JP2017157271A - All-solid type secondary battery and method for manufacturing the same - Google Patents

All-solid type secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JP2017157271A
JP2017157271A JP2016036523A JP2016036523A JP2017157271A JP 2017157271 A JP2017157271 A JP 2017157271A JP 2016036523 A JP2016036523 A JP 2016036523A JP 2016036523 A JP2016036523 A JP 2016036523A JP 2017157271 A JP2017157271 A JP 2017157271A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
secondary battery
electrode current
temporary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016036523A
Other languages
Japanese (ja)
Other versions
JP6647077B2 (en
Inventor
健児 岡本
Kenji Okamoto
健児 岡本
英之 福井
Hideyuki Fukui
英之 福井
高野 靖
Yasushi Takano
靖 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2016036523A priority Critical patent/JP6647077B2/en
Priority to CN201780011523.8A priority patent/CN108701868B/en
Priority to PCT/JP2017/006977 priority patent/WO2017150354A1/en
Priority to US16/080,557 priority patent/US11101497B2/en
Priority to EP17759820.8A priority patent/EP3425719A4/en
Priority to KR1020187022222A priority patent/KR20180118619A/en
Publication of JP2017157271A publication Critical patent/JP2017157271A/en
Application granted granted Critical
Publication of JP6647077B2 publication Critical patent/JP6647077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an all-solid type secondary battery, by which the deformation of the battery per se, which would be caused in manufacturing can be prevented readily.SOLUTION: A method for manufacturing an all-solid type secondary battery comprises: a temporary battery body-forming step for putting and pressing a positive electrode mixture layer 2, an inorganic solid electrolyte layer 3 and a negative electrode mixture layer 4 in turn between a positive electrode current collector 1 and a negative electrode current collector 5, thereby forming each temporary battery body 7; a superposing step for superposing one of a pair of temporary battery bodies 7, 7 obtained in the temporary battery body-forming step on the other so that the positive electrode current collectors 1, 1 are opposed to each other; and a battery formation step for pressing the pair of temporary battery bodies 7, 7 superimposed on each other in the superposing step, thereby obtaining the all-solid type secondary battery 8. In the positive electrode current collectors 1, at least their surfaces put on each other are ones which have been subjected to a roughening treatment.SELECTED DRAWING: Figure 5

Description

本発明は、例えばリチウムイオン伝導性の固体電解質を用いた全固体二次電池およびその製造方法に関する。   The present invention relates to an all solid state secondary battery using, for example, a lithium ion conductive solid electrolyte and a method for manufacturing the same.

近年、安全な二次電池として、リチウムイオン伝導性の固体電解質を用いた全固体二次電池がある。この全固体二次電池は、正極活物質とリチウムイオン伝導性の固体電解質とからなる正極合材層、負極活物質とリチウムイオン伝導性の固体電解質とからなる負極合材層と、これら両電極合材層間に配置されるリチウムイオン伝導性の固体電解質層とから構成されている。勿論、正極合材層の表面には正極集電体が設けられるとともに、負極合材層の表面には負極集電体が設けられている。   In recent years, there is an all-solid secondary battery using a lithium ion conductive solid electrolyte as a safe secondary battery. The all solid state secondary battery includes a positive electrode mixture layer made of a positive electrode active material and a lithium ion conductive solid electrolyte, a negative electrode mixture layer made of a negative electrode active material and a lithium ion conductive solid electrolyte, and both electrodes. And a lithium ion conductive solid electrolyte layer disposed between the composite layers. Of course, the positive electrode current collector is provided on the surface of the positive electrode mixture layer, and the negative electrode current collector is provided on the surface of the negative electrode mixture layer.

この全固体二次電池を製造する場合、例えば、筒状の金型内に粉末状の正極合材を充填した後、粉末状の固体電解質を充填し、次に粉末状の負極合材を充填した後、プレスピンなどの押さえ具により、高圧力でもって押圧することにより製造されていた。   When manufacturing this all-solid-state secondary battery, for example, a powdered positive electrode mixture is filled in a cylindrical mold, then a powdered solid electrolyte is filled, and then a powdered negative electrode mixture is filled. Then, it was manufactured by pressing with a high pressure by a pressing tool such as a press pin.

ところで、上記の製造方法によると、高圧力でもってプレスが行われるため、電極合材層に内部応力が発生するとともに、押圧力を解放した際に、電極合材と金属製の電極集電体との延び率の相違に起因する摩擦力が電極合材層に作用することとなり、電池がその厚み方向で湾曲してしまう。   By the way, according to the above manufacturing method, since pressing is performed with high pressure, an internal stress is generated in the electrode mixture layer, and when the pressing force is released, the electrode mixture and the metal electrode current collector The frictional force resulting from the difference in elongation rate from the above acts on the electrode mixture layer, and the battery is curved in the thickness direction.

このような変形を防ぐ方法として、電極集電体の両面に、互いに対称に変形する電極合材層を配置して、電池自体が曲がらないようにしたものがある(例えば、特許文献1参照)。そして、この電池を例えば乾式により製造する場合には、電極集電体の両面に電極合材層が静電塗装などにより形成されていた。   As a method for preventing such deformation, there is an electrode mixture layer that is symmetrically deformed on both surfaces of an electrode current collector so that the battery itself does not bend (see, for example, Patent Document 1). . And when manufacturing this battery, for example with a dry type, the electrode compound-material layer was formed by electrostatic coating etc. on both surfaces of the electrode electrical power collector.

