JP2017155323A - Processing method of surface of magnesium metal material - Google Patents

Processing method of surface of magnesium metal material Download PDF

Info

Publication number
JP2017155323A
JP2017155323A JP2016054486A JP2016054486A JP2017155323A JP 2017155323 A JP2017155323 A JP 2017155323A JP 2016054486 A JP2016054486 A JP 2016054486A JP 2016054486 A JP2016054486 A JP 2016054486A JP 2017155323 A JP2017155323 A JP 2017155323A
Authority
JP
Japan
Prior art keywords
metal material
lacquer
magnesium
lacquer component
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016054486A
Other languages
Japanese (ja)
Inventor
政弘 秋本
Masahiro Akimoto
政弘 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ART FIRST CO Ltd
Original Assignee
ART FIRST CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ART FIRST CO Ltd filed Critical ART FIRST CO Ltd
Priority to JP2016054486A priority Critical patent/JP2017155323A/en
Publication of JP2017155323A publication Critical patent/JP2017155323A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To develop a metal material product having beauty and corrosion resistance in combination by forming a fast coating film of a lacquer on a metal material surface, by charging, carrying and immobilizing a lacquer component in fine pores on a magnesium alloy surface.SOLUTION: A processing method is provided in which on a material surface of magnesium or a magnesium alloy, a porous layer having many fine pores of an average pore size of 50 nm to 30 μm and, on a lower part thereof, a pore-free layer (barrier layer) made of magnesium oxide are formed by anodic oxidation, a lacquer component-containing liquid is impregnated inside of the pores of the porous layer, followed by immobilizing by drying for a short time to charge the lacquer component in the fine pores of the porous layer and to form a corrosion-resistant lacquer coating film on a surface of the magnesium metal material. In order to use the lacquer component by diluting, a concentration of the lacquer component-containing liquid is preferably varied by application means to the metal material such as brush coating or a soaking impregnation method. The corrosion resistance is remarkably improved.

Description

本発明は、マグネシウム系金属材料の処理方法に関するものである。The present invention relates to a method for treating a magnesium-based metal material.

マグネシウム系金属材料は最軽量金属材料として各種製品に多用されているが、空気雰囲気下に腐食されやすく、通常陽極酸化法や塗装などにより表面処理がなされている。
陽極酸化法によって表面処理する場合は処理表面の粗さを少なくするため比較的低電圧で酸化処理を行うため、表面に形成される層は水酸化マグネシウムを主成分とするものとなり、比較的やわらかい表面となり、傷が付きやすく、その部分からの腐食進行が起き易い欠点がある。
Magnesium-based metal materials are widely used in various products as the lightest metal materials, but they are easily corroded in an air atmosphere, and are usually surface-treated by anodizing or painting.
When surface treatment is performed by anodization, the surface treatment is performed at a relatively low voltage to reduce the roughness of the treated surface, so the layer formed on the surface is composed mainly of magnesium hydroxide and is relatively soft. There is a drawback that it becomes a surface, is easily scratched, and corrosion progresses easily from that portion.

一方で、陽極酸化の際に比較的に高電圧を用いると表面層成分は酸化マグネシウムが主成分となり、固い層となり、耐擦過性は向上するが、表面に形成される微細孔の孔径が水酸化マグネシウムを主成分とする場合に比して大きくなってしまい、結果として表面が粗くなり、光沢なども劣ってくるという欠点を有している。また、ラッパ状の微細孔の孔径が大きいので、それが基点となって生地であるマグネシウム金属自体の腐食を生じ易くさせるので、耐食性の改良も必要とされている。On the other hand, if a relatively high voltage is used during anodic oxidation, the surface layer component is composed mainly of magnesium oxide and becomes a hard layer, which improves the scratch resistance, but the pore size of the micropores formed on the surface is water. As compared with the case of using magnesium oxide as a main component, it becomes larger, and as a result, the surface becomes rough and the gloss and the like are inferior. In addition, since the diameter of the trumpet-shaped micropores is large, it becomes a base point to easily cause corrosion of the magnesium metal itself, which is a material, so that the corrosion resistance is also improved.

上述のような欠点を補うためにラッパ状の微細孔を封孔する方法として、従来蒸気加圧法、金属含浸、有機物含浸、無機物含浸法などが行なわれているが、効果が充分ではない。リチウムシリケートを用いる方法も知られているがこれは封孔によって一時的に耐摩耗性が改良されるがその効果が長続きはしない。また、従来の有機系塗装では耐摩耗性や表面硬度を高めることが出来ない。As a method for sealing the trumpet-shaped micropores in order to compensate for the above-mentioned drawbacks, a conventional steam pressurization method, metal impregnation, organic matter impregnation, inorganic matter impregnation method and the like have been performed, but the effect is not sufficient. A method using lithium silicate is also known, but this temporarily improves the wear resistance by sealing, but the effect does not last long. In addition, conventional organic coating cannot increase wear resistance and surface hardness.

一方、漆は木製品へは古くから適用され、美術・芸術品、実用品として愛用されているが、金属製品に対しては密着性が不十分ですぐに剥がれてしまうため、下地としてプライマーを使用してからの適用例が散見されるに過ぎない。例えばアルミニウム金属材料の表面に直接漆を塗布しても密着性が悪く実用にならない。そしてチタンや鉄材料表面に適用するときは密着性を向上させるために100〜180℃で加熱処理を行なうことが必要条件となっている。プライマーを使用して密着性を向上させた場合、トップコートとしての漆成分のもつ硬度が充分発揮できない。例えば、「最近のマグネシウム合金表面処理の現状と課題」(日本マグネシウム協会:平成15年9月2日)によると、マグネシウム金属表面上にエポキシ系のプライマーを塗付後、トップコートとして、6Hの硬度を持つ塗料を塗付した時の、塗膜硬さはプライマーの硬さである3Hとなる。つまりトップコートの硬度を上げてもプライマーの硬度がないとトップコートの硬さが発揮されないのである。On the other hand, lacquer has been applied to wood products for a long time and has been used habitually as art, arts, and practical products. Only a few examples of application have been made since then. For example, even if lacquer is applied directly to the surface of an aluminum metal material, the adhesion is poor and it is not practical. And when applying to the surface of titanium or an iron material, in order to improve adhesiveness, it is a necessary condition to heat-process at 100-180 degreeC. When the adhesion is improved by using a primer, the hardness of the lacquer component as a top coat cannot be sufficiently exhibited. For example, according to “Current Status and Issues of Recent Magnesium Alloy Surface Treatment” (Japan Magnesium Association: September 2, 2003), after applying an epoxy primer on the magnesium metal surface, When a paint having hardness is applied, the coating film hardness is 3H which is the hardness of the primer. That is, even if the hardness of the top coat is increased, the hardness of the top coat cannot be exhibited without the hardness of the primer.

