JP2017156331A - Optical system structure, optical measurement device, and optical measurement method - Google Patents

Optical system structure, optical measurement device, and optical measurement method Download PDF

Info

Publication number
JP2017156331A
JP2017156331A JP2016042820A JP2016042820A JP2017156331A JP 2017156331 A JP2017156331 A JP 2017156331A JP 2016042820 A JP2016042820 A JP 2016042820A JP 2016042820 A JP2016042820 A JP 2016042820A JP 2017156331 A JP2017156331 A JP 2017156331A
Authority
JP
Japan
Prior art keywords
light
wave number
optical
optical path
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016042820A
Other languages
Japanese (ja)
Other versions
JP6664771B2 (en
Inventor
雄司 興
Yuji Oki
雄司 興
宏晃 吉岡
Hiroaki Yoshioka
宏晃 吉岡
金市 森田
Kinichi Morita
金市 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Ushio Denki KK
Ushio Inc
Original Assignee
Kyushu University NUC
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Ushio Denki KK, Ushio Inc filed Critical Kyushu University NUC
Priority to JP2016042820A priority Critical patent/JP6664771B2/en
Priority to CN201790000627.4U priority patent/CN209215224U/en
Priority to KR1020187027404A priority patent/KR102150577B1/en
Priority to PCT/JP2017/007063 priority patent/WO2017150369A1/en
Publication of JP2017156331A publication Critical patent/JP2017156331A/en
Application granted granted Critical
Publication of JP6664771B2 publication Critical patent/JP6664771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system structure and the like that can suppress Raman light, and improve measurement accuracy in an optical measurement device using a solid body or liquid for a medium of an optical path part.SOLUTION: An optical system structure comprises: an optical path part 25 that transmits observation light generating by irradiating a measurement sample with first light of a wave number k1 in an optical measurement system; and a light shield part 27 that shields light to the optical path part from an outside, and reduces noise light of an interior of the optical path part due to a refractive index being matched to the optical path part. The optical path part, in which a solid body or liquid is used as a medium, is provided with, inside the optical path part, a filter member 19 that blocks progression of second light of a wave number K2 arising from a Raman shift generating when the first light passes through the optical path part.SELECTED DRAWING: Figure 1

Description

本発明は、光学系構造体、光学測定装置及び光学測定方法に関し、特に、光学測定系において励起光を測定試料に照射して発生する観測光を透過する光路部と、光路部への外部からの光を遮ると共に屈折率が前記光路部とマッチングされていることにより光路部の内部のノイズ光を低減する遮光部とを備える光学系構造体等に関するものである。   The present invention relates to an optical system structure, an optical measurement device, and an optical measurement method, and in particular, an optical path that transmits observation light generated by irradiating a measurement sample with excitation light in the optical measurement system, and an external to the optical path And an optical system structure including a light-shielding part that reduces noise light inside the optical path part by matching the refractive index with the optical path part.

近年、ライフサイエンス分野におけるポイントオブケア(POCT)検査のように、吸光度法やレーザー誘起蛍光法などの光分析技術を用いた光測定装置の小型化が要請されている。   In recent years, there has been a demand for downsizing of an optical measurement device using an optical analysis technique such as an absorbance method or a laser-induced fluorescence method, such as a point-of-care (POCT) test in the life science field.

発明者らは、光測定装置の小型化を実現するために、図4に示すような、顔料を少なくとも一部に含む樹脂を用いて光学系およびモノリシックな筐体を構成した光誘起蛍光測定装置を提案した(例えば、特許文献1参照)。   The inventors have realized a light-induced fluorescence measuring apparatus in which an optical system and a monolithic casing are formed using a resin containing at least a part of a pigment as shown in FIG. (For example, refer to Patent Document 1).

具体的には、光誘起蛍光測定装置201は、以下の構成の特徴を有する。(1)照射光学系を構成する導光路、観測光収集光学系を構成する導光路の一部に、照射光及び観測光に対して透明な樹脂が充填されている。(2)これらの導光路を構成する透明樹脂を包囲するようにさらに樹脂を設ける。この樹脂には顔料が含有されている。(3)顔料は、迷光を吸収する特性を有する。顔料の含有量は、少なくとも迷光を全て吸収する量に設定されている。(4)透明樹脂と顔料含有樹脂との樹脂の材質は同じである。   Specifically, the light-induced fluorescence measurement device 201 has the following characteristics. (1) A part of the light guide path constituting the irradiation optical system and the light guide path constituting the observation light collecting optical system is filled with a resin transparent to the irradiation light and the observation light. (2) A resin is further provided so as to surround the transparent resin constituting these light guide paths. This resin contains a pigment. (3) The pigment has the property of absorbing stray light. The pigment content is set to an amount that absorbs at least all the stray light. (4) The resin materials of the transparent resin and the pigment-containing resin are the same.

上記の構成により、光誘起蛍光測定装置201は、例えば、以下の作用・効果を奏する。まず、透明樹脂と顔料含有樹脂との樹脂の材質を同じにすることにより、両樹脂が接触する界面において光の反射や散乱が抑制される。また、顔料含有樹脂に入射した迷光は、顔料により吸収される。そのため、導光路を構成する透明樹脂に戻ることはほとんどない。さらに、顔料含有樹脂から外部へ迷光が漏れることもない。そのため、迷光の複雑な多重反射がほとんど発生しない。結果として、観測光収集光学系は、複雑な多重反射に対応する必要がなく簡便化され、結果的に本測定器は小型化される。以下、このようなシリコーン樹脂で構築した光学系の技術を、SOT(Silicone Optical Technologies)と呼称することにする。   With the above configuration, the light-induced fluorescence measuring apparatus 201 has the following operations and effects, for example. First, by using the same resin material for the transparent resin and the pigment-containing resin, light reflection and scattering are suppressed at the interface where both resins contact. Further, the stray light incident on the pigment-containing resin is absorbed by the pigment. Therefore, there is almost no return to the transparent resin constituting the light guide. Furthermore, stray light does not leak from the pigment-containing resin to the outside. Therefore, the complicated multiple reflection of stray light hardly occurs. As a result, the observation light collecting optical system does not need to cope with complicated multiple reflections and is simplified, and as a result, the measuring instrument is miniaturized. Hereinafter, the technology of the optical system constructed with such a silicone resin will be referred to as SOT (Silicone Optical Technologies).

特許第5665811号公報Japanese Patent No. 5665811

しかしながら、SOTにおける光学系では、測定光学系の光路部の媒質が固体又は液体である。ラマンシフトに起因する光は、入射光強度、散乱断面積及び光路部の媒質の密度に依存する。中でも、光路部の媒質の密度には大きく依存する。例えば、固体の媒質の一例であるPDMS(ポリジメチルシロキサン)は、単分子の質量数62g/mol、密度が0.965g/cm3なので、0.965/62*アボガドロ数=9.37*1021個/cm3程度の分子密度である。液体の媒質の一例である水は、単分子の質量数18g/mol、密度が1.0g/cm3なので、1/18*アボガドロ数=3.34*1022個/cm3程度の分子密度である。他方、気体の媒質の一例である窒素は、1molで22.4Lの体積なので、1/22.4/1000*アボガドロ数=2.69*1019個/cm3程度の密度である。当然、物質によって比率は異なるものの、固体や液体は気体に比べて102から103程度も密度が大きい。そのため、照射光及び観測光が主に空気中を通過する従来の光学系と比べて、ラマンシフトに起因するノイズ光(以下、ラマン光という)の強度が大きく、測定精度(S/N比)に与える影響は無視できないほど大きい。 However, in the optical system in SOT, the medium of the optical path part of the measurement optical system is solid or liquid. The light resulting from the Raman shift depends on the incident light intensity, the scattering cross section, and the density of the medium in the optical path. Above all, it greatly depends on the density of the medium in the optical path portion. For example, PDMS (polydimethylsiloxane), which is an example of a solid medium, has a mass number of a single molecule of 62 g / mol and a density of 0.965 g / cm 3, so 0.965 / 62 * Avocado number = 9.37 * 10 21 pieces / cm 3 The molecular density is about. Water is an example of the medium of the liquid mass number 18 g / mol unimolecular, since density of 1.0g / cm 3, 1/18 * the molecular density of Avogadro's number = 3.34 * 10 about 22 / cm 3. On the other hand, nitrogen, which is an example of a gaseous medium, has a density of 22.4 / 1000 * Avogadro number = 2.69 * 10 19 pieces / cm 3 because it has a volume of 12.4 mol and 22.4 L. Of course, although the ratio varies depending on the substance, solids and liquids are about 10 2 to 10 3 denser than gas. Therefore, the intensity of noise light due to Raman shift (hereinafter referred to as Raman light) is large and measurement accuracy (S / N ratio) is higher than that of conventional optical systems in which irradiated light and observation light mainly pass through the air. The impact on the environment is so great that it cannot be ignored.

