JP2017151408A - Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device - Google Patents

Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device Download PDF

Info

Publication number
JP2017151408A
JP2017151408A JP2016203525A JP2016203525A JP2017151408A JP 2017151408 A JP2017151408 A JP 2017151408A JP 2016203525 A JP2016203525 A JP 2016203525A JP 2016203525 A JP2016203525 A JP 2016203525A JP 2017151408 A JP2017151408 A JP 2017151408A
Authority
JP
Japan
Prior art keywords
film
oxide
infrared transmission
optical
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016203525A
Other languages
Japanese (ja)
Inventor
國定 照房
Terufusa Kunisada
照房 國定
涼 橋本
Ryo Hashimoto
涼 橋本
穣 澁谷
Minoru Shibuya
穣 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to CN201611094455.XA priority Critical patent/CN107102383B/en
Publication of JP2017151408A publication Critical patent/JP2017151408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new infrared transmission film to be applied to an optical component used in a far infrared wavelength region, the film which is easily formed and has high water resistance, and an optical film, an antireflection film, an optical component and an optical system including the infrared transmission film.SOLUTION: The infrared transmission film essentially comprises zinc oxide and contains a metal oxide as an additive having an extinction coefficient of 0.4 or less in the whole wavelength region from 8 μm to 14 μm.SELECTED DRAWING: None

Description

本件発明は、赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置に関し、特に遠赤外線を利用する光学系に好適な赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置に関する。   The present invention relates to an infrared transmission film, an optical film, an antireflection film, an optical component, an optical system, and an imaging device, and particularly suitable for an optical system using far infrared rays, an infrared transmission film, an optical film, an antireflection film, an optical component, The present invention relates to an optical system and an imaging apparatus.

現在、監視用撮像装置、車載用撮像装置、或いは熱分布解析等の種々の用途で赤外線を使用する光学系が用いられている。これらの光学系として、中赤外波長域(2.5μm〜4μm)の光線を使用する中赤外光学系と、遠赤外波長域(8μm〜14μm)の光線を使用する遠赤外線光学系とが一般に知られている。例えば、監視用撮像装置、車載用撮像装置などでは主に遠赤外線光学系が用いられている。これらの光学系を構成する赤外線透過レンズ等の光学部品は、可視光光学系を構成する光学部品と比較すると、入射光の透過率が低い。そのため、光学部品の入射面に反射防止膜を設け、入射光の透過光量を増加させ、表面反射による光量不足を防止することが特に重要になる。   At present, an optical system using infrared rays is used for various applications such as a monitoring imaging device, a vehicle-mounted imaging device, or a heat distribution analysis. As these optical systems, a mid-infrared optical system that uses light in the mid-infrared wavelength region (2.5 μm to 4 μm), and a far-infrared optical system that uses light in the far-infrared wavelength region (8 μm to 14 μm), Is generally known. For example, a far-infrared optical system is mainly used in an imaging device for monitoring, an on-vehicle imaging device, and the like. Optical components such as an infrared transmissive lens constituting these optical systems have lower incident light transmittance than optical components constituting a visible light optical system. For this reason, it is particularly important to provide an antireflection film on the incident surface of the optical component to increase the amount of incident light transmitted and to prevent a shortage of light due to surface reflection.

例えば、遠赤外線光学系に用いられる光学部品の反射防止膜として、例えば、特許文献1には、Si基板上に、基板側から順にGe膜、ZnS膜、Ge膜、ZnS膜、YF膜を積層した5層構造の反射防止膜が開示されている。また、特許文献2には、カルコゲナイドガラス基板上に、BiO膜、YF膜を基板側から順に積層した2層構造の反射防止膜が開示されている。これらの特許文献に開示されるように、反射防止膜を複数の赤外線透過膜を積層した多層構造とすることにより、広い波長域の光線に対して、波長域全域で低い反射率を達成することが容易になる。現在、遠赤外波長域で使用する反射防止膜の層構成材料として、特許文献1及び特許文献2に開示の材料を含む以下の材料が知られている。 For example, as an antireflection film for an optical component used in a far-infrared optical system, for example, in Patent Document 1, a Ge film, a ZnS film, a Ge film, a ZnS film, and a YF 3 film are sequentially formed on a Si substrate from the substrate side. An antireflection film having a laminated five-layer structure is disclosed. Patent Document 2 discloses an antireflection film having a two-layer structure in which a BiO 2 film and a YF 3 film are sequentially laminated on a chalcogenide glass substrate from the substrate side. As disclosed in these patent documents, the antireflection film has a multilayer structure in which a plurality of infrared transmission films are laminated, thereby achieving low reflectivity over the entire wavelength range for light in a wide wavelength range. Becomes easier. Currently, the following materials including the materials disclosed in Patent Document 1 and Patent Document 2 are known as the layer constituting materials of the antireflection film used in the far-infrared wavelength region.

高屈折率材料 :Ge、Si
低屈折率材料 :YF、YbF、NaF、NdF、LaF、CaF、SrF
中間屈折率材料:ZnS、ZnSe、PbTe、Y、CeO、HfO
High refractive index material: Ge, Si
Low refractive index material: YF 3 , YbF 3 , NaF, NdF 3 , LaF 3 , CaF 2 , SrF 2
Intermediate refractive index material: ZnS, ZnSe, PbTe, Y 2 O 3 , CeO 2 , HfO 2

ところで、光学部品の表面に反射防止膜を設ける際には、電子線加熱や抵抗加熱により原料を加熱蒸着させる真空蒸着法が一般に採用されている。しかしながら、今後の赤外線光学系の需要の拡大を考慮すると、大量生産に適した生産効率のよい方法により反射防止膜を成膜することが求められる。   By the way, when an antireflection film is provided on the surface of an optical component, a vacuum deposition method is generally employed in which a raw material is heated and deposited by electron beam heating or resistance heating. However, in consideration of future demand for infrared optical systems, it is required to form an antireflection film by a method with high production efficiency suitable for mass production.

例えば、真空蒸着法よりも生産効率のよい成膜法としてマグネトロンスパッタリング法が挙げられる。しかしながら、上記低屈折率材料、すなわちフッ化物を原料として用いた場合、スパッタリング工程においてターゲット材料中のフッ素元素が損失する。そのため、化学量論的な組成の膜を得ることが困難であり、使用波長域の光線に対して透明な赤外線透過膜を得ることができない。上記中間屈折材料であるZnS、ZnSe、PbTeについても同様であり、これらの材料を用いてマグネトロンスパッタリング法により化学量論的な組成の膜を得ることは困難である。   For example, a magnetron sputtering method can be given as a film forming method with higher production efficiency than the vacuum evaporation method. However, when the low refractive index material, that is, fluoride is used as a raw material, the fluorine element in the target material is lost in the sputtering process. Therefore, it is difficult to obtain a film having a stoichiometric composition, and it is impossible to obtain an infrared transmission film that is transparent to light in the wavelength range of use. The same applies to the intermediate refractive materials ZnS, ZnSe, and PbTe, and it is difficult to obtain a film having a stoichiometric composition by the magnetron sputtering method using these materials.

一方、上記高屈折率材料であるGe、Siは、マグネトロンスパッタリング法により成膜することができる。上述したように広い波長域の光線に対して波長域全域で低い反射率を達成するには、多層構造の光学膜とすることが求められる。   On the other hand, the high refractive index materials Ge and Si can be formed by a magnetron sputtering method. As described above, in order to achieve a low reflectance over the entire wavelength range with respect to light beams in a wide wavelength range, a multilayered optical film is required.

ここで、Ge又はSiに対して、フッ化物は屈折率が低すぎるため、Ge膜又はSi膜に対してフッ化物膜を積層しても、良好な反射防止性能を得ることはできない。また、上述したとおり、マグネトロンスパッタリング法により所望の組成のフッ化物膜を成膜することは困難である。   Here, since the refractive index of fluoride is too low with respect to Ge or Si, even if a fluoride film is laminated on a Ge film or Si film, good antireflection performance cannot be obtained. Further, as described above, it is difficult to form a fluoride film having a desired composition by the magnetron sputtering method.

そこで、Ge膜又はSi膜と、中間屈折率材料からなる膜とを交互に積層させる構成とすることが考えられる。しかしながら、上述のとおり、ZnS、ZnSe、PbTeはマグネトロンスパッタリング法により成膜することは困難であり、且つ、これらの材料は毒性を有するため、その取り扱いが困難である。一方、Y、CeO、HfOについては、マグネトロンスパッタリング法により成膜することはでき、且つ、毒性もないものの遠赤外領域(8μm〜14μm)の光線に対して半透明であり、遠赤外線に対して透明な膜を得ることができない。 Therefore, it can be considered that the Ge film or the Si film and the film made of the intermediate refractive index material are alternately stacked. However, as described above, ZnS, ZnSe, and PbTe are difficult to form by a magnetron sputtering method, and these materials are toxic and therefore difficult to handle. On the other hand, Y 2 O 3 , CeO 2 , and HfO 2 can be formed by magnetron sputtering and are not toxic, but are translucent to light in the far infrared region (8 μm to 14 μm). A film transparent to far infrared rays cannot be obtained.