本発明は、従来金属製品への応用が殆ど見られなかった漆をマグネシウム金属製品に対してプライマーの使用無く適用し、かつ通常は金属に適用した場合に必要となる100〜180℃での加熱処理を省略してマグネシウム金属材料の欠点を克服したものであって、特に従来試されたことのない漆を希釈するという手段を用いて、表面硬度が高く、耐摩耗性、耐擦過性、耐食性に優れた製品の製造を可能にする処理方法の提供を目的とする。The present invention applies lacquer, which has hardly been applied to conventional metal products, to magnesium metal products without using a primer, and is usually heated at 100 to 180 ° C. when applied to metals. By overcoming the disadvantages of magnesium metal materials by omitting the treatment, especially by means of diluting lacquer that has never been tried before, the surface hardness is high, wear resistance, scratch resistance, corrosion resistance It is an object of the present invention to provide a processing method that makes it possible to produce excellent products.

本発明は、平均孔径が10nm〜30μmの微細孔を有する多孔質層を表面層として持つマグネシウムまたはマグネシウム合金金属材料の表面に、漆成分を含有する液を直接適用し、少なくとも該微細孔内部に漆を含浸させ、湿度30〜80%、20〜70℃の温度雰囲気下に10分以上処理し、更に常温で12時間以上放置することで乾燥させることを特徴とするマグネシウム金属材料表面の処理方法である。
なお、本発明において漆成分を含有する液とは、漆成分が溶剤に完全に溶解または溶剤と完全に均一に混合しているものだけを意味するのではなく、漆成分が溶剤中に懸濁状で存在する液の場合も意味している。
In the present invention, a liquid containing a lacquer component is directly applied to the surface of a magnesium or magnesium alloy metal material having a porous layer having a fine pore with an average pore diameter of 10 nm to 30 μm as a surface layer, and at least inside the fine pore. A method for treating a magnesium metal material surface, which is impregnated with lacquer, treated in a humidity atmosphere of 30 to 80%, and a temperature atmosphere of 20 to 70 ° C. for 10 minutes or more, and further dried by standing at room temperature for 12 hours or more. It is.
In the present invention, the liquid containing the lacquer component does not mean that the lacquer component is completely dissolved in the solvent or mixed with the solvent completely, but the lacquer component is suspended in the solvent. This also means a liquid that exists in the form of a liquid.

漆成分含有液をマグネシウムまたはマグネシウム合金金属材料の表面に直接適用し、少なくとも微細孔内部に含浸させる場合には、塗布または含浸の方法に応じてその漆成分濃度を変えることが適当であり、例えば、はけ塗り、浸漬法またはスプレー法で材料表面または表層近傍に適用する場合には、漆成分含有液として濃度を比較的高くした液が好ましいが、塗りまたは浸漬の適用回数などに依存するので、漆成分を5〜50%含有するものから適宜に選択できる。漆成分含有の濃度が高い場合は液の材料表面への塗布は1回でも十分の時もあるが、通常は2回以上繰り返すことが好ましい。乾燥時間は前記したように第一次乾燥として湿度30〜80%、温度20〜70℃の大気雰囲気下に10分以上、好ましくは30分以上処理し、更に第二次乾燥として常温雰囲気で12時間以上放置する方法で行われるが、塗布を2回以上行なう場合には1回目に塗られた塗膜を第一次乾燥しただけで2回目以降の塗布をすることが好ましい。When the lacquer component-containing liquid is applied directly to the surface of the magnesium or magnesium alloy metal material and impregnated at least inside the micropores, it is appropriate to change the concentration of the lacquer component depending on the method of application or impregnation, When applying to the surface of the material or near the surface by brushing, dipping or spraying, a liquid with a relatively high concentration is preferred as the lacquer component-containing liquid, but it depends on the number of times of application or dipping. The lacquer component can be appropriately selected from those containing 5 to 50%. When the concentration of the lacquer component is high, the application of the liquid to the material surface may be sufficient even once, but it is usually preferable to repeat it twice or more. As described above, the drying time is a treatment in an air atmosphere having a humidity of 30 to 80% and a temperature of 20 to 70 ° C. for 10 minutes or more, preferably 30 minutes or more as primary drying, and 12 hours in a room temperature atmosphere as secondary drying. Although it is performed by leaving it for a period of time or more, in the case where the coating is performed twice or more, it is preferable to perform the second and subsequent coatings only by first drying the coating film applied for the first time.

一方、浸漬含浸法、浸漬超音波含浸法、減圧後の浸漬含浸法、浸漬後の加圧含浸法、電気泳動法などの方法で金属材料表面に適用する場合には、より濃度の低い溶液を用いることが好ましいが、この場合も漆成分の含有濃度としては5〜50%の範囲で適宜に選んで材料表面に適用することが好ましい。これらの方法は2つ以上を組合せて適用することも出来る。On the other hand, when applied to the surface of a metal material by a dipping impregnation method, a dipping ultrasonic impregnation method, a dipping impregnation method after reduced pressure, a pressurized impregnation method after dipping, or an electrophoresis method, a solution having a lower concentration is used. In this case as well, it is preferable that the content concentration of the lacquer component is appropriately selected within the range of 5 to 50% and applied to the material surface. These methods can be applied in combination of two or more.

本発明において漆成分の含有濃度として示す場合の「%」は、漆成分の使用量を重量(gr)で計量し、これを溶解もしくは懸濁させる溶剤の量を容量(ml)で計量し、重量/容量の比を百分率で表した割合を示している。In the present invention, “%” in the case of showing the content concentration of the lacquer component measures the use amount of the lacquer component by weight (gr), and measures the amount of the solvent for dissolving or suspending it by volume (ml), The ratio of the weight / volume ratio in percentage is shown.

