JP2017150748A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2017150748A
JP2017150748A JP2016034092A JP2016034092A JP2017150748A JP 2017150748 A JP2017150748 A JP 2017150748A JP 2016034092 A JP2016034092 A JP 2016034092A JP 2016034092 A JP2016034092 A JP 2016034092A JP 2017150748 A JP2017150748 A JP 2017150748A
Authority
JP
Japan
Prior art keywords
heat exchange
header
exchange pipe
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016034092A
Other languages
Japanese (ja)
Inventor
輝之 永藤
Teruyuki Nagafuji
輝之 永藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2016034092A priority Critical patent/JP2017150748A/en
Publication of JP2017150748A publication Critical patent/JP2017150748A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacitor which can uniform a flow rate of a refrigerant flowing in a full heat exchange pipe of a refrigerant condensation exchange path without increasing the number of part items.SOLUTION: A refrigerant condensation exchange path P1 of a capacitor 1 is composed of a plurality of first heat exchange pipes 5 which are arranged at either of an upper side and a lower side of a condensing part 2, and a plurality of second heat exchange pipes 6 arranged at the other. A total flow passage cross section area of each part of the first heat exchange pipe 5 in a longitudinal direction is set smaller than a total flow passage cross section area of each part of the second heat exchange pipe 6 in a longitudinal direction. Traverse cross section shapes of contours of two joined parts which are joined to a condensation part inlet header part 14 and a condensation part outlet head part 16 in the first and second heat exchange pipes 5, 6, and traverse cross section shapes of contours of each part in left and right directions of a portion located between the two joined parts of the first and second heat exchange pipes 5, 6 are the same as a whole.SELECTED DRAWING: Figure 1

Description

この発明は、たとえば自動車に搭載されるカーエアコンに好適に用いられるコンデンサに関する。   The present invention relates to a capacitor suitably used for, for example, a car air conditioner mounted on an automobile.

この明細書および特許請求の範囲において、上下、左右は図1、図2、図5および図6の上下、左右をいうものとする。   In this specification and claims, the top, bottom, left, and right refer to the top, bottom, left, and right of FIGS. 1, 2, 5, and 6.

たとえばカーエアコンのコンデンサとして、長手方向を上下方向に向けて配置された凝縮部入口ヘッダ部と、長手方向を上下方向に向けた状態で凝縮部入口ヘッダ部に対して左右いずれか一方に間隔をおいて配置された凝縮部出口ヘッダ部と、凝縮部入口ヘッダ部と凝縮部出口ヘッダ部との間に、長手方向を左右方向に向けるとともに上下方向に間隔をおいて配置され、かつ両端部が両ヘッダ部に接続された複数の熱交換管と、隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたフィンとを有する凝縮部を備えており、凝縮部入口ヘッダ部に冷媒流入口が設けられるとともに凝縮部出口ヘッダ部に冷媒流出口が設けられ、凝縮部入口ヘッダ部と凝縮部出口ヘッダ部との間に配置された全熱交換管の冷媒流れ方向が同一であるとともに当該全熱交換管により1つの冷媒凝縮用熱交換パスが構成され、当該冷媒凝縮用熱交換パスを構成する全熱交換管の横断面形状および総流路断面積が長手方向の全長にわたって同一であり、全熱交換管の両端寄りの一定長さ部分が、凝縮部入口ヘッダ部および凝縮部出口ヘッダ部に形成された貫通状管挿入穴を通して両ヘッダ部内に挿入され、全熱交換管が、管挿入穴の周囲の部分において両ヘッダ部の周壁に接合されているコンデンサが広く知られている(以下、周知コンデンサと称する)。   For example, as a condenser of a car air conditioner, the condenser inlet header portion arranged with the longitudinal direction oriented in the vertical direction, and the condenser inlet header portion with the longitudinal direction oriented in the vertical direction is spaced on either side of the condenser inlet header portion. The condensing unit outlet header unit, the condensing unit inlet header unit, and the condensing unit outlet header unit are arranged with the longitudinal direction facing the left-right direction and spaced apart in the vertical direction, and both end portions are It has a condensing part having a plurality of heat exchange pipes connected to both header parts and fins arranged between adjacent heat exchange pipes and joined to the heat exchange pipes. A refrigerant inlet is provided, a refrigerant outlet is provided in the condenser outlet header, and the refrigerant flow direction of the total heat exchange pipe disposed between the condenser inlet header and the condenser outlet header is the same. And The total heat exchange pipe constitutes one refrigerant condensation heat exchange path, and the cross sectional shape and the total flow path sectional area of the total heat exchange pipe constituting the refrigerant condensation heat exchange path are the same over the entire length in the longitudinal direction. The fixed length portions near both ends of the total heat exchange pipe are inserted into both header parts through through-hole insertion holes formed in the condenser inlet header part and the condenser outlet header part, and the total heat exchange pipe is A capacitor that is joined to the peripheral walls of both header portions in a portion around the tube insertion hole is widely known (hereinafter referred to as a well-known capacitor).

上述した周知コンデンサにおいて熱交換効率を向上させるには、凝縮部入口ヘッダ部の冷媒流入口の高さ位置および凝縮部出口ヘッダ部の冷媒流出口の高さ位置を調整することによって、冷媒凝縮用熱交換パスを構成する全熱交換管を流れる冷媒の流量を均一化することが効果的である。   In order to improve the heat exchange efficiency in the above-described well-known condenser, by adjusting the height position of the refrigerant inlet of the condenser inlet header and the height of the refrigerant outlet of the condenser outlet header, It is effective to equalize the flow rate of the refrigerant flowing through the total heat exchange pipe constituting the heat exchange path.

ところで、自動車に搭載されるカーエアコンの場合、カーエアコンを構成する部品を接続する配管の取り回しを考慮して、コンデンサの凝縮部入口ヘッダ部の冷媒流入口の高さ位置が制限されることがあり、上述した周知コンデンサにおいては、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化することが困難な場合がある。   By the way, in the case of a car air conditioner mounted in an automobile, the height position of the refrigerant inlet of the condenser inlet header portion of the condenser may be limited in consideration of the routing of the pipes connecting the components constituting the car air conditioner. In the well-known condenser described above, it may be difficult to equalize the flow rate of the refrigerant flowing through the total heat exchange pipe of the refrigerant condensation heat exchange path.

そこで、冷媒流入口および冷媒流出口の高さ位置を調整することなく、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化しうるコンデンサとして、凝縮部入口ヘッダ部および凝縮部出口ヘッダ部のうちの少なくともいずれか一方の内部に、熱交換管側空間と反熱交換管側空間とに仕切る仕切部材が配置され、仕切部材に前記両空間を通じさせる複数の連通部が上下方向に間隔をおいて設けられ、連通部の大きさが上下方向で調整されているコンデンサが提案されている(特許文献1参照)。   Therefore, the condenser inlet header and the condenser outlet are used as condensers that can equalize the flow rate of refrigerant flowing through the total heat exchange pipe of the refrigerant condensation heat exchange path without adjusting the height positions of the refrigerant inlet and the refrigerant outlet. A partition member that partitions the heat exchange tube side space and the counter heat exchange tube side space is disposed inside at least one of the header portions, and a plurality of communication portions that allow the partition member to pass through both the spaces are vertically arranged. There has been proposed a capacitor which is provided at an interval and whose size of the communication portion is adjusted in the vertical direction (see Patent Document 1).

しかしながら、特許文献1記載のコンデンサにおいては,凝縮部入口ヘッダ部および凝縮部出口ヘッダ部のうちの少なくともいずれか一方の内部に、熱交換管側空間と反熱交換管側空間とに仕切る仕切部材が配置されているので、部品点数が増加し、部品点数の増加に伴って重量が増加したり、コストが高くなったりするという問題がある。   However, in the capacitor described in Patent Document 1, the partition member that partitions the heat exchange pipe side space and the counter heat exchange pipe side space inside at least one of the condenser inlet header and the condenser outlet header. Since the number of parts is increased, there is a problem that the number of parts increases, the weight increases with the increase in the number of parts, and the cost increases.

特開2004−353936号公報JP 2004-353936 A

この発明の目的は、上記問題を解決し、部品点数が増加することなく、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化しうるコンデンサを提供することにある。   An object of the present invention is to solve the above-mentioned problems and to provide a condenser that can equalize the flow rate of the refrigerant flowing through the total heat exchange pipe of the refrigerant condensation heat exchange path without increasing the number of parts.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)長手方向を上下方向に向けて配置された凝縮部入口ヘッダ部と、長手方向を上下方向に向けた状態で凝縮部入口ヘッダ部に対して左右いずれか一方に間隔をおいて配置された凝縮部出口ヘッダ部と、凝縮部入口ヘッダ部と凝縮部出口ヘッダ部との間に、長手方向を左右方向に向けるとともに上下方向に間隔をおいて配置され、かつ両端部が両ヘッダ部に接続された複数の熱交換管と、隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたフィンとを有する凝縮部を備えており、凝縮部入口ヘッダ部に冷媒流入口が設けられるとともに凝縮部出口ヘッダ部に冷媒流出口が設けられ、凝縮部入口ヘッダ部と凝縮部出口ヘッダ部との間に配置された全熱交換管の冷媒流れ方向が同一であるとともに当該全熱交換管により1つの冷媒凝縮用熱交換パスが構成され、当該冷媒凝縮用熱交換パスを構成する全熱交換管の左右両端寄りの一定長さ部分が、凝縮部入口ヘッダ部および凝縮部出口ヘッダ部に形成された貫通状管挿入穴を通して両ヘッダ部内に挿入され、全熱交換管が、管挿入穴の周囲の部分において両ヘッダ部の周壁に接合されているコンデンサであって、
冷媒凝縮用熱交換パスが、凝縮部の上側および下側のうちのいずれか一方の側に連続して並んで配置された複数の第1熱交換管と、同他方の側に連続して並んで配置された残りの複数の第2熱交換管とからなり、第1熱交換管の全長のうち少なくとも一部の総流路断面積が、第2熱交換管の長手方向の各部の総流路断面積よりも小さくなっており、第1熱交換管における凝縮部入口ヘッダ部および凝縮部出口ヘッダ部の周壁に接合された2つの接合部の外形の横断面形状と、第1熱交換管における前記2つの接合部間に位置する部分の左右方向の各部における外形の横断面形状と、第2熱交換管における凝縮部入口ヘッダ部および凝縮部出口ヘッダ部の周壁に接合された2つの接合部の外形の横断面形状と、第2熱交換管における2つの接合部間に位置する部分の左右方向の各部における外形の横断面形状とが同一であるコンデンサ。
1) Condensation part inlet header part arranged with the longitudinal direction facing up and down, and with the longitudinal direction facing the up and down direction, it is arranged with a gap on either side of the condensing part inlet header part Between the condenser outlet header, and between the condenser inlet header and the condenser outlet header, the longitudinal direction is set to the left and right and spaced apart in the vertical direction, and both ends are connected to both headers. A condensing part having a plurality of heat exchange pipes and fins arranged between adjacent heat exchange pipes and joined to the heat exchange pipes, and a refrigerant inlet is provided in the condensing part inlet header part In addition, a refrigerant outlet is provided at the condenser outlet header, and the refrigerant flow direction of the total heat exchange pipe disposed between the condenser inlet header and the condenser outlet header is the same and the total heat exchange is performed. One refrigerant condensing by tube A through-like tube in which a heat exchange path is configured and a fixed length portion near the left and right ends of the total heat exchange pipe constituting the refrigerant condensation heat exchange path is formed in the condenser inlet header section and the condenser outlet header section. A capacitor that is inserted into both header parts through the insertion hole, and the total heat exchange pipe is joined to the peripheral walls of both header parts in the part around the pipe insertion hole,
The refrigerant condensing heat exchange path is continuously arranged on the other side with a plurality of first heat exchange pipes arranged continuously on either one of the upper side and the lower side of the condensing unit. The total flow cross-sectional area of at least a part of the total length of the first heat exchange pipe is the total flow of each part in the longitudinal direction of the second heat exchange pipe. The cross-sectional area of the two joints joined to the peripheral wall of the condenser inlet header and the condenser outlet header in the first heat exchange pipe, and the first heat exchange pipe The cross-sectional shape of the outer shape of each part in the left-right direction of the part located between the two joints in the above and the two joints joined to the peripheral wall of the condensing part inlet header part and the condensing part outlet header part in the second heat exchange pipe Cross-sectional shape of the outer shape of the part and two joints in the second heat exchange tube Position part lateral direction of the outer cross-section capacitor and is the same shape in each part of between.