さらに、監視用撮像装置、或いは車載用撮像装置等は屋外に設置されて使用されることが多い。光学膜はこれらの光学部品の表面に設けられるため、成膜面に対する密着性と共に、高い耐水性を有する必要がある。   Furthermore, a monitoring imaging device or a vehicle-mounted imaging device is often installed and used outdoors. Since the optical film is provided on the surface of these optical components, it is necessary to have high water resistance as well as adhesion to the film formation surface.

特開2007−298661号公報JP 2007-298661 A 特開2011−221048号公報JP 2011-2221048 A

以上のことから、本件発明の課題は、成膜が容易であり、且つ、高い耐水性を有する新規な赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置を提供することにある。   In view of the above, an object of the present invention is to provide a novel infrared transmission film, optical film, antireflection film, optical component, optical system, and imaging device that are easy to form and have high water resistance. It is in.

本件発明の課題を解決するために、本件発明に係る赤外線透過膜は、酸化亜鉛を主成分とし、8μm以上14μm以下の波長域全域において消衰係数が0.4以下の金属酸化物が添加物として含まれることを特徴とする。   In order to solve the problems of the present invention, the infrared transmission film according to the present invention is mainly composed of zinc oxide, and an additive is a metal oxide having an extinction coefficient of 0.4 or less over the entire wavelength range of 8 μm to 14 μm. It is characterized by being included.

また、本件発明に係る光学膜、反射防止膜、光学部品、光学系はそれぞれ上記本件発明に係る赤外線透過膜を備えたことを特徴とする。   The optical film, the antireflection film, the optical component, and the optical system according to the present invention each include the infrared transmission film according to the present invention.

さらに、本件発明に係る撮像装置は、上記本件発明に係る赤外線透過膜が設けられた光学面を含む光学系を備えたことを特徴とする。   Furthermore, an imaging apparatus according to the present invention includes an optical system including an optical surface provided with the infrared transmission film according to the present invention.

本件発明によれば、遠赤外線波長域で用いられる光学部品に設ける赤外線透過膜であって、成膜が容易であり、且つ、高い耐水性を有する新規な赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置を提供することができる。   According to the present invention, an infrared transmitting film provided on an optical component used in the far infrared wavelength region, which is easy to form and has high water resistance, a novel infrared transmitting film, optical film, and antireflection film An optical component, an optical system, and an imaging device can be provided.

以下、本件発明に係る赤外線透過膜、光学膜、反射防止膜、光学部品、光学系及び撮像装置の実施の形態について説明する。   Hereinafter, embodiments of an infrared transmission film, an optical film, an antireflection film, an optical component, an optical system, and an imaging device according to the present invention will be described.

1.赤外線透過膜
まず、本件発明に係る赤外線透過膜の実施の形態を説明する。本件発明に係る赤外線透過膜は、酸化亜鉛を主成分とし、8μm以上14μm以下の波長域全域において消衰係数が0.4以下の金属酸化物が添加物として含まれることを特徴とする。なお、当該赤外線透過膜は、赤外線を透過する光学薄膜を意味するものとする。
1. Infrared transmitting film First, an embodiment of an infrared transmitting film according to the present invention will be described. The infrared transmitting film according to the present invention is characterized in that zinc oxide is a main component and a metal oxide having an extinction coefficient of 0.4 or less is included as an additive in the entire wavelength region of 8 μm to 14 μm. In addition, the said infrared rays permeable film shall mean the optical thin film which permeate | transmits infrared rays.

1−1.酸化亜鉛
酸化亜鉛は、8μm以上14μm以下の波長域全域、すなわち遠赤外波長域全域における消衰係数が0.05未満であり、遠赤外線(8μm以上14μm以下の波長の光線)に対する透明度が高い材料である。
1-1. Zinc oxide Zinc oxide has an extinction coefficient of less than 0.05 in the entire wavelength region of 8 μm or more and 14 μm or less, that is, the far infrared wavelength region, and has high transparency to far infrared rays (light having a wavelength of 8 μm or more and 14 μm or less). Material.

また、酸化亜鉛の遠赤外線に対する屈折率は、1.5以上2.5以下の範囲にあり、酸化亜鉛は遠赤外波長域における中屈折率材料である。従って、当該赤外透過膜は、反射防止膜の構成材料としても好適である。例えば、当該赤外透過膜と、遠赤外波長域において高い屈折率を有するGe膜又はSi膜等を交互に積層すること等により、遠赤外波長域全域において良好な反射防止性能を有する反射防止膜を得ることができる。   Further, the refractive index of zinc oxide with respect to far infrared rays is in the range of 1.5 to 2.5, and zinc oxide is a medium refractive index material in the far infrared wavelength region. Therefore, the infrared transmission film is also suitable as a constituent material for the antireflection film. For example, by reflecting the infrared transmission film and a Ge film or Si film having a high refractive index in the far-infrared wavelength region alternately, a reflection having good antireflection performance in the entire far-infrared wavelength region. A prevention film can be obtained.

ところで、酸化亜鉛は結晶化しやすい材料である。真空蒸着法、スパッタリング法等の物理蒸着法により成膜した酸化亜鉛膜は多結晶構造を有する。そのため、結晶粒界には水等が含浸しやすく、酸化亜鉛膜は耐水性が低く、実用上必要な耐久性を満足することが困難である。そこで、本件発明者らは、酸化亜鉛を主成分とすると共に、所定の金属酸化物を添加物として含む膜とすることにより、耐水性を改善することができることを見出した。本件発明によれば、高い耐水性を実現することができる。以下、本件発明において添加物として用いられる所定の金属酸化物について説明する。   By the way, zinc oxide is a material that is easily crystallized. A zinc oxide film formed by physical vapor deposition such as vacuum vapor deposition or sputtering has a polycrystalline structure. For this reason, the crystal grain boundary is easily impregnated with water or the like, and the zinc oxide film has low water resistance, and it is difficult to satisfy practically required durability. Accordingly, the present inventors have found that water resistance can be improved by forming a film containing zinc oxide as a main component and a predetermined metal oxide as an additive. According to the present invention, high water resistance can be realized. Hereinafter, the predetermined metal oxide used as an additive in the present invention will be described.

1−2.金属酸化物
(1)消衰係数
当該金属酸化物は、遠赤外波長域全域における消衰係数が0.4以下であることが求められる。遠赤外波長域における消衰係数が0.4を超えると、遠赤外線に対する透明度が低下する。すなわち、当該赤外線透過膜における遠赤外線の透過率が低下するため、当該赤外線透過膜を光学膜として用いることが困難になる。
1-2. Metal oxide (1) extinction coefficient The said metal oxide is calculated | required that the extinction coefficient in the far-infrared wavelength range whole region is 0.4 or less. When the extinction coefficient in the far-infrared wavelength region exceeds 0.4, the transparency with respect to the far-infrared rays decreases. That is, since the far-infrared transmittance of the infrared transmission film is reduced, it is difficult to use the infrared transmission film as an optical film.

遠赤外波長域全域における消衰係数が0.4以下の金属酸化物として、例えば、酸化ジルコニウム(ZrO)、酸化クロム(Cr)、酸化ハフニウム(HfO)、酸化ビスマス(Bi)、酸化イットリウム(Y)、酸化銅(CuO)、酸化マグネシウム(MgO)等を挙げることができる。これらの金属酸化物を添加物として用いることにより、酸化亜鉛膜の遠赤外線に対する透過率を維持しつつ、酸化亜鉛膜の耐水性を改善することができる。 Examples of the metal oxide having an extinction coefficient of 0.4 or less in the entire far infrared wavelength region include, for example, zirconium oxide (ZrO 2 ), chromium oxide (Cr 2 O 3 ), hafnium oxide (HfO 2 ), bismuth oxide (Bi 2 O 3 ), yttrium oxide (Y 2 O 3 ), copper oxide (CuO), magnesium oxide (MgO), and the like. By using these metal oxides as additives, the water resistance of the zinc oxide film can be improved while maintaining the transmittance of the zinc oxide film for far infrared rays.