特許第5131686号公報Japanese Patent No. 5131686

上述した特許文献1の製造方法によると、電極集電体の両面に電極合材層を形成するのに、静電塗装が用いられており、実際に製造する場合には、一方の表面に電極合材を静電塗装した後、反転させて、他方の表面に電極合材を静電塗装することになるが、反転させて他方の表面に電極合材を静電塗装する際に、一方の表面に静電塗装された電極合材が落下する惧れがあり、またこのような事態を回避するために、電極集電体を鉛直にしてその両面に電極合材を静電塗装することも考えられるが、その作業が非常に難しくなるという問題がある。   According to the manufacturing method of Patent Document 1 described above, electrostatic coating is used to form the electrode mixture layer on both surfaces of the electrode current collector. When actually manufacturing, an electrode is formed on one surface. After the electrostatic mixture is electrostatically coated, it is inverted and the electrode mixture is electrostatically coated on the other surface. When the electrode mixture is electrostatically coated on the other surface, There is a risk that the electrode mixture coated electrostatically on the surface may fall, and in order to avoid such a situation, the electrode collector may be placed vertically and the electrode mixture may be coated electrostatically on both sides. It is possible, but there is a problem that the work becomes very difficult.

そこで、本発明は、製造時に生じる電池自体の変形を容易に防止し得る全固体二次電池およびその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an all solid state secondary battery that can easily prevent deformation of the battery itself that occurs during manufacturing, and a method for manufacturing the same.

上記課題を解決するため、本発明の全固体二次電池は、一対の板状の金属製電極集電体同士間で負極合材、固体電解質および正極合材が積層されてなる一対の仮電池体同士を、その同一極性の電極集電体同士が向き合うように重ねられたものであり、
且つ上記仮電池体の少なくとも重ねられる電極集電体として、表面が粗化されたものを用いたものである。
In order to solve the above problems, the all-solid-state secondary battery of the present invention is a pair of temporary batteries in which a negative electrode mixture, a solid electrolyte, and a positive electrode mixture are laminated between a pair of plate-shaped metal electrode current collectors. The bodies are stacked so that the electrode collectors of the same polarity face each other,
In addition, the electrode current collector on which at least the temporary battery body is stacked is one having a roughened surface.

また、本発明の全固体二次電池の製造方法は、一対の板状の金属製電極集電体同士間で負極合材、固体電解質および正極合材が積層されたものを、押圧して仮電池体を形成する仮電池体形成工程と、
この仮電池体形成工程にて形成され一対の仮電池体同士を、その同一極性の電極集電体同士が向き合うように重ねる重ね合わせ工程と、
この重ね合わせ工程にて重ね合わされた一対の仮電池体を押圧して全固体二次電池を得る電池形成工程とを具備するとともに、
上記仮電池体の少なくとも重ねられる電極集電体として、表面が粗化されたものを用いる方法である。
In addition, the method for producing an all-solid-state secondary battery according to the present invention temporarily presses a laminate of a negative electrode mixture, a solid electrolyte, and a positive electrode mixture between a pair of plate-shaped metal electrode current collectors. A temporary battery body forming step of forming a battery body;
A stacking step of stacking a pair of temporary battery bodies formed in this temporary battery body forming process so that electrode collectors of the same polarity face each other;
A battery forming step of pressing the pair of temporary battery bodies stacked in this overlapping step to obtain an all-solid secondary battery,
This is a method using a roughened surface as an electrode current collector overlaid at least on the temporary battery body.

上記全固体二次電池の製造方法によると、一対の仮電池体同士を、その同一電極集電体側を重ね合わせて押圧することにより全固体二次電池を得るようにしたので、同一極性の電極集電体の粗化された表面同士が噛み合うような状態となって変形が防止され、したがって変形の無い全固体二次電池を得ることができる。   According to the method for producing an all-solid secondary battery, an electrode of the same polarity is obtained because a pair of temporary battery bodies are pressed together with the same electrode current collector side being overlapped. The roughened surfaces of the current collector mesh with each other and deformation is prevented, so that an all-solid secondary battery without deformation can be obtained.

すなわち、電極集電体の両面に電極合材層を形成するのに、静電塗装を用いる場合に比べて、その製造方法が容易となる。
また、上記全固体二次電池によると、やはり、一対の仮電池体同士が粗化された表面を有する電極集電体を介して積層されているため、電極集電体同士が互いに噛み込んで接合した状態となり、変形の無い全固体二次電池が得られる。
That is, the manufacturing method becomes easier as compared with the case where electrostatic coating is used to form the electrode mixture layers on both surfaces of the electrode current collector.
In addition, according to the all solid state secondary battery, since the pair of temporary battery bodies are laminated via the electrode current collector having a roughened surface, the electrode current collectors are interdigitated. An all-solid-state secondary battery that is joined and has no deformation is obtained.