2)冷媒流入口および冷媒流出口が、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられており、第1熱交換管が、凝縮部の上下方向の中心よりも上側および同下側のうち冷媒流入口および冷媒流出口が設けられている側に配置されている上記1)記載のコンデンサ。   2) The refrigerant inlet and the refrigerant outlet are provided on either the upper side or the lower side of the center of the condensing unit in the vertical direction, and the first heat exchange pipe is arranged in the vertical direction of the condensing unit. The capacitor as described in 1) above, which is disposed on the side where the refrigerant inlet and the refrigerant outlet are provided on the upper side and the lower side of the center.

3)冷媒流入口および冷媒流出口が同一高さ位置に設けられている上記2)記載のコンデンサ。   3) The capacitor described in 2) above, wherein the refrigerant inlet and the refrigerant outlet are provided at the same height.

4)冷媒凝縮用熱交換パスを構成する第1熱交換管および第2熱交換管が、幅方向を通風方向に向けるとともに管高さ方向を上下方向に向けた扁平状であるとともに、第1熱交換管および第2熱交換管に複数の流路が幅方向に並んで形成され、第1熱交換管の横断面形状が全長にわたって同一であるとともに、第2熱交換管の横断面形状が全長にわたって同一であり、さらに両熱交換管の外形の横断面形状が全長にわたって同一であり、第1熱交換管の長手方向の各部における全流路の断面積の合計である総流路断面積が、第2熱交換管の長手方向の各部における全流路の断面積の合計である総流路断面積よりも小さくなっている上記1)〜3)のうちのいずれかに記載のコンデンサ。   4) The first heat exchange pipe and the second heat exchange pipe constituting the heat exchange path for refrigerant condensation have a flat shape in which the width direction is directed in the ventilation direction and the pipe height direction is directed in the vertical direction. A plurality of flow paths are formed side by side in the width direction in the heat exchange pipe and the second heat exchange pipe, and the cross-sectional shape of the first heat exchange pipe is the same over the entire length, and the cross-sectional shape of the second heat exchange pipe is The total cross-sectional area is the same as the entire cross-sectional area of each of the first heat exchange tubes in the longitudinal direction, and the cross-sectional shape of the outer shapes of both heat exchange tubes is the same over the entire length. The capacitor according to any one of the above 1) to 3), which is smaller than a total flow path cross-sectional area that is a sum of cross-sectional areas of all flow paths in each part of the second heat exchange pipe in the longitudinal direction.

5)冷媒凝縮用熱交換パスを構成する第1熱交換管および第2熱交換管が、幅方向を通風方向に向けるとともに管高さ方向を上下方向に向けた扁平状であるとともに、第1熱交換管および第2熱交換管に複数の流路が幅方向に並んで形成され、第1熱交換管における凝縮部入口ヘッダ部の周壁への接合部から凝縮部出口ヘッダ部の周壁への接合部にかけての長さ部分の横断面形状が当該長さ部分の全長にわたって同一であるとともに、第2熱交換管の横断面形状が全長にわたって同一であり、さらに第1熱交換管における前記長さ部分の横断面形状と第2熱交換管の横断面形状とが同一であり、第1熱交換管における凝縮部入口ヘッダ部内に存在する部分および凝縮部出口ヘッダ部内に存在する部分のうち少なくともいずれか一方に、長手方向の各部における全流路の断面積の合計である総流路断面積が、第2熱交換管の長手方向の各部における全流路の断面積の合計である総流路断面積よりも小さくなっている小流路部が設けられている上記1)〜3)のうちのいずれかに記載のコンデンサ。   5) The first heat exchange pipe and the second heat exchange pipe constituting the heat exchange path for refrigerant condensation are flat with the width direction in the ventilation direction and the pipe height direction in the vertical direction. A plurality of flow paths are formed side by side in the width direction in the heat exchange pipe and the second heat exchange pipe, and from the joint to the peripheral wall of the condenser inlet header in the first heat exchanger pipe to the peripheral wall of the condenser outlet header The cross-sectional shape of the length portion to the joint is the same over the entire length of the length portion, the cross-sectional shape of the second heat exchange tube is the same over the entire length, and the length in the first heat exchange tube The cross-sectional shape of the part and the cross-sectional shape of the second heat exchange pipe are the same, and at least one of the part existing in the condensing part inlet header part and the part existing in the condensing part outlet header part of the first heat exchange pipe On the other hand, the longitudinal direction The total channel cross-sectional area, which is the sum of the cross-sectional areas of all the channels in each part, is smaller than the total channel cross-sectional area, which is the sum of the cross-sectional areas of all the channels in each part in the longitudinal direction of the second heat exchange pipe. The capacitor according to any one of 1) to 3), wherein a small flow path portion is provided.

6)第1熱交換管における凝縮部入口ヘッダ部内に存在する部分および凝縮部出口ヘッダ部内に存在する部分のうち少なくともいずれか一方に、両ヘッダ部外に存在する部分よりも幅の狭い幅狭部が設けられ、当該幅狭部が前記小流路部である上記5)記載のコンデンサ。   6) At least one of the portion existing in the condensing portion inlet header portion and the portion existing in the condensing portion outlet header portion in the first heat exchange pipe is narrower than the portion existing outside both header portions. The capacitor according to 5) above, wherein a portion is provided and the narrow portion is the small flow path portion.

7)第1熱交換管における凝縮部入口ヘッダ部内に存在する部分および凝縮部出口ヘッダ部内に存在する部分のうち少なくともいずれか一方に、両ヘッダ部外に存在する部分よりも管高さの低い低管高さ部が設けられ、当該低管高さ部が前記小流路部である上記5)記載のコンデンサ。   7) At least one of the portion existing in the condensing portion inlet header portion and the portion existing in the condensing portion outlet header portion in the first heat exchange pipe has a lower pipe height than the portion existing outside both header portions. 5. The capacitor according to 5) above, wherein a low pipe height portion is provided, and the low pipe height portion is the small flow path portion.

8)凝縮部と、凝縮部の下方に設けられた過冷却部と、凝縮部と過冷却部との間に設けられた受液部とを備えており、凝縮部の凝縮部出口ヘッダ部の冷媒流出口が受液部内に通じさせられ、過冷却部が、長手方向を上下方向に向けた状態で凝縮部出口ヘッダ部よりも下方に配置された過冷却部入口ヘッダ部と、長手方向を上下方向に向けた状態で過冷却部入口ヘッダ部に対して左右いずれか一方に間隔をおくとともに凝縮部入口ヘッダ部よりも下方に配置された過冷却部出口ヘッダ部と、凝縮部入口ヘッダ部と過冷却部出口ヘッダ部との間に、長手方向を左右方向に向けるとともに上下方向に間隔をおいて配置され、かつ両端部が両ヘッダ部に接続された複数の熱交換管と、隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたフィンとを備え、過冷却部入口ヘッダ部に冷媒流入口が設けられるとともに当該冷媒流入口が受液部内に通じさせられ、過冷却部の熱交換管が、凝縮部の冷媒凝縮用熱交換パスの第2熱交換管と同一構成とされている上記1)〜7)のうちのいずれかに記載のコンデンサ。   8) A condensing unit, a supercooling unit provided below the condensing unit, and a liquid receiving unit provided between the condensing unit and the supercooling unit, The refrigerant outlet is communicated with the liquid receiving part, and the supercooling part is disposed below the condensing part outlet header part with the longitudinal direction directed in the vertical direction, and the longitudinal direction of the supercooling part inlet header part. A supercooling portion outlet header portion disposed at a lower side than the condensing portion inlet header portion while being spaced apart on either the left or right side with respect to the supercooling portion inlet header portion in a vertically oriented state, and the condensing portion inlet header portion Adjacent to a plurality of heat exchange pipes, the longitudinal direction of which is directed to the left and right and spaced apart in the vertical direction, and both end portions are connected to both header portions. A fissure placed between the heat exchange tubes and joined to the heat exchange tubes The refrigerant inlet is provided in the header section of the supercooling section, the refrigerant inlet is communicated with the liquid receiving section, and the heat exchange pipe of the supercooling section is connected to the heat exchange path for refrigerant condensation in the condenser section. The capacitor according to any one of 1) to 7), which has the same configuration as the second heat exchange tube.

9)凝縮部出口ヘッダ部と過冷却部入口ヘッダ部、および凝縮部入口ヘッダ部と過冷却部出口ヘッダ部とが、それぞれ1つのヘッダタンク内を仕切部材により上下に区画することにより設けられ、受液部が凝縮部出口ヘッダ部および過冷却部入口ヘッダ部と別個に設けられるとともに、ヘッダタンクに固定されている上記8)記載のコンデンサ。   9) The condensing unit outlet header unit and the supercooling unit inlet header unit, and the condensing unit inlet header unit and the supercooling unit outlet header unit are provided by dividing the inside of one header tank up and down by a partition member, The capacitor according to 8) above, wherein the liquid receiver is provided separately from the condenser outlet header and the subcooler inlet header, and is fixed to the header tank.