図5において、試料ケース(PCR管)に照射される光を照射光、照射光が照射された試料Sから放出される光を観測光とする。照射光が、透明樹脂で充填された導光路を通過する際、照射光の波長に応じたラマンシフトにより、ラマン光が発生する。図4に示すノッチフィルタや色ガラスフィルタは、観測光を透過し、かつ照射光をカットする機能はあるものの、ラマン光をカットする機能はない。そのため、ラマン光は、ノイズ光として測定器(光電子増倍管)に入射してしまう。従来の測定光学系は、このラマン光を低減する余地が残されていた。   In FIG. 5, light irradiated on the sample case (PCR tube) is irradiation light, and light emitted from the sample S irradiated with the irradiation light is observation light. When the irradiation light passes through the light guide filled with the transparent resin, Raman light is generated by the Raman shift corresponding to the wavelength of the irradiation light. Although the notch filter and the color glass filter shown in FIG. 4 have a function of transmitting observation light and cutting irradiation light, they do not have a function of cutting Raman light. For this reason, the Raman light enters the measuring instrument (photomultiplier tube) as noise light. The conventional measurement optical system has room for reducing this Raman light.

ゆえに、本発明は、光路部の媒質に固体又は液体を用いた光学測定装置において、ラマン光を抑制し、測定精度を向上させることが可能な光学系構造体等を提供することを目的とする。   Therefore, an object of the present invention is to provide an optical system structure or the like that can suppress Raman light and improve measurement accuracy in an optical measurement apparatus using a solid or liquid as a medium in an optical path portion. .

本発明の第1の観点は、光学測定系において波数k1の第1光を測定試料に照射して発生する観測光を透過する光路部と、前記光路部への外部からの光を遮ると共に屈折率が前記光路部とマッチングされていることにより前記光路部の内部のノイズ光を低減する遮光部とを備える光学系構造体であって、前記光路部は、媒質として固体又は液体が用いられており、前記光路部の内部に、前記第1光が前記光路部を通過するときに生じるラマンシフトに起因する波数k2の第2光の進行を遮るフィルタ部材を備える、光学系構造体である。   According to a first aspect of the present invention, an optical path that transmits observation light generated by irradiating a measurement sample with first light having a wave number k1 in an optical measurement system, and blocks light from the outside to the optical path and refracts the light. An optical system structure including a light-shielding unit that reduces noise light inside the optical path unit by matching a rate with the optical path unit, and the optical path unit is made of solid or liquid as a medium And an optical system structure provided with a filter member inside the optical path portion for blocking the progress of the second light having a wave number k2 due to a Raman shift generated when the first light passes through the optical path portion.

本発明の第2の観点は、第1の観点の光学系構造体であって、前記フィルタ部材が遮る前記波数k2は、前記観測光の波数域に含まれる。   A second aspect of the present invention is the optical system structure according to the first aspect, wherein the wave number k2 blocked by the filter member is included in a wave number region of the observation light.

本発明の第3の観点は、第1又は第2の観点の光学系構造体であって、前記フィルタ部材の少なくとも一方の面が前記光路部に接触している。   A third aspect of the present invention is the optical system structure according to the first or second aspect, wherein at least one surface of the filter member is in contact with the optical path portion.

本発明の第4の観点は、第1から第3のいずれかの観点の光学系構造体であって、前記光路部は、可撓性を有する。   A fourth aspect of the present invention is the optical system structure according to any one of the first to third aspects, wherein the optical path portion has flexibility.

本発明の第5の観点は、第4の観点の光学系構造体であって、前記光路部は、シリコーン樹脂である。   A fifth aspect of the present invention is the optical system structure according to the fourth aspect, wherein the optical path portion is a silicone resin.

本発明の第6の観点は、第5の観点の光学系構造体であって、前記シリコーン樹脂は、PDMSである。   A sixth aspect of the present invention is the optical system structure according to the fifth aspect, wherein the silicone resin is PDMS.

本発明の第7の観点は、第1から第6のいずれかの観点の光学系構造体であって、前記遮光部の媒質として、前記光路部の媒質と屈折率が同じ媒質が用いられている。   According to a seventh aspect of the present invention, there is provided the optical system structure according to any one of the first to sixth aspects, wherein a medium having the same refractive index as the medium of the optical path unit is used as the medium of the light shielding unit. Yes.

本発明の第8の観点は、第1から第7のいずれかの観点の光学系構造体であって、前記遮光部は、光を吸収する顔料を分散させて含有する。   According to an eighth aspect of the present invention, there is provided the optical system structure according to any one of the first to seventh aspects, wherein the light shielding portion contains a light absorbing pigment dispersedly.

本発明の第9の観点は、光学測定系において測定試料に波数k1の第1光を照射して発生する観測光を観測する光学測定装置であって、前記第1光を照射する光源と、媒質として固体又は液体が用いられており前記観測光を透過する光路部と、前記光路部への外部からの光を遮ると共に、屈折率が前記光路部とマッチングされていることにより前記光路部の内部のノイズ光を低減する遮光部と、前記観測光を観測する測定部と、前記光路部の内部に、前記第1光が前記光路部を通過するときに生じるラマンシフトに起因する波数k2の第2光の進行を遮るフィルタ部材とを備える、光学測定装置である。   According to a ninth aspect of the present invention, there is provided an optical measurement apparatus for observing observation light generated by irradiating a measurement sample with first light having a wave number k1 in an optical measurement system, the light source irradiating the first light, Solid or liquid is used as a medium, and the optical path part that transmits the observation light and the light from the outside to the optical path part are blocked, and the refractive index of the optical path part is matched with the optical path part. A light-blocking unit that reduces internal noise light, a measurement unit that observes the observation light, and a wave number k2 caused by a Raman shift that occurs when the first light passes through the optical path unit. It is an optical measuring device provided with the filter member which interrupts the progress of the 2nd light.

本発明の第10の観点は、第9の観点の光学測定装置であって、前記観測光の光強度が最大となる波数とは異なる波数に調整する波数調整部をさらに備える。   A tenth aspect of the present invention is the optical measurement apparatus according to the ninth aspect, further comprising a wave number adjusting unit that adjusts the wave number to be different from the wave number at which the light intensity of the observation light is maximized.

本発明の第11の観点は、第10の観点の光学測定装置であって、前記波数調整部は、前記第2光の波数が前記観測光の波数域とは異なる波数となるように、前記第1光の波数を調整する。   An eleventh aspect of the present invention is the optical measurement apparatus according to the tenth aspect, in which the wave number adjustment unit is configured such that the wave number of the second light has a wave number different from a wave number region of the observation light. The wave number of the first light is adjusted.

本発明の第12の観点は、第9から第11のいずれかの観点の光学測定装置であって、レンズ、ノッチフィルタ及び色ガラスフィルタをさらに備える。   A twelfth aspect of the present invention is the optical measurement apparatus according to any one of the ninth to eleventh aspects, further comprising a lens, a notch filter, and a color glass filter.