本発明の実施例に係る全固体二次電池の基本構成を示す断面図である。It is sectional drawing which shows the basic composition of the all-solid-state secondary battery which concerns on the Example of this invention. 同実施例に係る全固体二次電池における正極集電体の要部断面図である。It is principal part sectional drawing of the positive electrode electrical power collector in the all-solid-state secondary battery which concerns on the same Example. 同実施例に係る正極集電体の変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of the positive electrode electrical power collector which concerns on the Example. 同実施例に係る正極集電体の変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of the positive electrode electrical power collector which concerns on the Example. 同全固体二次電池の製造方法により得られた電池の断面図である。It is sectional drawing of the battery obtained by the manufacturing method of the all-solid-state secondary battery. 同実施例に係る全固体二次電池に作用する反力を説明する断面図である。It is sectional drawing explaining the reaction force which acts on the all-solid-state secondary battery which concerns on the Example. 同実施例に係る全固体二次電池に作用する反力を説明する断面図である。It is sectional drawing explaining the reaction force which acts on the all-solid-state secondary battery which concerns on the Example. 同実施例における仮電池体が変形した場合の断面図である。It is sectional drawing when the temporary battery body in the Example deform | transforms. 同全固体二次電池を具体化した断面図である。It is sectional drawing which actualized the all-solid-state secondary battery.

以下、本発明の実施例に係る全固体二次電池およびその製造方法を、図面に基づき説明する。
本実施例に係る全固体二次電池はリチウムイオン二次電池であって、その基本構成は、図1に示すように、薄い板状の金属製の正極集電体1と、この正極集電体1の上面に配置される正極合材層2と、この正極合材層2の上面に配置されるリチウムイオン伝導性の無機固体電解質層3と、この無機固体電解質層3の上面に配置される負極合材層4と、この負極合材層4の上面に配置される薄い板状の金属製の負極集電体5とから構成されたものである。この全固体二次電池は、その厚さが例えば100〜500μm程度の薄さであり、構成材料の延び率の相違により、中央部が湾曲し易いものである。なお、全体の形状としては、円形または正方形のもので、具体的な大きさとしては、30〜300mm程度とされる。なお、図1は全固体二次電池の基本構成を示す断面図であるが、正極集電体および負極集電体についてはハッチングを省略する(他の図面も同様とする)。
Hereinafter, an all solid state secondary battery and a method for manufacturing the same according to embodiments of the present invention will be described with reference to the drawings.
The all-solid-state secondary battery according to this example is a lithium ion secondary battery, and the basic configuration thereof is as shown in FIG. 1, a thin plate-like metal positive electrode current collector 1 and the positive electrode current collector. A positive electrode mixture layer 2 disposed on the upper surface of the body 1, a lithium ion conductive inorganic solid electrolyte layer 3 disposed on the upper surface of the positive electrode mixture layer 2, and an upper surface of the inorganic solid electrolyte layer 3. Negative electrode composite material layer 4 and a thin plate-like metal negative electrode current collector 5 disposed on the upper surface of the negative electrode composite material layer 4. This all-solid-state secondary battery has a thickness of, for example, about 100 to 500 μm, and its central portion is easily bent due to the difference in elongation rate of the constituent materials. The overall shape is circular or square, and the specific size is about 30 to 300 mm. 1 is a cross-sectional view showing the basic configuration of the all-solid-state secondary battery, but hatching is omitted for the positive electrode current collector and the negative electrode current collector (the same applies to other drawings).

そして、この実施例に係る全固体二次電池の特徴としては、図1に示した基本構成の電池を、正負極のいずれかの電極合材層同士が向き合うように、すなわち同一極性の電極集電体同士が接触するように、プレスなどにより圧密状態で積層されたものであり、具体的には、材料の延び率が小さい方の電極合材層、ここでは正極合材層2,2同士が、つまり正極集電体1,1同士が接触するように積層したものについて説明する。   As a feature of the all-solid-state secondary battery according to this embodiment, the battery having the basic configuration shown in FIG. 1 is arranged so that either of the positive and negative electrode mixture layers face each other, that is, an electrode assembly having the same polarity. It is laminated in a compacted state by pressing or the like so that the electrical conductors are in contact with each other. Specifically, the electrode mixture layer having the smaller material elongation rate, here, the positive electrode mixture layers 2 and 2. In other words, a description will be given of a laminate in which the positive electrode current collectors 1 and 1 are in contact with each other.

上記正極合材層2は、正極活物質にリチウムイオン伝導性の無機固体電解質が混合されたものである。正極活物質としては、例えば酸化物系のコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)などが用いられる。また無機固体電解質としては、例えば硫化物系のLiS(80mol%)−P(20mol%)が用いられる。これら正極活物質と無機固体電解質との混合比率は95対5〜30対70の範囲とされ、例えば70対30にされている。 The positive electrode mixture layer 2 is obtained by mixing a lithium ion conductive inorganic solid electrolyte with a positive electrode active material. Examples of the positive electrode active material include oxide-based lithium cobalt oxide (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMnO 2 ). As the inorganic solid electrolyte, for example, sulfide-based Li 2 S (80 mol%)-P 2 S 5 (20 mol%) is used. The mixing ratio of these positive electrode active materials and inorganic solid electrolyte is in the range of 95: 5 to 30:70, for example, 70:30.