ここで、使用波長域における当該赤外線透過膜の透明度をより高くするという観点から、添加物として用いる金属酸化物の消衰係数は、使用波長域全域において0.4未満であることが好ましく、0.2未満であることがより好ましく、0.1未満であることがさらに好ましい。当該赤外線透過膜の使用波長域に応じて、上記列挙した金属酸化物等の中から、適宜、適切な金属酸化物を選択することができる。なお、上記列挙した各金属酸化物の消衰係数を以下に示す。以下において、k(8μm)は、波長が8μmのときの消衰係数(k)を表し、k(14μm)は、波長が14μmのときの消衰係数を表す。また、以下には酸化亜鉛の消衰係数も示す。   Here, from the viewpoint of further increasing the transparency of the infrared transmission film in the used wavelength range, the extinction coefficient of the metal oxide used as the additive is preferably less than 0.4 in the entire used wavelength range. Is more preferably less than .2 and even more preferably less than 0.1. An appropriate metal oxide can be appropriately selected from the metal oxides listed above according to the wavelength range of use of the infrared transmission film. In addition, the extinction coefficient of each metal oxide listed above is shown below. In the following, k (8 μm) represents the extinction coefficient (k) when the wavelength is 8 μm, and k (14 μm) represents the extinction coefficient when the wavelength is 14 μm. The extinction coefficient of zinc oxide is also shown below.

酸化亜鉛: k(8μm)=0.004 k(14μm)=0.03
酸化ジルコニウム:k(8μm)=0.06 k(14μm)=0.35
酸化クロム: k(8μm)=0.007 k(14μm)=0.37
酸化ハフニウム: k(8μm)=0.006 k(14μm)=0.4
酸化ビスマス: k(8μm)=0.002 k(14μm)=0.025
酸化イットリウム:k(8μm)=0.00027 k(14μm)=0.078
酸化銅: k(8μm)=0.0001 k(14μm)=0.04
酸化マグネシウム:k(8μm)=0.00025 k(14μm)=0.014
Zinc oxide: k (8 μm) = 0.004 k (14 μm) = 0.03
Zirconium oxide: k (8 μm) = 0.06 k (14 μm) = 0.35
Chromium oxide: k (8 μm) = 0.007 k (14 μm) = 0.37
Hafnium oxide: k (8 μm) = 0.006 k (14 μm) = 0.4
Bismuth oxide: k (8 μm) = 0.002 k (14 μm) = 0.025
Yttrium oxide: k (8 μm) = 0.00027 k (14 μm) = 0.078
Copper oxide: k (8 μm) = 0.0001 k (14 μm) = 0.04
Magnesium oxide: k (8 μm) = 0.00025 k (14 μm) = 0.014

上記に示すように、酸化ビスマス、酸化イットリウム、酸化銅及び酸化マグネシウムの消衰係数は、酸化ジルコニウム、酸化クロム及び酸化ハフニウムと比較すると小さく、遠赤外波長域全域において0.1未満である。従って、遠赤外波長域全域において高い透明度を維持することができるという観点から、添加物として、酸化ビスマス、酸化イットリウム、酸化銅及び酸化マグネシウムから成る群から選択される一種以上を用いることがより好ましい。このとき、これらの金属酸化物一種を添加物として用いてもよいし、一種以上を混合して用いてもよいのは勿論である。   As shown above, the extinction coefficients of bismuth oxide, yttrium oxide, copper oxide, and magnesium oxide are smaller than those of zirconium oxide, chromium oxide, and hafnium oxide, and are less than 0.1 in the far infrared wavelength region. Therefore, from the viewpoint that high transparency can be maintained in the entire far-infrared wavelength region, it is more preferable to use one or more selected from the group consisting of bismuth oxide, yttrium oxide, copper oxide and magnesium oxide as an additive. preferable. At this time, it is a matter of course that one kind of these metal oxides may be used as an additive, or one or more kinds may be mixed and used.

なお、酸化亜鉛膜の耐水性を改善するという観点のみからみれば、酸化タンタル(Ta)等の消衰係数が上記範囲外の金属酸化物を添加物として用いることもできる。酸化タンタルの消衰係数を以下に示す。しかしながら、酸化タンタルの消衰係数は下記のとおり大きく、当該酸化タンタルを酸化亜鉛膜に添加物として含有させると、遠赤外線に対する酸化亜鉛膜の透過率が低下し、光学膜として用いることが困難になる。
酸化タンタル: k(8μm)=0.028 k(14μm)=0.75
From the viewpoint of improving the water resistance of the zinc oxide film, a metal oxide having an extinction coefficient outside the above range, such as tantalum oxide (Ta 2 O 5 ), can be used as an additive. The extinction coefficient of tantalum oxide is shown below. However, the extinction coefficient of tantalum oxide is large as described below, and when the tantalum oxide is added as an additive to the zinc oxide film, the transmittance of the zinc oxide film with respect to far infrared rays decreases, making it difficult to use as an optical film. Become.
Tantalum oxide: k (8 μm) = 0.028 k (14 μm) = 0.75

(2)屈折率
また、当該金属酸化物の遠赤外線波長域内の光線に対する屈折率は0.8以上2.5以下であることが好ましい。酸化亜鉛の屈折率と同等の屈折率を有する金属酸化物を添加物として用いることにより、得られた赤外線透過膜の屈折率を酸化亜鉛と同様の屈折率とすることができる。なお、上記列挙した各金属酸化物の遠赤外線波長域における屈折率はいずれも0.8以上2.5以下の範囲内である。ここで、酸化亜鉛の屈折率を大きく変化させないという観点から、酸化亜鉛の屈折率とより同等屈折率の金属酸化物を用いることが好ましい。当該観点から、屈折率が1.0以上2.5以下の金属酸化物を添加物として用いることがより好ましく、屈折率が1.5以上2.5以下の金属酸化物を添加物として用いることがさらに好ましい。
(2) Refractive index Moreover, it is preferable that the refractive index with respect to the light ray in the far-infrared wavelength range of the said metal oxide is 0.8-2.5. By using a metal oxide having a refractive index equivalent to that of zinc oxide as an additive, the refractive index of the obtained infrared transmission film can be set to the same refractive index as that of zinc oxide. In addition, the refractive index in the far-infrared wavelength region of each of the metal oxides listed above is in the range of 0.8 to 2.5. Here, from the viewpoint of not greatly changing the refractive index of zinc oxide, it is preferable to use a metal oxide having a refractive index more equal to that of zinc oxide. From this viewpoint, it is more preferable to use a metal oxide having a refractive index of 1.0 to 2.5 as an additive, and a metal oxide having a refractive index of 1.5 to 2.5 as an additive. Is more preferable.

(3)含有量
次に、当該赤外線透過膜における添加物としての金属酸化物の含有量について説明する。当該赤外線透過膜における当該金属酸化物の含有量は0.1質量%以上50質量%未満であることが好ましい。但し、ここでいう含有量とは、当該赤外線透過膜に添加物として含まれる金属酸化物の総量をいう。すなわち、添加物として複数の金属酸化物を用いる場合、その合計量をいうものとする。また、当該赤外線透過膜では、主成分を酸化亜鉛とする。すなわち、当該赤外線透過膜は酸化亜鉛を50質量%以上含む。また、不可避不純物を除いて、当該赤外線透過膜は、酸化亜鉛及び添加物としての金属酸化物からなるものとする。
(3) Content Next, the content of the metal oxide as an additive in the infrared transmission film will be described. The content of the metal oxide in the infrared transmission film is preferably 0.1% by mass or more and less than 50% by mass. However, the content here means the total amount of metal oxides contained as an additive in the infrared transmission film. That is, when a plurality of metal oxides are used as an additive, the total amount is meant. In the infrared transmitting film, the main component is zinc oxide. That is, the infrared transmission film contains 50% by mass or more of zinc oxide. Further, except for inevitable impurities, the infrared transmission film is made of zinc oxide and a metal oxide as an additive.

遠赤外波長域の光線に対して透明度の高い酸化亜鉛に対して、当該金属酸化物を上記範囲で添加物として含有させることにより、当該赤外線透過膜の遠赤外線に対する透明度を高く維持したまま、耐水性を改善することができる。これと同時に、耐酸性、機械的強度等も向上させることができる。   For zinc oxide having high transparency with respect to light in the far-infrared wavelength region, by containing the metal oxide as an additive in the above range, the transparency to the far infrared of the infrared transmission film is maintained high, Water resistance can be improved. At the same time, acid resistance, mechanical strength and the like can be improved.