本発明の第13の観点は、第9から第12のいずれかの観点の光学測定装置であって、前記光源から前記測定部に至る光路において、前記第1光及び前記第2光を平行光とする第1レンズと、前記第1光を反射するノッチフィルタと、前記観測光以外の光を吸収する色ガラスフィルタと、前記観測光を含む光を集光する第2レンズと、前記第2レンズの光軸上であって、前記第2光が集光される位置の近傍にあるアパーチャとを、順に配置されるようにさらに備え、前記フィルタ部材は、前記第1レンズ及び前記第2レンズの間に配置されている。   A thirteenth aspect of the present invention is the optical measurement apparatus according to any one of the ninth to twelfth aspects, wherein the first light and the second light are parallel light in an optical path from the light source to the measurement unit. A first lens that reflects the first light, a colored glass filter that absorbs light other than the observation light, a second lens that collects the light including the observation light, and the second An aperture located on the optical axis of the lens and in the vicinity of the position where the second light is collected, and the filter member is further arranged in order, and the filter member includes the first lens and the second lens It is arranged between.

本発明の第14の観点は、光学測定系において測定試料に波数k1の第1光を照射して発生する観測光を観測する光学測定装置を用いた光学測定方法であって、前記光学測定装置は、前記第1光を照射する光源と、媒質として固体又は液体が用いられており前記観測光を透過する光路部と、前記光路部への外部からの光を遮ると共に、屈折率が前記光路部とマッチングされていることにより前記光路部の内部のノイズ光を低減する遮光部と、前記観測光を観測する測定部と、前記光路部の内部に、前記第1光が前記光路部を通過するときに生じるラマンシフトに起因する波数k2の第2光の進行を遮るフィルタ部材とを有し、前記光源が、前記第1光を照射する励起光照射ステップと、前記フィルタ部材が、前記第2光を遮るフィルタリングステップとを含む、光学測定方法である。   A fourteenth aspect of the present invention is an optical measurement method using an optical measurement device that observes observation light generated by irradiating a measurement sample with first light having a wave number k1 in an optical measurement system, the optical measurement device Includes a light source that irradiates the first light, an optical path portion that uses solid or liquid as a medium, blocks light from the outside to the optical path portion, and has a refractive index of the optical path A light-shielding unit that reduces noise light inside the optical path unit by being matched with a unit, a measurement unit that observes the observation light, and the first light passes through the optical path unit inside the optical path unit A filter member that blocks the progression of the second light having the wave number k2 caused by the Raman shift that occurs when the light source is excited, and the light source emits the first light, and the filter member includes the first filter. Filtering that blocks 2 light And a step is an optical measuring method.

本発明の第15の観点は、第14の観点の光学測定方法であって、前記励起光照射ステップにおいて、前記光源は、前記第1光として、前記第2光の波数が前記観測光の波数域とは異なる波数となるような波数の光を照射する。   A fifteenth aspect of the present invention is the optical measurement method according to the fourteenth aspect, wherein, in the excitation light irradiation step, the light source is the first light, and the wave number of the second light is the wave number of the observation light. Irradiate light with a wave number different from that of the region.

本発明の第16の観点は、第14の観点の光学測定方法であって、前記光学測定装置は、前記第1光の波数を前記観測光の光強度が最大となる波数とは異なる波数に調整する波数調整部をさらに有し、前記励起光照射ステップの後に、前記波数調整部が、前記第1光の波数を調整する調整ステップをさらに含む。   A sixteenth aspect of the present invention is the optical measurement method according to the fourteenth aspect, wherein the optical measurement device sets the wave number of the first light to a wave number different from the wave number at which the light intensity of the observation light is maximized. The method further includes a wave number adjustment unit to adjust, and the wave number adjustment unit further includes an adjustment step of adjusting the wave number of the first light after the excitation light irradiation step.

本発明の第17の観点は、第14の観点の光学測定方法であって、前記調整ステップにおいて、前記波数調整部は、前記第2光の波数が前記観測光の波数域とは異なる波数となるように、前記第1光の波数を調整する。   A seventeenth aspect of the present invention is the optical measurement method according to the fourteenth aspect, wherein, in the adjustment step, the wave number adjusting unit has a wave number different from the wave number range of the observation light. Thus, the wave number of the first light is adjusted.

本発明の第18の観点は、第14の観点の光学測定方法であって、前記波数k2が前記観測光の波数域に含まれており、前記フィルタリングステップにおいて、前記フィルタ部材が、前記観測光の波数域の一部である波数k2の光を遮る。   An eighteenth aspect of the present invention is the optical measurement method according to the fourteenth aspect, wherein the wave number k2 is included in a wave number region of the observation light, and in the filtering step, the filter member includes the observation light. The light of the wave number k2, which is a part of the wave number region, is blocked.

本発明の各観点によれば、例えばSOTのように、光路部の媒質に固体又は液体を用いた光学測定系において、ラマンシフトに起因するノイズ光を抑制し、測定精度を向上させることが可能となる。   According to each aspect of the present invention, it is possible to suppress noise light due to Raman shift and improve measurement accuracy in an optical measurement system using a solid or liquid as a medium in an optical path, such as SOT. It becomes.

そもそも、ラマン光は、光路部の媒質の密度に大きく依存する。出願人による光学測定系以外は、光路部の媒質が一般に空気等の気体であり、固体や液体に比べて媒質の密度が極めて小さい。そのため、測定中に発生するラマン光は、観測光に比較してさほど大きな影響がなかった。   In the first place, Raman light greatly depends on the density of the medium in the optical path portion. Except for the optical measurement system by the applicant, the medium in the optical path is generally a gas such as air, and the density of the medium is extremely small compared to a solid or liquid. For this reason, the Raman light generated during the measurement had no significant effect compared to the observation light.

本発明の各観点は、光学測定系の光路部の媒質として固体又は液体を採用した本発明者らの光学測定系において顕著となるために見出された新規の課題を解決するものである。   Each aspect of the present invention solves a new problem found to be remarkable in the optical measurement system of the present inventors that employs a solid or liquid as a medium of an optical path part of the optical measurement system.

また、本発明の第2及び第18の観点によれば、ラマン光が観測光の波数域に含まれる場合に、観測光の一部をあえてフィルタ部材で遮ることにより、ラマンシフトに起因するノイズ光を抑制し、測定精度を向上させることが可能となる。   According to the second and eighteenth aspects of the present invention, when Raman light is included in the wave number range of the observation light, a part of the observation light is intentionally blocked by the filter member, thereby causing noise caused by the Raman shift. Light can be suppressed and measurement accuracy can be improved.

観測光をフィルタ部材でカットすることは、通常の光学測定においては考えられず、阻害要因がある。この点、ラマン光がS/N比に及ぼす影響が無視できない光学測定系において初めて有意義となる技術的な思想である。   Cutting the observation light with the filter member is not considered in normal optical measurement, and there is an obstruction factor. This is a technical idea that is significant for the first time in an optical measurement system in which the influence of Raman light on the S / N ratio cannot be ignored.

また、本発明の第3の観点によれば、ラマン光を確実にフィルタ部材に入射させて除去することが容易となる。   Further, according to the third aspect of the present invention, it becomes easy to reliably enter the Raman light into the filter member and remove it.

また、本発明の第4の観点によれば、光路部を屈曲させることにより、ラマン光を遮光部に入射させて効果的に除去することが容易となる。   Further, according to the fourth aspect of the present invention, it is easy to effectively remove the Raman light incident on the light shielding portion by bending the optical path portion.

さらに、本発明の第5から第8、並びに、第12及び第13の観点によれば、具体的にSOTに対して本発明の技術的思想を反映することが容易となる。   Furthermore, according to the fifth to eighth, twelfth and thirteenth aspects of the present invention, it becomes easy to specifically reflect the technical idea of the present invention on the SOT.

ここで、ラマンシフトのシフト幅は、励起光の波数には依存しない。そのため、励起光の波数を調整することにより、ラマン光の波数を観測光の波数域に重ならない波数とすることが可能である。   Here, the shift width of the Raman shift does not depend on the wave number of the excitation light. Therefore, by adjusting the wave number of the excitation light, the wave number of the Raman light can be set so as not to overlap with the wave number region of the observation light.