上記負極合材層4は、負極活物質にリチウムイオン伝導性の無機固体電解質が混合されたものである。負極活物質としては、例えば天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などの炭素材料、シリコン、錫、リチウムなどが用いられ、また無機固体電解質としては、上記正極合材層2の場合と同様のLiS(80mol%)−P(20mol%)が用いられる。これら負極活物質と無機固体電解質との混合比率は95対5〜30対70の範囲とされ、例えば60対40にされている。 The negative electrode mixture layer 4 is a mixture of a negative electrode active material and a lithium ion conductive inorganic solid electrolyte. As the negative electrode active material, for example, carbon materials such as natural graphite, artificial graphite, graphite carbon fiber, resin-fired carbon, silicon, tin, lithium and the like are used, and as the inorganic solid electrolyte, the positive electrode mixture layer 2 is used. The same Li 2 S (80 mol%)-P 2 S 5 (20 mol%) is used. The mixing ratio of the negative electrode active material and the inorganic solid electrolyte is in the range of 95: 5 to 30:70, for example, 60:40.

上記無機固体電解質層3には、上述したように、硫化物系の無機固体電解質であるLiS−P(例えば、組成比が80対20のもの)が用いられ、また、1000MPaでの圧縮時の歪が40%以上となるものが用いられる。 As described above, the inorganic solid electrolyte layer 3 is made of a sulfide-based inorganic solid electrolyte, Li 2 S—P 2 S 5 (for example, having a composition ratio of 80:20), and 1000 MPa. Those having a distortion at the time of compression of 40% or more are used.

さらに、上記正極集電体1としては、例えば厚さ20μmのエッチドアルミニウム(表面電解処理アルミ箔ともいう)が用いられる。このエッチドアルミニウムは両面(両方の表面)に粗化処理が施されたもので、具体的には、図2に示すように、エッチングにより拡面処理が施されて多数のピット(細い穴)dが形成されたものである。なお、ピットdの代わりに、エッチドアルミニウムの粗化処理としては、図3に示すように、くぼみ型の穴eであってもよく、また図4に示すように、山谷状(鋭角状)の凹凸部fが形成されたものでもよい。また、正極集電体1の厚さは、例えば5〜40μmの範囲とされるのに対し、ピットd、穴e、凹凸部fなどの深さhは、4〜10μm(2〜20μmでもよい)の範囲とされる。以下、上述したような粗化処理が施された表面を纏めて凹凸部(凹凸形状とも言える)と称して説明する。   Furthermore, as the positive electrode current collector 1, for example, etched aluminum (also referred to as surface electrolytic treatment aluminum foil) having a thickness of 20 μm is used. This etched aluminum has been roughened on both surfaces (both surfaces). Specifically, as shown in FIG. 2, the surface is expanded by etching to form a large number of pits (thin holes). d is formed. The roughened treatment of etched aluminum instead of the pits d may be a hollow hole e as shown in FIG. 3, and as shown in FIG. The uneven part f may be formed. The thickness of the positive electrode current collector 1 is, for example, in the range of 5 to 40 μm, while the depth h of the pits d, the holes e, the uneven portions f, and the like is 4 to 10 μm (may be 2 to 20 μm). ). Hereinafter, the surface subjected to the roughening process as described above will be collectively referred to as an uneven portion (also referred to as an uneven shape).

また、上記負極集電体5としては、両面が粗化処理された、つまり凹凸部が形成された厚さ18μm程度の薄い板状の銅が用いられる。具体的には、負極集電体5の表面に銅粒子を析出させる粗化処理が施される。この板状の銅を表面電解処理銅箔とも言う。この場合の凹凸部の深さについても、4〜10μm(2〜20μmでもよい)の範囲とされる。   The negative electrode current collector 5 is made of a thin plate-like copper having a thickness of about 18 μm having a roughened surface on both sides, that is, with an uneven portion formed thereon. Specifically, a roughening treatment for depositing copper particles on the surface of the negative electrode current collector 5 is performed. This plate-like copper is also called a surface electrolytic treatment copper foil. The depth of the uneven portion in this case is also in the range of 4 to 10 μm (may be 2 to 20 μm).

そして、本発明に係る全固体二次電池は、図1に示す電池の基本構成を、正負極のいずれかの電極合材層同士が向き合うように、つまり、同一極性の電極集電体同士が接触するように、プレスなどにより圧密状態で積層したものである。ここでは、材料の延び率が負極合材よりも小さい正極合材、つまり正極集電体1,1同士が接触するように積層されたものについて、その製造方法とともに説明する。なお、ここでの全固体二次電池の各構成材料としては、その延び率が、アルミ箔および銅箔が用いられる電極集電体としての金属箔、正極合材、負極合材の順番で大きくなるようにされている。上記延び率は、電極合材の材料、その材料粒径、電極合材層の厚さなどに応じて変化するものである。   The all-solid-state secondary battery according to the present invention has the basic configuration of the battery shown in FIG. 1 so that either the positive or negative electrode mixture layers face each other, that is, the electrode collectors of the same polarity are It is laminated in a compacted state by a press or the like so as to come into contact. Here, a positive electrode mixture having a material elongation rate smaller than that of the negative electrode mixture, that is, a laminate in which the positive electrode current collectors 1 and 1 are in contact with each other will be described together with a manufacturing method thereof. In addition, as each constituent material of the all-solid-state secondary battery here, the elongation rate is large in the order of metal foil, positive electrode mixture, and negative electrode mixture as an electrode current collector in which aluminum foil and copper foil are used. It is supposed to be. The elongation rate varies depending on the material of the electrode mixture, the material particle size, the thickness of the electrode mixture layer, and the like.