本発明で用いられる漆成分はウルシオール90〜92重量%前後、糖タンパク5〜8重量%、水分2〜5重量%の精製漆を用いている。
一般に漆とは、ウルシオールを主成分(62〜65%)とし、ゴム質と呼ばれる水溶性多糖類(5〜8%)、糖タンパク(1〜3%)などおよび水分(26〜28%)を含んでおり、これはウルシ属植物の樹皮に傷を付けたときに樹液として分泌されるものである。樹液から樹皮やゴミを取り除き、クロメと呼ばれる加熱脱水工程を施して水分量を3〜5%程度に調整した精製漆が実用に供されている。
これら精製漆中の漆成分としてはウルシオール、糖タンパク、水溶性多糖類と一緒に合計で95〜98%含んでいて、この他に水分が含まれる。この精製漆をそのまま本発明に適用すると、漆自体の粘度が高すぎて適用すべきマグネシウム金属材料表面の微細孔内部にアンカー効果が生じるような量の漆成分を含浸させることが出来ない。微細孔の内部に漆を含浸できない場合はマグネシウム金属表面に直接塗布された漆と材料との密着性が不十分となってしまう。このため一般に使用されている精製漆を溶剤によって希釈し、漆成分の濃度によって粘度を調整して用いることが必要で、その程度は漆を金属材料表面に適用する塗布または含浸手段によって変えることが好ましい。
The lacquer component used in the present invention uses purified lacquer having about 90 to 92% by weight of urushiol, 5 to 8% by weight of glycoprotein, and 2 to 5% by weight of water.
In general, lacquer is mainly composed of urushiol (62-65%), water-soluble polysaccharides (5-8%), glycoproteins (1-3%), etc. and water (26-28%). This is secreted as sap when the bark of the genus Ursi is damaged. Purified lacquer, which removes bark and dust from the sap and has been subjected to a heat dehydration process called chrome, has been adjusted to a moisture content of about 3 to 5%, has been put to practical use.
The lacquer component in these refined lacquers contains 95 to 98% in total together with urushiol, glycoprotein, and water-soluble polysaccharide, and in addition, water is contained. If this refined lacquer is applied as it is to the present invention, the lacquer itself has too high viscosity to impregnate the lacquer component in such an amount that an anchor effect is produced inside the micropores on the surface of the magnesium metal material to be applied. If lacquer cannot be impregnated inside the micropores, the adhesion between the lacquer applied directly to the magnesium metal surface and the material will be insufficient. For this reason, it is necessary to dilute commonly used refined lacquer with a solvent and adjust the viscosity according to the concentration of the lacquer component, and the degree can be changed by applying or impregnating means to apply the lacquer to the metal material surface. preferable.

精製漆を希釈する場合の好ましい溶剤(希釈剤)は、灯油、テレピン油、或いはナフテン系、イソパラフィン系、もしくは芳香族系の炭化水素溶剤が好ましい。ナフテン系の炭化水素溶剤としてはエクソンモービル社製のエクソール(TM)Dシリーズ、芳香族系炭化水素溶剤としては同じくエクソンモービル社製のソルベッソ(TM)シリーズの溶剤やベンゼン、ニトロベンゼン、キシレンなどが用いられる。またアセトンなども用いられる。漆成分の濃度が濃すぎると微細孔の内部に充分含浸させることが難しくなり、乾燥時にムラが生じ、塗布面に波目模様等が発生する事があり、外観が劣ることになる。A preferable solvent (diluent) for diluting the purified lacquer is preferably kerosene, turpentine, or a naphthenic, isoparaffinic, or aromatic hydrocarbon solvent. Exxon Mobil's Exol (TM) D series is used as naphthenic hydrocarbon solvent, and Exxon Mobil's Solvesso (TM) series solvent is used as aromatic hydrocarbon solvent, such as benzene, nitrobenzene, xylene, etc. It is done. Acetone is also used. If the concentration of the lacquer component is too high, it is difficult to sufficiently impregnate the inside of the fine pores, unevenness occurs during drying, and a wavy pattern or the like may occur on the coated surface, resulting in poor appearance.

漆の希釈法は、漆成分に溶剤を少しずつ加えて行なう。溶剤の加える量が一定割合を越えて薄くすることは好ましくない。The lacquer dilution method is performed by gradually adding a solvent to the lacquer component. It is not preferable to make the amount of the solvent added thinner than a certain percentage.

本発明は、従来の漆塗布の場合の乾燥に比べると異なる大きな特徴がある。従来法では漆成分を有機溶剤などに希釈して塗布するという発想がなかったので、漆を塗布後には所定の温度・湿度のもとに一日もしくは数日という長時間の乾燥処理をするという操作を何回も繰り返したのち、ようやく製品とされる。この乾燥に要する時間が長いために大量生産をするための生産性という観点からは問題が生じることになる。本発明においては、漆含有の希釈液の塗布後に、湿度30〜80%、温度20〜70℃の雰囲気下に10分以上好ましくは30分〜1時間程度の一次乾燥を施し、複数回の塗布を行う場合は一次乾燥の後に直ぐに次の塗布を行い、次いで常温で12時間以上放置する方法で行われるので、従来法の乾燥時間に比べると著しく短時間で次の各種処理に進むことが可能となる。The present invention has a major feature different from the drying in the case of conventional lacquer coating. In the conventional method, there was no idea that the lacquer component was diluted with an organic solvent and applied, so after applying the lacquer, it was dried for a long time of one day or several days under the specified temperature and humidity. After repeated operation many times, it is finally a product. Since the time required for this drying is long, a problem arises from the viewpoint of productivity for mass production. In the present invention, after the application of the lacquer-containing diluent, primary drying is performed in an atmosphere of 30 to 80% humidity and a temperature of 20 to 70 ° C. for 10 minutes or more, preferably about 30 minutes to 1 hour, and applied multiple times. In the case of performing, the next coating is performed immediately after the primary drying, and then it is allowed to stand at room temperature for 12 hours or more, so it is possible to proceed to the next various processing in a significantly shorter time than the drying time of the conventional method. It becomes.

本発明の大きな特徴は、マグネシウム金属材料表面の特定の微細孔を利用してアンカー効果を発揮させ、漆と金属との密着性を実用に供せられる程度に向上させるために従来必要とされていた100〜180℃での加熱処理を省いても実用に供せられるように密着性を向上させることができることであり、更には溶剤で希釈した漆を利用するという従来の漆業界では殆ど実行されたことのない手法でマグネシウム金属材料の防食効果を発揮させたことである。本発明の処理を行ったマグネシウム金属材料表面に更に通常公知の方法で漆成分を塗布し、更に装飾性の高い製品とすることも可能である。A major feature of the present invention has been conventionally required to exhibit an anchor effect by utilizing specific fine holes on the surface of a magnesium metal material and to improve the adhesion between lacquer and metal to a practical level. It is possible to improve the adhesion so that it can be put to practical use even if the heat treatment at 100 to 180 ° C. is omitted, and it is almost executed in the conventional lacquer industry in which lacquer diluted with a solvent is used. This is the fact that the anticorrosive effect of the magnesium metal material was exhibited by an unprecedented technique. It is also possible to apply a lacquer component to the surface of the magnesium metal material subjected to the treatment of the present invention by a generally known method to obtain a product with higher decorativeness.