上記1)〜9)のコンデンサによれば、冷媒凝縮用熱交換パスが、凝縮部の上側および下側のうちのいずれか一方の側に連続して並んで配置された複数の第1熱交換管と、同他方の側に連続して並んで配置された残りの複数の第2熱交換管とからなり、第1熱交換管の全長のうち少なくとも一部の総流路断面積が、第2熱交換管の長手方向の各部の総流路断面積よりも小さくなっているので、次の効果を奏する。すなわち、冷媒凝縮用熱交換パスにおける冷媒が凝縮部入口ヘッダ部から流入しやすい高さ部分の熱交換管を第1熱交換管とし、冷媒が凝縮部入口ヘッダ部から流入しにくい高さ部分の熱交換管を第2熱交換管とすると、冷媒は、第1熱交換管に流入しにくくなるとともに第2熱交換管に流入しやすくなる。したがって、第1熱交換管に流入する冷媒量を減少させるとともに、第2熱交換管に流入する冷媒量を増加させることが可能になる。その結果、第1熱交換管に流入する冷媒量と第2熱交換管に流入する冷媒量とを均一化することが可能になって、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化することができる。しかも、部品点数の増加や、部品点数の増加に伴う重量の増加およびコスト高を防止することができる。   According to the condensers 1) to 9) above, a plurality of first heat exchanges in which the refrigerant condensation heat exchange path is continuously arranged side by side on either the upper side or the lower side of the condensing unit. And a plurality of remaining second heat exchange tubes arranged side by side continuously on the other side, and the total flow path cross-sectional area of at least a part of the total length of the first heat exchange tube is Since it is smaller than the total flow path cross-sectional area of each part of 2 heat exchange pipes in the longitudinal direction, the following effects are produced. That is, the heat exchange pipe of the height part where the refrigerant in the heat exchange path for refrigerant condensation is easy to flow from the condenser inlet header part is used as the first heat exchange pipe, and the height part where the refrigerant is difficult to flow from the condenser inlet header part. When the heat exchange pipe is the second heat exchange pipe, the refrigerant is less likely to flow into the first heat exchange pipe and easily flows into the second heat exchange pipe. Accordingly, it is possible to reduce the amount of refrigerant flowing into the first heat exchange pipe and increase the amount of refrigerant flowing into the second heat exchange pipe. As a result, the amount of refrigerant flowing into the first heat exchange pipe and the amount of refrigerant flowing into the second heat exchange pipe can be made uniform, and the refrigerant flowing through the total heat exchange pipe of the heat exchange path for refrigerant condensation. The flow rate can be made uniform. In addition, it is possible to prevent an increase in the number of parts and an increase in weight and cost associated with an increase in the number of parts.

また、第1熱交換管における凝縮部入口ヘッダ部および凝縮部出口ヘッダ部の周壁に接合された2つの接合部の外形の横断面形状と、第1熱交換管における前記2つの接合部間に位置する部分の左右方向の各部における外形の横断面形状と、第2熱交換管における凝縮部入口ヘッダ部および凝縮部出口ヘッダ部の周壁に接合された2つの接合部の外形の横断面形状と、第2熱交換管における2つの接合部間に位置する部分の左右方向の各部における外形の横断面形状とが同一であるから、凝縮部入口ヘッダ部および凝縮部出口ヘッダ部の全管挿入穴の形状を同一にすることができるとともに、全フィンの上下方向の寸法も同一にすることができ、たとえば周知コンデンサと同じヘッダ部やフィンを用いることが可能になる。   Moreover, the cross-sectional shape of the external shape of the two joining parts joined to the peripheral walls of the condensing part inlet header part and the condensing part outlet header part in the first heat exchange pipe, and the two joint parts in the first heat exchange pipe The cross-sectional shape of the outer shape in each part in the left-right direction of the portion located, and the cross-sectional shape of the outer shape of the two joint portions joined to the peripheral wall of the condenser inlet header portion and the condenser outlet header portion in the second heat exchange pipe Since the cross-sectional shape of the outer shape of each part in the left-right direction of the part located between the two joints in the second heat exchange pipe is the same, all the tube insertion holes in the condenser inlet header and the condenser outlet header The shape of each of the fins can be made the same, and the vertical dimensions of all the fins can be made the same. For example, it is possible to use the same header and fins as the well-known capacitor.

上記2)のコンデンサによれば、次の効果を奏する。すなわち、上述した周知コンデンサにおいて、冷媒流入口および冷媒流出口が、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側の部分に設けられている場合には、冷媒凝縮用熱交換パスの全熱交換管のうち冷媒流入口および冷媒流出口が設けられた側に配置された熱交換管に流入する冷媒量が、同他側に配置された熱交換管に流入する冷媒量よりも著しく多くなり、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量が不均一になる。しかしながら、この場合であっても、上記2)のコンデンサのように、第1熱交換管が、凝縮部の上下方向の中心よりも上方の上側および同下側のうち冷媒流入口および冷媒流出口が設けられている側に配置されていると、第1熱交換管に流入する冷媒量を効果的に減少させるとともに、第2熱交換管に流入する冷媒量を効果的に増加させることが可能になる。したがって、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化することができる。   The capacitor 2) has the following effects. That is, in the well-known condenser described above, when the refrigerant inlet and the refrigerant outlet are provided on either the upper side or the lower side of the center in the vertical direction of the condensing unit, the refrigerant condensation The amount of refrigerant flowing into the heat exchange pipe arranged on the side where the refrigerant inlet and the refrigerant outlet are provided in the total heat exchange pipe of the heat exchange path for the refrigerant flows into the heat exchange pipe arranged on the other side The amount of refrigerant becomes significantly larger than the amount of refrigerant, and the flow rate of refrigerant flowing through the total heat exchange pipe of the refrigerant condensation heat exchange path becomes uneven. However, even in this case, like the condenser in 2) above, the first heat exchange pipe has the refrigerant inlet and the refrigerant outlet of the upper side and the lower side above the center in the vertical direction of the condensing unit. It is possible to effectively reduce the amount of refrigerant flowing into the first heat exchange pipe and effectively increase the amount of refrigerant flowing into the second heat exchange pipe. become. Therefore, the flow rate of the refrigerant flowing through the total heat exchange pipe of the refrigerant condensation heat exchange path can be made uniform.

上記4)のコンデンサによれば、第1熱交換管および第2熱交換管を、たとえば押出成形により比較的簡単につくることができる。   According to the capacitor 4), the first heat exchange tube and the second heat exchange tube can be made relatively easily by, for example, extrusion molding.

上記5)〜7)のコンデンサによれば、冷媒凝縮用熱交換パスの第1熱交換管を、第2熱交換管と同一横断面形状の押出形材からなる素管における凝縮部入口ヘッダ部内に入る部分、および凝縮部出口ヘッダ部内に入る部分のうち少なくともいずれか一方に加工を施すことによって第1熱交換管をつくることができる。したがって、第1熱交換管および第2熱交換管を比較的簡単につくることができる。   According to the condensers 5) to 7) above, the first heat exchange pipe of the refrigerant condensation heat exchange path is in the condenser inlet header part of the base pipe made of an extruded shape having the same cross-sectional shape as the second heat exchange pipe. A 1st heat exchange pipe | tube can be made by processing at least any one of the part which enters, and the part which enters in a condensation part exit header part. Therefore, the first heat exchange tube and the second heat exchange tube can be made relatively easily.

この発明によるコンデンサの第1の実施形態の全体構成を具体的に示す正面図である。1 is a front view specifically showing the overall configuration of a first embodiment of a capacitor according to the present invention; 図1のコンデンサを模式的に示す正面図である。FIG. 2 is a front view schematically showing the capacitor of FIG. 1. 図1のコンデンサの冷媒凝縮用熱交換パスに用いられる第1熱交換管の拡大横断面図である。FIG. 2 is an enlarged cross-sectional view of a first heat exchange pipe used for a refrigerant condensation heat exchange path of the condenser of FIG. 1. 図1のコンデンサの冷媒凝縮用熱交換パスに用いられる第2熱交換管の拡大横断面図である。FIG. 3 is an enlarged cross-sectional view of a second heat exchange pipe used in the refrigerant condensation heat exchange path of the condenser of FIG. 1. この発明によるコンデンサの第2の実施形態の全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of 2nd Embodiment of the capacitor | condenser by this invention. 図5のコンデンサを模式的に示す正面図である。FIG. 6 is a front view schematically showing the capacitor of FIG. 5. 図1のコンデンサの冷媒凝縮用熱交換パスに用いられる第1熱交換管の変形例を示す一部拡大斜視図である。It is a partially expanded perspective view which shows the modification of the 1st heat exchange pipe | tube used for the heat exchange path | pass for refrigerant | coolant condensation of the capacitor | condenser of FIG. 図7のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のコンデンサの冷媒凝縮用熱交換パスに用いられる第1熱交換管の他の変形例を示す一部拡大斜視図である。It is a partially expanded perspective view which shows the other modification of the 1st heat exchange pipe | tube used for the heat exchange path | pass for refrigerant | coolant condensation of the capacitor | condenser of FIG. 図9のB−B線断面図である。FIG. 10 is a sectional view taken along line B-B in FIG. 9.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、図1、図2、図5および図6の紙面表裏方向を通風方向というものとする。   In the following description, it is assumed that the front and back direction of FIG. 1, FIG. 2, FIG. 5 and FIG.

また、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

さらに、全図面を通じて同一部分および同一物には同一符号を付す。   Further, the same parts and the same parts are denoted by the same reference symbols throughout the drawings.

図1はこの発明によるコンデンサの第1の実施形態の全体構成を具体的に示し、図2は図1のコンデンサを模式的に示し、図3および図4は図1のコンデンサの要部の構成を示す。図2においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。   FIG. 1 specifically shows the overall configuration of the first embodiment of the capacitor according to the present invention, FIG. 2 schematically shows the capacitor of FIG. 1, and FIGS. 3 and 4 show the configuration of the main part of the capacitor of FIG. Indicates. In FIG. 2, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins and side plates is also omitted.