以下、この全固体二次電池の製造方法について説明する。
まず、図1に示すように、正極集電体1の上面に粉末状の正極合材層2、粉末状のリチウムイオン伝導性の無機固体電解質層3、粉末状の負極合材層4および負極集電体5を配置(積層)して積層体6を得る。次に、この積層体6をプレスにより小さい力(例えば、0.1〜100MPaの力)で押圧(仮押圧)して仮電池体7(図5参照)を形成する(仮電池体形成工程)。この場合の押圧力は仮電池体7自身が変形しないような力とされているので、仮電池体7は略平坦な形状である。なお、この押圧により、粉末状の電極合材が電極集電体の凹凸部に噛み込んだ状態となる。
Hereinafter, the manufacturing method of this all-solid-state secondary battery is demonstrated.
First, as shown in FIG. 1, a powdered positive electrode mixture layer 2, a powdered lithium ion conductive inorganic solid electrolyte layer 3, a powdered negative electrode mixture layer 4, and a negative electrode on the upper surface of the positive electrode current collector 1. The current collector 5 is arranged (laminated) to obtain a laminated body 6. Next, the laminated body 6 is pressed (temporarily pressed) with a smaller force (for example, a force of 0.1 to 100 MPa) against the press to form the temporary battery body 7 (see FIG. 5) (temporary battery body forming step). . Since the pressing force in this case is a force that does not deform the temporary battery body 7 itself, the temporary battery body 7 has a substantially flat shape. By this pressing, the powdered electrode mixture is in a state of being bitten into the concavo-convex portion of the electrode current collector.

次に、図8に示すように、一対のすなわち2個の仮電池体7,7をそれぞれの正極集電体1,1同士が互いに接触するように重ね合わせる(重ね合わせ工程)。
そして、この状態で、さらに、所定の成型圧力(例えば、100MPa〜1000MPaの圧力)で押圧すれば、所定厚さの変形の無い平坦な全固体二次電池8が得られる(電池形成工程)。このとき、両正極集電体1,1同士が、それぞれの凹凸部により互いに接合(密着)した状態になっており、すなわち2個の正極集電体1,1同士が電気的に接続された状態となるので、この最小の基本電池構成は、2個の電池が並列に接続された状態の電池として構成される。そして、この最小の基本電池構成が複数個積層されて製品としての全固体二次電池が得られる。このように、基本電池構成を複数個積層する場合、対向する負極集電体5,5同士もそれぞれの表面の凹凸部により互いに接合した状態になっている。
Next, as shown in FIG. 8, a pair of, ie, two temporary battery bodies 7, 7 are overlaid so that the respective positive electrode current collectors 1, 1 are in contact with each other (overlaying step).
Then, in this state, further pressing with a predetermined molding pressure (for example, a pressure of 100 MPa to 1000 MPa) provides a flat all solid state secondary battery 8 having a predetermined thickness without deformation (battery forming step). At this time, both the positive electrode current collectors 1 and 1 are in a state of being joined (adhered) to each other by the respective uneven portions, that is, the two positive electrode current collectors 1 and 1 are electrically connected to each other. Therefore, this minimum basic battery configuration is configured as a battery in which two batteries are connected in parallel. A plurality of the minimum basic battery configurations are stacked to obtain an all-solid secondary battery as a product. As described above, when a plurality of basic battery configurations are stacked, the opposing negative electrode current collectors 5 and 5 are also joined to each other by the uneven portions on the respective surfaces.

ところで、上述の説明では、正極集電体1および負極集電体5の各両面(表裏面)に粗化処理を施したが、少なくとも、電極集電体同士が接触する表面に粗化処理が施されていればよい。したがって、電極集電体における電極合材との接触面および他の部材と接触しない表面には、粗化処理を施さなくてもよい。   By the way, in the above-mentioned explanation, although roughening processing was performed to each both surfaces (front and back) of positive electrode current collector 1 and negative electrode current collector 5, at least the surface where the electrode current collectors are in contact with each other is roughened. It only has to be applied. Therefore, it is not necessary to perform the roughening treatment on the contact surface of the electrode current collector with the electrode mixture and the surface not in contact with other members.