本発明に用いられるマグネシウム金属材料は、火花放電を伴う陽極酸化処理によって平均孔径が10nm〜30μmの微細孔が多数存在する多孔質層が表面に形成されている。この層の構成成分は酸化マグネシウムを主成分としており、また形成されている微細孔は3次元の円柱状またはラッパ状の孔構造を有している。このように陽極酸化処理された材料の表面層は表面硬度に優れ、耐摩耗性にも優れているが、一方で時には非常に大きな細孔も形成させるので外観、光沢などの点から欠点がある。本発明ではこの大きな細孔に漆成分を含浸充填し、従来の封孔法では達成できなかった耐食性を付与し、更に金属材料の表面にも塗着させ、これを所要の条件下に乾燥することにより、従来の塗装による処理では達成できなかった表面硬度を長期に亘って維持できるようになった。In the magnesium metal material used in the present invention, a porous layer having a large number of fine pores having an average pore diameter of 10 nm to 30 μm is formed on the surface by anodizing treatment with spark discharge. The constituent components of this layer are mainly composed of magnesium oxide, and the formed micropores have a three-dimensional cylindrical or trumpet-like pore structure. The surface layer of the anodized material as described above is excellent in surface hardness and wear resistance, but on the other hand, sometimes very large pores are formed, so there are drawbacks in terms of appearance and gloss. . In the present invention, these large pores are impregnated and filled with a lacquer component, imparting corrosion resistance that could not be achieved by conventional sealing methods, and also applied to the surface of a metal material, which is dried under required conditions. As a result, it has become possible to maintain a surface hardness that could not be achieved by conventional coating treatment over a long period of time.

この様な微細孔からなる多孔質層の厚さは陽極酸化条件により3〜50μmの範囲でかなり自由に設定することが可能で、従って微細孔部分に充填する漆の量も必要に応じてかなりの自由度をもって変えることができるが、細孔内部の全部に充填させる必要はない。The thickness of the porous layer composed of such fine pores can be set quite freely in the range of 3 to 50 μm depending on the anodizing conditions. Therefore, the amount of lacquer to be filled in the fine pores is considerably large as required. However, it is not necessary to fill all of the pores.

本発明において使用するマグネシウム金属材料表面の微細孔は火花放電式の陽極酸化法で形成され、表面に50nm〜30μm程度の開口部を有し、各孔の間の壁、および多孔質層の下部に存在するバリヤー層からなり、皮膜の主構成成分は酸化マグネシウムで、スピネル又はこれに近い構造より成り立っている。 微細孔の平均孔径が50nm〜30μmで、各種金属表面の凹凸もしくは微細孔などにおいては充填または強固な接着固化が難しいとされている高分子の漆であっても、このような火花放電式の陽極酸化法で形成された微細孔では細孔内部に充填させることができる。そして細孔内部に部分的に充填され、固化した漆成分はアンカー効果を生じるために金属材料表面に塗布された漆の表面への接着・固化を極めて強固にすることが出来る。The fine pores on the surface of the magnesium metal material used in the present invention are formed by a spark discharge type anodic oxidation method, have openings on the surface of about 50 nm to 30 μm, the walls between the pores, and the lower part of the porous layer The main component of the film is magnesium oxide, which is composed of spinel or a structure close thereto. Even if it is a polymer lacquer having an average pore diameter of 50 nm to 30 μm and unevenness or fine pores on various metal surfaces that are difficult to be filled or firmly bonded and solidified, such spark discharge type The micropores formed by the anodic oxidation method can be filled inside the pores. And since the lacquer component partially filled in the pores and solidified produces an anchor effect, adhesion and solidification to the surface of the lacquer applied to the surface of the metal material can be extremely strengthened.

本発明においてマグネシウム系の金属材料表面に特定の微細孔を有する皮膜を形成するには、該金属材料をアルカリまたはアルカリ土類金属のリン酸塩、ホウ酸塩、水酸化物、ケイ酸塩もしくはケイフッ化塩の1種以上を0.2〜7モル/リットル、皮膜添加剤を0.01〜5モル/リットルの割合で含む水溶液中で電流密度0.5〜5A/デシ平方メート、電圧25V以上で火花放電を生じさせながら陽極酸化処理することによって達成される。In the present invention, in order to form a film having specific fine pores on the surface of a magnesium-based metal material, the metal material is made of an alkali or alkaline earth metal phosphate, borate, hydroxide, silicate or Current density of 0.5 to 5 A / dec square meter, voltage of 25 V in an aqueous solution containing at least one kind of silicofluoride at a rate of 0.2 to 7 mol / liter and a film additive at a rate of 0.01 to 5 mol / liter This is achieved by anodizing while generating spark discharge.

本発明で用いられるアルカリ又はアルカリ土類金属のリン酸塩、ホウ酸塩、ケイ酸塩、もしくは水酸化物で、具体例としては、HPO,NaPO、NaHPO、NaHPO、KPO、KHPO、KHPO、のリン酸塩、NaSiO、NaSiO、KSiO、KSiO、KSiのケイ酸塩及び、NaOH,KOH,の水酸化物があげられる。Examples of alkali or alkaline earth metal phosphates, borates, silicates, or hydroxides used in the present invention include H 3 PO 4 , Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , K 3 PO 4 , K 2 HPO 4 , phosphate of KH 2 PO 4 , Na 2 SiO 3 , Na 4 SiO 4 , K 2 SiO 3 , K 2 SiO 7 , K 2 Si 4 O 9 silicates and hydroxides of NaOH and KOH.

陽極酸化を行う際の電解液には液の寿命、皮膜の均一性、安定性、性能向上を目的として皮膜添加剤を加えるのが好ましい。添加剤には、フッ化物塩、重フッ化物塩、ケイフッ化物塩、鉱酸塩などの無機化合物、又は水酸基、カルボキシル基、スルホン基を含む環状又は鎖状の有機化合物が用いられ、具体的にはKF、NHFなどのフッ化物、NHFHF、などの重フッ化物、NaSiO、NaSiO、などのケイ酸化合物、NaSiF、MgSiF、などのケイフッ化物、有機化合物としては(CHOH)、(CHCHOH)O、(CHOH)CHOHなどのアルコール類、(COOH)、(CHCHCOOH)、〔CH(OH)COOH〕、C(OHCOOH)、CCOOH、C(COOH)どのカルボン酸、などの有機化合物が用いられる。It is preferable to add a film additive to the electrolytic solution for anodizing for the purpose of improving the life of the liquid, uniformity of the film, stability, and performance. As the additive, an inorganic compound such as a fluoride salt, a bifluoride salt, a silicofluoride salt, or a mineral salt, or a cyclic or chain organic compound containing a hydroxyl group, a carboxyl group, or a sulfone group is used. Is a fluoride such as KF, NH 4 F, a defluoride such as NH 4 FHF, a silicate compound such as Na 2 SiO 3 , Na 4 SiO 4 , a silicofluoride such as Na 2 SiF 6 , MgSiF 6 , Examples of the organic compound include (CH 2 OH) 2 , (CH 2 CH 2 OH) O, (CH 2 OH) 2 CHOH and other alcohols, (COOH) 2 , (CH 2 CH 2 COOH) 2 , [CH (OH ) COOH] 2 , C 6 H 4 (OHCOOH), C 6 H 5 COOH, C 6 H 4 (COOH) 2 which carboxylic acid, and the like are used.

