデルデータの取得は、X線CT装置10によるスキャニングによるもの、または地盤材Aを模擬して情報処理装置20のCADソフト上で作成されたもの、が含まれる。
(1) Acquisition of 3D model data 3D model data of the ground material A which is a test target of the permeability test is acquired.
This acquisition of 3D model data includes scanning by the X-ray CT apparatus 10 or that created on the CAD software of the information processing apparatus 20 by simulating the ground material A.

(2)試験体の製作
前記3Dモデルデータに基づいて、必要な数だけ試験体Bを製作する。
(2) Manufacture of Specimen Based on the 3D model data, the required number of specimens B are manufactured.

(3)各種の浸透性試験の実施
完成した複数の試験体Bを用いて、それぞれ浸透性試験を実施する。
全ての試験体Bは同一形状のものであるため、一つの試験体Bを用いて複数回浸透性試験を繰り返す方法と比較して、試験結果の信頼性が高くなることは、言うまでもない。
また、試験体Bを透明または半透明状を呈するようにしておけば、浸透性試験の際に、試験体Bを流れる流体の挙動を容易に視認することができる。
(3) Implementation of various permeability tests Using each of the completed specimens B, the permeability test is performed.
Since all the test bodies B have the same shape, it is needless to say that the reliability of the test results is higher than the method of repeating the permeability test multiple times using one test body B.
Further, if the test body B is made transparent or translucent, the behavior of the fluid flowing through the test body B can be easily visually confirmed during the permeability test.

<6>使用例2
次に、本発明に係る方法の手順のその他の例について説明する。
地盤材Aの密度構造が微細な場合には、3Dプリンタ30の現状の造形解像度では、忠実な再現が難しい場合も考えられる。
この場合には、オリジナルである地盤材Aと、複製である試験体Bの両方について同一の浸透性試験を行い、その試験結果から補正係数を算出することが望ましい。
次回以降の試験では、試験体Bで得られた試験結果に前記補正係数を組み合わせた結果を最終的な試験結果とすれば良い。
<6> Use example 2
Next, another example of the procedure of the method according to the present invention will be described.
When the density structure of the ground material A is fine, it may be difficult to faithfully reproduce with the current modeling resolution of the 3D printer 30.
In this case, it is desirable to perform the same permeability test on both the original ground material A and the replica test body B, and calculate the correction coefficient from the test result.
In the test after the next time, the result obtained by combining the correction coefficient with the test result obtained with the specimen B may be used as the final test result.

また、この補正係数は、同一地盤内の他所から得られた試験体Bにも適用することができる。
調査範囲の各所から試料を採取する必要がある場合、先行した試験体を製作して補正係数を求めておくことにより、全体の調査を容易に行うことができる。
The correction coefficient can also be applied to the test body B obtained from other places in the same ground.
When it is necessary to collect samples from various locations in the survey range, the entire survey can be easily performed by preparing a preceding specimen and obtaining a correction coefficient.

10 X線CT装置
20 情報処理装置
30 3Dプリンタ
A 地盤材(オリジナル)
B 試験体(複製)
10 X-ray CT apparatus 20 Information processing apparatus 30 3D printer A Ground material (original)
B Test specimen (replication)

Claims (4)