ここで、酸化亜鉛と比較すると上記列挙した金属酸化物の消衰係数は同等若しくは大きい値を示す。そこで、酸化亜鉛よりも消衰係数の大きい金属酸化物については、遠赤外領域の光線に対してより高い透明度を有する赤外線透過膜を得るという観点から、当該金属酸化物の含有量は0.1質量%以上15質量%以下であることがより好ましく、0.1質量%以上10質量%以下であることがさらに好ましく、0.1質量%以上5質量%以下であることが最も好ましい。   Here, the extinction coefficient of the metal oxides listed above is equal or larger than that of zinc oxide. Therefore, for a metal oxide having a larger extinction coefficient than zinc oxide, the content of the metal oxide is from the viewpoint of obtaining an infrared transmission film having higher transparency with respect to light in the far infrared region. It is more preferably 1% by mass or more and 15% by mass or less, further preferably 0.1% by mass or more and 10% by mass or less, and most preferably 0.1% by mass or more and 5% by mass or less.

(4)結晶構造
本件発明に係る赤外線透過膜は、酸化亜鉛の結晶粒界に上記金属酸化物が偏析したものであることが好ましい。酸化亜鉛の結晶粒界に偏析した金属酸化物によって、結晶粒界に水が含水されにくくなるため、当該赤外線透過膜の耐水性が良好になる。また、結晶粒界に上記金属酸化物が偏析していると、結晶成長が阻害され、結晶粒が微細になる。そのため、膜内の残留応力が小さく、このことも耐水性を高める要因の一つであると考えられる。また、微細な結晶構造を有するため、当該膜の機械的強度も高くなる。さらに、耐酸性等も向上する。
(4) Crystal structure The infrared transmission film according to the present invention is preferably one in which the metal oxide is segregated at the crystal grain boundary of zinc oxide. Since the metal oxide segregated at the crystal grain boundary of zinc oxide makes it difficult for water to be contained in the crystal grain boundary, the water resistance of the infrared transmission film is improved. If the metal oxide is segregated at the crystal grain boundary, crystal growth is hindered and the crystal grains become fine. For this reason, the residual stress in the film is small, and this is considered to be one of the factors for improving the water resistance. In addition, since the film has a fine crystal structure, the mechanical strength of the film is also increased. Furthermore, acid resistance etc. improve.

すなわち、酸化亜鉛膜の耐水性を改善する上で、添加物としての金属酸化物は、酸化亜鉛の結晶粒界を充填できる程度の量であることが好ましい。当該観点から、消衰係数が酸化亜鉛と同等の金属酸化物についても、当該赤外線透過膜におけるその含有量が0.1質量%以上15質量%以下であることがより好ましく、0.1質量%以上10質量%以下であることがさらに好ましく、0.1質量%以上5質量%以下であることが最も好ましい。例えば、酸化ビスマスは消衰係数が酸化亜鉛よりも小さく、遠赤外線に対する透明度の高い物質であるが、酸化ビスマス自体の耐水性は低い。しかしながら、酸化ビスマスをこれらのより好ましい範囲で含有させることにより、酸化亜鉛膜の耐水性をより良好に改善することができる。   That is, in order to improve the water resistance of the zinc oxide film, the amount of the metal oxide as an additive is preferably an amount that can fill the crystal grain boundary of zinc oxide. From this point of view, the content of the metal oxide having an extinction coefficient equivalent to that of zinc oxide is more preferably 0.1% by mass or more and 15% by mass or less, and 0.1% by mass. The content is more preferably 10% by mass or less, and most preferably 0.1% by mass or more and 5% by mass or less. For example, bismuth oxide has a smaller extinction coefficient than zinc oxide and is a highly transparent substance for far infrared rays, but the water resistance of bismuth oxide itself is low. However, the water resistance of the zinc oxide film can be improved more favorably by containing bismuth oxide in these more preferred ranges.

(5)成膜方法
本件発明に係る赤外線透過膜を成膜するには、例えば、酸化亜鉛を主成分とし、上記金属酸化物を添加した焼結セラミックス等を出発原料として、真空蒸着法、スパッタリング法等の各種乾式成膜法により成膜することができる。いずれの方法でも、混合酸化物の焼結体を出発原料として用いることができる。
(5) Film formation method In order to form the infrared transmission film according to the present invention, for example, a vacuum deposition method or a sputtering method using a sintered ceramic or the like containing zinc oxide as a main component and the above metal oxide as a starting material. The film can be formed by various dry film forming methods such as the method. In any method, a mixed oxide sintered body can be used as a starting material.

各種乾式成膜法の中でも特に、マグネトロンスパッタリング法は簡便であり、真空蒸着法と比較したときの生産効率がよい。そのため、大量生産される光学部品に対して当該赤外線透過膜を成膜する際には、マグネトロンスパッタリング法を用いることが好ましい。この際、放電様式としては、直流電流、或いは高周波放電、或いは交流放電を採用することができる。   Among various dry film forming methods, the magnetron sputtering method is simple and has a high production efficiency when compared with the vacuum deposition method. For this reason, it is preferable to use a magnetron sputtering method when the infrared transmission film is formed on a mass-produced optical component. At this time, a direct current, a high frequency discharge, or an alternating current discharge can be adopted as a discharge mode.

赤外線透過膜をマグネトロンスパッタリング法により成膜する際には、金属亜鉛に、上記金属酸化物を構成する金属を所定量添加した金属合金ターゲットを出発原料として用いることもできる。この金属合金ターゲットを用いて、酸素ガス雰囲気下で成膜することにより、酸化亜鉛を主成分とすると共に上記金属酸化物を含む本件発明に係る赤外線透過膜を得ることができる。   When the infrared transmission film is formed by magnetron sputtering, a metal alloy target obtained by adding a predetermined amount of metal constituting the metal oxide to metal zinc can be used as a starting material. By using this metal alloy target to form a film in an oxygen gas atmosphere, an infrared transmitting film according to the present invention containing zinc oxide as a main component and containing the metal oxide can be obtained.

これらの物理蒸着法により酸化亜鉛膜を成膜すれば、上記金属酸化物は、酸化亜鉛と複合酸化物を形成することなく、酸化亜鉛の結晶粒界に偏析する。すなわち、結晶粒界に上記金属酸化物が偏析した酸化亜鉛の多結晶構造を有する赤外線透過膜が得られる。   When a zinc oxide film is formed by these physical vapor deposition methods, the metal oxide segregates at the crystal grain boundary of zinc oxide without forming a composite oxide with zinc oxide. That is, an infrared transmission film having a polycrystalline structure of zinc oxide in which the metal oxide segregates at the crystal grain boundary can be obtained.

なお、本件発明に係る赤外線透過膜は、乾式成膜法に限らず、化学的気相成長法、ゾルゲル法等の各種湿式成膜法により成膜することもできる。各成膜方法の中から、当該赤外線透過膜の用途や基材の材質等に応じて適宜、適切な成膜法を選択することができる。   The infrared transmission film according to the present invention is not limited to a dry film forming method, and can be formed by various wet film forming methods such as a chemical vapor deposition method and a sol-gel method. From each film forming method, an appropriate film forming method can be appropriately selected according to the use of the infrared transmission film, the material of the base material, and the like.

1−3.基材
本件発明に係る赤外線透過膜は、例えば、光学部品等の表面に設けられる。このとき、光学部品等の基材の材質は特に限定されるものではない。
1-3. Substrate The infrared transmission film according to the present invention is provided on the surface of an optical component, for example. At this time, the material of the base material such as an optical component is not particularly limited.

本件発明に係る赤外線透過膜は、遠赤外波長域の光線に対して透明なゲルマニウム(Ge)、シリコン(Si)、セレン化亜鉛(ZnSe)、硫化亜鉛(ZnS)と良好な密着性を有する。また、本件発明に係る赤外線透過膜は、ゲルマニウム、砒素(As)、セレン(Se)、硫黄(S)、アンチモン(Sb)、Ga(ガリウム)等を成分とする各種のカルコゲナイドガラスと良好な密着性を有する。そのため、これらの材料からなる赤外線用光学レンズ等の各種赤外線光学部品を基材としたとき、本件発明に係る赤外線透過膜を赤外線光学部品の表面に直接設けることができ、良好な密着性を得ることができる。   The infrared transmission film according to the present invention has good adhesion to germanium (Ge), silicon (Si), zinc selenide (ZnSe), and zinc sulfide (ZnS) that are transparent to light in the far-infrared wavelength region. . In addition, the infrared transmission film according to the present invention has good adhesion to various chalcogenide glasses containing germanium, arsenic (As), selenium (Se), sulfur (S), antimony (Sb), Ga (gallium) and the like. Have sex. Therefore, when various infrared optical components such as infrared optical lenses made of these materials are used as a base material, the infrared transmission film according to the present invention can be directly provided on the surface of the infrared optical component, and good adhesion can be obtained. be able to.