これらの皮膜形成安定剤は単独でも混合して用いても良い。特に無機化合物と有機化合物を組み合わせて使用するときは液管理が容易となり好ましい。この安定剤の添加量は電解液中、0.01〜5モル/リットルの範囲が好ましい。
この様に調整された電解液中でのマグネシウム合金の陽極酸化処理は、浴温を10〜60℃でpH9以上の弱〜強アルカリ性の範囲で行うのが特に好ましい。
These film formation stabilizers may be used alone or in combination. In particular, when an inorganic compound and an organic compound are used in combination, liquid management becomes easy, which is preferable. The amount of the stabilizer added is preferably in the range of 0.01 to 5 mol / liter in the electrolytic solution.
It is particularly preferable that the anodic oxidation treatment of the magnesium alloy in the electrolytic solution thus adjusted is performed in a weak to strong alkaline range of pH 9 or higher at a bath temperature of 10 to 60 ° C.

本発明で使用するマグネシウム金属材料は広範囲に応用可能で、純マグネシウム系の他にアルミニウム、ジルコニウム、亜鉛、希土類、その他各種の金属を加えた合金など陽極酸化皮膜の形成が可能である材料ならば全て利用可能である。The magnesium metal material used in the present invention can be applied in a wide range, and any material that can form an anodic oxide film such as aluminum, zirconium, zinc, rare earth, and other various metals in addition to pure magnesium. All are available.

これらの材料は、展伸材、鋳物材、ダイキャスト材、鍛造材などいずれのものも用いられ、加工、成形方法についても展伸材からのプレス、板金、インパクト、バルジ法、鋳造からの砂型、金型、ロストワックス,プラススターモールド、スクイズキャスチング法、ダイキャストからホットチャンバー、コールドチャンバー、半溶融法、鍛造から、熱間、温間法があり、これら各種の成形法で望む形状の製品、例えば芸術品として形成した美術品などの製品、また花瓶、ビールカップなどにして用いることが出来る。These materials include wrought materials, cast materials, die-cast materials, forged materials, etc., and the processing and molding methods are also presses from wrought materials, sheet metal, impact, bulge method, sand molds from casting. , Mold, lost wax, plus star mold, squeeze casting method, die casting to hot chamber, cold chamber, semi-melting method, forging, hot and warm method, products of desired shape by these various molding methods For example, it can be used as a product such as a work of art formed as a work of art, or in a vase or beer cup.

これらの成形材料は必要に応じて機械的又は化学的な前処理を施した後に陽極酸化することが好ましい。機械的な前処理法としては乾式もしくは湿式ホーニング法、ベルト、バフ研磨法、スクラッチ法、ヘアーライン法などが用いられる。また化学的な前処理法としてはエッチング、化学梨地、食刻法などが用いられ、これらの前処理を1つ又は2つ以上組み合わせても良い。These molding materials are preferably anodized after mechanical or chemical pretreatment as necessary. As the mechanical pretreatment method, a dry or wet honing method, a belt, a buffing method, a scratch method, a hairline method, or the like is used. Further, as a chemical pretreatment method, etching, chemical finish, etching method or the like is used, and one or two or more of these pretreatments may be combined.

マグネシウム系の金属材料表面の細孔中に漆を含浸充填させ固定化する方法には、調整した溶液の漆成分濃度に応じて塗布または含浸の手段を変えることが好ましい。5〜50%の範囲の中で比較的低濃度にした場合、常圧含浸法、減圧含浸法、加圧含浸法、ゾルゲル法、電気泳動法、浸漬超音波含浸法などがあり、特に減圧加圧を併用する含浸法、浸漬超音波含浸法が好ましい。具体的な含浸法としては適当な真空容器中に陽極酸化皮膜を形成したマグネシウム合金材料を置き、細孔内部を減圧にしてから濃度を調整した漆成分含有液を導入することによって細孔内に漆成分を含浸充填することが出来る。含浸した漆成分の固化・固定は湿度が存在する加湿加熱または遠赤外線加熱などで行うことが出来る。一方、はけ塗り、浸漬、スプレー法などを用いる場合は5〜50%範囲の中で比較的高濃度とすることが好ましく、低濃度液の場合は2回塗り、3回塗りが好ましい。In the method of impregnating and filling lacquer into the pores on the surface of the magnesium-based metal material, it is preferable to change the means of application or impregnation according to the concentration of the lacquer component of the adjusted solution. When the concentration is relatively low in the range of 5 to 50%, there are atmospheric pressure impregnation method, reduced pressure impregnation method, pressurized impregnation method, sol-gel method, electrophoresis method, immersion ultrasonic impregnation method, etc. An impregnation method using pressure and an immersion ultrasonic impregnation method are preferred. As a specific impregnation method, a magnesium alloy material on which an anodized film is formed is placed in a suitable vacuum vessel, and the lacquer component-containing liquid whose concentration is adjusted after reducing the pressure inside the pore is introduced into the pore. The lacquer component can be impregnated and filled. Solidification and fixing of the impregnated lacquer component can be performed by humidification heating or far-infrared heating in which humidity exists. On the other hand, when brushing, dipping, spraying, or the like is used, the concentration is preferably relatively high within a range of 5 to 50%, and in the case of a low-concentration liquid, it is preferably applied twice or three times.

本発明のマグネシウム系金属材料は前処理を含む火花放電型陽極酸化処理によって形成された多孔質皮膜の微細孔中に漆成分を充填させることによって耐食性を改善することが出来る。また、漆成分を塗布した後の乾燥を短時間で行なうことができる利点も有している。漆による表面処理の大きな特徴は、従来の処理法がいずれも経年劣化するのに対して複数回の塗布などにより皮膜厚さを30μ以上にすると時間の経過に従って漆の酸化重合が進行し、益々表面硬度が向上し、そのほかの効果も10年〜15年に亘って劣化が少ないという、従来の塗装による表面処理では全く達成が不可能な格別の効果を有することである。The magnesium-based metallic material of the present invention can improve the corrosion resistance by filling the lacquer component into the micropores of the porous film formed by the spark discharge type anodizing treatment including the pretreatment. Moreover, it has the advantage that the drying after apply | coating a lacquer component can be performed in a short time. The major feature of surface treatment with lacquer is that the conventional treatment methods all deteriorate over time, but when the film thickness is increased to 30μ or more by multiple coatings, oxidization polymerization of lacquer progresses over time, and more and more The surface hardness is improved, and the other effects are less deteriorated over 10 to 15 years, and have a special effect that cannot be achieved at all by the conventional surface treatment by painting.