図1および図2において、コンデンサ(1)は、凝縮部(2)と、凝縮部(2)の下方に設けられた過冷却部(3)と、長手方向を上下方向に向けた状態で凝縮部(2)と過冷却部(3)との間に設けられ、かつ凝縮部(2)で凝縮した液相主体冷媒を貯留するとともに液相主体冷媒を過冷却部(3)に供給する液溜部の機能を有するアルミニウム製タンク状受液器(4)(受液部)とからなり、幅方向を通風方向に向けるとともに長手方向を左右方向に向けた状態で上下方向に間隔をおいて配置された複数のアルミニウム製扁平状熱交換管(5)(6)(7)と、長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置されるとともに熱交換管(5)(6)(7)の左右両端部が接続された2つのアルミニウム製ヘッダタンク(8)(9)と、隣り合う熱交換管(5)(6)(7)どうしの間および上下両端の熱交換管の外側に配置されて熱交換管(2)にろう付されたアルミニウム製コルゲートフィン(11)と、上下両端のコルゲートフィン(11)の外側に配置されてコルゲートフィン(11)にろう付されたアルミニウム製サイドプレート(12)とを備えている。   1 and 2, the condenser (1) is condensed with the condenser (2), the supercooling part (3) provided below the condenser (2), and the longitudinal direction thereof being directed vertically. A liquid provided between the section (2) and the supercooling section (3) and storing the liquid phase main refrigerant condensed in the condensing section (2) and supplying the liquid phase main refrigerant to the subcooling section (3). It consists of an aluminum tank receiver (4) (receiver) that has the function of a reservoir, with the width direction oriented in the ventilation direction and the longitudinal direction oriented in the left-right direction, with an interval in the vertical direction. A plurality of flat aluminum heat exchange tubes (5), (6), and (7) that are arranged, and are arranged at intervals in the left-right direction with the longitudinal direction facing the vertical direction and the heat exchange tubes (5) (6) (7) Two aluminum header tanks (8) (9) connected to both left and right ends, and heat between adjacent heat exchange tubes (5), (6), (7) and at both upper and lower ends Exchange tube Aluminum corrugated fins (11) that are placed outside and brazed to the heat exchange tubes (2), and aluminum that are placed outside the corrugated fins (11) at the top and bottom ends and brazed to the corrugated fins (11) And a side plate (12).

両ヘッダタンク(8)(9)内は、下側の同一高さ位置に設けられたアルミニウム製仕切部材(13)により上下方向に並んだ2つの区画に仕切られており、コンデンサ(1)における両仕切部材(13)よりも上方に位置する部分が凝縮部(2)となり、両仕切部材(13)よりも下方に位置する部分が過冷却部(3)となっている。右側ヘッダタンク(8)における仕切部材(13)よりも上方の部分に凝縮部入口ヘッダ部(14)が設けられるとともに、同下方の部分に過冷却部出口ヘッダ部(15)が設けられており、左側ヘッダタンク(9)における仕切部材(13)よりも上方の部分に凝縮部出口ヘッダ部(16)が設けられるとともに、同下方の部分に過冷却部入口ヘッダ部(17)が設けられている。凝縮部入口ヘッダ部(14)および過冷却部入口ヘッダ部(17)にそれぞれ冷媒流入口(18)(19)が設けられ、凝縮部出口ヘッダ部(16)および過冷却部出口ヘッダ部(15)にそれぞれ冷媒流出口(21)(22)が設けられている。右側ヘッダタンクの凝縮部入口ヘッダ部(14)に、冷媒流入口(18)に通じる冷媒流路(図示略)を有するアルミニウム製冷媒入口部材(23)がろう材により接合され、同じく過冷却部出口ヘッダ部(15)に、冷媒流出口(18)に通じる冷媒流路(図示略)を有するアルミニウム製冷媒出口部材(24)がろう材により接合されている。   Both header tanks (8) and (9) are partitioned into two compartments arranged in the vertical direction by an aluminum partition member (13) provided at the same height on the lower side. A portion located above both partition members (13) serves as a condensing part (2), and a portion located below both partition members (13) serves as a supercooling part (3). The right header tank (8) is provided with a condenser inlet header (14) in the upper part of the partition member (13) and a supercooling part outlet header (15) in the lower part. The left header tank (9) is provided with a condenser outlet header (16) in the upper part of the partition member (13) and a supercooling part inlet header (17) in the lower part. Yes. Refrigerant inlets (18) and (19) are provided in the condenser inlet header (14) and the supercooler inlet header (17), respectively, and the condenser outlet header (16) and the supercooler outlet header (15 ) Are provided with refrigerant outlets (21) and (22), respectively. An aluminum refrigerant inlet member (23) having a refrigerant flow path (not shown) leading to the refrigerant inlet (18) is joined to the condenser inlet header (14) of the right header tank by a brazing material. An aluminum refrigerant outlet member (24) having a refrigerant flow path (not shown) communicating with the refrigerant outlet (18) is joined to the outlet header (15) by a brazing material.

凝縮部入口ヘッダ部(14)の冷媒流入口(18)および凝縮部出口ヘッダ部(16)の冷媒流出口(21)は、凝縮部(2)の上下方向の中心(O)よりも上側および同下側のうちいずれか同じ側の部分、ここでは下側においてたとえば同一高さ位置に設けられている。   The refrigerant inlet (18) of the condenser inlet header (14) and the refrigerant outlet (21) of the condenser outlet header (16) are above the center (O) in the vertical direction of the condenser (2) and For example, at the same height position on the same side of the lower side, here the lower side.

コンデンサ(1)の凝縮部(2)において、凝縮部入口ヘッダ部(14)と凝縮部出口ヘッダ部(16)との間に配置された全熱交換管(5)(6)の冷媒流れ方向は同一、ここでは右から左であり、当該熱交換管(5)(6)により冷媒凝縮用熱交換パス(P1)が構成されている。コンデンサ(1)の過冷却部(3)において、過冷却部入口ヘッダ部(17)と過冷却部出口ヘッダ部(15)との間に配置された全熱交換管(7)の冷媒流れ方向は冷媒凝縮用熱交換パス(P1)の冷媒流れ方向とは逆向き、ここでは左から右であり、当該熱交換管(7)により冷媒過冷却用熱交換パス(P2)が構成されている。以下、冷媒凝縮用熱交換パス(P1)を第1熱交換パスといい、冷媒過冷却用熱交換パス(P2)を第2熱交換管パスというものとする。   In the condenser (2) of the condenser (1), the refrigerant flow direction of the total heat exchange pipe (5) (6) disposed between the condenser inlet header (14) and the condenser outlet header (16). Are the same, here from right to left, and the heat exchange pipes (5) and (6) form a heat exchange path (P1) for refrigerant condensation. In the supercooling section (3) of the condenser (1), the refrigerant flow direction of the total heat exchange pipe (7) disposed between the supercooling section inlet header section (17) and the supercooling section outlet header section (15) Is opposite to the refrigerant flow direction of the refrigerant condensation heat exchange path (P1), here from left to right, and the heat exchange pipe (7) forms the refrigerant subcooling heat exchange path (P2). . Hereinafter, the refrigerant condensation heat exchange path (P1) is referred to as a first heat exchange path, and the refrigerant subcooling heat exchange path (P2) is referred to as a second heat exchange pipe path.

第1熱交換パス(P1)を構成する全熱交換管(5)(6)の両端寄りの一定長さ部分は、凝縮部入口ヘッダ部(14)および凝縮部出口ヘッダ部(16)に形成された貫通状管挿入穴(14a)(16a)を通して両ヘッダ部(14)(16)内に挿入され、全熱交換管(5)(6)が、管挿入穴(14a)(16a)の周囲の部分において両ヘッダ部(14)(16)の周壁にろう材により接合されている。また、第2熱交換パス(P2)を構成する全熱交換管(7)の両端寄りの一定長さ部分は、過冷却部入口ヘッダ部(17)および過冷却部出口ヘッダ部(15)に形成された貫通状管挿入穴(17a)(15a)を通して両ヘッダ部(17)(15)内に挿入され、全熱交換管(7)が、管挿入穴(17a)(15a)の周囲の部分において両ヘッダ部(17)(15)の周壁にろう材により接合されている。   Fixed length portions near both ends of the total heat exchange pipes (5) and (6) constituting the first heat exchange path (P1) are formed in the condenser inlet header (14) and the condenser outlet header (16). Are inserted into both header portions (14) and (16) through the inserted through-tube insertion holes (14a) and (16a), and the total heat exchange tubes (5) and (6) are inserted into the tube insertion holes (14a) and (16a). In the surrounding part, it is joined to the peripheral walls of both header parts (14) and (16) by a brazing material. Moreover, the fixed length part near both ends of the total heat exchange pipe (7) constituting the second heat exchange path (P2) is connected to the supercooling part inlet header part (17) and the supercooling part outlet header part (15). It is inserted into both header parts (17) and (15) through the formed through-hole insertion holes (17a) and (15a), and the total heat exchange pipe (7) is placed around the pipe insertion holes (17a) and (15a). The part is joined to the peripheral walls of both header parts (17) and (15) by a brazing material.

第1熱交換パス(P1)は、凝縮部(2)の上下方向の中心(O)よりも上側および同下側のうち冷媒流入口(18)および冷媒流出口(21)が設けられている側、ここでは下側に連続して並んで配置された複数の第1熱交換管(5)と、同他側(上側)に連続して並んで配置された残りの複数の第2熱交換管(6)とからなる。なお、第1熱交換管(5)は、凝縮部(2)の上下方向の中心(O)よりも下側の全高さ範囲に配置されている必要はなく、少なくとも一部に配置されていればよい。   The first heat exchange path (P1) is provided with a refrigerant inlet (18) and a refrigerant outlet (21) on the upper side and the lower side of the center (O) in the vertical direction of the condensing unit (2). Side, here a plurality of first heat exchange tubes (5) arranged side by side continuously on the lower side, and a plurality of remaining second heat exchanges arranged side by side on the other side (upper side) It consists of a tube (6). The first heat exchange pipe (5) does not need to be arranged in the entire height range below the center (O) in the vertical direction of the condensing part (2), and may be arranged at least partially. That's fine.