2.光学膜
次に、本件発明に係る光学膜について説明する。本件発明において、光学膜とは反射防止膜や、エッジフィルター、バンドパスフィルターなどの光学フィルター等を意味する。本件発明に係る光学膜は一層の光学薄膜からなる単層膜であってもよいし、二層以上の光学薄膜が積層された多層膜であってもよい。いずれの場合であっても、本件発明に係る光学膜は、上述した本件発明に係る赤外線透過膜を備えるものとする。すなわち、当該光学膜は本件発明に係る赤外線透過膜からなる単層膜であってもよいし、少なくとも一層の赤外線透過膜を備える多層膜であってもよい。
2. Next, the optical film according to the present invention will be described. In the present invention, the optical film means an antireflection film, an optical filter such as an edge filter, a band pass filter, or the like. The optical film according to the present invention may be a single layer film composed of a single optical thin film, or a multilayer film in which two or more optical thin films are laminated. In any case, the optical film according to the present invention includes the above-described infrared transmission film according to the present invention. That is, the optical film may be a single layer film made of the infrared transmission film according to the present invention, or may be a multilayer film including at least one infrared transmission film.

本件発明に係る赤外線透過膜は、中間屈折率材料である酸化亜鉛を主成分とし、酸化亜鉛と同等の屈折率を有する。また、当該赤外線透過膜は下記の高屈折率材料、或いは低屈折率材料との密着性も良好である。   The infrared transmitting film according to the present invention is mainly composed of zinc oxide, which is an intermediate refractive index material, and has a refractive index equivalent to that of zinc oxide. In addition, the infrared transmission film has good adhesion to the following high refractive index material or low refractive index material.

高屈折率材料:Ge、Si
低屈折率材料:YF、YbF、NaF、NdF、LaF、CaF、SrF
High refractive index material: Ge, Si
Low refractive index materials: YF 3 , YbF 3 , NaF, NdF 3 , LaF 3 , CaF 2 , SrF 2

従って、当該赤外線透過膜を中間屈折率層として用い、適宜、上記材料からなる高屈折率層及び/又は低屈折率層と積層した任意の層構成の光学膜を得ることができる。   Accordingly, an optical film having an arbitrary layer structure in which the infrared transmission film is used as an intermediate refractive index layer and appropriately laminated with a high refractive index layer and / or a low refractive index layer made of the above material can be obtained.

3.反射防止膜
次に、本件発明に係る反射防止膜の実施の形態を説明する。本件発明に係る反射防止膜は、上記光学膜の一種であり、本件発明に係る赤外線透過膜を備えることを特徴とする。本件発明に係る反射防止膜は、上記赤外線透過膜一層からなる単層膜であってもよいが、上記高屈折率層及び/又は低屈折率層と積層した多層膜とすることがより好ましい。多層構造の反射防止膜とすることにより、各界面で生じる界面反射光により、光の干渉作用を利用して広い波長域において低い反射率を実現することが容易になる。
3. Next, an embodiment of the antireflection film according to the present invention will be described. The antireflection film according to the present invention is a kind of the above-described optical film, and includes the infrared transmission film according to the present invention. The antireflection film according to the present invention may be a single-layer film composed of one infrared transmission film, but more preferably a multilayer film laminated with the high refractive index layer and / or the low refractive index layer. By using an antireflection film having a multilayer structure, it becomes easy to realize a low reflectance in a wide wavelength region by utilizing the interference action of light by the interface reflected light generated at each interface.

4.光学部品
本件発明に係る光学部品は、本件発明に係る赤外線透過膜を備えることを特徴とする。光学部品としては、撮像装置又は投影装置の撮像光学系又は投影光学系などを構成する各種光学部品を挙げることができる。より具体的には、レンズ、プリズム(色分解プリズム、色合成プリズム等)、偏光ビームスプリッタ(PBS)、カットフィルタ(長波長用、短波長用等)などを挙げることができる。特に、遠赤外波長域の光線を使用する遠赤外撮像光学系を構成する赤外線用レンズであることが好ましい。
4). Optical component The optical component which concerns on this invention is equipped with the infrared rays permeable film which concerns on this invention, It is characterized by the above-mentioned. Examples of the optical component include various optical components that constitute an imaging optical system or a projection optical system of the imaging device or the projection device. More specifically, a lens, a prism (color separation prism, color synthesis prism, etc.), a polarizing beam splitter (PBS), a cut filter (for long wavelength, for short wavelength, etc.) can be used. In particular, an infrared lens that constitutes a far-infrared imaging optical system that uses light rays in the far-infrared wavelength region is preferable.

5.光学系/撮像装置
本件発明に係る光学系は、本件発明に係る赤外線透過膜を備えることを特徴とする。当該光学系として、撮像光学系であることが好ましく、特に、遠赤外波長域の光線を使用する遠赤外撮像光学系であることが好ましい。例えば、監視用撮像装置、車載用撮像装置の光学系であることが好ましい。また、本件発明に係る撮像装置は、当該赤外線透過膜が設けられた光学面を含む光学系を備えることを特徴とし、これらの遠赤外線撮像光学系を備えた監視用撮像雄値、車載用撮像装置等であることが好ましい。
5. Optical System / Imaging Device An optical system according to the present invention includes the infrared transmission film according to the present invention. The optical system is preferably an imaging optical system, and particularly preferably a far infrared imaging optical system that uses light in the far infrared wavelength region. For example, an optical system of a monitoring imaging device or an in-vehicle imaging device is preferable. Moreover, the imaging device according to the present invention is characterized by including an optical system including an optical surface provided with the infrared transmission film, and the imaging male value for monitoring and the on-vehicle imaging provided with these far-infrared imaging optical systems. An apparatus or the like is preferable.

次に、実施例および比較例を示して本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではない。   Next, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to the following examples.

実施例1では、マグネトロンスパッタリング法により基材の両面にそれぞれ酸化ビスマスを添加物として含有する酸化亜鉛膜を成膜した。以下、成膜の手順について具体的に説明する。   In Example 1, a zinc oxide film containing bismuth oxide as an additive was formed on both surfaces of the substrate by magnetron sputtering. Hereinafter, the procedure of film formation will be specifically described.

まず、マグネトロンスパッタリング装置に、成膜原料であるターゲットと、基材とを対向配置した。成膜原料としては、酸化亜鉛の焼結体ターゲットを用いた。このとき、当該ターゲット上に酸化ビスマスのタブレットの小片を均等に並べた。基材として、カルコゲナイドガラス(湖北新華光信息材料有限公司製 IRG206)を用いた。   First, the target which is a film-forming raw material, and the base material were arranged opposite to each other in a magnetron sputtering apparatus. A zinc oxide sintered compact target was used as a film forming material. At this time, small pieces of bismuth oxide tablets were evenly arranged on the target. As the substrate, chalcogenide glass (IRG206 manufactured by Hubei Xinhua Guangxin Material Co., Ltd.) was used.

次に、装置内全体を真空に排気した。そして、装置内の圧力が3×10−4Paに到達した時点で、Arガスを20SCCM(standard cc/min、1atm(25℃))流し、酸素ガスを5SCCM流した。この時の装置内の圧力が、0.3Paになるように排気速度を調整した。 Next, the whole apparatus was evacuated. Then, when the pressure in the apparatus reached 3 × 10 −4 Pa, Ar gas was supplied at 20 SCCM (standard cc / min, 1 atm (25 ° C.)), and oxygen gas was supplied at 5 SCCM. The exhaust speed was adjusted so that the pressure in the apparatus at this time was 0.3 Pa.

その後、ターゲット表面に13.56MHzの高周波(約500W)を印加し、ターゲットの前方で基材を回転させながら、基材の表面に酸化ビスマスを添加物として含有する酸化亜鉛膜を成膜した。このような方法により、基材の両面に酸化ビスマスを4質量%含む酸化亜鉛膜をそれぞれ成膜した。   Thereafter, a high frequency (about 500 W) of 13.56 MHz was applied to the target surface, and a zinc oxide film containing bismuth oxide as an additive was formed on the surface of the substrate while rotating the substrate in front of the target. By such a method, a zinc oxide film containing 4% by mass of bismuth oxide was formed on both surfaces of the substrate.

実施例2では、酸化ビスマスの含有量が0.7質量%になるようにしたことを除いては、実施例1と同様にして、添加物として酸化ビスマスを含む酸化亜鉛膜を成膜した。   In Example 2, a zinc oxide film containing bismuth oxide as an additive was formed in the same manner as in Example 1 except that the content of bismuth oxide was 0.7% by mass.

実施例3では、酸化ビスマスの含有量が14.7質量%になるようにしたことを除いては、実施例1と同様にして、添加物として酸化ビスマスを含む酸化亜鉛膜を成膜した。   In Example 3, a zinc oxide film containing bismuth oxide as an additive was formed in the same manner as in Example 1 except that the content of bismuth oxide was 14.7% by mass.