以下、本発明の実施の形態を具体的に説明する。Hereinafter, embodiments of the present invention will be specifically described.

板厚1mm、50×70mmのマグネシウム合金AZ31B圧延材を用いて、脱脂、酸処理後、NaOH;3±0.05モル/リットル、NaHPO;0.3±0.01モル/リットル、皮膜添加剤としてNaSiO;0.05±0.005モル/リットルと、酒石酸ナトリウム;0.1±0.05モル/リットル、KF;0.2±0.01モル/リットルを添加した電解液で液温28±2℃、電流密度2±0.5A/平方デシメートル、火花放電開始電圧約50Vで60分火花放電型陽極酸化処理を行った。この皮膜を電子顕微鏡で表面観察すると、約5〜15μmの微細孔が点在し、断面を同様に観察すると、約25μmの皮膜厚さの中、表面側より約10μmまでは、5〜10μmの細孔が多く存在し、ラッパ状形状を有し素地側近づくに従い孔径が小さくなり、素地側の皮膜厚さ約4μmに、1〜3μm以下の微細孔が確認出来た。Using magnesium alloy AZ31B rolled material having a plate thickness of 1 mm and 50 × 70 mm, after degreasing and acid treatment, NaOH: 3 ± 0.05 mol / liter, Na 2 HPO 4 ; 0.3 ± 0.01 mol / liter, As film additives, Na 2 SiO 3 ; 0.05 ± 0.005 mol / liter and sodium tartrate; 0.1 ± 0.05 mol / liter, KF; 0.2 ± 0.01 mol / liter were added. Spark discharge type anodic oxidation treatment was performed with the electrolyte at a liquid temperature of 28 ± 2 ° C., a current density of 2 ± 0.5 A / square decimeter, and a spark discharge starting voltage of about 50 V. When the surface of this film is observed with an electron microscope, fine pores of about 5 to 15 μm are scattered, and when the cross section is observed in the same manner, the film thickness of about 25 μm is about 5 to 10 μm up to about 10 μm from the surface side. Many pores existed, and the pore diameter was reduced as the substrate side approached. Fine pores of 1 to 3 μm or less were confirmed at a coating thickness of about 4 μm on the substrate side.

この製品に、MR透素黒目漆((株)佐藤喜代松商店:漆成分‐約97%、水分‐約3%)をテレピン油(略称:T)、エクソールD−80(略称:D)、エクソールDSP(略称:S)の各溶剤で、下記の割合に希釈した。
なお、ここで用いた、エクソールD−80及びエクソールDSPはエクソンモービル社の商品名で、各々CAS−NO.64742−47−8及び64742−49−0で示されるナフテン系炭化水素溶剤である。漆の希釈は所定量の黒目漆に所定量の溶剤を少量ずつ攪拌下に加えて行なった。

Figure 2017155323
作業及び乾燥方法は
▲1▼はけ塗り及び常圧での浸漬を各1〜3回を繰り返した。
▲2▼塗布作業は室温35〜40℃、相対湿度55〜70%の環境下で実施し、1回目の塗布と2回目、3回目の塗布の間隔は、濃度5%の場合10分、10%の場合20分、50%の場合は60分とした。3回目の塗布完了後は温度35〜50℃、湿度50〜70%で120分乾燥した後、常温、常圧で1日以上のエージングを施した。
塗布した製品について576時間の塩水噴霧試験を行い、表1の結果を得た。塩水噴霧試験の手法はJIS Z2371に規定されている手法を用いた。表中のSSTは塩水噴霧試験結果を示す。To this product, MR transparent Kurome lacquer (Kiyomatsu Sato Co., Ltd .: lacquer component-approx. 97%, moisture-approx. 3%) turpentine oil (abbreviation: T), Exol D-80 (abbreviation: D), Exol It diluted with the following ratio with each solvent of DSP (abbreviation: S).
Exol D-80 and Exol DSP used herein are trade names of ExxonMobil Corporation, each of which is CAS-NO. It is a naphthene type hydrocarbon solvent shown by 64742-47-8 and 64742-49-0. The dilution of lacquer was performed by adding a predetermined amount of solvent to a predetermined amount of Kurome lacquer under agitation.
Figure 2017155323
The work and the drying method were (1) brushing and dipping at normal pressure 1 to 3 times each.
(2) The coating operation is carried out in an environment at a room temperature of 35 to 40 ° C. and a relative humidity of 55 to 70%, and the interval between the first coating, the second coating, and the third coating is 10 minutes when the concentration is 5%. In the case of%, it was 20 minutes, and in the case of 50%, it was 60 minutes. After completion of the third coating, the coating was dried at a temperature of 35 to 50 ° C. and a humidity of 50 to 70% for 120 minutes, and then subjected to aging for 1 day or more at normal temperature and normal pressure.
The coated product was subjected to a salt spray test for 576 hours, and the results shown in Table 1 were obtained. As the salt spray test method, the method defined in JIS Z2371 was used. SST in the table indicates the result of salt spray test.

Figure 2017155323
Figure 2017155323

マグネシウム金属の表面皮膜の塩水噴霧試験については、JIS規格に定められた公式の合否判定規格が無く、96時間の試験結果について判定は当事者間で決めるようになっている。しかし、今回の上記実施例1における処理皮膜に関する試験では576時間(24日間)という長期の試験を連続で実施したため、例えば5%濃度の漆成分液での塗布処理が実質的な効果を生じているのか否かが明確でない。この為、硬質アルマイトのMILA8625F TypeIIIの腐食試験方法を適用して対照製品(漆の塗布を行なわない比較製品)の腐食試験を行なった。この規格は336時間の連続塩水噴霧試験で、マグネシウム製品にしてみればより厳しい規格で、腐食有、なしを判定することになる。本実験に使用したマグネシウム製品も漆の塗布を行なわない比較製品では336時間の連続塩水噴霧試験で殆どの製品(75×75×t1.0)で腐食部位が白くなり、中には貫通した部位も2〜4個認められた。この結果、576時間の塩水噴霧試験では×評価であった本実施例1の結果であっても対象製品に比べると、効果があることについては十分予想することが出来る。  For the salt spray test of the magnesium metal surface film, there is no official pass / fail judgment standard defined in the JIS standard, and the judgment on the test results for 96 hours is decided between the parties concerned. However, since the long-term test of 576 hours (24 days) was continuously carried out in the test relating to the treated film in Example 1 this time, for example, the coating treatment with a 5% concentration lacquer component liquid produced a substantial effect. It is not clear whether or not there is. For this reason, the corrosion test of the control product (comparative product without lacquer coating) was performed by applying the corrosion test method of hard anodized MILA8625F Type III. This standard is a continuous salt spray test for 336 hours, and if it is made a magnesium product, it is a stricter standard, and the presence or absence of corrosion is judged. The magnesium product used in this experiment was a comparative product without lacquer coating, and the corrosion site turned white in most products (75 x 75 x t1.0) in the continuous salt spray test for 336 hours, and some parts penetrated. 2 to 4 were also observed. As a result, even if it is the result of this Example 1 which was x evaluation in the 576-hour salt spray test, it can be sufficiently predicted that there is an effect compared to the target product.