そこで、本発明の第10、第11、第16及び第17の観点によれば、測定試料に照射した際に発生する観測光の強度が最大となる波数の光とは異なる波数の光をあえて励起光として用いることにより、ノイズ光である第2光のみを除去することが可能となる。そのため、観測光のS/N比を高めることがさらに容易となる。   Therefore, according to the tenth, eleventh, sixteenth, and seventeenth aspects of the present invention, light with a wave number different from the light with the wave number that maximizes the intensity of the observation light generated when the measurement sample is irradiated. By using it as excitation light, it becomes possible to remove only the second light which is noise light. Therefore, it becomes easier to increase the S / N ratio of the observation light.

本発明の実施例に係る光学測定装置の具体的な構成の一例を示す図である。It is a figure which shows an example of the specific structure of the optical measuring apparatus which concerns on the Example of this invention. 本発明の実施例1に係る光学測定方法において、観測光と共にラマン光をフィルタリングする概念を示す図である。In the optical measuring method which concerns on Example 1 of this invention, it is a figure which shows the concept which filters Raman light with observation light. 本発明の実施例2に係る光学測定方法において、ラマン光が観測光と重複しないように励起光を調整する概念を示す図である。It is a figure which shows the concept which adjusts excitation light so that Raman light may not overlap with observation light in the optical measuring method which concerns on Example 2 of this invention. 従来の光学測定装置の具体的な構成の一例を示す図である。It is a figure which shows an example of the specific structure of the conventional optical measuring apparatus. 図4の従来の光学測定装置において、測定試料及び測定試料を挿入する部位を拡大して示す図である。FIG. 5 is an enlarged view showing a measurement sample and a portion into which the measurement sample is inserted in the conventional optical measurement apparatus of FIG. 4.

以下、図面を参照して、本願発明の実施例について述べる。なお、本願発明の実施の形態は、以下の実施例に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The embodiment of the present invention is not limited to the following examples.

図1に、本発明の光学測定装置の具体的な構成の一例として光誘起蛍光測定装置1(本願請求項における「光学測定装置」の一例)を示す。光誘起蛍光測定装置1は、DPSSレーザヘッド等の固体光源3(本願請求項における「光源」の一例)、試料5(本願請求項における「測定試料」の一例)を保持する試料ケース7、レンズや光学フィルタ等からなる蛍光収集光学系9(本願請求項における「光学系構造体」の一例)、光電子増倍管などの蛍光測定器11(本願請求項における「測定部」の一例)を含む。   FIG. 1 shows a light-induced fluorescence measuring apparatus 1 (an example of “optical measuring apparatus” in the claims) as an example of a specific configuration of the optical measuring apparatus of the present invention. The light-induced fluorescence measuring apparatus 1 includes a solid-state light source 3 such as a DPSS laser head (an example of “light source” in the claims of the present application), a sample case 7 that holds a sample 5 (an example of “measurement sample” in the claims of the present application), a lens And a fluorescence collecting optical system 9 (an example of an “optical system structure” in the claims) and a fluorescence measuring instrument 11 (an example of a “measurement unit” in the claims) such as a photomultiplier tube. .

試料ケース7は、固体光源3からの励起光(本願請求項における「第1光」の一例)、試料5から放出される蛍光(本願請求項における「観測光」の一例)を含む光に対して透明であり、レーザービーム照射空間13に設置される。蛍光測定器11は、固体光源3から蛍光測定器11に直接入光しないよう、測定光(励起光)と観測光の光軸が直交する位置に設置される。試料ケース7から蛍光測定器11の間には、蛍光収集光学系9が設けられる。蛍光収集光学系9は、試料からの蛍光が入射する側から順に、第1ノッチフィルタ21(本願請求項における「ノッチフィルタ」の一例)と、励起光および試料5から放出される蛍光を含む光を平行光にする第1レンズ15(本願請求項における「レンズ」及び「第1レンズ」の一例)と、第2ノッチフィルタ21(本願請求項における「ノッチフィルタ」の一例)と、ラマンフィルタ19(本願請求項における「フィルタ部材」の一例)と、第1色ガラスフィルタ23(本願請求項における「色ガラスフィルタ」の一例)と、第2色ガラスフィルタ23(本願請求項における「色ガラスフィルタ」の一例)と、蛍光を含む光を集光する第2レンズ17(本願請求項における「レンズ」及び「第2レンズ」の一例)と、第2レンズ17の光軸上であって蛍光の集光位置近傍に配置されるアパーチャ24(本願請求項における「アパーチャ」の一例)と、第3色ガラスフィルタ23(本願請求項における「色ガラスフィルタ」の一例)から構成される。ノッチフィルタは固体光源3から出射する励起光の波長の光を反射するフィルタ部材であり、色ガラスフィルタは試料から放出される蛍光以外の光を吸収するフィルタ部材である。 The sample case 7 responds to light including excitation light from the solid-state light source 3 (an example of “first light” in the claims of the present application) and fluorescence emitted from the sample 5 (an example of “observation light” in the claims of the present application). It is transparent and installed in the laser beam irradiation space 13. The fluorescence measuring instrument 11 is installed at a position where the optical axes of the measurement light (excitation light) and the observation light are orthogonal to each other so as not to directly enter the fluorescence measuring instrument 11 from the solid light source 3. A fluorescence collecting optical system 9 is provided between the sample case 7 and the fluorescence measuring instrument 11. The fluorescence collection optical system 9 includes a first notch filter 21 1 (an example of a “notch filter” in the claims of the present application), excitation light, and fluorescence emitted from the sample 5 in order from the side on which fluorescence from the sample enters. A first lens 15 (one example of “lens” and “first lens” in the claims of the present application), a second notch filter 21 2 (an example of “notch filter” in the claims of the present application), and Raman A filter 19 (an example of a “filter member” in the claims of the present application), a first color glass filter 23 1 (an example of a “color glass filter” in the claims of the present application), and a second color glass filter 23 2 (in the claims of the present application) An example of a “color glass filter”, a second lens 17 that collects light including fluorescence (an example of “lens” and “second lens” in the claims of the present application), and a second lens. A on the optical axis in FIG. 17 and aperture 24 disposed in the vicinity of the condensing positions fluorescence (an example of "aperture" in the claims), "colored glass filter in the third color glass filter 23 3 (appended claims For example). The notch filter is a filter member that reflects light having the wavelength of the excitation light emitted from the solid-state light source 3, and the color glass filter is a filter member that absorbs light other than fluorescence emitted from the sample.

本実施例におけるラマンフィルタ19は、ラマン光(本願請求項における「第2光」の一例)の波数域の光の進行を遮るフィルタ部材である。   The Raman filter 19 in the present embodiment is a filter member that blocks the progress of light in the wave number region of Raman light (an example of “second light” in the claims of the present application).

固体光源3、試料ケース7、蛍光収集光学系9、蛍光測定器11は、上記励起光や蛍光を含む光に対して透明なPDMS(本願請求項における「媒質」及び「シリコーン樹脂」の一例)等の透明樹脂25(本願請求項における「光路部」の一例)に埋設される。すなわち、透明樹脂25により試料ケース7、蛍光収集光学系9、光電子倍増菅等の蛍光測定器11が一体化して保持される。   The solid-state light source 3, the sample case 7, the fluorescence collecting optical system 9, and the fluorescence measuring instrument 11 are PDMS that is transparent to the light including the excitation light and the fluorescence (an example of “medium” and “silicone resin” in the claims) Embedded in the transparent resin 25 (an example of “optical path” in the claims). That is, the sample case 7, the fluorescence collecting optical system 9, and the fluorescence measuring instrument 11 such as a photomultiplier are integrally held by the transparent resin 25.