実施例4では、酸化ビスマスの含有量が44.7質量%になるようにしたことを除いては、実施例1と同様にして、添加物として酸化ビスマスを含む酸化亜鉛膜を成膜した。   In Example 4, a zinc oxide film containing bismuth oxide as an additive was formed in the same manner as in Example 1 except that the content of bismuth oxide was 44.7% by mass.

実施例5では、酸化ビスマスの代わりに酸化イットリウムの含有量が2.0質量%になるようにしたことを除いては、実施例1と同様にして、添加物として酸化イットリウムを含む酸化亜鉛膜を成膜した。   In Example 5, a zinc oxide film containing yttrium oxide as an additive in the same manner as in Example 1 except that the content of yttrium oxide was 2.0 mass% instead of bismuth oxide. Was deposited.

実施例6では、酸化ビスマスの代わりに酸化イットリウムの含有量が32.0質量%になるようにしたことを除いては、実施例1と同様にして、添加物として酸化イットリウムを含む酸化亜鉛膜を成膜した。   In Example 6, a zinc oxide film containing yttrium oxide as an additive in the same manner as in Example 1 except that the content of yttrium oxide was 32.0% by mass instead of bismuth oxide. Was deposited.

実施例7では、酸化ビスマスの代わりに酸化銅の含有量が3.1質量%になるようにしたことを除いては、実施例1と同様にして、添加物として酸化銅を含む酸化亜鉛膜を成膜した。   In Example 7, a zinc oxide film containing copper oxide as an additive in the same manner as in Example 1 except that the content of copper oxide was 3.1% by mass instead of bismuth oxide. Was deposited.

実施例8では、酸化ビスマスの代わりに酸化マグネシウムの含有量が1.8質量%になるようにしたことを除いては、実施例1と同様にして、添加物として酸化マグネシウムを含む酸化亜鉛膜を成膜した。   In Example 8, a zinc oxide film containing magnesium oxide as an additive is the same as in Example 1 except that the content of magnesium oxide is 1.8% by mass instead of bismuth oxide. Was deposited.

実施例9では、基板側から順にGe膜、酸化ビスマスを含む酸化亜鉛膜とを積層した反射防止膜を成膜した。Ge膜を成膜する際には、ゲルマニウムをターゲットとして用い、酸化ビスマスを含む酸化亜鉛膜を成膜する際には、酸化ビスマスの含有量が2質量%である酸化亜鉛の焼結体ターゲットを用いて、実施例1と同様にして各膜を成膜した。   In Example 9, an antireflection film was formed by laminating a Ge film and a zinc oxide film containing bismuth oxide in this order from the substrate side. When forming a Ge film, germanium is used as a target. When forming a zinc oxide film containing bismuth oxide, a sintered body target of zinc oxide having a bismuth oxide content of 2 mass% is used. Each film was formed in the same manner as in Example 1.

実施例10では、基板側から順にGe膜、酸化ビスマスを含む酸化亜鉛膜、Ge膜、酸化ビスマスを含む酸化亜鉛膜を積層した。この際、酸化ビスマスの含有量が5質量%になるようにしたことを除いて、実施例9と同様にして各膜を成膜した。   In Example 10, a Ge film, a zinc oxide film containing bismuth oxide, a Ge film, and a zinc oxide film containing bismuth oxide were stacked in this order from the substrate side. At this time, each film was formed in the same manner as in Example 9 except that the content of bismuth oxide was 5% by mass.

比較例Comparative example

[比較例1]
比較例1では、出発原料として酸化亜鉛の焼結体ターゲットのみを用いた以外は、実施例1と同様にして酸化亜鉛膜を成膜した。すなわち、比較例1では添加物としての金属酸化物を含まない酸化亜鉛膜を成膜した。
[Comparative Example 1]
In Comparative Example 1, a zinc oxide film was formed in the same manner as in Example 1 except that only a zinc oxide sintered compact target was used as a starting material. That is, in Comparative Example 1, a zinc oxide film containing no metal oxide as an additive was formed.

[比較例2]
比較例2では、酸化ビスマスの含有量が70質量%になるようにした以外は、実施例1と同様にして、酸化亜鉛を含み、且つ、主成分が酸化ビスマスである酸化ビスマス膜を成膜した。
[Comparative Example 2]
In Comparative Example 2, a bismuth oxide film containing zinc oxide and containing bismuth oxide as a main component was formed in the same manner as in Example 1 except that the content of bismuth oxide was 70% by mass. did.

[比較例3]
比較例3では、出発原料として酸化ビスマスの焼結ターゲットを用いた以外は、実施例1と同様にして成膜し、酸化ビスマス膜を得た。
[Comparative Example 3]
In Comparative Example 3, a bismuth oxide film was obtained in the same manner as in Example 1 except that a bismuth oxide sintered target was used as a starting material.

[比較例4]
比較例4では、出発原料として酸化イットリウムの焼結ターゲットを用いた以外は、実施例1と同様にして成膜し、酸化イットリウム膜を得た。
[Comparative Example 4]
In Comparative Example 4, an yttrium oxide film was obtained in the same manner as in Example 1 except that a yttrium oxide sintered target was used as a starting material.

[比較例5]
比較例5では、出発原料として酸化タンタルの焼結ターゲットを用いた以外は、実施例1と同様にして成膜し、酸化タンタル膜を得た。
[Comparative Example 5]
In Comparative Example 5, a tantalum oxide film was obtained in the same manner as in Example 1 except that a tantalum oxide sintered target was used as a starting material.

[比較例6]
比較例6では、酸化ビスマスを含有する酸化亜鉛膜の代わりに、比較例2と同様の方法で成膜した酸化ビスマス膜を用いた以外は、実施例9と同様にして、基板側から順にGe膜、酸化ビスマス膜とが積層された反射防止膜を得た。
[Comparative Example 6]
In Comparative Example 6, instead of a zinc oxide film containing bismuth oxide, a bismuth oxide film formed by the same method as in Comparative Example 2 was used. An antireflection film in which a film and a bismuth oxide film were laminated was obtained.

[評価]
実施例1〜実施例10、比較例1〜比較例6で成膜した各膜の膜厚、組成、遠赤外線に対する平均透過率をそれぞれ測定すると共に、耐水試験を行い耐水性評価を行った。
[Evaluation]
While measuring the film thickness of each film | membrane formed in Example 1- Example 10 and Comparative Example 1- Comparative Example 6, the average transmittance | permeability with respect to far infrared rays, respectively, the water resistance test was performed and water resistance evaluation was performed.

(膜厚)
各膜の膜厚を触針式段差計で測定した。結果を表1及び表2に示す。なお、表1及び表2に示す膜厚は、各膜の実際の膜厚であって、いわゆる光学膜厚ではない。
(Film thickness)
The film thickness of each film was measured with a stylus type step gauge. The results are shown in Tables 1 and 2. In addition, the film thickness shown in Table 1 and Table 2 is an actual film thickness of each film, and is not a so-called optical film thickness.

(組成)
各膜の組成をICP(誘導結合ラズマ発光分光分析法)で分析した。結果を表1及び表2に示す。
(composition)
The composition of each film was analyzed by ICP (inductively coupled laser emission spectroscopy). The results are shown in Tables 1 and 2.

(平均透過率)
各実施例及び比較例で得た試料の波長範囲8μm〜12μm及び波長範囲8μm〜14μmにおける平均透過率をパーキンエルマー社製のFT−IR Spectrum 100 Opticaを用いて測定した。なお、各試料とは、基板の両面にそれぞれの膜を備えたものをいう(以下、同じ)。結果を表1及び表2に示す。
(Average transmittance)
The average transmittance | permeability in wavelength range 8micrometer-12micrometer and wavelength range 8micrometer-14micrometer of the sample obtained by each Example and the comparative example was measured using FT-IR Spectrum 100 Optica by Perkin Elmer. In addition, each sample means what provided each film | membrane on both surfaces of the board | substrate (hereinafter, the same). The results are shown in Tables 1 and 2.

