JP2017148195A - Method and apparatus for examination of endothelial function of arterial blood vessel - Google Patents

Method and apparatus for examination of endothelial function of arterial blood vessel Download PDF

Info

Publication number
JP2017148195A
JP2017148195A JP2016032515A JP2016032515A JP2017148195A JP 2017148195 A JP2017148195 A JP 2017148195A JP 2016032515 A JP2016032515 A JP 2016032515A JP 2016032515 A JP2016032515 A JP 2016032515A JP 2017148195 A JP2017148195 A JP 2017148195A
Authority
JP
Japan
Prior art keywords
pressure
compression
pulse wave
control unit
compression band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016032515A
Other languages
Japanese (ja)
Other versions
JP6855027B2 (en
Inventor
益田 博之
Hiroyuki Masuda
博之 益田
親男 原田
Chikao Harada
親男 原田
弘政 塚原
Hiromasa Tsukahara
弘政 塚原
鈴木 英範
Hidenori Suzuki
英範 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unex Corp Japan
Original Assignee
Unex Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unex Corp Japan filed Critical Unex Corp Japan
Priority to JP2016032515A priority Critical patent/JP6855027B2/en
Publication of JP2017148195A publication Critical patent/JP2017148195A/en
Application granted granted Critical
Publication of JP6855027B2 publication Critical patent/JP6855027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for examination of an endothelial function of a blood vessel, the apparatus that is constituted simply and small, and has high reliability by using the same index as a conventional FMD examination index.SOLUTION: An apparatus becomes simple and small by eliminating the need for an ultrasonic probe and a probe supporting device for supporting it and searching for an optimal position, and an ultrasonic wave image generation device for generating an ultrasonic image by processing a signal from the ultrasonic probe, etc. Furthermore, a pressure pulse wave collected continually in a predetermined period T1 with a pressure pulse wave collection control unit 36 is subjected to capacity conversion in a pulse wave processing control unit 38, and thereby an expanded rate of an arterial blood vessel is calculated by using an equivalent vessel diameter conversion. Accordingly, the timing in which a vascular diameter (vascular volume) becomes maximum by vasodilation reaction caused by shear stress applied to the arterial blood vessel substantially matches any detection timing of the pressure pulse wave collected continually for a predetermined time, and it is evaluated with an index being the same as a conventional FMD examination, and therefore a reliable examination for endothelial function of the blood vessel becomes possible.SELECTED DRAWING: Figure 2

Description

本発明は、生体の一部に見解された圧迫帯から得られる容積脈波に基づいて、血管の内皮機能を検査することができる動脈血管の内皮機能検査方法および装置に関するものである。   The present invention relates to a method and an apparatus for testing an endothelial function of an arterial blood vessel, which can examine the endothelial function of a blood vessel based on a volume pulse wave obtained from a compression band regarded as a part of a living body.

生体の動脈硬化に先立って動脈血管の内皮機能の低下が発現するという研究があり、そのような内皮機能に関する評価装置が種々提案されている。この内皮機能とは、動脈の血管壁を構成する外膜、中膜、および内膜のうちの内膜最内周側に位置する内皮に作用する血流のずり応力に基づいてその内皮からNO(一酸化窒素)が産生され、そのNOにより平滑筋が弛緩させられることで発生する血管拡張反応を言う。   There has been a study that a decrease in the endothelial function of arterial blood vessels occurs prior to the arteriosclerosis of the living body, and various evaluation devices for such endothelial function have been proposed. This endothelium function means NO from the endothelium based on the shear stress of blood flow acting on the innermost innermost side of the intima of the outer membrane, media, and intima that constitute the arterial vascular wall. This refers to the vasodilatory reaction that occurs when (nitrogen monoxide) is produced and the smooth muscle is relaxed by the NO.

たとえば、特許文献1および特許文献2には、内皮機能検査装置が提案されている。これらの内皮機能検査装置は、被検者の腕を圧迫帯を用いて圧迫することにより動脈を止血してたとえば5分間維持し、その後に止血を解除したとき、超音波画像を用いて把握される動脈の断面形状の変化たとえば血管内腔径の止血前の内径に対する最大変化率を測定し、その血管内腔径の最大変化率に基づいて動脈血管の内皮機能を評価している。しかしながら、上記内皮機能検査装置によれば、超音波画像の取得およびその画像からの血管内径の取得にオペレータの習熟が必要であり、取り扱いが困難であった。また、超音波プローブおよびそれを支持して最適位置を探索するプローブ支持装置、超音波プローブからの信号を処理して超音波画像を生成する超音波画像生成装置などが必要で装置が大型となるという欠点もあった。   For example, Patent Document 1 and Patent Document 2 propose an endothelial function testing device. These endothelial function test apparatuses are grasped using an ultrasound image when the artery is hemostatically stopped by compressing the subject's arm with a compression band, for example, for 5 minutes, and then the hemostasis is released. Changes in the cross-sectional shape of the artery, for example, the maximum change rate of the blood vessel lumen diameter with respect to the inner diameter before hemostasis is measured, and the endothelial function of the arterial blood vessel is evaluated based on the maximum change rate of the blood vessel lumen diameter. However, according to the above-mentioned endothelial function test apparatus, it is difficult to handle an operator because it is necessary to learn an ultrasonic image and to acquire a blood vessel inner diameter from the image. In addition, an ultrasonic probe and a probe support device that supports the ultrasonic probe and searches for an optimal position, an ultrasonic image generation device that generates an ultrasonic image by processing a signal from the ultrasonic probe, and the like are required. There was also a drawback.