各構成要素を一体化して保持する透明樹脂25は、励起光、試料ケース7に励起光が照射される際に発生する自家蛍光、及び励起光が透明樹脂25内を進行する際、透明樹脂25から発生するラマン光を吸収する波長特性を有する顔料(本願請求項における「顔料」の一例)がほぼ一様に含有している顔料含有樹脂27(本願請求項における「遮光部」の一例)により包囲される。この顔料含有樹脂27には、必要に応じて固体光源3および蛍光測定器11に電力を供給する電力源29が埋設される。すなわち、顔料含有樹脂27は、試料ケース7、蛍光測定器11、及び、蛍光収集光学系9等を保持する筐体を構成する。   The transparent resin 25 that holds each component in an integrated manner is the transparent resin 25 when the excitation light, autofluorescence generated when the sample case 7 is irradiated with the excitation light, and when the excitation light travels through the transparent resin 25. The pigment-containing resin 27 (an example of the “light-shielding part” in the present claim) containing a pigment having a wavelength characteristic that absorbs Raman light generated from the light (an example of “pigment” in the present claim) Besieged. In the pigment-containing resin 27, a power source 29 for supplying power to the solid light source 3 and the fluorescence measuring instrument 11 is embedded as necessary. That is, the pigment-containing resin 27 constitutes a housing that holds the sample case 7, the fluorescence measuring instrument 11, the fluorescence collection optical system 9, and the like.

このように、SOTにおける光測定装置では、蛍光収集光学系9の光路部の媒質が透明樹脂25である。そのため、測定光及び観測光が主に空気中を通過する従来の光学系と比べて、ラマン光の強度が大きく、測定精度(S/N比)に与える影響は無視できないほど大きい。そこで、本発明では蛍光収集光学系9にラマンフィルタ19を挿入することで、高精度な測定を実現した。   As described above, in the light measurement device in the SOT, the medium of the optical path portion of the fluorescence collecting optical system 9 is the transparent resin 25. Therefore, compared with a conventional optical system in which measurement light and observation light mainly pass through the air, the intensity of Raman light is large and the influence on measurement accuracy (S / N ratio) is so large that it cannot be ignored. Therefore, in the present invention, a highly accurate measurement is realized by inserting the Raman filter 19 into the fluorescence collecting optical system 9.

なお、従来のSOTにおける光測定装置と同様に、光誘起蛍光測定装置1を構成する各構造物が、透明樹脂25及び顔料含有樹脂27に埋設されているので、外部からの衝撃に対して安定であり、また光学素子を保持するホルダも不要なので、光誘起蛍光測定装置1は、小型かつ携帯可能なものとなる。   In addition, since each structure which comprises the light induction fluorescence measuring apparatus 1 is embed | buried in the transparent resin 25 and the pigment containing resin 27 similarly to the light measuring apparatus in the conventional SOT, it is stable with respect to the impact from the outside. In addition, since a holder for holding the optical element is not necessary, the light-induced fluorescence measuring apparatus 1 is small and portable.

ここで、透明樹脂25と顔料含有樹脂27とは屈折率がマッチングされている。ここでいうマッチングとは、透明樹脂25及び顔料含有樹脂27の界面における界面反射がある程度(無視できるくらい)に小さくなるように、透明樹脂25の屈折率と顔料含有樹脂27の屈折率とが、同一か近似した値であるように選択又は調整することをいう。   Here, the refractive indexes of the transparent resin 25 and the pigment-containing resin 27 are matched. Matching here means that the refractive index of the transparent resin 25 and the refractive index of the pigment-containing resin 27 are such that the interface reflection at the interface between the transparent resin 25 and the pigment-containing resin 27 is reduced to some extent (negligible). Selection or adjustment to be the same or approximate values.

上記筐体を包囲する顔料含有樹脂27により、光誘起蛍光測定装置1外部に励起光や測定光である蛍光は放出されず、また外部からの光が蛍光収集光学系9等の内部に入ることもない。顔料含有樹脂27は、ノイズ光の光吸収層として機能する。   The pigment-containing resin 27 surrounding the casing does not emit fluorescence, which is excitation light or measurement light, to the outside of the light-induced fluorescence measurement device 1, and light from the outside enters the fluorescence collection optical system 9 or the like. Nor. The pigment-containing resin 27 functions as a light absorption layer for noise light.

図2(a)は、ラマン光101が、観測光103の波長域の一部に重なって観測されるスペクトルのモデル図である。例えば、励起光105(測定光)をYAGレーザの第2高調波(λ=532nm)、透明シリコーン樹脂をPDMS、測定試料をRhodamine Bとすると、図2(a)に示すように、観測光103(ストークスシフト光)は、波長550〜650nmに発生するとともにラマン光101は波長630nm付近に発生する。この場合、観測光103の波長域(550〜650nm)内に、PDMSを励起光105が通過する際に発生するラマン光101(630nm)がある。そのため、観測光103の強度にはノイズとなるラマン光101の強度が含まれる。   FIG. 2A is a model diagram of a spectrum in which the Raman light 101 is observed overlapping a part of the wavelength range of the observation light 103. For example, when the excitation light 105 (measurement light) is the second harmonic of a YAG laser (λ = 532 nm), the transparent silicone resin is PDMS, and the measurement sample is Rhodamine B, as shown in FIG. (Stokes-shifted light) is generated at a wavelength of 550 to 650 nm, and Raman light 101 is generated near a wavelength of 630 nm. In this case, the Raman light 101 (630 nm) generated when the excitation light 105 passes through the PDMS is within the wavelength range (550 to 650 nm) of the observation light 103. Therefore, the intensity of the observation light 103 includes the intensity of the Raman light 101 that becomes noise.

また一般に、励起光105の強度が大きくなると、ラマン光101の強度も大きくなる。そのため、励起光105の強度が変動すると、ノイズ光となるラマン光101の強度も変動する。   In general, when the intensity of the excitation light 105 increases, the intensity of the Raman light 101 also increases. Therefore, when the intensity of the excitation light 105 varies, the intensity of the Raman light 101 that becomes noise light also varies.

図5に参照されるように、測定部は試料ケース(PCR管)に保持された試料Sにより構成される。詳細には、まず試料ケース挿入部2aにPCR管が挿入される。すなわち、PCR管は、SOT構造を有する本体10に挿入される。試料Sが保持されるPCR管先端は、本体10の最外部に存在する顔料含有シリコーン樹脂を通過し、励起光(例えばレーザ装置から放出される波長532nmのレーザ光)が照射する位置にセットされる。   As shown in FIG. 5, the measurement unit includes a sample S held in a sample case (PCR tube). Specifically, first, a PCR tube is inserted into the sample case insertion portion 2a. That is, the PCR tube is inserted into the main body 10 having the SOT structure. The tip of the PCR tube that holds the sample S passes through the pigment-containing silicone resin existing on the outermost part of the main body 10 and is set at a position where excitation light (for example, laser light with a wavelength of 532 nm emitted from the laser device) is irradiated. The

このとき、PCR管の挿入具合によっては、試料Sが存在する位置のPCR管表面と透明シリコーン樹脂との接触具合や試料Sの上記挿入方向の位置(測定部の位置精度)が変化する。このような変動が発生すると、PCR管を経由して又はPCR管で散乱して、図4の透明シリコーン樹脂(PDMS)へ進む励起光の強度も変動し、結果として、ノイズ光となるラマンシフト光の強度も変動する。   At this time, depending on how the PCR tube is inserted, the contact state between the surface of the PCR tube where the sample S exists and the transparent silicone resin and the position of the sample S in the insertion direction (positioning accuracy of the measuring unit) change. When such fluctuations occur, the intensity of the excitation light that travels through the PCR tube or is scattered by the PCR tube and travels to the transparent silicone resin (PDMS) in FIG. 4 also fluctuates, resulting in a Raman shift that becomes noise light. The light intensity also varies.

図2(b)は、本発明に用いるフィルタ部材の一例の透過率を示す図である。図2(a)に示されるようなノイズ光の影響を抑制するために、ラマン光101の波数域の光をカットし、その他の波数域の光を透過させるような透過特性を有するフィルタ部材を、SOTを採用した光学系構造において、測定器(光電子増倍管)の光入射側に挿入する。   FIG.2 (b) is a figure which shows the transmittance | permeability of an example of the filter member used for this invention. In order to suppress the influence of noise light as shown in FIG. 2A, a filter member having a transmission characteristic that cuts light in the wavenumber region of Raman light 101 and transmits light in other wavenumber regions is provided. In the optical system structure adopting SOT, it is inserted into the light incident side of a measuring instrument (photomultiplier tube).