図3および図4に示すように、第1熱交換パス(P1)の第1熱交換管(5)および第2熱交換管(6)は、それぞれ幅方向に並んで設けられた複数の流路(5a)(6a)を有しており、第1熱交換管(5)の各流路(5a)の断面積および第2熱交換管(6)の各流路(6a)の断面積は全長にわたって同一である。また、第1熱交換管(5)の横断面形状が全長にわたって同一であるとともに、第2熱交換管(6)の横断面形状が全長にわたって同一であり、さらに両熱交換管(5)(6)の外形の横断面形状が全長にわたって同一である。第1熱交換管(5)の周壁(5b)および隣り合う流路(5a)間の仕切壁(5c)の肉厚は、第2熱交換管(6)の周壁(6b)および隣り合う流路(6a)間の仕切壁(6c)の肉厚よりも大きくなっており、これにより第1熱交換管(5)の長手方向の各部における全流路(5a)の断面積の合計である総流路断面積が、第2熱交換管(6)の長手方向の各部における全流路(6a)の断面積の合計である総流路断面積よりも小さくなっている。すなわち、第1熱交換管(5)の全長うち少なくとも一部の総流路断面積が、第2熱交換管(6)の長手方向の各部の総流路断面積よりも小さくなっている。   As shown in FIG. 3 and FIG. 4, the first heat exchange pipe (5) and the second heat exchange pipe (6) of the first heat exchange path (P1) each have a plurality of flows arranged in the width direction. Has a channel (5a) (6a), the cross-sectional area of each flow path (5a) of the first heat exchange pipe (5) and the cross-sectional area of each flow path (6a) of the second heat exchange pipe (6) Are identical over the entire length. In addition, the cross-sectional shape of the first heat exchange pipe (5) is the same over the entire length, the cross-sectional shape of the second heat exchange pipe (6) is the same over the entire length, and both the heat exchange pipes (5) ( The cross-sectional shape of the outer shape of 6) is the same over the entire length. The wall thickness of the partition wall (5c) between the peripheral wall (5b) of the first heat exchange pipe (5) and the adjacent flow path (5a) is the same as that of the peripheral wall (6b) of the second heat exchange pipe (6) and the adjacent flow. It is larger than the wall thickness of the partition wall (6c) between the passages (6a), and is thus the sum of the cross-sectional areas of all the flow paths (5a) in the respective longitudinal portions of the first heat exchange pipe (5). The total flow path cross-sectional area is smaller than the total flow path cross-sectional area that is the sum of the cross-sectional areas of all the flow paths (6a) at each part in the longitudinal direction of the second heat exchange pipe (6). That is, at least a part of the total flow path cross-sectional area of the first heat exchange pipe (5) is smaller than the total flow path cross-sectional area of each part in the longitudinal direction of the second heat exchange pipe (6).

ここで、第1熱交換パス(P1)における第1および第2熱交換管(5)(6)の数の比率や、第1熱交換管(5)を配置する位置は、凝縮部入口ヘッダ部(14)の冷媒流入口(18)および凝縮部出口ヘッダ部(16)の冷媒流出口(21)が設けられる位置や、第1熱交換管(5)の長手方向の各部における全流路(5a)の断面積の合計である総流路断面積と第2熱交換管(6)の長手方向の各部における全流路(6a)の断面積の合計である総流路断面積との比率などを考慮して適宜決められる。   Here, the ratio of the number of the first and second heat exchange pipes (5) and (6) in the first heat exchange path (P1) and the position at which the first heat exchange pipe (5) is arranged are defined in the condenser inlet header. Position of the refrigerant inlet (18) of the section (14) and the refrigerant outlet (21) of the condenser outlet header (16), and all flow paths in the respective longitudinal sections of the first heat exchange pipe (5) (5a) total cross-sectional area, which is the sum of the cross-sectional areas, and total cross-sectional area, which is the sum of the cross-sectional areas of all the channels (6a) in the longitudinal direction of the second heat exchange pipe (6). It is determined appropriately in consideration of the ratio.

なお、第2熱交換パス(P2)の全熱交換管(7)としては、たとえば第2熱交換管(6)と同じものが用いられる。   As the total heat exchange pipe (7) of the second heat exchange path (P2), for example, the same one as the second heat exchange pipe (6) is used.

受液器(4)はアルミニウム製であって、長手方向を上下方向に向けるとともに上下両端が閉鎖された円筒状であり、左側ヘッダタンク(9)(凝縮部出口ヘッダ部(16)および過冷却部入口ヘッダ部(17))と別個に設けられて左側ヘッダタンク(9)に固定されている。受液器(4)の周壁には、凝縮部出口ヘッダ部(16)の冷媒流出口(21)に通じる冷媒導入口(25)と、過冷却部入口ヘッダ部(17)の冷媒流入口(19)に通じる冷媒導出口(26)とが設けられている。図示は省略したが、受液器(4)内には冷媒から異物を除去するフィルタや乾燥材が入れられている。   The liquid receiver (4) is made of aluminum and has a cylindrical shape with the longitudinal direction oriented in the vertical direction and the upper and lower ends closed, and the left header tank (9) (condenser outlet header section (16) and supercooling) A separate inlet header (17)) and fixed to the left header tank (9). On the peripheral wall of the receiver (4), a refrigerant inlet (25) leading to the refrigerant outlet (21) of the condenser outlet header (16) and a refrigerant inlet (17) of the supercooler inlet header (17) And a refrigerant outlet (26) leading to 19). Although not shown, a filter and a desiccant for removing foreign substances from the refrigerant are placed in the liquid receiver (4).

コンデンサ(1)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。   The condenser (1) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on a vehicle as a car air conditioner.

上述した構成のコンデンサ(1)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(23)の冷媒流路および凝縮部入口ヘッダ部(14)の冷媒流入口(18)を通って凝縮部入口ヘッダ部(14)内の下部に流入する。第1熱交換パス(P1)においては、下側に配置された第1熱交換管(5)の長手方向の各部における全流路(5a)の断面積の合計である総流路断面積が、上側に配置された第2熱交換管(6)の長手方向の各部における全流路(6a)の断面積の合計である総流路断面積よりも小さくなっているので、冷媒は、第1熱交換管(5)に流入しにくくなるとともに第2熱交換管(6)内に流入しやすくなり、第1熱交換管(5)に流入する冷媒量が減少するとともに、第2熱交換管(6)に流入する冷媒量が増加する。その結果、第1熱交換管(5)に流入する冷媒量と第2熱交換管(6)に流入する冷媒量とが均一化され、凝縮部入口ヘッダ部(14)内に流入した冷媒は、凝縮部入口ヘッダ部(14)に接続された第1熱交換パス(P1)の全熱交換管(5)(6)に均等に分流される。第1熱交換パス(P1)の熱交換管(5)(6)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(5)(6)の流路(5a)(6a)内を左方に流れる間に凝縮させられて凝縮部出口ヘッダ部(16)内に流入する。凝縮部出口ヘッダ部(16)内に流入した冷媒は、冷媒流出口(21)および受液器(4)の冷媒導入口(25)を通って受液器(4)内に流入する。   In the condenser (1) configured as described above, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor passes through the refrigerant flow path of the inlet member (23) and the refrigerant inlet (18) of the condenser inlet header (14). And flows into the lower part of the condenser inlet header (14). In the first heat exchange path (P1), the total cross-sectional area of the total flow path (5a) in each part in the longitudinal direction of the first heat exchange pipe (5) arranged on the lower side is the total flow-path cross-sectional area. The refrigerant is smaller than the total flow path cross-sectional area that is the sum of the cross-sectional areas of all the flow paths (6a) in the respective parts in the longitudinal direction of the second heat exchange pipe (6) disposed on the upper side. 1 It becomes difficult to flow into the heat exchange pipe (5) and it is easy to flow into the second heat exchange pipe (6), the amount of refrigerant flowing into the first heat exchange pipe (5) decreases, and the second heat exchange pipe The amount of refrigerant flowing into the pipe (6) increases. As a result, the amount of refrigerant flowing into the first heat exchange pipe (5) and the amount of refrigerant flowing into the second heat exchange pipe (6) are made uniform, and the refrigerant flowing into the condenser inlet header (14) Then, the flow is evenly divided into the total heat exchange pipes (5) and (6) of the first heat exchange path (P1) connected to the condenser inlet header (14). The refrigerant that has flowed into the heat exchange pipes (5) and (6) of the first heat exchange path (P1) passes through the flow paths (5a) (5a) of the heat exchange pipes (5) and (6) of the first heat exchange path (P1). 6a) It is condensed while flowing in the left direction and flows into the condensing unit outlet header (16). The refrigerant that has flowed into the condenser outlet header (16) flows into the liquid receiver (4) through the refrigerant outlet (21) and the refrigerant inlet (25) of the liquid receiver (4).

受液器(4)内に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により受液器(4)内の下部に溜まり、冷媒導出口(26)および冷媒流入口(19)を通って過冷却部入口ヘッダ部(17)内に入る。過冷却部入口ヘッダ部(17)内に入った冷媒は、第2熱交換パス(P2)の熱交換管(7)内に入り、第2熱交換パス(P2)の熱交換管(7)の流路を右方に流れる間に過冷却された後、過冷却部出口ヘッダ部(15)内に入り、冷媒流出口(26)および出口部材(24)の冷媒流路を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant that has flowed into the liquid receiver (4) is a gas-liquid mixed phase refrigerant, and among the gas-liquid mixed phase refrigerant, the liquid-phase main mixed phase refrigerant accumulates in the lower part of the liquid receiver (4) due to gravity, and the refrigerant outlet port. (26) and the refrigerant inlet (19) enter the supercooling part inlet header (17). The refrigerant that has entered the supercooling section inlet header (17) enters the heat exchange pipe (7) of the second heat exchange path (P2), and the heat exchange pipe (7) of the second heat exchange path (P2). After being supercooled while flowing to the right, the refrigerant enters the supercooling section outlet header (15) and flows out through the refrigerant flow paths of the refrigerant outlet (26) and the outlet member (24). And sent to the evaporator through the expansion valve.

図5および図6はこの発明によるコンデンサの第2の実施形態を示す。図5はこの発明によるコンデンサの第2の実施形態の全体構成を具体的に示し、図6は図5のコンデンサを模式的に示す。図6においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。   5 and 6 show a second embodiment of the capacitor according to the present invention. FIG. 5 specifically shows the overall configuration of the second embodiment of the capacitor according to the present invention, and FIG. 6 schematically shows the capacitor of FIG. In FIG. 6, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins and side plates is also omitted.

図5および図6において、コンデンサ(30)の凝縮部(2)の凝縮部入口ヘッダ部(14)の冷媒流入口(18)および凝縮部出口ヘッダ部(16)の冷媒流出口(21)は、凝縮部(2)の上下方向の中心よりも上側および同下側のうちいずれか同じ側の部分、ここでは上側において同一高さ位置に設けられている。   5 and 6, the refrigerant inlet (18) of the condenser inlet header (14) of the condenser (2) of the condenser (30) and the refrigerant outlet (21) of the condenser outlet header (16) are These are provided at the same height position on the upper side and the lower side of the condensing part (2) on the same side, here on the upper side.