ここで、1個の積層体6を所定の成型圧力で押圧した場合の変形について説明しておく。
すなわち、図6に示すように、プレスにより積層体6を破線の状態から実線の状態に押圧すると、鉛直方向および水平方向の反力(内部応力)a,bが発生するとともに、プレス基台側からは摩擦力cを受けることになる。そして、押圧を解除すると、図7の破線の状態から実線の状態(仮電池体7)に示すように、膨張して鉛直方向の反力aおよび摩擦力cが無くなるため、水平方向の反力(横応力ともいう)bが残留応力として残ることになる。したがって、図8に示すように、仮電池体7は負極合材層4が外側に膨らむように、その断面において円弧状に変形する。すなわち、仮電池体7の中央は凸状に膨らむ湾曲部(凹状部)7aが形成されることになるが、上述したように、2個の仮電池体7,7を互いに重ね合わせて押圧した場合には、互いの湾曲部形状が対称であるとともにそれぞれの正極集電体1,1同士が密着されるため、全体として、変形するのが防止される。特に、図8に示すように、仮電池体7を単体で押圧した場合の変形量(湾曲量)δが電池の最大幅Lに対して、δ>0.06Lまたはδ>3mmを超える場合に効果がある。
Here, the deformation | transformation at the time of pressing the one laminated body 6 with a predetermined molding pressure is demonstrated.
That is, as shown in FIG. 6, when the laminated body 6 is pressed from a broken line state to a solid line state by pressing, reaction forces (internal stresses) a and b in the vertical direction and the horizontal direction are generated, and the press base side Will receive a frictional force c. Then, when the pressure is released, the vertical reaction force a and the frictional force c disappear as shown in the solid line state (provisional battery body 7) from the broken line state in FIG. B (also referred to as lateral stress) remains as residual stress. Therefore, as shown in FIG. 8, the temporary battery body 7 is deformed into an arc shape in its cross section so that the negative electrode mixture layer 4 swells outward. That is, a curved portion (concave portion) 7a that bulges in a convex shape is formed at the center of the temporary battery body 7, but, as described above, the two temporary battery bodies 7 and 7 are stacked and pressed together. In this case, the shapes of the curved portions are symmetrical and the positive electrode current collectors 1 and 1 are brought into close contact with each other, so that deformation as a whole is prevented. In particular, as shown in FIG. 8, when the amount of deformation (bending amount) δ when the temporary battery body 7 is pressed alone exceeds δ> 0.06 L or δ> 3 mm with respect to the maximum width L of the battery. effective.

このように、2個の仮電池体7,7を、互いに、同一極性の集電体、すなわち正極集電体1,1同士が向かい合うように重ねて押圧することにより、両仮電池体7,7に生じる変形が無くなるとともに、正極集電体1,1同士の表面の凹凸部を互いに喰い込んだ状態(噛み込んだ状態とも言える)にして両正極集電体1,1同士が離れるのを防止したので、押圧力を解除した際に、両側に膨らみの無い所定厚さの全固体二次電池8が得られる。   In this way, the two temporary battery bodies 7, 7 are pressed so that the current collectors of the same polarity, that is, the positive electrode current collectors 1, 1 face each other. 7 and the positive and negative current collectors 1 and 1 are separated from each other in a state in which the uneven portions on the surfaces of the positive electrode current collectors 1 and 1 are bitten into each other (also referred to as a biting state). Thus, when the pressing force is released, the all-solid-state secondary battery 8 having a predetermined thickness without swelling on both sides is obtained.

なお、上記全固体二次電池の製造方法を、工程形式にて説明すると、以下のようになる。
この製造方法は、一対の板状の金属製電極集電体同士間で負極合材、固体電解質および正極合材が積層されたものを、押圧して仮電池体を形成する仮電池体形成工程と、
この仮電池体形成工程にて形成され一対の仮電池体同士を、その同一極性の電極集電体同士が向き合うように重ねる重ね合わせ工程と、
この重ね合わせ工程にて重ね合わされた一対の仮電池体を押圧して全固体二次電池を得る電池形成工程とを具備するとともに、
上記仮電池体の少なくとも重ねられる電極集電体として、表面が粗化されたものを用いる方法である。
In addition, it will be as follows when the manufacturing method of the said all-solid-state secondary battery is demonstrated in a process format.
This manufacturing method is a temporary battery body forming step of forming a temporary battery body by pressing a laminate of a negative electrode mixture, a solid electrolyte, and a positive electrode mixture between a pair of plate-like metal electrode current collectors. When,
A stacking step of stacking a pair of temporary battery bodies formed in this temporary battery body forming process so that electrode collectors of the same polarity face each other;
A battery forming step of pressing the pair of temporary battery bodies stacked in this overlapping step to obtain an all-solid secondary battery,
This is a method using a roughened surface as an electrode current collector overlaid at least on the temporary battery body.

上記全固体二次電池およびその製造方法によると、以下のような効果が得られる。
すなわち、一対の仮電池体同士を、その同一極性の電極集電体側を重ね合わせて押圧することにより全固体二次電池を得るようにしたので、電極集電体の粗化表面同士が互いに噛み合うような状態となって変形が防止され、したがって変形の無い全固体二次電池を得ることができる。例えば、電極集電体の両面に電極合材層を形成するのに、静電塗装を用いる場合に比べて、その製造方法が容易となる。
According to the all-solid-state secondary battery and the manufacturing method thereof, the following effects can be obtained.
That is, since the all-solid-state secondary battery is obtained by pressing a pair of temporary battery bodies on the electrode current collector side of the same polarity, the roughened surfaces of the electrode current collector mesh with each other. In such a state, deformation is prevented, and therefore an all-solid secondary battery without deformation can be obtained. For example, the method for manufacturing the electrode mixture layer on both sides of the electrode current collector is easier than when electrostatic coating is used.

さらに、一対の仮電池体を押圧して電池を得る際に、押圧による反力に起因する内部応力が残っている場合でも、電池自体としての変形が無くなり、したがって矯正する必要も無いので、製造コストの低減化を図り得るとともに生産性の向上も図ることができる。   Furthermore, when the battery is obtained by pressing a pair of temporary battery bodies, even if internal stress due to the reaction force due to the pressing remains, the battery itself is not deformed, and therefore there is no need to correct it. Costs can be reduced and productivity can be improved.