その結果、図2(c)に示すように、ラマン光101の影響がキャンセルされた観測光107を得ることができる。なお、同図に示すように、フィルタ部材により観測光103の一部もカットされるので、観測光107の強度は観測光103に比べて減少することになる。しかし、変動するラマン光101の成分がカットされることになるので、S/N比が上がり、測定精度を向上させることができる。すなわち、本実施例に係る光学系構造体を用いて敢えて観測光103の一部をカットすることにより、測定精度を向上させるものである。   As a result, as shown in FIG. 2C, the observation light 107 in which the influence of the Raman light 101 is canceled can be obtained. As shown in the figure, since part of the observation light 103 is also cut by the filter member, the intensity of the observation light 107 is reduced compared to the observation light 103. However, since the component of the fluctuating Raman light 101 is cut, the S / N ratio is increased and the measurement accuracy can be improved. That is, the measurement accuracy is improved by intentionally cutting a part of the observation light 103 using the optical system structure according to the present embodiment.

続いて、図3を参照して、そもそもラマン光を観測光に重複させないように設定することで、ノイズ光を低減させる光学系について説明する。本実施例に係る光誘起蛍光測定装置は、実施例1の光誘起蛍光測定装置1の構成に加えて、光源の波数を調整する波数調整部(本願請求項における「波数調整部」の一例)をさらに備える。波数調整部は、例えば、非線形光学結晶を用いて実装可能である。   Next, an optical system that reduces noise light by setting the Raman light so as not to overlap the observation light will be described with reference to FIG. In addition to the configuration of the light-induced fluorescence measurement device 1 of the first embodiment, the light-induced fluorescence measurement device according to the present embodiment adjusts the wave number of the light source (an example of the “wave number adjustment unit” in the claims of the present application). Is further provided. The wave number adjusting unit can be mounted using, for example, a nonlinear optical crystal.

観測光の波数域は、試料S(蛍光試料)の特性と、測定光(励起光)の波数により変動する。一方、透明シリコーン樹脂に対するラマンシフト量の変動は、励起光の波数が変わってもあまり変わらない。以上をふまえ、試料S(蛍光試料)の特性と、励起光115の波数との関係を考慮することにより、図3(a)に示すようにラマン光111の波数が観測光113の波数域と重複しないように設定することが可能となる。   The wave number range of the observation light varies depending on the characteristics of the sample S (fluorescence sample) and the wave number of the measurement light (excitation light). On the other hand, the variation of the Raman shift amount with respect to the transparent silicone resin does not change much even if the wave number of the excitation light changes. Based on the above, by considering the relationship between the characteristics of the sample S (fluorescent sample) and the wave number of the excitation light 115, the wave number of the Raman light 111 is changed to the wave number region of the observation light 113 as shown in FIG. It is possible to set so as not to overlap.

ここで、通常の蛍光測定においては、励起光の波数は、観測光の強度が最大となる最大励起波数に設定する。しかし、本実施例では敢えて最大励起波数ではなく、ラマンシフト光と観測光の重複を避けられる波数域に設定した。   Here, in normal fluorescence measurement, the wave number of the excitation light is set to the maximum excitation wave number that maximizes the intensity of the observation light. However, in this embodiment, the wave number range is set to avoid the overlap of Raman shift light and observation light, not the maximum excitation wave number.

ラマン光111の影響を抑制するために、図3(b)に示すような、ラマン光111の波数域の光をカットし、その他の波数域の光を透過させるような透過特性を有するフィルタ部材を、上記SOTを採用した光学系構造において、測定器(光電子増倍管)の光入射側に挿入する。   In order to suppress the influence of the Raman light 111, as shown in FIG. 3B, a filter member having a transmission characteristic that cuts light in the wavenumber region of the Raman light 111 and transmits light in other wavenumber regions. Is inserted into the light incident side of the measuring instrument (photomultiplier tube) in the optical system structure employing the above SOT.

その結果、図3(c)に示すように、ノイズ光がカットされ、観測光を得ることができる。上記したように、ラマンシフトに起因するノイズ光の波数が観測光の波数域と重複していないので、フィルタ部材により観測光の一部がカットされることがない。よって、観測光の強度を減少させることなく、変動するノイズ光成分がカットすることが可能となり、S/N比が上がり、更に測定精度を向上させることができる。   As a result, as shown in FIG.3 (c), noise light is cut and observation light can be obtained. As described above, since the wave number of the noise light due to the Raman shift does not overlap with the wave number range of the observation light, a part of the observation light is not cut by the filter member. Therefore, it is possible to cut the fluctuating noise light component without reducing the intensity of the observation light, increase the S / N ratio, and further improve the measurement accuracy.

なお、図1に示す第1色ガラスフィルタ23(本願請求項における「色ガラスフィルタ」の一例)と、第2色ガラスフィルタ23(本願請求項における「色ガラスフィルタ」の一例)でラマンシフトに起因するノイズ光を十分に減衰させてもよい。この場合、第1色ガラスフィルタ23及び第2色ガラスフィルタ23が前記ラマン光111の波数域の光をカットするフィルタ部材を兼ねた構成といえる。このように、複数の部材によりフィルタ部材を実現してもよい。例えば、ラマン光の波長よりも長波長側を通過させるハイパスフィルタと、ラマン光の波長よりも低波長側を通過させるローパスフィルタとを組み合わせてフィルタ部材として用いてもよい。 Note that the first color glass filter 23 1 (an example of “color glass filter” in the claims of the present application) and the second color glass filter 23 2 (an example of “color glass filter” in the claims of the present application) shown in FIG. The noise light resulting from the shift may be sufficiently attenuated. In this case, it can be said that the configuration 2 first color glass filter 23 1 and second color glass filter 23 also serves as a filter member for cutting off light of wavenumber range of the Raman light 111. In this way, the filter member may be realized by a plurality of members. For example, a high-pass filter that passes a longer wavelength side than the wavelength of Raman light and a low-pass filter that passes a lower wavelength side than the wavelength of Raman light may be used in combination as a filter member.

また、ラマン光の波数が観測光の波数域から外れる場合、光学測定装置が測定部として分光器を用いて観測光の波数域のみを測定することにより、ラマン光の測定に及ぼす影響を排除することが可能となる。このような場合は、光学測定装置がフィルタ部材を備えずともよい。   In addition, when the wave number of Raman light deviates from the wave number range of observation light, the optical measurement device uses a spectroscope as a measurement unit to measure only the wave number range of observation light, thereby eliminating the influence on Raman light measurement. It becomes possible. In such a case, the optical measurement device may not include the filter member.

なお、実施例1及び2において、図2(b)、図3(b)に示すような特性を有するフィルタ部材は干渉フィルタである。そのため、フィルタ部材は、図1に示すように、平行光路内に挿入される。   In Examples 1 and 2, the filter member having the characteristics shown in FIGS. 2B and 3B is an interference filter. Therefore, the filter member is inserted into the parallel optical path as shown in FIG.

なお、実施例2において、光誘起蛍光測定装置が、光源の波数を調整する波数調整部を備えるとした。しかし、観測光の光強度が最大となる波数とは異なる波数の励起光を光源として備える光誘起蛍光測定装置を用いてもよい。この場合も、必要に応じて、光誘起蛍光測定装置が波数調整部を備えていてもよい。   In Example 2, the light-induced fluorescence measurement device includes a wave number adjusting unit that adjusts the wave number of the light source. However, a light-induced fluorescence measurement apparatus that includes excitation light having a wave number different from the wave number that maximizes the light intensity of the observation light as a light source may be used. Also in this case, the light-induced fluorescence measurement device may include a wave number adjustment unit as necessary.

また、実施例1及び2において、光学測定装置として光誘起蛍光測定装置を想定した。しかし、媒質が固体又は液体で充填されている光学系のように、ラマン光がS/N比に及ぼす影響が無視できないほど大きい光学系を含む光学測定装置であれば本発明を適用可能である。光学測定装置は、光有機傾向測定装置以外の装置であってもよい。   In Examples 1 and 2, a light-induced fluorescence measurement device was assumed as the optical measurement device. However, the present invention can be applied to any optical measurement apparatus including an optical system in which the influence of Raman light on the S / N ratio is not negligible, such as an optical system in which a medium is filled with a solid or liquid. . The optical measurement device may be a device other than the photoorganic tendency measurement device.