コンデンサ(30)の凝縮部(2)の冷媒凝縮用熱交換パスである第1熱交換パス(P1)は、凝縮部(2)の上下方向の中心(O)よりも上方の上側および同下側のうち冷媒流入口(18)および冷媒流出口(21)が設けられている上側に連続して並んで配置された複数の第1熱交換管(5)と、同下側に連続して並んで配置された残りの複数の第2熱交換管(6)とからなる。なお、コンデンサ(30)の場合も、第1熱交換管(5)は、凝縮部(2)の上下方向の中心(O)よりも下側の全高さ範囲に配置されている必要はなく、少なくとも一部に配置されていればよい。   The first heat exchange path (P1), which is a heat exchange path for refrigerant condensation in the condenser (2) of the condenser (30), is above and below the center (O) in the vertical direction of the condenser (2). A plurality of first heat exchange pipes (5) arranged side by side continuously on the upper side on which the refrigerant inlet (18) and the refrigerant outlet (21) are provided, and continuously on the lower side It consists of a plurality of remaining second heat exchange tubes (6) arranged side by side. Also in the case of the condenser (30), the first heat exchange pipe (5) does not have to be arranged in the entire height range below the center (O) in the vertical direction of the condensing part (2). It suffices if it is arranged at least in part.

上述した第1の実施形態のコンデンサ(1)と同様に、第1熱交換パス(P1)の第1熱交換管(5)および第2熱交換管(6)は、それぞれ幅方向に並んで設けられた複数の流路(5a)(6a)を有しており、第1熱交換管(5)の各流路(5a)の断面積および第2熱交換管(6)の各流路(6a)の断面積は全長にわたって同一である。また、第1熱交換管(5)の横断面形状が全長にわたって同一であるとともに、第2熱交換管(6)の横断面形状が全長にわたって同一であり、さらに両熱交換管(5)(6)の外形の横断面形状が全長にわたって同一である。第1熱交換管(5)の周壁(5b)および隣り合う流路(5a)間の仕切壁(5c)の肉厚は、第2熱交換管(6)の周壁(6b)および隣り合う流路(6a)間の仕切壁(6c)の肉厚よりも大きくなっており、これにより第1熱交換管(5)の長手方向の各部における全流路(5a)の断面積の合計である総流路断面積が、第2熱交換管(6)の長手方向の各部における全流路(6a)の断面積の合計である総流路断面積よりも小さくなっている。   Similarly to the capacitor (1) of the first embodiment described above, the first heat exchange pipe (5) and the second heat exchange pipe (6) of the first heat exchange path (P1) are arranged in the width direction, respectively. It has a plurality of channels (5a) and (6a) provided, and the cross-sectional area of each channel (5a) of the first heat exchange pipe (5) and each channel of the second heat exchange pipe (6) The cross-sectional area of (6a) is the same over the entire length. In addition, the cross-sectional shape of the first heat exchange pipe (5) is the same over the entire length, the cross-sectional shape of the second heat exchange pipe (6) is the same over the entire length, and both the heat exchange pipes (5) ( The cross-sectional shape of the outer shape of 6) is the same over the entire length. The wall thickness of the partition wall (5c) between the peripheral wall (5b) of the first heat exchange pipe (5) and the adjacent flow path (5a) is the same as that of the peripheral wall (6b) of the second heat exchange pipe (6) and the adjacent flow. It is larger than the wall thickness of the partition wall (6c) between the passages (6a), and is thus the sum of the cross-sectional areas of all the flow paths (5a) in the respective longitudinal portions of the first heat exchange pipe (5). The total flow path cross-sectional area is smaller than the total flow path cross-sectional area that is the sum of the cross-sectional areas of all the flow paths (6a) at each part in the longitudinal direction of the second heat exchange pipe (6).

ここで、第1熱交換パス(P1)における第1および第2熱交換管(5)(6)の数の比率や、第1熱交換管(5)を配置する位置は、第1の実施形態の場合と同様に、凝縮部入口ヘッダ部(14)の冷媒流入口(18)および凝縮部出口ヘッダ部(16)の冷媒流出口(21)が設けられる位置や、第1熱交換管(5)の長手方向の各部における全流路(5a)の断面積の合計である総流路断面積と第2熱交換管(6)の長手方向の各部における全流路(6a)の断面積の合計である総流路断面積との比率などを考慮して適宜決められる。   Here, the ratio of the number of first and second heat exchange pipes (5) and (6) in the first heat exchange path (P1) and the position at which the first heat exchange pipe (5) is arranged are the first implementation. As in the case of the embodiment, the position where the refrigerant inlet (18) of the condenser inlet header (14) and the refrigerant outlet (21) of the condenser outlet header (16) are provided, and the first heat exchange pipe ( The total cross-sectional area of the total flow path (5a) in each part in the longitudinal direction of 5) and the cross-sectional area of all the flow paths (6a) in each longitudinal part of the second heat exchange pipe (6) It is determined as appropriate in consideration of the ratio to the total channel cross-sectional area that is the sum of the above.

その他の構成は、上述した第1の実施形態のコンデンサ(1)と同様である。   Other configurations are the same as those of the capacitor (1) of the first embodiment described above.

上述した構成のコンデンサ(30)の場合、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(23)の冷媒流路および凝縮部入口ヘッダ部(14)の冷媒流入口(18)を通って凝縮部入口ヘッダ部(14)内の上部に流入する。第1熱交換パス(P1)においては、上側に配置された第1熱交換管(5)の左右方向の各部における全流路(5a)の断面積の合計である総流路断面積が、下側に配置された第2熱交換管(6)の左右方向の各部における全流路(6a)の断面積の合計である総流路断面積よりも小さくなっているので、冷媒は、第1熱交換管(5)に流入しにくくなるとともに第2熱交換管(6)内に流入しやすくなり、第1熱交換管(5)に流入する冷媒量が減少するとともに、第2熱交換管(6)に流入する冷媒量を増加する。その結果、第1熱交換管(5)に流入する冷媒量と第2熱交換管(6)に流入する冷媒量とが均一化され、凝縮部入口ヘッダ部(14)内に流入した冷媒は、凝縮部入口ヘッダ部(14)に接続された第1熱交換パス(P1)の全熱交換管(5)(6)に均等に分流される。   In the case of the condenser (30) having the above-described configuration, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor includes the refrigerant flow path of the inlet member (23) and the refrigerant inlet (18) of the condenser inlet header (14). And then flows into the upper part of the condenser inlet header (14). In the first heat exchange path (P1), the total flow path cross-sectional area, which is the sum of the cross-sectional areas of all the flow paths (5a) in the left and right portions of the first heat exchange pipe (5) arranged on the upper side, The refrigerant is smaller than the total channel cross-sectional area, which is the sum of the cross-sectional areas of all the channels (6a) in the left and right parts of the second heat exchange pipe (6) disposed on the lower side. 1 It becomes difficult to flow into the heat exchange pipe (5) and it is easy to flow into the second heat exchange pipe (6), the amount of refrigerant flowing into the first heat exchange pipe (5) decreases, and the second heat exchange pipe Increase the amount of refrigerant flowing into the pipe (6). As a result, the amount of refrigerant flowing into the first heat exchange pipe (5) and the amount of refrigerant flowing into the second heat exchange pipe (6) are made uniform, and the refrigerant flowing into the condenser inlet header (14) Then, the flow is evenly divided into the total heat exchange pipes (5) and (6) of the first heat exchange path (P1) connected to the condenser inlet header (14).

図7〜図10は、上述した2つの実施形態のコンデンサ(1)(30)の第1熱交換パス(P1)に用いられる第1熱交換管の変形例を示す。   FIGS. 7-10 shows the modification of the 1st heat exchange pipe | tube used for the 1st heat exchange path | pass (P1) of the capacitor | condenser (1) (30) of two embodiment mentioned above.

図7および図8に示す第1熱交換管(40)はアルミニウム押出形材製であって、幅方向を通風方向に向けるとともに管高さ方向を上下方向に向けた扁平状であるとともに、複数の流路(40a)が幅方向に並んで形成されている。第1熱交換管(40)における凝縮部入口ヘッダ部(14)の周壁への接合部(41)から凝縮部出口ヘッダ部(16)の周壁への接合部(41)にかけての長さ部分の横断面形状が当該長さ部分の全長にわたって同一である。第1熱交換管(40)における前記長さ部分の横断面形状は、図4に示す第1の実施形態のコンデンサ(1)の第2熱交換管(6)の横断面形状と同一である。第1熱交換管(40)における凝縮部入口ヘッダ部(14)内に存在する部分および凝縮部出口ヘッダ部(16)内に存在する部分のうち少なくともいずれか一方に、両ヘッダ部(14)(16)外に存在する部分よりも幅の狭い幅狭部(42)が設けられ、当該幅狭部(42)が、第1熱交換管(40)の長手方向の各部における全流路(40a)の断面積の合計である総流路断面積が、第2熱交換管(6)の長手方向の各部における全流路の断面積の合計である総流路断面積よりも小さくなっている小流路部(43)となっている。   The first heat exchange pipe (40) shown in FIGS. 7 and 8 is made of an aluminum extruded shape, and has a flat shape in which the width direction is directed in the ventilation direction and the pipe height direction is directed in the vertical direction. The flow paths (40a) are formed side by side in the width direction. The length of the first heat exchange pipe (40) from the junction (41) to the peripheral wall of the condenser inlet header (14) to the junction (41) to the peripheral wall of the condenser outlet header (16) The cross-sectional shape is the same over the entire length of the length portion. The cross-sectional shape of the said length part in a 1st heat exchange pipe | tube (40) is the same as the cross-sectional shape of the 2nd heat exchange pipe | tube (6) of the capacitor | condenser (1) of 1st Embodiment shown in FIG. . Both header portions (14) are provided in at least one of the portion existing in the condensing portion inlet header portion (14) and the portion existing in the condensing portion outlet header portion (16) in the first heat exchange pipe (40). (16) A narrow portion (42) having a narrower width than a portion existing outside is provided, and the narrow portion (42) includes all flow paths in the respective portions in the longitudinal direction of the first heat exchange pipe (40) ( 40a) The total cross-sectional area, which is the sum of the cross-sectional areas, is smaller than the total flow-path cross-sectional area, which is the sum of the cross-sectional areas of all the channels in the longitudinal direction of the second heat exchange pipe (6). The small flow path portion (43) is provided.

第1熱交換管(40)は、第2熱交換管(6)と同一構成のアルミニウム押出管の長手方向の少なくとも一端寄りの所定長さ部分に、幅を狭くする端末加工を施すことにより幅狭部(42)を形成することによってつくられる。   The first heat exchange pipe (40) has a width obtained by subjecting a predetermined length portion near at least one end in the longitudinal direction of an aluminum extruded pipe having the same configuration as the second heat exchange pipe (6) to a narrowing process. It is created by forming the narrow part (42).