地盤材を再現した試験体の製造方法であって、
(a1)前記地盤材をX線CT装置でスキャンして得た3Dモデルデータ、または前記地盤材の空隙構造を模擬するように作成した3Dモデルデータ、を用意する工程と、
(a2)前記3Dモデルデータを用い、3Dプリンタで試験体を製作する工程と、
を少なくとも含むことを特徴とする、
地盤材を再現した試験体の製造方法。
A method for producing a test body reproducing a ground material,
(A1) preparing 3D model data obtained by scanning the ground material with an X-ray CT apparatus, or 3D model data created so as to simulate the void structure of the ground material;
(A2) using the 3D model data, producing a test body with a 3D printer;
Including at least
A method of manufacturing a specimen that reproduces the ground material.
前記試験体を透明または半透明を呈する素材で製作することを特徴とする、請求項1に記載の地盤材を再現した試験体の製造方法。 The method of manufacturing a test body reproducing the ground material according to claim 1, wherein the test body is made of a transparent or semi-transparent material. 地盤材の浸透性を評価するための方法であって、
(a)前記請求項1または2に記載の方法でもって、試験体を製作する工程と、
(b)前記試験体を用いて、流体浸透実験を行う工程と、
を少なくとも含むことを特徴とする、
地盤材の浸透性評価方法。
A method for evaluating the permeability of a ground material,
(A) The method of claim 1 or 2, wherein a test body is manufactured;
(B) performing a fluid penetration experiment using the specimen;
Including at least
Method for evaluating the permeability of ground materials.
地盤材の浸透性を評価するための方法であって、
(a)前記請求項1または2に記載の方法でもって、複数の試験体を製作する工程と、
(b)前記地盤材、および複数の試験体のうち何れか1つを用いて、それぞれ流体浸透実験を行う工程と、
(c)両者の実験結果から、前記試験体に対する補正係数を求める工程と、
(d)残る試験体に対して行った流体浸透試験結果に前記補正係数を適用する工程と、
を少なくとも含むことを特徴とする、
地盤材の浸透性評価方法。
A method for evaluating the permeability of a ground material,
(A) A step of producing a plurality of test bodies by the method according to claim 1 or 2,
(B) a step of performing a fluid penetration experiment using any one of the ground material and the plurality of test bodies,
(C) obtaining a correction coefficient for the specimen from both experimental results;
(D) applying the correction coefficient to the result of the fluid penetration test performed on the remaining specimen;
Including at least
Method for evaluating the permeability of ground materials.
JP2016044427A 2016-03-08 2016-03-08 Permeability evaluation method of ground material using a test piece that reproduces ground material Active JP6689629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016044427A JP6689629B2 (en) 2016-03-08 2016-03-08 Permeability evaluation method of ground material using a test piece that reproduces ground material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044427A JP6689629B2 (en) 2016-03-08 2016-03-08 Permeability evaluation method of ground material using a test piece that reproduces ground material

Publications (2)

Publication Number Publication Date
JP2017161293A true JP2017161293A (en) 2017-09-14
JP6689629B2 JP6689629B2 (en) 2020-04-28

Family

ID=59856873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044427A Active JP6689629B2 (en) 2016-03-08 2016-03-08 Permeability evaluation method of ground material using a test piece that reproduces ground material

Country Status (1)

Country Link
JP (1) JP6689629B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414354A (en) * 2018-01-19 2018-08-17 石家庄铁道大学 Natural rock mass hard structural plane three-dimensionalreconstruction and anchorage experiment system and method
CN108593373A (en) * 2018-01-30 2018-09-28 上海理工大学 The method for preparing rock joint shear rheological test sample based on 3D printing technique
CN109211945A (en) * 2018-08-22 2019-01-15 东南大学 A method of based on DEM analysis asphalt mixture gap structure
CN110774406A (en) * 2019-10-10 2020-02-11 长安大学 Preparation method of permeable floor tile based on 3D printing
CN111761684A (en) * 2020-05-22 2020-10-13 中国科学院武汉岩土力学研究所 Layered soft rock preparation method based on 3DP sand core sand mold technology
CN112172139A (en) * 2020-09-25 2021-01-05 河北工业大学 Powder bonding 3D printing equipment and method for preparing complex geological model
CN112345334A (en) * 2020-11-30 2021-02-09 中南大学 Preparation method of rock sample containing anisotropic joints based on 3D printing
CN112857935A (en) * 2021-01-22 2021-05-28 上海大学 Preparation method of large-grade-difference heterogeneous nonmagnetic core