1・・・光誘起蛍光測定装置、3・・・固体光源、5・・・試料、7・・・試料ケース、9・・・蛍光収集光学系、11・・・蛍光測定器、13・・・レーザービーム照射空間、15・・・第1レンズ、17・・・第2レンズ、19・・・ラマンフィルタ、21・・・ノッチフィルタ、23・・・色ガラスフィルタ、25・・・透明樹脂、27・・・顔料含有樹脂、29・・・電力源、101及び111・・・ラマン光、103、107、113・・・観測光、105及び115・・・励起光 DESCRIPTION OF SYMBOLS 1 ... Photo-induced fluorescence measuring apparatus, 3 ... Solid light source, 5 ... Sample, 7 ... Sample case, 9 ... Fluorescence collection optical system, 11 ... Fluorescence measuring device, 13 ... Laser beam irradiation space, 15 ... first lens, 17 ... second lens, 19 ... Raman filter, 21 ... notch filter, 23 ... color glass filter, 25 ... transparent resin 27 ... Pigment-containing resin, 29 ... Power source, 101 and 111 ... Raman light, 103, 107, 113 ... Observation light, 105 and 115 ... Excitation light

Claims (18)

光学測定系において波数k1の第1光を測定試料に照射して発生する観測光を透過する光路部と、前記光路部への外部からの光を遮ると共に屈折率が前記光路部とマッチングされていることにより前記光路部の内部のノイズ光を低減する遮光部とを備える光学系構造体であって、
前記光路部は、媒質として固体又は液体が用いられており、
前記光路部の内部に、前記第1光が前記光路部を通過するときに生じるラマンシフトに起因する波数k2の第2光の進行を遮るフィルタ部材を備える、光学系構造体。
In the optical measurement system, an optical path portion that transmits observation light generated by irradiating the measurement sample with the first light having a wave number k1 is blocked, light from the outside to the optical path portion is blocked, and a refractive index is matched with the optical path portion. An optical system structure including a light-shielding portion that reduces noise light inside the optical path portion by being,
The optical path portion uses a solid or liquid as a medium,
An optical system structure comprising: a filter member that blocks the progress of the second light having a wave number of k2 due to a Raman shift that occurs when the first light passes through the optical path, inside the optical path.
前記フィルタ部材が遮る前記波数k2は、前記観測光の波数域に含まれる、請求項1記載の光学系構造体。   The optical system structure according to claim 1, wherein the wave number k2 blocked by the filter member is included in a wave number region of the observation light. 前記フィルタ部材の少なくとも一方の面が前記光路部に接触している、請求項1又は2記載の光学系構造体。   The optical system structure according to claim 1 or 2, wherein at least one surface of the filter member is in contact with the optical path portion. 前記光路部は、可撓性を有する、請求項1から3のいずれかに記載の光学系構造体。   The optical system structure according to claim 1, wherein the optical path portion has flexibility. 前記光路部は、シリコーン樹脂である、請求項4記載の光学系構造体。   The optical system structure according to claim 4, wherein the optical path portion is a silicone resin. 前記シリコーン樹脂は、PDMSである、請求項5記載の光学系構造体。   The optical system structure according to claim 5, wherein the silicone resin is PDMS. 前記遮光部の媒質として、前記光路部の媒質と屈折率が同じ媒質が用いられている、請求項1から6のいずれかに記載の光学系構造体。   The optical system structure according to claim 1, wherein a medium having the same refractive index as that of the medium of the optical path part is used as the medium of the light shielding part. 前記遮光部は、光を吸収する顔料を分散させて含有する、請求項1から7のいずれかに記載の光学系構造体。   The optical system structure according to any one of claims 1 to 7, wherein the light shielding portion contains a pigment that absorbs light in a dispersed manner. 光学測定系において測定試料に波数k1の第1光を照射して発生する観測光を観測する光学測定装置であって、
前記第1光を照射する光源と、
媒質として固体又は液体が用いられており前記観測光を透過する光路部と、
前記光路部への外部からの光を遮ると共に、屈折率が前記光路部とマッチングされていることにより前記光路部の内部のノイズ光を低減する遮光部と、
前記観測光を観測する測定部と、
前記光路部の内部に、前記第1光が前記光路部を通過するときに生じるラマンシフトに起因する波数k2の第2光の進行を遮るフィルタ部材とを備える、光学測定装置。
An optical measurement apparatus for observing observation light generated by irradiating a measurement sample with first light having a wave number k1 in an optical measurement system,
A light source for irradiating the first light;
A solid or liquid medium is used as a medium, and an optical path that transmits the observation light;
A light blocking unit that blocks light from outside to the optical path unit and reduces noise light inside the optical path unit by having a refractive index matched with the optical path unit;
A measurement unit for observing the observation light;
An optical measurement apparatus, comprising: a filter member that blocks the progress of the second light having a wave number k2 due to a Raman shift that occurs when the first light passes through the optical path part inside the optical path part.
前記第1光の波数を前記観測光の光強度が最大となる波数とは異なる波数に調整する波数調整部をさらに備える、請求項9記載の光学測定装置。   The optical measurement apparatus according to claim 9, further comprising a wave number adjusting unit that adjusts the wave number of the first light to a wave number different from a wave number at which the light intensity of the observation light is maximized. 前記波数調整部は、前記第2光の波数が前記観測光の波数域とは異なる波数となるように、前記第1光の波数を調整する、請求項10記載の光学測定装置。   The optical measurement device according to claim 10, wherein the wave number adjusting unit adjusts the wave number of the first light so that the wave number of the second light is different from a wave number range of the observation light. レンズ、ノッチフィルタ及び色ガラスフィルタをさらに備える、請求項9から11のいずれかに記載の光学測定装置。   The optical measurement apparatus according to claim 9, further comprising a lens, a notch filter, and a color glass filter. 前記光源から前記測定部に至る光路において、
前記第1光及び前記第2光を平行光とする第1レンズと、
前記第1光を反射するノッチフィルタと、
前記観測光以外の光を吸収する色ガラスフィルタと、
前記観測光を含む光を集光する第2レンズと、
前記第2レンズの光軸上であって、前記第2光が集光される位置の近傍にあるアパーチャとを、順に配置されるようにさらに備え、
前記フィルタ部材は、前記第1レンズ及び前記第2レンズの間に配置されている、請求項9から12のいずれかに記載の光学測定装置。
In the optical path from the light source to the measurement unit,
A first lens that collimates the first light and the second light;
A notch filter that reflects the first light;
A colored glass filter that absorbs light other than the observation light;
A second lens that collects light including the observation light;
An aperture located on the optical axis of the second lens and in the vicinity of the position where the second light is condensed, so as to be sequentially arranged;
The optical measurement apparatus according to claim 9, wherein the filter member is disposed between the first lens and the second lens.
光学測定系において測定試料に波数k1の第1光を照射して発生する観測光を観測する光学測定装置を用いた光学測定方法であって、
前記光学測定装置は、
前記第1光を照射する光源と、
媒質として固体又は液体が用いられており前記観測光を透過する光路部と、
前記光路部への外部からの光を遮ると共に、屈折率が前記光路部とマッチングされていることにより前記光路部の内部のノイズ光を低減する遮光部と、
前記観測光を観測する測定部と、
前記光路部の内部に、前記第1光が前記光路部を通過するときに生じるラマンシフトに起因する波数k2の第2光の進行を遮るフィルタ部材とを有し、
前記光源が、前記第1光を照射する励起光照射ステップと、
前記フィルタ部材が、前記第2光を遮るフィルタリングステップとを含む、光学測定方法。
An optical measurement method using an optical measurement device for observing observation light generated by irradiating a measurement sample with first light having a wave number k1 in an optical measurement system,
The optical measuring device comprises:
A light source for irradiating the first light;
A solid or liquid medium is used as a medium, and an optical path that transmits the observation light;
A light blocking unit that blocks light from outside to the optical path unit and reduces noise light inside the optical path unit by having a refractive index matched with the optical path unit;
A measurement unit for observing the observation light;
A filter member that blocks the progress of the second light having a wavenumber k2 due to a Raman shift that occurs when the first light passes through the optical path, inside the optical path;
An excitation light irradiation step in which the light source irradiates the first light;
The optical measurement method, wherein the filter member includes a filtering step of blocking the second light.
前記励起光照射ステップにおいて、前記光源は、前記第1光として、前記第2光の波数が前記観測光の波数域とは異なる波数となるような波数の光を照射する、請求項14記載の光学測定方法。   15. The excitation light irradiation step, wherein the light source irradiates light having a wave number such that a wave number of the second light is different from a wave number range of the observation light as the first light. Optical measurement method. 前記光学測定装置は、前記第1光の波数を前記観測光の光強度が最大となる波数とは異なる波数に調整する波数調整部をさらに有し、
前記励起光照射ステップの後に、前記波数調整部が、前記第1光の波数を調整する調整ステップをさらに含む、請求項14記載の光学測定方法。
The optical measurement device further includes a wave number adjustment unit that adjusts the wave number of the first light to a wave number different from the wave number at which the light intensity of the observation light is maximized,
The optical measurement method according to claim 14, further comprising an adjustment step in which the wave number adjusting unit adjusts the wave number of the first light after the excitation light irradiation step.
前記調整ステップにおいて、前記波数調整部は、前記第2光の波数が前記観測光の波数域とは異なる波数となるように、前記第1光の波数を調整する、請求項16記載の光学測定方法。   The optical measurement according to claim 16, wherein, in the adjustment step, the wave number adjusting unit adjusts the wave number of the first light so that the wave number of the second light is different from a wave number range of the observation light. Method. 前記波数k2が前記観測光の波数域に含まれており、
前記フィルタリングステップにおいて、前記フィルタ部材が、前記観測光の波数域の一部である波数k2の光を遮る、請求項14記載の光学測定方法。
The wave number k2 is included in the wave number region of the observation light,
The optical measurement method according to claim 14, wherein, in the filtering step, the filter member blocks light having a wave number k2, which is a part of a wave number region of the observation light.
JP2016042820A 2016-03-04 2016-03-04 Optical system structure, optical measuring device and optical measuring method Active JP6664771B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016042820A JP6664771B2 (en) 2016-03-04 2016-03-04 Optical system structure, optical measuring device and optical measuring method
CN201790000627.4U CN209215224U (en) 2016-03-04 2017-02-24 Optical system tectosome and optical detecting device
KR1020187027404A KR102150577B1 (en) 2016-03-04 2017-02-24 Optical system structure, optical measuring device, and optical measuring method
PCT/JP2017/007063 WO2017150369A1 (en) 2016-03-04 2017-02-24 Optical system structure, optical measurement device, and optical measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016042820A JP6664771B2 (en) 2016-03-04 2016-03-04 Optical system structure, optical measuring device and optical measuring method