上記の説明においては、分かり易くするために、電極集電体、電極合材、無機固体電解質を、単に、重ねたものとして説明および図示したが、より具体的には、図9のような断面構造となる。   In the above description, for the sake of clarity, the electrode current collector, the electrode mixture, and the inorganic solid electrolyte are described and illustrated as simply being stacked, but more specifically, the cross section as shown in FIG. It becomes a structure.

すなわち、正極集電体11の上面の中央に、正極合材層12が配置されるとともに、この正極合材層12の全体を覆うように無機固体電解質層13が配置され、この無機固体電解質層13の周囲の正極集電体11の上面を覆うように絶縁部材(絶縁フィルム)16が配置され、そしてこの無機固体電解質層13の上面に負極合材層14が配置され、この負極合材層14の上面に且つ正極集電体11とほぼ同じ大きさの負極集電体15が配置されたものである。   That is, the positive electrode mixture layer 12 is disposed at the center of the upper surface of the positive electrode current collector 11, and the inorganic solid electrolyte layer 13 is disposed so as to cover the entire positive electrode mixture layer 12. An insulating member (insulating film) 16 is disposed so as to cover the upper surface of the positive electrode current collector 11 around 13, and a negative electrode mixture layer 14 is disposed on the upper surface of the inorganic solid electrolyte layer 13. The negative electrode current collector 15 having the same size as that of the positive electrode current collector 11 is disposed on the upper surface of 14.

ところで、上記実施例においては、全固体二次電池の各構成材料としては、その延び率が、アルミ箔および銅箔が用いられる電極集電体としての金属箔、正極合材、負極合材の順番で大きくなるものを用いたが、例えば正極合材として、その延び率が負極合材よりも大きいものを用いてもよい。なお、この場合、負極集電体同士が重ね合わされることにより、基本電池構成が得られる。   By the way, in the said Example, as each constituent material of an all-solid-state secondary battery, the elongation rate is the metal foil, positive electrode compound material, and negative electrode compound material as an electrode collector in which aluminum foil and copper foil are used. Although the thing which becomes large in order was used, you may use the thing whose elongation rate is larger than a negative electrode compound material, for example as a positive electrode compound material. In this case, the basic battery configuration is obtained by overlapping the negative electrode current collectors.

また、上記実施例においては、拘束力が作用しない場合に中央が膨らむような仮電池体(図8に示すようなもの)同士を、その正極集電体同士が対向するように重ねたが、周囲が反るような負極集電体同士が対向(接触)するように重ねてもよい。   Further, in the above examples, the temporary battery bodies (those shown in FIG. 8) whose centers swell when the binding force does not act are overlapped so that the positive electrode current collectors face each other. The negative electrode current collectors whose surroundings are warped may be stacked so as to face (contact) each other.

1 正極集電体
2 正極合材層
3 無機固体電解質層
4 負極合材層
5 負極集電体
6 積層体
7 仮電池体
8 全固体二次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode compound layer 3 Inorganic solid electrolyte layer 4 Negative electrode compound layer 5 Negative electrode collector 6 Laminated body 7 Temporary battery body 8 All-solid-state secondary battery

Claims (2)

一対の板状の金属製電極集電体同士間で負極合材、固体電解質および正極合材が積層されてなる一対の仮電池体同士を、その同一極性の電極集電体同士が向き合うように重ねられたものであり、
且つ上記仮電池体の少なくとも重ねられる電極集電体として、表面が粗化されたものを用いたことを特徴とする全固体二次電池。
A pair of temporary battery bodies in which a negative electrode mixture, a solid electrolyte, and a positive electrode mixture are laminated between a pair of plate-shaped metal electrode collectors so that the electrode collectors of the same polarity face each other. It ’s a stack of things,
An all-solid-state secondary battery using a roughened surface as an electrode current collector overlaid at least on the temporary battery body.
一対の板状の金属製電極集電体同士間で負極合材、固体電解質および正極合材が積層されたものを、押圧して仮電池体を形成する仮電池体形成工程と、
この仮電池体形成工程にて形成され一対の仮電池体同士を、その同一極性の電極集電体同士が向き合うように重ねる重ね合わせ工程と、
この重ね合わせ工程にて重ね合わされた一対の仮電池体を押圧して全固体二次電池を得る電池形成工程とを具備するとともに、
上記仮電池体の少なくとも重ねられる電極集電体として、表面が粗化されたものを用いることを特徴とする全固体二次電池の製造方法。
A temporary battery body forming step of pressing a laminate of a negative electrode mixture, a solid electrolyte and a positive electrode mixture between a pair of plate-shaped metal electrode current collectors to form a temporary battery body;
A stacking step of stacking a pair of temporary battery bodies formed in this temporary battery body forming process so that electrode collectors of the same polarity face each other;
A battery forming step of pressing the pair of temporary battery bodies stacked in this overlapping step to obtain an all-solid secondary battery,
A method for producing an all-solid-state secondary battery, characterized in that a surface-roughened electrode collector is used as at least the electrode current collector overlaid on the temporary battery body.
JP2016036523A 2016-02-29 2016-02-29 All-solid secondary battery and method of manufacturing the same Active JP6647077B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016036523A JP6647077B2 (en) 2016-02-29 2016-02-29 All-solid secondary battery and method of manufacturing the same
CN201780011523.8A CN108701868B (en) 2016-02-29 2017-02-24 All-solid-state secondary battery and method for manufacturing same
PCT/JP2017/006977 WO2017150354A1 (en) 2016-02-29 2017-02-24 All-solid state secondary battery and method for manufacturing same
US16/080,557 US11101497B2 (en) 2016-02-29 2017-02-24 All-solid state secondary battery and method for manufacturing same
EP17759820.8A EP3425719A4 (en) 2016-02-29 2017-02-24 All-solid state secondary battery and method for manufacturing same
KR1020187022222A KR20180118619A (en) 2016-02-29 2017-02-24 All solid secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036523A JP6647077B2 (en) 2016-02-29 2016-02-29 All-solid secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017157271A true JP2017157271A (en) 2017-09-07
JP6647077B2 JP6647077B2 (en) 2020-02-14