(耐水試験)
各実施例及び比較例で得た試料を純水に浸漬した。その後、1時間経過する毎に、膜剥がれの有無等を観察した。そして、試料を純水に浸漬してから24時間が経過した時点で観察を終了した。結果を表1及び表2に示す。但し、表1及び表2には、耐水試験の結果を「○」、「×」で示している。ここで、「○」は、試料を純水に浸漬してから24時間が経過しても基材と膜との密着が良好であり、膜剥がれ等が一切生じなかったことを意味する。また、「×」は試料を純水に浸漬してから24時間が経過するまでの間に、基材から膜が浮いたり、膜が剥がれたりなど、基材と膜との密着性低下が観察されたことを意味する。
(Water resistance test)
Samples obtained in each example and comparative example were immersed in pure water. Thereafter, the presence or absence of film peeling was observed every time 1 hour passed. And observation was complete | finished when 24 hours passed since the sample was immersed in the pure water. The results are shown in Tables 1 and 2. However, in Tables 1 and 2, the results of the water resistance test are indicated by “◯” and “×”. Here, “◯” means that the adhesion between the substrate and the film was good and no film peeling occurred even after 24 hours had passed since the sample was immersed in pure water. In addition, “×” indicates a decrease in the adhesion between the substrate and the film, such as the film floating or peeling off from the substrate until 24 hours have passed since the sample was immersed in pure water. Means that

Figure 2017151408
Figure 2017151408

Figure 2017151408
Figure 2017151408

表1に示すように、実施例1〜実施例10の試料はいずれも耐水試験の結果が良好であり、各試料を純水に浸漬してから24時間が経過しても、基板からの膜剥がれが一切生じなかった。一方、比較例1の試料は、添加物を一切含まない酸化亜鉛膜を備える。表2に示すように比較例1の試料では、純水に当該試料を浸漬して2時間後に膜の浮き上がりが観察され、24時間経過後には基板から完全に膜が剥離した状態となった。従って、添加物として所定の金属酸化物を50質量%未満の範囲で含む酸化亜鉛膜とすることにより、酸化亜鉛膜の耐水性を著しく向上することができることが確認された。なお、比較例2の試料は酸化ビスマスを主成分とする。また、比較例3の試料は酸化ビスマス膜、比較例4の試料は酸化イットリウム膜を備える。比較例2の酸化ビスマスを主成分とする膜は耐水性が良好であるが、比較例3の酸化ビスマス膜及び比較例4の酸化イットリウム膜は耐水性が良くない。しかしながら、実施例5〜実施例6に示すように、酸化イットリウムを添加物として酸化亜鉛膜に含有させた場合、耐水性が良好になることが確認された。また、比較例5の試料は酸化タンタル膜であり、耐水性が良好である。表には示していないが、酸化タンタルを5質量%未満含む酸化亜鉛膜の耐水性は良好であり、酸化タンタルを添加物として含有させることにより酸化亜鉛膜の耐水性が改善されることを別途確認した。   As shown in Table 1, the samples of Examples 1 to 10 all have good results of the water resistance test, and even if 24 hours have passed since each sample was immersed in pure water, the film from the substrate No peeling occurred. On the other hand, the sample of Comparative Example 1 includes a zinc oxide film that does not contain any additive. As shown in Table 2, in the sample of Comparative Example 1, the film was observed to rise 2 hours after the sample was immersed in pure water, and after 24 hours, the film was completely peeled from the substrate. Therefore, it was confirmed that the water resistance of the zinc oxide film can be remarkably improved by using a zinc oxide film containing a predetermined metal oxide in an amount of less than 50% by mass as an additive. In addition, the sample of the comparative example 2 has bismuth oxide as a main component. The sample of Comparative Example 3 includes a bismuth oxide film, and the sample of Comparative Example 4 includes an yttrium oxide film. The film mainly composed of bismuth oxide of Comparative Example 2 has good water resistance, but the bismuth oxide film of Comparative Example 3 and the yttrium oxide film of Comparative Example 4 have poor water resistance. However, as shown in Examples 5 to 6, it was confirmed that when yttrium oxide was added as an additive to the zinc oxide film, the water resistance was improved. The sample of Comparative Example 5 is a tantalum oxide film and has good water resistance. Although not shown in the table, the water resistance of a zinc oxide film containing less than 5% by mass of tantalum oxide is good, and the addition of tantalum oxide as an additive improves the water resistance of the zinc oxide film separately. confirmed.

また、表1に示すように、実施例1〜実施例10の試料は、波長範囲8μm〜12μmにおける平均透過率が90%以上を示し、これらの波長範囲の光線に対して高い透明度を示す。従って、実施例1〜実施例10で成膜した本件発明に係る赤外線透過膜は光学膜として好適に用いることができる。   Moreover, as shown in Table 1, the samples of Examples 1 to 10 have an average transmittance of 90% or more in the wavelength range of 8 μm to 12 μm, and show high transparency with respect to light rays in these wavelength ranges. Therefore, the infrared transmission film according to the present invention formed in Examples 1 to 10 can be suitably used as an optical film.

一方、表2に示すように、比較例1の試料の波長範囲8μm〜12μmにおける平均透過率が90%以上を示し、光学膜として好適な光学特性を備える。しかしながら、上述したとおり、耐水性が低いため、実用上必要とされる耐久性を満足することができない。また、比較例2〜比較例6の試料はいずれも波長範囲8μm〜12μmにおける平均透過率が90%未満となり、遠赤外線に対する透明度が低いため、光学膜として用いることが困難である。   On the other hand, as shown in Table 2, the average transmittance of the sample of Comparative Example 1 in the wavelength range of 8 μm to 12 μm is 90% or more, and has optical characteristics suitable as an optical film. However, as described above, since the water resistance is low, the durability required for practical use cannot be satisfied. Moreover, the samples of Comparative Examples 2 to 6 all have an average transmittance of less than 90% in the wavelength range of 8 μm to 12 μm, and are difficult to use as an optical film because of low transparency to far infrared rays.

本件発明によれば、成膜が容易であり、且つ、耐水性等の実用上十分な耐久性を有する新規な赤外線透過膜、及び当該赤外線透過膜を備えた光学膜、反射防止膜、光学部品、光学系及び撮像装置を提供することができる。   According to the present invention, a novel infrared transmission film that is easy to form and has practically sufficient durability such as water resistance, and an optical film, an antireflection film, and an optical component provided with the infrared transmission film An optical system and an imaging device can be provided.

Claims (11)

酸化亜鉛を主成分とし、8μm以上14μm以下の波長域全域における消衰係数が0.4以下の金属酸化物が添加物として含まれることを特徴とする赤外線透過膜。   An infrared transmitting film comprising zinc oxide as a main component and a metal oxide having an extinction coefficient of 0.4 or less over the entire wavelength region of 8 μm or more and 14 μm or less. 前記金属酸化物の8μm以上14μm以下の波長域内の光線に対する屈折率が0.8以上2.5以下である請求項1に記載の赤外線透過膜。   2. The infrared transmission film according to claim 1, wherein a refractive index of the metal oxide with respect to a light beam in a wavelength range of 8 μm to 14 μm is 0.8 to 2.5. 当該赤外線透過膜は、前記酸化亜鉛の結晶粒界に前記金属酸化物が偏析したものである請求項1又は請求項2に記載の赤外線透過膜。   The infrared transmission film according to claim 1 or 2, wherein the infrared transmission film is one in which the metal oxide is segregated at a crystal grain boundary of the zinc oxide. 前記金属酸化物は、酸化ビスマス、酸化イットリウム、酸化銅及び酸化マグネシウムから成る群から選択される一種以上である請求項1から請求項3のいずれか一項に記載の赤外線透過膜。   The infrared ray transmitting film according to any one of claims 1 to 3, wherein the metal oxide is at least one selected from the group consisting of bismuth oxide, yttrium oxide, copper oxide, and magnesium oxide. 当該赤外線透過膜における前記金属酸化物の含有量が0.1質量%以上50質量%未満である請求項1から請求項4のいずれか一項に記載の赤外線透過膜。   The infrared transmission film according to any one of claims 1 to 4, wherein the content of the metal oxide in the infrared transmission film is 0.1 mass% or more and less than 50 mass%. 当該赤外線透過膜における前記金属酸化物の含有量が0.1質量%以上5質量%以下である請求項1から請求項5のいずれか一項に記載の赤外線透過膜。   6. The infrared transmission film according to claim 1, wherein the content of the metal oxide in the infrared transmission film is 0.1% by mass or more and 5% by mass or less. 請求項1から請求項6のいずれか一項に記載の赤外線透過膜を備えることを特徴とする光学膜。   An optical film comprising the infrared transmission film according to any one of claims 1 to 6. 請求項1から請求項6のいずれか一項に記載の赤外線透過膜を備えることを特徴とする反射防止膜。   An antireflection film comprising the infrared transmission film according to any one of claims 1 to 6. 請求項1から請求項6のいずれか一項に記載の赤外線透過膜を光学面に備えたことを特徴とする光学部品。   An optical component comprising the infrared transmission film according to any one of claims 1 to 6 on an optical surface. 請求項1から請求項6のいずれか一項に記載の赤外線透過膜を光学面に備えたことを特徴とする光学系。   An optical system comprising the infrared transmission film according to any one of claims 1 to 6 on an optical surface. 請求項1から請求項6のいずれか一項に記載の赤外線透過膜が設けられた光学面を含む光学系を備えることを特徴とする撮像装置。   An imaging apparatus comprising: an optical system including an optical surface provided with the infrared transmission film according to any one of claims 1 to 6.
JP2016203525A 2016-02-22 2016-10-17 Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device Pending JP2017151408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611094455.XA CN107102383B (en) 2016-02-22 2016-12-02 Infrared-transmitting film, optical film, antireflection film, optical member, optical system, and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016030980 2016-02-22
JP2016030980 2016-02-22