図9および図10に示す第1熱交換管(45)はアルミニウム押出形材製であって、幅方向を通風方向に向けるとともに管高さ方向を上下方向に向けた扁平状であるとともに、複数の流路(45a)が幅方向に並んで形成されている。第1熱交換管(45)における凝縮部入口ヘッダ部(14)の周壁への接合部(46)から凝縮部出口ヘッダ部(16)の周壁への接合部(46)にかけての長さ部分の横断面形状が当該長さ部分の全長にわたって同一である。第1熱交換管(45)における前記長さ部分の横断面形状は、図4に示す第1の実施形態のコンデンサ(1)の第2熱交換管(6)の横断面形状と同一である。第1熱交換管(45)における凝縮部入口ヘッダ部(14)内に存在する部分および凝縮部出口ヘッダ部(16)内に存在する部分のうち少なくともいずれか一方に、両ヘッダ部(14)(16)外に存在する部分よりも管高さの低い低管高さ部(47)が設けられ、当該低管高さ部(47)が、第1熱交換管(45)の長手方向の各部における全流路(45a)の断面積の合計である総流路断面積が、第2熱交換管(6)の長手方向の各部における全流路(6a)の断面積の合計である総流路断面積よりも小さくなっている小流路部(48)となっている。   The first heat exchange pipe (45) shown in FIG. 9 and FIG. 10 is made of an aluminum extruded profile, and has a flat shape with the width direction directed in the ventilation direction and the pipe height direction directed in the vertical direction. Are formed side by side in the width direction. The length of the first heat exchange pipe (45) from the junction (46) to the peripheral wall of the condenser inlet header (14) to the junction (46) to the peripheral wall of the condenser outlet header (16) The cross-sectional shape is the same over the entire length of the length portion. The cross-sectional shape of the said length part in a 1st heat exchange pipe | tube (45) is the same as the cross-sectional shape of the 2nd heat exchange pipe | tube (6) of the capacitor | condenser (1) of 1st Embodiment shown in FIG. . Both header portions (14) are provided on at least one of a portion existing in the condensing portion inlet header portion (14) and a portion existing in the condensing portion outlet header portion (16) in the first heat exchange pipe (45). (16) A low pipe height part (47) having a pipe height lower than the part existing outside is provided, and the low pipe height part (47) is arranged in the longitudinal direction of the first heat exchange pipe (45). The total cross-sectional area, which is the sum of the cross-sectional areas of all the channels (45a) in each part, is the sum of the cross-sectional areas of all the channels (6a) in each part in the longitudinal direction of the second heat exchange pipe (6). It is a small flow path portion (48) that is smaller than the flow path cross-sectional area.

第1熱交換管(40)は、第2熱交換管(6)と同一構成のアルミニウム押出管の長手方向の少なくとも一端寄りの所定長さ部分に、管高さを低くする端末加工を施すことにより低管高さ部(47)を形成することによってつくられる。   The first heat exchange pipe (40) is subjected to terminal processing for lowering the pipe height at a predetermined length portion near at least one end in the longitudinal direction of the aluminum extruded pipe having the same configuration as the second heat exchange pipe (6). Is created by forming a low tube height (47).

上述した2つの実施形態のコンデンサ(1)(30)においては、凝縮部(2)の下方に過冷却部(3)が設けられているが、これに限定されるものではなく、凝縮部の上方に過冷却部が設けられていてもよい。たとえば、凝縮部と、凝縮部の上方に設けられた過冷却部と、凝縮部と過冷却部との間に設けられた受液器とを備えており、凝縮部から流出した冷媒が、受液器を経て過冷却部に流入するようになっており、受液器に、凝縮部から冷媒が流入する冷媒流入口、および冷媒流入口の上方に位置しかつ過冷却部に冷媒を流出させる冷媒流出口が形成され、受液器内における冷媒流入口と冷媒流出口との間の高さ位置に、受液器内を上下に区画する仕切部材が設けられ、受液器内に、仕切部材よりも下方の冷媒流入口が通じる第1空間と、仕切部材よりも上方の冷媒流出口が通じる第2空間とが設けられ、受液器内に、第1空間と第2空間とを通じさせる吸い上げ管が配置されているコンデンサにも適用可能である。   In the capacitors (1) and (30) of the two embodiments described above, the supercooling section (3) is provided below the condensing section (2). However, the present invention is not limited to this. A supercooling unit may be provided above. For example, it includes a condensing unit, a supercooling unit provided above the condensing unit, and a liquid receiver provided between the condensing unit and the supercooling unit. The refrigerant flows into the supercooling section through the liquid container, and the refrigerant is introduced into the liquid receiver, and the refrigerant flows into the supercooling section that is located above the refrigerant inlet and located above the refrigerant inlet. A refrigerant outlet is formed, and a partition member for vertically dividing the interior of the liquid receiver is provided at a height position between the refrigerant inlet and the refrigerant outlet in the liquid receiver. A first space through which the refrigerant inlet below the member communicates and a second space through which the refrigerant outlet above the partition member communicates are provided, and the first space and the second space are passed through the receiver. It can also be applied to a capacitor in which a suction pipe is arranged.

この発明によるコンデンサは、自動車に搭載されるカーエアコンに好適に用いられる。   The capacitor | condenser by this invention is used suitably for the car air conditioner mounted in a motor vehicle.

(1)(30):コンデンサ
(2):凝縮部
(3):過冷却部
(4):受液器(受液部)
(5)(40)(45):第1熱交換管
(5a)(40a)(45a):流路
(6):第2熱交換管
(6a):流路
(7):過冷却部の熱交換管
(8)(9):ヘッダタンク
(11):コルゲートフィン
(13):仕切部材
(14):凝縮部入口ヘッダ部
(15):過冷却部出口ヘッダ部
(16):凝縮部出口ヘッダ部
(17):過冷却部入口ヘッダ部
(18):凝縮部入口ヘッダ部の冷媒流入口
(19):過冷却部入口ヘッダ部の冷媒流入口
(21):凝縮部出口ヘッダ部の冷媒流出口
(22):過冷却部出口ヘッダ部の冷媒流出口
(41)(46):接合部
(42):幅狭部
(43):小流路部
(47):低管高さ部
(48):小流路部
(1) (30): Capacitor
(2): Condensing part
(3): Supercooling section
(4): Liquid receiver (liquid receiver)
(5) (40) (45): 1st heat exchange tube
(5a) (40a) (45a): Channel
(6): Second heat exchange tube
(6a): Flow path
(7): Heat exchanger tube of supercooling section
(8) (9): Header tank
(11): Corrugated fin
(13): Partition member
(14): Condenser inlet header
(15): Supercooler outlet header
(16): Condenser outlet header
(17): Supercooler inlet header
(18): Refrigerant inlet of the condenser inlet header
(19): Refrigerant inlet of header section of supercooling section
(21): Refrigerant outlet of condenser outlet header
(22): Refrigerant outlet of supercooler outlet header
(41) (46): Joint
(42): Narrow part
(43): Small flow path
(47): Low pipe height
(48): Small channel

Claims (9)