Family

ID=59809922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036523A Active JP6647077B2 (en) 2016-02-29 2016-02-29 All-solid secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6647077B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085458A (en) 2018-01-10 2019-07-18 삼성전자주식회사 All soild state secondary battery, multilayer all solid state secondary battery and method for preparing the all soild state secondary battery
US11264641B2 (en) 2018-01-10 2022-03-01 Samsung Electronics Co., Ltd. All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery
WO2022149336A1 (en) 2021-01-08 2022-07-14 パナソニックIpマネジメント株式会社 Battery and method for producing battery
CN114824592A (en) * 2021-01-19 2022-07-29 本田技研工业株式会社 Coin-type all-solid-state battery and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126756A (en) * 1999-10-25 2001-05-11 Kyocera Corp Lithium solid electrolyte battery and manufacturing method therefor
JP2009252548A (en) * 2008-04-07 2009-10-29 Toyota Motor Corp Solid type battery
WO2012020700A1 (en) * 2010-08-09 2012-02-16 株式会社 村田製作所 Layered solid-state battery
JP2015060721A (en) * 2013-09-19 2015-03-30 株式会社村田製作所 Solid battery
WO2015147122A1 (en) * 2014-03-28 2015-10-01 日立造船株式会社 All-solid-state secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126756A (en) * 1999-10-25 2001-05-11 Kyocera Corp Lithium solid electrolyte battery and manufacturing method therefor
JP2009252548A (en) * 2008-04-07 2009-10-29 Toyota Motor Corp Solid type battery
WO2012020700A1 (en) * 2010-08-09 2012-02-16 株式会社 村田製作所 Layered solid-state battery
JP2015060721A (en) * 2013-09-19 2015-03-30 株式会社村田製作所 Solid battery
WO2015147122A1 (en) * 2014-03-28 2015-10-01 日立造船株式会社 All-solid-state secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085458A (en) 2018-01-10 2019-07-18 삼성전자주식회사 All soild state secondary battery, multilayer all solid state secondary battery and method for preparing the all soild state secondary battery
US11264641B2 (en) 2018-01-10 2022-03-01 Samsung Electronics Co., Ltd. All-solid secondary battery, multilayered all-solid secondary battery, and method of manufacturing all-solid secondary battery
WO2022149336A1 (en) 2021-01-08 2022-07-14 パナソニックIpマネジメント株式会社 Battery and method for producing battery
CN114824592A (en) * 2021-01-19 2022-07-29 本田技研工业株式会社 Coin-type all-solid-state battery and method for manufacturing same

Also Published As

Publication number Publication date
JP6647077B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
KR102508379B1 (en) All-solid-state secondary battery and production method therefor
US11101497B2 (en) All-solid state secondary battery and method for manufacturing same
KR102350322B1 (en) All-solid-state secondary battery
JP2017157271A (en) All-solid type secondary battery and method for manufacturing the same
JP6576072B2 (en) Manufacturing method of all-solid-state secondary battery
JP2015162353A (en) Method for manufacturing all-solid battery
JP6647113B2 (en) Manufacturing method of all solid state secondary battery
JP2009004361A (en) Laminated battery
JP6324296B2 (en) All solid state secondary battery
JPWO2020017467A1 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
WO2017187494A1 (en) All-solid-state secondary battery
KR101784033B1 (en) Method for electrode assembly
JP6774771B2 (en) All-solid-state secondary battery and its manufacturing method
JP6895761B2 (en) Manufacturing method of all-solid-state battery
JP6920347B2 (en) Manufacturing method and equipment for all-solid-state batteries
JP6369027B2 (en) Method for manufacturing battery electrode
KR101592812B1 (en) Secondary cell battery and a manufacturing method thereof
KR20170021213A (en) Manufacturing method for secondary battery
JP6937124B2 (en) Manufacturing method of all-solid-state secondary battery
JP6071225B2 (en) Manufacturing method of all-solid-state secondary battery
JP2023008961A (en) Manufacturing method of all-solid battery
CN115411371A (en) All-solid-state battery and method for manufacturing same
CN115441102A (en) Exterior body and battery
JP2017183026A (en) All-solid type secondary battery
JP2018113190A (en) Method for manufacturing lamination type secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200114

R150 Certificate of patent or registration of utility model

Ref document number: 6647077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250