Publications (1)

Publication Number Publication Date
JP2017151408A true JP2017151408A (en) 2017-08-31

Family

ID=59738972

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016203525A Pending JP2017151408A (en) 2016-02-22 2016-10-17 Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device
JP2016203526A Active JP6817020B2 (en) 2016-02-22 2016-10-17 Infrared transmissive film, optical film, antireflection film, optical components, optical system and imaging device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016203526A Active JP6817020B2 (en) 2016-02-22 2016-10-17 Infrared transmissive film, optical film, antireflection film, optical components, optical system and imaging device

Country Status (1)

Country Link
JP (2) JP2017151408A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917573A (en) * 2021-09-27 2022-01-11 中国建筑材料科学研究总院有限公司 Amorphous infrared film system structure and preparation method thereof
WO2022045011A1 (en) * 2020-08-27 2022-03-03 Agc株式会社 Far-infrared transmitting member, and method for manufacturing far-infrared transmitting member
WO2022065000A1 (en) 2020-09-23 2022-03-31 Agc株式会社 Far-infrared ray transmitting member and method for manufacturing far-infrared ray transmitting member
WO2023008123A1 (en) * 2021-07-30 2023-02-02 日本電気硝子株式会社 Film-equipped base material and manufacturing method for same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171309A1 (en) * 2022-03-07 2023-09-14 Agc株式会社 Far infrared transmitting member and method for manufacturing far infrared transmitting member

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135440A (en) * 1993-11-10 1995-05-23 Murata Mfg Co Ltd Method for forming zno thin film
JPH08133779A (en) * 1994-11-01 1996-05-28 Ohara Inc Infrared rays transmission glass
JPH107440A (en) * 1996-06-25 1998-01-13 Central Glass Co Ltd Heat ray shielding glass
JP2006072031A (en) * 2004-09-02 2006-03-16 Mitsubishi Electric Corp Antireflection film for infrared region, and infrared lens using the same
JP2008088544A (en) * 2006-04-26 2008-04-17 Mitsubishi Materials Corp ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
US20080163929A1 (en) * 2007-01-08 2008-07-10 Guardian Industries Corp. Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
WO2012014688A1 (en) * 2010-07-30 2012-02-02 Jx日鉱日石金属株式会社 Sintered material for zno-mgo-based sputtering target
JP2012158821A (en) * 2011-02-02 2012-08-23 Mitsubishi Materials Corp Method for producing thin film and vapor deposition material for co-vapor deposition for forming thin film, thin film obtained by the method, thin film sheet having the thin film, and laminated sheet
WO2013172251A1 (en) * 2012-05-17 2013-11-21 株式会社村田製作所 Surface acoustic wave apparatus
WO2015093608A1 (en) * 2013-12-20 2015-06-25 日立化成株式会社 Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing solar cell element, and solar cell element
JP2015195341A (en) * 2014-03-24 2015-11-05 三菱電機株式会社 Photoelectric conversion element and method of manufacturing photoelectric conversion element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5261795A (en) * 1975-11-17 1977-05-21 Matsushita Electric Ind Co Ltd Production of dielectric thin film
JPWO2006112344A1 (en) * 2005-04-15 2008-12-11 松下電器産業株式会社 Optical information recording medium and recording method on optical information recording medium
JP4764858B2 (en) * 2007-01-30 2011-09-07 株式会社リコー Optical recording medium, sputtering target, and manufacturing method thereof
US9333728B2 (en) * 2007-11-06 2016-05-10 Guardian Industries Corp. Ruggedized switchable glazing, and/or method of making the same
JP2009116220A (en) * 2007-11-09 2009-05-28 Seiko Epson Corp Antireflective film, method of forming antireflective film and light-transmissive member
JP6046860B2 (en) * 2014-03-13 2016-12-21 富士フイルム株式会社 Optical component, infrared camera, and method of manufacturing optical component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135440A (en) * 1993-11-10 1995-05-23 Murata Mfg Co Ltd Method for forming zno thin film
JPH08133779A (en) * 1994-11-01 1996-05-28 Ohara Inc Infrared rays transmission glass
JPH107440A (en) * 1996-06-25 1998-01-13 Central Glass Co Ltd Heat ray shielding glass
JP2006072031A (en) * 2004-09-02 2006-03-16 Mitsubishi Electric Corp Antireflection film for infrared region, and infrared lens using the same
JP2008088544A (en) * 2006-04-26 2008-04-17 Mitsubishi Materials Corp ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
US20080163929A1 (en) * 2007-01-08 2008-07-10 Guardian Industries Corp. Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
WO2012014688A1 (en) * 2010-07-30 2012-02-02 Jx日鉱日石金属株式会社 Sintered material for zno-mgo-based sputtering target
JP2012158821A (en) * 2011-02-02 2012-08-23 Mitsubishi Materials Corp Method for producing thin film and vapor deposition material for co-vapor deposition for forming thin film, thin film obtained by the method, thin film sheet having the thin film, and laminated sheet
WO2013172251A1 (en) * 2012-05-17 2013-11-21 株式会社村田製作所 Surface acoustic wave apparatus
WO2015093608A1 (en) * 2013-12-20 2015-06-25 日立化成株式会社 Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing solar cell element, and solar cell element
JP2015195341A (en) * 2014-03-24 2015-11-05 三菱電機株式会社 Photoelectric conversion element and method of manufacturing photoelectric conversion element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045011A1 (en) * 2020-08-27 2022-03-03 Agc株式会社 Far-infrared transmitting member, and method for manufacturing far-infrared transmitting member
WO2022065000A1 (en) 2020-09-23 2022-03-31 Agc株式会社 Far-infrared ray transmitting member and method for manufacturing far-infrared ray transmitting member
WO2023008123A1 (en) * 2021-07-30 2023-02-02 日本電気硝子株式会社 Film-equipped base material and manufacturing method for same
CN113917573A (en) * 2021-09-27 2022-01-11 中国建筑材料科学研究总院有限公司 Amorphous infrared film system structure and preparation method thereof
CN113917573B (en) * 2021-09-27 2023-08-04 中国建筑材料科学研究总院有限公司 Amorphous infrared film structure and preparation method thereof

Also Published As

Publication number Publication date
JP6817020B2 (en) 2021-01-20
JP2017151409A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP2017151408A (en) Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device
CN105143930B (en) It is stacked for the enhancing of high reflection mirror, durable silver coating
JP2015200888A (en) Hard reflection preventive film, manufacturing of hard reflection preventive film and use thereof
JP2011008076A (en) Optical element and method for producing the same
JP2009083183A (en) Optical membrane laminate
JP6368941B2 (en) Method for producing glass member with optical multilayer film
US11747520B2 (en) Optical thin film having metal layer containing silver and high standard electrode potential metal
EP3683196A1 (en) Chalcogenide glass material
US10641927B2 (en) Optical thin film, optical element, optical system, and method for producing optical thin film
GB2575554A (en) Optical component with scratch-resistant anti-reflection coating and method for producing same
JP2005165249A (en) Antireflection film, optical lens equipped therewith and optical lens unit
CN116819661A (en) Optical film with variable spectral characteristics and method for adjusting spectral characteristics of optical film
JPWO2018047865A1 (en) Antireflective film, method of manufacturing antireflective film, optical element and optical system
CN107102383B (en) Infrared-transmitting film, optical film, antireflection film, optical member, optical system, and imaging device
WO2023008123A1 (en) Film-equipped base material and manufacturing method for same
JP6771572B2 (en) Antireflection film, optical element and optical system, and method for manufacturing antireflection film
JP2017032852A (en) Anti-reflection film and optical component
JP5549342B2 (en) Antireflection film and optical member having the same
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JP2014032330A (en) Half mirror and digital single-lens reflex camera
JP6989289B2 (en) Lens with hydrophilic antireflection film and its manufacturing method
JP2011141339A (en) Antireflection film and optical member having the same
JP6268691B2 (en) Beam splitting optical element and digital single lens reflex camera
JP2004184703A (en) Reflection mirror
JPH03218821A (en) Heat ray reflective glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200803