実施例1と同様の電解条件で得た製品について、同じ希釈方法、評価方法を用いて、ただし噴霧時間を336時間として下記の作業方法で得た漆の塗布処理製品について腐食について評価した。結果塩水噴霧試験結果は表2となった。ここでは漆成分濃度20%の液(希釈割合wt/vol%=5/25)を追加して実験した。
作業方法は 刷毛塗り:1回(塗り‐乾燥)
刷毛塗り:2回、(塗り‐30分乾燥‐塗り‐乾燥)
About the product obtained on the same electrolysis conditions as Example 1, the same dilution method and the same evaluation method were used, but the spraying time was set to 336 hours, and the coating process product of the lacquer obtained by the following operation method was evaluated about corrosion. Results The results of the salt spray test are shown in Table 2. Here, a liquid having a lacquer component concentration of 20% (dilution ratio wt / vol% = 5/25) was added for an experiment.
Work method is brush coating: 1 time (coating-drying)
Brush coating: 2 times (coating-30 minutes drying-coating-drying)

Figure 2017155323
Figure 2017155323

実施例1と同様の陽極酸化作業工程及び評価方法も行い、浸漬を各1回、2回と、25KHz超音波浸漬10分を1回行い、塩水噴霧試験を行った結果を表3に示す。表中、浸漬USBは超音波浸漬を示す。The same anodic oxidation process and evaluation method as in Example 1 were also performed, and immersion was performed once and twice, and 25 KHz ultrasonic immersion was performed once for 10 minutes, and the results of the salt spray test are shown in Table 3. In the table, the immersion USB indicates ultrasonic immersion.

Figure 2017155323
Figure 2017155323

本発明のマグネシウム金属製品は大量製品化が容易で、またマグネシウム製品に漆特有の優雅な、優しさを有する各種の日用品、芸術品などに使用できる。またマグネシウムの耐腐食性を単純な陽極酸化皮膜に比しても格段に向上させることが出来る。The magnesium metal product of the present invention can be easily mass-produced, and can be used for various daily necessities and artistic products having grace and kindness unique to lacquer. Further, the corrosion resistance of magnesium can be significantly improved compared to a simple anodized film.

Claims (7)

平均孔径が10nm〜30μmの微細孔を有する多孔質層を表面層として持つマグネシウムまたはマグネシウム合金金属材料の表面に、漆成分を含有する液を適用し、少なくとも該微細孔内部に漆成分を含浸させ、湿度30〜80%、20〜70℃の温度雰囲気下に10分以上処理し、更に常温で12時間以上放置することで乾燥させることを特徴とするマグネシウム金属材料表面の処理方法。A liquid containing a lacquer component is applied to the surface of a magnesium or magnesium alloy metal material having a porous layer having a fine pore with an average pore diameter of 10 nm to 30 μm as a surface layer, and at least the inside of the fine pore is impregnated with the lacquer component A method for treating a surface of a magnesium metal material, characterized in that the treatment is carried out for 10 minutes or more in a temperature atmosphere of 30 to 80%, 20 to 70 ° C., and further left to stand for 12 hours or more at room temperature for drying. 平均孔径が10nm〜30μmの微細孔を有する多孔質層を表面層として持つマグネシウムまたはマグネシウム合金金属材料の表面に、漆成分を含有する液を用いて、少なくとも該微細孔内部に漆成分を含浸させてアンカー効果を利用して漆と金属の密着性向上を発揮させ、100℃以上での加熱を省いて処理することを特徴とする請求項1のマグネシウム金属材料表面の処理方法。The surface of a magnesium or magnesium alloy metal material having a porous layer having fine pores with an average pore diameter of 10 nm to 30 μm as a surface layer is impregnated with at least the inside of the fine pores using a liquid containing a lacquer component. The method for treating a surface of a magnesium metal material according to claim 1, wherein the anchor effect is utilized to improve adhesion between lacquer and metal, and heating is performed at 100 ° C or higher. 漆含有液として漆成分を5〜50%含有する有機溶媒液を用い、はけ塗り、浸漬法、スプレー法、超音波浸漬法、減圧後の浸漬含浸法、浸漬後の加圧含浸法、電気泳動法もしくはこれらの1つまた2つ以上を組合せて材料表面に適用し、乾燥することを特徴とする請求項1または2のマグネシウム金属材料表面の処理方法。Using an organic solvent liquid containing 5 to 50% lacquer component as the lacquer-containing liquid, brush coating, dipping method, spray method, ultrasonic dipping method, dipping impregnation method after decompression, pressure impregnation method after dipping, electricity 3. The method for treating a surface of a magnesium metal material according to claim 1 or 2, wherein the electrophoresis method or a combination of one or more of these is applied to the material surface and dried. 漆成分はウルシオールを主とし他にゴム質と呼ばれる水溶性多糖類、糖タンパク、ラッカーゼの合計が95〜98重量%と2〜5重量%の水分が含まれていることを特徴とする、請求項1乃至3のいずれか1つのマグネシウム金属材料表面の処理方法。The lacquer component is mainly composed of urushiol, and the water-soluble polysaccharide called rubber, glycoprotein, and laccase contain 95 to 98% by weight and 2 to 5% by weight of water, The processing method of the magnesium metal material surface of any one of Claims 1 thru | or 3. 金属材料表面の多孔質層の微細孔は、マグネシウムまたはマグネシウム合金に火花放電を伴う火花放電型陽極酸化法によって形成された酸化マグネシウムからなる3次元の円柱状またはラッパ状の孔構造を有するものであることを特徴とする、請求項1乃至4のいずれか1つのマグネシウム金属材料表面の処理方法。The micropores in the porous layer on the surface of the metal material have a three-dimensional cylindrical or trumpet-like pore structure made of magnesium oxide formed by magnesium or magnesium alloy by a spark discharge type anodizing method involving spark discharge. The method for treating a surface of a magnesium metal material according to any one of claims 1 to 4, wherein the method is provided. 金属材料表面に存在するラッパ状微細孔の内部に漆成分を含浸させると共に表面にも漆成分を塗着させ、1時間以上乾燥することにより、表面の鉛筆硬度3H以上で、塩水噴霧試験法にて336時間以上の耐食性を有する請求項1乃至5のいずれか1つのマグネシウム金属材料表面の処理方法。By impregnating the surface of the trumpet-shaped micropores on the surface of the metal material with the lacquer component, coating the surface with the lacquer component and drying it for 1 hour or more, the surface has a pencil hardness of 3H or more and is used in the salt spray test method The method for treating a surface of a magnesium metal material according to any one of claims 1 to 5, which has a corrosion resistance of 336 hours or more. 漆成分を含有する液の溶媒として、テレピン油またはナフテン系、イソパラフィン系もしくは芳香族系炭化水素溶剤を用いる請求項1乃至6のいずれか1つのマグネシウム金属材料表面の処理方法。The method for treating a surface of a magnesium metal material according to any one of claims 1 to 6, wherein a turpentine oil or a naphthenic, isoparaffinic or aromatic hydrocarbon solvent is used as a solvent of a liquid containing a lacquer component.
JP2016054486A 2016-03-01 2016-03-01 Processing method of surface of magnesium metal material Pending JP2017155323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016054486A JP2017155323A (en) 2016-03-01 2016-03-01 Processing method of surface of magnesium metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016054486A JP2017155323A (en) 2016-03-01 2016-03-01 Processing method of surface of magnesium metal material