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414354A (en) * 2018-01-19 2018-08-17 石家庄铁道大学 Natural rock mass hard structural plane three-dimensionalreconstruction and anchorage experiment system and method
CN108414354B (en) * 2018-01-19 2020-06-30 石家庄铁道大学 Three-dimensional reconstruction and anchoring test system and method for natural rock mass hard structural plane
CN108593373A (en) * 2018-01-30 2018-09-28 上海理工大学 The method for preparing rock joint shear rheological test sample based on 3D printing technique
CN109211945A (en) * 2018-08-22 2019-01-15 东南大学 A method of based on DEM analysis asphalt mixture gap structure
CN109211945B (en) * 2018-08-22 2021-03-19 东南大学 Method for analyzing void structure of asphalt mixture based on discrete elements
CN110774406A (en) * 2019-10-10 2020-02-11 长安大学 Preparation method of permeable floor tile based on 3D printing
CN111761684A (en) * 2020-05-22 2020-10-13 中国科学院武汉岩土力学研究所 Layered soft rock preparation method based on 3DP sand core sand mold technology
CN111761684B (en) * 2020-05-22 2022-03-29 中国科学院武汉岩土力学研究所 Layered soft rock preparation method based on 3DP sand core sand mold technology
CN112172139A (en) * 2020-09-25 2021-01-05 河北工业大学 Powder bonding 3D printing equipment and method for preparing complex geological model
CN112345334A (en) * 2020-11-30 2021-02-09 中南大学 Preparation method of rock sample containing anisotropic joints based on 3D printing
CN112857935A (en) * 2021-01-22 2021-05-28 上海大学 Preparation method of large-grade-difference heterogeneous nonmagnetic core
CN112857935B (en) * 2021-01-22 2022-11-18 上海大学 Preparation method of large-grade-difference heterogeneous nonmagnetic core

Also Published As

Publication number Publication date
JP6689629B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6689629B2 (en) Permeability evaluation method of ground material using a test piece that reproduces ground material
Head et al. Effects of changes in rock microstructures on permeability: 3‐D printing investigation
Stanier et al. Improved image-based deformation measurement in the centrifuge environment
Kong et al. Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS
Vogel et al. The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment
CN107709699B (en) Generating three-dimensional micromodel of porous rock sample
Tatone et al. Characterization of the effect of normal load on the discontinuity morphology in direct shear specimens using X-ray micro-CT
Cı́slerová et al. CT derived porosity distribution and flow domains
Cuttler et al. Estimating the settling velocity of bioclastic sediment using common grain‐size analysis techniques
Zhang et al. GPU-accelerated 3D reconstruction of porous media using multiple-point statistics
Duan et al. A modified method of generating specimens for a 2D DEM centrifuge model
CN108819215A (en) Unconventional petrophysical model 3D printing method and apparatus in high precision
Peth Applications of microtomography in soils and sediments
Liu et al. Determining aggregate grain size using discrete-element models of sieve analysis
Kong et al. 3D printing for experiments in petrophysics, rock physics, and rock mechanics: a review
Dohnal et al. Tree‐dimensional numerical analysis of water flow affected by entrapped air: Application of noninvasive imaging techniques
Yang et al. Microcharacteristics of soil pores after raindrop action
Binner et al. Identification of descriptive parameters of the soil pore structure using experiments and CT data
Lifton The influence of scatter and beam hardening in X-ray computed tomography for dimensional metrology
CN103487304A (en) Method for manufacturing remodeled sample of soil-rock mixture
Kong et al. A comparison of three-dimensional–printed porous rocks with nano x-ray computed tomography: Silica sand, gypsum powder, and resin
US20170016861A1 (en) System and method for providing simulated ultrasound porosity waveforms
Van der Linden Influence of multiple thin soft layers on the cone resistance in intermediate soils
Almetwally et al. Development of novel workflow to replicate pore network of porous core samples through 3D printing technology
Bacher 3D-printing of undisturbed soil imaged by X-ray

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200408

R150 Certificate of patent or registration of utility model

Ref document number: 6689629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150