Publications (2)

Publication Number Publication Date
JP2017156331A true JP2017156331A (en) 2017-09-07
JP6664771B2 JP6664771B2 (en) 2020-03-13

Family

ID=59743920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016042820A Active JP6664771B2 (en) 2016-03-04 2016-03-04 Optical system structure, optical measuring device and optical measuring method

Country Status (4)

Country Link
JP (1) JP6664771B2 (en)
KR (1) KR102150577B1 (en)
CN (1) CN209215224U (en)
WO (1) WO2017150369A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781185A (en) * 2020-08-12 2020-10-16 济南国益生物科技有限公司 Multi-fluorescence channel detection system for real-time fluorescence quantitative PCR

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688785A (en) * 1992-09-07 1994-03-29 Daikin Ind Ltd Luminescence-type immunoassay device
JPH09105738A (en) * 1995-10-09 1997-04-22 Hitachi Ltd Fluorescence detecting type capillary array electrophoretic device
JP2000131145A (en) * 1998-10-23 2000-05-12 Jasco Corp Spectrochemical analysis device
US6352502B1 (en) * 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
JP2003247981A (en) * 2003-02-14 2003-09-05 Hitachi Ltd Fluorescence detecting type capillary array electrophoretic device
US20050248758A1 (en) * 2004-05-07 2005-11-10 Carron Keith T Raman spectrometer
WO2010087477A1 (en) * 2009-01-30 2010-08-05 富士フイルム株式会社 Holding device for an item to be measured, holding device for living organisms and optical measuring device
JP2014032064A (en) * 2012-08-02 2014-02-20 Kyushu Univ Photoinduction fluorescence measuring instrument
JP2014140314A (en) * 2013-01-22 2014-08-07 Azbil Corp Microbial detection system and microbial detection method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688785A (en) * 1992-09-07 1994-03-29 Daikin Ind Ltd Luminescence-type immunoassay device
JPH09105738A (en) * 1995-10-09 1997-04-22 Hitachi Ltd Fluorescence detecting type capillary array electrophoretic device
JP2000131145A (en) * 1998-10-23 2000-05-12 Jasco Corp Spectrochemical analysis device
US6352502B1 (en) * 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
JP2003247981A (en) * 2003-02-14 2003-09-05 Hitachi Ltd Fluorescence detecting type capillary array electrophoretic device
US20050248758A1 (en) * 2004-05-07 2005-11-10 Carron Keith T Raman spectrometer
WO2010087477A1 (en) * 2009-01-30 2010-08-05 富士フイルム株式会社 Holding device for an item to be measured, holding device for living organisms and optical measuring device
JP2014032064A (en) * 2012-08-02 2014-02-20 Kyushu Univ Photoinduction fluorescence measuring instrument
JP2014140314A (en) * 2013-01-22 2014-08-07 Azbil Corp Microbial detection system and microbial detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ナノフォトン株式会社: "ラマン分光装置とは", ラマン分光法のきほん, JPN7017000989, 6 July 2013 (2013-07-06), JP, ISSN: 0004149409 *

Also Published As

Publication number Publication date
JP6664771B2 (en) 2020-03-13
KR102150577B1 (en) 2020-09-01
WO2017150369A1 (en) 2017-09-08
CN209215224U (en) 2019-08-06
KR20180113609A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP6399520B2 (en) Optical measuring device and optical measuring method
JP6397431B2 (en) Fiber optic probe for remote spectroscopy
US9377351B2 (en) Angle of incidence selective band pass filter for implantable chemical sensor
US20180038798A1 (en) Portable raman device
JP5665811B2 (en) Light-induced fluorescence measuring instrument
CN103822910A (en) Raman probes for miniature Raman spectrometer
US10295408B2 (en) Raman spectroscopy system
CN108169211A (en) A kind of Raman spectrum enhances measuring system
JP2016121926A (en) Optical analyzer
JP6682095B2 (en) Optical member and light guide member
WO2017150369A1 (en) Optical system structure, optical measurement device, and optical measurement method
US9134177B2 (en) Self-referencing fiber-optic Raman probe
CN207689375U (en) Lower wave number Raman Measurement system
JP7205190B2 (en) Optical measuring instrument
JP6931895B2 (en) Optical members, optical light guide members, and methods for producing optical members
JP2018518669A (en) Optical analysis system with optical delivery of an optical conduit
US11313798B2 (en) Optical measuring device, light guide member, and optical measuring method
JP6188157B2 (en) Optical measuring device and optical measuring method
JP2016224135A (en) Optical member, light guide member, and manufacturing method for optical member
CN110892249B (en) Light measuring device, light guide member, and light measuring method
JP6821109B2 (en) Optical system structure, optical measuring device and optical measuring method
WO2018105502A1 (en) Optical member, light measuring device, sample holding member, light measuring system and specific wavelength light gathering member
CN108240980A (en) Optical fiber probe Raman system
JP2016017883A (en) Photoprobe and measurement device
WO2016190016A1 (en) Optical member, light guiding member, and method for producing optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200207

R150 Certificate of patent or registration of utility model

Ref document number: 6664771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250