長手方向を上下方向に向けて配置された凝縮部入口ヘッダ部と、長手方向を上下方向に向けた状態で凝縮部入口ヘッダ部に対して左右いずれか一方に間隔をおいて配置された凝縮部出口ヘッダ部と、凝縮部入口ヘッダ部と凝縮部出口ヘッダ部との間に、長手方向を左右方向に向けるとともに上下方向に間隔をおいて配置され、かつ両端部が両ヘッダ部に接続された複数の熱交換管と、隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたフィンとを有する凝縮部を備えており、凝縮部入口ヘッダ部に冷媒流入口が設けられるとともに凝縮部出口ヘッダ部に冷媒流出口が設けられ、凝縮部入口ヘッダ部と凝縮部出口ヘッダ部との間に配置された全熱交換管の冷媒流れ方向が同一であるとともに当該全熱交換管により1つの冷媒凝縮用熱交換パスが構成され、当該冷媒凝縮用熱交換パスを構成する全熱交換管の左右両端寄りの一定長さ部分が、凝縮部入口ヘッダ部および凝縮部出口ヘッダ部に形成された貫通状管挿入穴を通して両ヘッダ部内に挿入され、全熱交換管が、管挿入穴の周囲の部分において両ヘッダ部の周壁に接合されているコンデンサであって、
冷媒凝縮用熱交換パスが、凝縮部の上側および下側のうちのいずれか一方の側に連続して並んで配置された複数の第1熱交換管と、同他方の側に連続して並んで配置された残りの複数の第2熱交換管とからなり、第1熱交換管の全長のうち少なくとも一部の総流路断面積が、第2熱交換管の長手方向の各部の総流路断面積よりも小さくなっており、第1熱交換管における凝縮部入口ヘッダ部および凝縮部出口ヘッダ部の周壁に接合された2つの接合部の外形の横断面形状と、第1熱交換管における前記2つの接合部間に位置する部分の左右方向の各部における外形の横断面形状と、第2熱交換管における凝縮部入口ヘッダ部および凝縮部出口ヘッダ部の周壁に接合された2つの接合部の外形の横断面形状と、第2熱交換管における2つの接合部間に位置する部分の左右方向の各部における外形の横断面形状とが同一であるコンデンサ。
Condenser inlet header arranged with the longitudinal direction facing up and down, and the condenser arranged with a gap on either side of the condenser inlet header with the longitudinal direction facing up and down Between the outlet header section, the condenser inlet header section, and the condenser outlet header section, the longitudinal direction is oriented in the left-right direction and at intervals in the vertical direction, and both ends are connected to both header sections. A condenser having a plurality of heat exchange pipes and fins disposed between adjacent heat exchange pipes and joined to the heat exchange pipe, and a refrigerant inlet is provided in the condenser inlet header The refrigerant outlet is provided in the condenser outlet header, and the refrigerant flow direction of the total heat exchange pipe disposed between the condenser inlet header and the condenser outlet header is the same, and the total heat exchange pipe For one refrigerant condensation Insertion of a penetrating tube in which an exchange path is configured and a fixed length portion near the left and right ends of the total heat exchange pipe constituting the refrigerant condensation heat exchange path is formed in the condenser inlet header section and the condenser outlet header section A condenser which is inserted into both header parts through a hole, and the total heat exchange pipe is joined to the peripheral walls of both header parts in a portion around the pipe insertion hole,
The refrigerant condensing heat exchange path is continuously arranged on the other side with a plurality of first heat exchange pipes arranged continuously on either one of the upper side and the lower side of the condensing unit. The total flow cross-sectional area of at least a part of the total length of the first heat exchange pipe is the total flow of each part in the longitudinal direction of the second heat exchange pipe. The cross-sectional area of the two joints joined to the peripheral wall of the condenser inlet header and the condenser outlet header in the first heat exchange pipe, and the first heat exchange pipe The cross-sectional shape of the outer shape of each part in the left-right direction of the part located between the two joints in the above and the two joints joined to the peripheral wall of the condensing part inlet header part and the condensing part outlet header part in the second heat exchange pipe Cross-sectional shape of the outer shape of the part and two joints in the second heat exchange tube Position part lateral direction of the outer cross-section capacitor and is the same shape in each part of between.
冷媒流入口および冷媒流出口が、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられており、第1熱交換管が、凝縮部の上下方向の中心よりも上側および同下側のうち冷媒流入口および冷媒流出口が設けられている側に配置されている請求項1記載のコンデンサ。 The refrigerant inflow port and the refrigerant outflow port are provided on either the upper side or the lower side of the condensing unit in the vertical direction, and the first heat exchange pipe is located on the condensing unit in the vertical direction center. 2. The capacitor according to claim 1, wherein the capacitor is disposed on the side of the upper side and the lower side where the refrigerant inlet and the refrigerant outlet are provided. 冷媒流入口および冷媒流出口が同一高さ位置に設けられている請求項2記載のコンデンサ。 The capacitor according to claim 2, wherein the refrigerant inlet and the refrigerant outlet are provided at the same height. 冷媒凝縮用熱交換パスを構成する第1熱交換管および第2熱交換管が、幅方向を通風方向に向けるとともに管高さ方向を上下方向に向けた扁平状であるとともに、第1熱交換管および第2熱交換管に複数の流路が幅方向に並んで形成され、第1熱交換管の横断面形状が全長にわたって同一であるとともに、第2熱交換管の横断面形状が全長にわたって同一であり、さらに両熱交換管の外形の横断面形状が全長にわたって同一であり、第1熱交換管の長手方向の各部における全流路の断面積の合計である総流路断面積が、第2熱交換管の長手方向の各部における全流路の断面積の合計である総流路断面積よりも小さくなっている請求項1〜3のうちのいずれかに記載のコンデンサ。 The first heat exchange pipe and the second heat exchange pipe constituting the heat exchange path for refrigerant condensation have a flat shape in which the width direction is directed in the ventilation direction and the pipe height direction is directed in the vertical direction. A plurality of flow paths are formed side by side in the width direction in the pipe and the second heat exchange pipe, the cross-sectional shape of the first heat exchange pipe is the same over the entire length, and the cross-sectional shape of the second heat exchange pipe is over the entire length. Further, the cross-sectional shape of the outer shape of both heat exchange pipes is the same over the entire length, and the total flow path cross-sectional area, which is the sum of the cross-sectional areas of all the flow paths in each part in the longitudinal direction of the first heat exchange pipe, The capacitor according to any one of claims 1 to 3, wherein the capacitor is smaller than a total flow path cross-sectional area that is a sum of cross-sectional areas of all flow paths in each portion in the longitudinal direction of the second heat exchange pipe. 冷媒凝縮用熱交換パスを構成する第1熱交換管および第2熱交換管が、幅方向を通風方向に向けるとともに管高さ方向を上下方向に向けた扁平状であるとともに、第1熱交換管および第2熱交換管に複数の流路が幅方向に並んで形成され、第1熱交換管における凝縮部入口ヘッダ部の周壁への接合部から凝縮部出口ヘッダ部の周壁への接合部にかけての長さ部分の横断面形状が当該長さ部分の全長にわたって同一であるとともに、第2熱交換管の横断面形状が全長にわたって同一であり、さらに第1熱交換管における前記長さ部分の横断面形状と第2熱交換管の横断面形状とが同一であり、第1熱交換管における凝縮部入口ヘッダ部内に存在する部分および凝縮部出口ヘッダ部内に存在する部分のうち少なくともいずれか一方に、長手方向の各部における全流路の断面積の合計である総流路断面積が、第2熱交換管の長手方向の各部における全流路の断面積の合計である総流路断面積よりも小さくなっている小流路部が設けられている請求項1〜3のうちのいずれかに記載のコンデンサ。 The first heat exchange pipe and the second heat exchange pipe constituting the heat exchange path for refrigerant condensation have a flat shape in which the width direction is directed in the ventilation direction and the pipe height direction is directed in the vertical direction. A plurality of flow paths are formed side by side in the width direction in the pipe and the second heat exchange pipe, and a joint from the joint to the peripheral wall of the condenser inlet header in the first heat exchange pipe to the peripheral wall of the condenser outlet header The cross-sectional shape of the length portion is the same over the entire length of the length portion, the cross-sectional shape of the second heat exchange tube is the same over the entire length, and the length portion of the first heat exchange tube The cross-sectional shape is the same as the cross-sectional shape of the second heat exchange pipe, and at least one of the part existing in the condensing part inlet header part and the part existing in the condensing part outlet header part of the first heat exchange pipe In the longitudinal direction The total channel cross-sectional area, which is the sum of the cross-sectional areas of all the channels in the section, becomes smaller than the total channel cross-sectional area, which is the sum of the cross-sectional areas of all the channels in each part in the longitudinal direction of the second heat exchange pipe. The capacitor | condenser in any one of Claims 1-3 in which the small flow-path part which is provided is provided. 第1熱交換管における凝縮部入口ヘッダ部内に存在する部分および凝縮部出口ヘッダ部内に存在する部分のうち少なくともいずれか一方に、両ヘッダ部外に存在する部分よりも幅の狭い幅狭部が設けられ、当該幅狭部が前記小流路部である請求項5記載のコンデンサ。 In at least one of the portion existing in the condensing portion inlet header portion and the portion existing in the condensing portion outlet header portion in the first heat exchange pipe, a narrow portion that is narrower than the portion existing outside both header portions is provided. The capacitor according to claim 5, wherein the capacitor is provided and the narrow portion is the small flow path portion. 第1熱交換管における凝縮部入口ヘッダ部内に存在する部分および凝縮部出口ヘッダ部内に存在する部分のうち少なくともいずれか一方に、両ヘッダ部外に存在する部分よりも管高さの低い低管高さ部が設けられ、当該低管高さ部が前記小流路部である請求項5記載のコンデンサ。 At least one of the portion existing in the condensing portion inlet header portion and the portion existing in the condensing portion outlet header portion of the first heat exchange pipe is a low pipe having a lower pipe height than the portion existing outside both header portions. The capacitor according to claim 5, wherein a height portion is provided, and the low tube height portion is the small flow path portion. 凝縮部と、凝縮部の下方に設けられた過冷却部と、凝縮部と過冷却部との間に設けられた受液部とを備えており、凝縮部の凝縮部出口ヘッダ部の冷媒流出口が受液部内に通じさせられ、過冷却部が、長手方向を上下方向に向けた状態で凝縮部出口ヘッダ部よりも下方に配置された過冷却部入口ヘッダ部と、長手方向を上下方向に向けた状態で過冷却部入口ヘッダ部に対して左右いずれか一方に間隔をおくとともに凝縮部入口ヘッダ部よりも下方に配置された過冷却部出口ヘッダ部と、凝縮部入口ヘッダ部と過冷却部出口ヘッダ部との間に、長手方向を左右方向に向けるとともに上下方向に間隔をおいて配置され、かつ両端部が両ヘッダ部に接続された複数の熱交換管と、隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたフィンとを備え、過冷却部入口ヘッダ部に冷媒流入口が設けられるとともに当該冷媒流入口が受液部内に通じさせられ、過冷却部の熱交換管が、凝縮部の冷媒凝縮用熱交換パスの第2熱交換管と同一構成とされている請求項1〜7のうちのいずれかに記載のコンデンサ。 The refrigerant flow of the condensation part outlet header part of the condensation part is provided with the condensation part, the supercooling part provided under the condensation part, and the liquid receiving part provided between the condensation part and the supercooling part. An outlet is connected to the liquid receiving part, and the supercooling part is arranged below the condensing part outlet header part with the longitudinal direction facing the vertical direction, and the longitudinal direction is the vertical direction. The supercooling section outlet header section disposed below the condensing section inlet header section and spaced from either the left or right side of the supercooling section inlet header section with the Adjacent heat exchange with a plurality of heat exchange tubes that are arranged with a gap in the vertical direction between the cooling unit outlet header portion and the longitudinal direction thereof in the left-right direction and whose both end portions are connected to both header portions. Fins placed between tubes and joined to heat exchange tubes A refrigerant inlet is provided in the header section of the supercooling section, the refrigerant inlet is communicated with the liquid receiving section, and the heat exchange pipe of the supercooling section is connected to the heat exchange path for refrigerant condensation in the condenser section. The capacitor | condenser in any one of Claims 1-7 made into the same structure as 2 heat exchange pipes. 凝縮部出口ヘッダ部と過冷却部入口ヘッダ部、および凝縮部入口ヘッダ部と過冷却部出口ヘッダ部とが、それぞれ1つのヘッダタンク内を仕切部材により上下に区画することにより設けられ、受液部が凝縮部出口ヘッダ部および過冷却部入口ヘッダ部と別個に設けられるとともに、ヘッダタンクに固定されている請求項8記載のコンデンサ。
The condensing unit outlet header unit and the supercooling unit inlet header unit, and the condensing unit inlet header unit and the supercooling unit outlet header unit are provided by partitioning the inside of one header tank up and down by a partition member, respectively. The capacitor according to claim 8, wherein the portion is provided separately from the condenser outlet header and the supercooler inlet header and is fixed to the header tank.
JP2016034092A 2016-02-25 2016-02-25 Capacitor Pending JP2017150748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034092A JP2017150748A (en) 2016-02-25 2016-02-25 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034092A JP2017150748A (en) 2016-02-25 2016-02-25 Capacitor

Publications (1)

Publication Number Publication Date
JP2017150748A true JP2017150748A (en) 2017-08-31

Family

ID=59740513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034092A Pending JP2017150748A (en) 2016-02-25 2016-02-25 Capacitor

Country Status (1)

Country Link
JP (1) JP2017150748A (en)

Similar Documents

Publication Publication Date Title
US9927158B2 (en) Refrigeration system with integrated core structure
JP6259703B2 (en) Capacitor
US8276401B2 (en) Evaporator
US5448899A (en) Refrigerant evaporator
JP6039946B2 (en) Capacitor
US10094601B2 (en) Condenser
US10337808B2 (en) Condenser
US10408510B2 (en) Evaporator
JP2012154604A (en) Condenser
WO2010082535A1 (en) Heat exchanger
JP2011257111A5 (en)
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP6850058B2 (en) Capacitor
JP2018080862A (en) Condenser
JP2018200132A (en) Condenser
US10393445B2 (en) Evaporator
JP2010065880A (en) Condenser
JP2017150748A (en) Capacitor
JP2019027685A (en) Condenser
JP2016186398A (en) Tube for heat exchanger and heat exchanger using the same
JP2014052163A (en) Heat exchanger
JP2013029257A (en) Condenser
JP6626693B2 (en) Capacitors
KR100858514B1 (en) Receiver drier - integrated condenser
JP2020101335A (en) Condenser