Publications (1)

Publication Number Publication Date
JP2017155323A true JP2017155323A (en) 2017-09-07

Family

ID=59809296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054486A Pending JP2017155323A (en) 2016-03-01 2016-03-01 Processing method of surface of magnesium metal material

Country Status (1)

Country Link
JP (1) JP2017155323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102257077B1 (en) * 2019-11-25 2021-05-27 주식회사 에이피텍 Method for forming anodized film including urushiol
CN113976414A (en) * 2021-10-25 2022-01-28 中国航发贵州黎阳航空动力有限公司 Preparation method of silicate coating for aero-engine blade
CN115627467A (en) * 2022-10-18 2023-01-20 航天科工(长沙)新材料研究院有限公司 Magnesium-lithium alloy surface treatment method and chemical oxidation solution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250984A (en) * 1988-08-15 1990-02-20 Jibako:Kk Production of gold lacquer ware-like product
JPH03205469A (en) * 1989-10-21 1991-09-06 Nippon Petrochem Co Ltd Method for purifying japanese lacquer
JP2003341296A (en) * 2002-05-30 2003-12-03 Pentel Corp Decorative body
JP2005229080A (en) * 2004-02-10 2005-08-25 Kichiji Oguchi Lacquered digital electrical appliance
JP2006291278A (en) * 2005-04-11 2006-10-26 Denka Himaku Kogyo Kk Magnesium metallic material having excellent corrosion resistance, and method for producing the same
JP2007177262A (en) * 2005-12-27 2007-07-12 Honda Motor Co Ltd Magnesium metallic material and method of manufacturing the same
JP3166319U (en) * 2010-09-06 2011-03-03 株式会社三起 Structure of materials for moss, bags or clothing using lacquer paint and chemically synthesized paint

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250984A (en) * 1988-08-15 1990-02-20 Jibako:Kk Production of gold lacquer ware-like product
JPH03205469A (en) * 1989-10-21 1991-09-06 Nippon Petrochem Co Ltd Method for purifying japanese lacquer
JP2003341296A (en) * 2002-05-30 2003-12-03 Pentel Corp Decorative body
JP2005229080A (en) * 2004-02-10 2005-08-25 Kichiji Oguchi Lacquered digital electrical appliance
JP2006291278A (en) * 2005-04-11 2006-10-26 Denka Himaku Kogyo Kk Magnesium metallic material having excellent corrosion resistance, and method for producing the same
JP2007177262A (en) * 2005-12-27 2007-07-12 Honda Motor Co Ltd Magnesium metallic material and method of manufacturing the same
JP3166319U (en) * 2010-09-06 2011-03-03 株式会社三起 Structure of materials for moss, bags or clothing using lacquer paint and chemically synthesized paint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102257077B1 (en) * 2019-11-25 2021-05-27 주식회사 에이피텍 Method for forming anodized film including urushiol
CN113976414A (en) * 2021-10-25 2022-01-28 中国航发贵州黎阳航空动力有限公司 Preparation method of silicate coating for aero-engine blade
CN113976414B (en) * 2021-10-25 2023-08-04 中国航发贵州黎阳航空动力有限公司 Preparation method of silicate coating for aero-engine blade
CN115627467A (en) * 2022-10-18 2023-01-20 航天科工(长沙)新材料研究院有限公司 Magnesium-lithium alloy surface treatment method and chemical oxidation solution

Similar Documents

Publication Publication Date Title
US10309029B2 (en) Method for forming a multi-layer anodic coating
CN106622898B (en) A kind of automobile hub spraying process
CN109440163B (en) Nickel-free hole sealing agent for aluminum and aluminum alloy anodic oxide films and application thereof
WO2014163683A1 (en) Colored, corrosion-resistant aluminum alloy substrates and methods for producing same
JP2017155323A (en) Processing method of surface of magnesium metal material
JP2017520684A5 (en)
CN101649480A (en) Method for sealing micro-arc oxidation films
JP4418985B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
US1869041A (en) Coated aluminum
US3775266A (en) Process for forming resinous films on anodized aluminum substrates
US3899370A (en) Method for producing coated and age hardened aluminum or aluminum-based alloy molded materials
JP6746363B2 (en) Aluminum coating material and manufacturing method thereof
CN1654558A (en) Electrophoretic nano-coating
US3274078A (en) Process for treating the surface of aluminium or aluminium alloy with an organohydrogenpolysiloxane
US3400058A (en) Electrochemical process for andic coating of metal surfaces
CN108221016B (en) A kind of zinc-plated sealer and its application method
JPS59113199A (en) Surface treatment of aluminum alloy casting or aluminum alloy die casting
US3787298A (en) Anodizing aluminum foams
JP2017008338A (en) Aluminum coating material and method for producing the same
CN104451706A (en) Process for treating surface of aluminum alloy
WO2019006676A1 (en) Filming agent for oil removal, rust removal and phosphating, steel and iron component, and filming treatment method therefor
JP3746212B2 (en) Method of processing magnesium alloy members for press forming
WO2019000441A1 (en) Silane coating, metal workpiece and coating treatment method thereof
JP2005023411A (en) Surface treated aluminum material, and aluminum formed body
WO2019006679A1 (en) Passivation agent for oil removal, rust removal and passivation, steel and iron component, and passivation treatment method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602