これに対して、被験者の身体の一部に巻き受けられた圧迫帯(カフ)と、そのカフの圧力を制御するカフ圧制御部と、カフに接続された圧力センサの出力からカフ圧を検出するカフ圧検出部と、上記圧力センサの出力から脈波を検出する脈波検出部と、検出された脈波を解析する解析部とを有し、前記カフ圧制御部は、前記被験者の身体の一部へ持続的な加圧刺激を所定時間行い、前記解析部は、前記加圧刺激前後の脈波の比較により得られる脈波振幅比を用いて血管内皮機能を評価する装置が提案されている。たとえば、特許文献3に記載されたカフ圧から抽出された脈波を用いた血管内皮機能評価装置がそれである。このような血管内皮機能評価装置によれば、超音波プローブおよびそれを支持して最適位置を探索するプローブ支持装置、超音波プローブからの信号を処理して超音波画像を生成する超音波画像生成装置などが不要となるため、装置が簡単且つ小型となるとともに、操作に熟練を要しないという特徴がある。   On the other hand, the cuff pressure is detected from the pressure band (cuff) wound around a part of the subject's body, the cuff pressure control unit for controlling the pressure of the cuff, and the output of the pressure sensor connected to the cuff. A cuff pressure detection unit, a pulse wave detection unit that detects a pulse wave from the output of the pressure sensor, and an analysis unit that analyzes the detected pulse wave, wherein the cuff pressure control unit is the body of the subject A device that evaluates vascular endothelial function using a pulse wave amplitude ratio obtained by comparing pulse waves before and after the pressurization stimulus is proposed. ing. For example, this is a vascular endothelial function evaluation apparatus using a pulse wave extracted from a cuff pressure described in Patent Document 3. According to such a vascular endothelial function evaluation apparatus, an ultrasonic probe and a probe support apparatus that supports the ultrasonic probe and searches for an optimal position, and an ultrasonic image generation that generates an ultrasonic image by processing a signal from the ultrasonic probe Since an apparatus or the like is not required, the apparatus is simple and small, and there is a feature that no skill is required for operation.

特開2007−061182号公報JP 2007-061182 A 特開2007−195662号公報JP 2007-195562 A 特開2009−273870号公報JP 2009-273870 A

しかしながら、このような血管内皮機能評価装置では、カフ圧を最高血圧以上に上昇させてから大気圧まで下降させるカフ圧下降過程で脈波が検出される。この血管内皮機能評価装置は、血管のコンプライアンスが血管内皮がずり応力の刺激を受けることにより変化することを前提に、加圧刺激によるコンプライアンスの変化を脈波の振幅比で評価する方法であるため、一般的なFMD検査で行われている血管径の変化率として得られる評価方法とは異なる。このため、血管に作用したずり応力に起因する血管拡張反応により血管径が最大となるタイミングと、最大脈波の検出タイミングとが必ずしも一致せず、算出される脈波振幅比に十分な精度が得られず、内皮機能の評価に信頼性が得られなかった。   However, in such a vascular endothelial function evaluation apparatus, a pulse wave is detected in the cuff pressure lowering process in which the cuff pressure is increased to the maximum blood pressure or higher and then decreased to the atmospheric pressure. This vascular endothelial function evaluation apparatus is a method for evaluating changes in compliance due to pressure stimulation with the amplitude ratio of pulse waves on the premise that vascular compliance changes due to stimulation of shear stress in the vascular endothelium. This is different from the evaluation method obtained as the change rate of the blood vessel diameter performed in a general FMD examination. For this reason, the timing when the blood vessel diameter becomes maximum due to the vasodilation reaction caused by the shear stress acting on the blood vessel does not necessarily coincide with the detection timing of the maximum pulse wave, and the calculated pulse wave amplitude ratio has sufficient accuracy. No reliability was obtained in the evaluation of endothelial function.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、簡単かつ小型に構成され且つ信頼性の高い血管の内皮機能検査方法および装置を提供することにある。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a method and apparatus for testing the endothelial function of blood vessels that is simple and compact and has high reliability.

本発明者等は、以上の事情を背景として、種々研究を重ねた結果、生体の一部たとえば上腕に巻回した圧迫帯の圧迫圧力を動脈血管が潰れるに十分な圧まで昇圧して駆血し、その後に圧迫圧力を下降させることで動脈血管を解放し、解放後に連続的に求めた圧脈波をカフ圧力の変換でとらえ、これを容量変換することで、血管の拡張を容量変化として捉え、容量変化を相当血管径換算で求めると、血管拡張反応により前記血管内の血流の増加を刺激として動脈が拡張して血管径が最大となるタイミングと最大容量の検出タイミングとが略一致し、かつ従来のFMD検査と同一の指標で動脈の内皮機能を評価できることを見出した。本発明は、斯かる知見に基づいて為されたものである。   Based on the above circumstances, the present inventors have conducted various studies, and as a result, boosted the pressure of the compression band wound around a part of the living body, for example, the upper arm, to a pressure sufficient to collapse the arterial blood vessel. Then, the arterial blood vessel is released by lowering the compression pressure, and the pressure pulse wave continuously obtained after the release is detected by converting the cuff pressure. Assuming that the change in volume is calculated in terms of the equivalent blood vessel diameter, the timing at which the artery expands due to the increase in blood flow in the blood vessel by the vasodilation reaction and the blood vessel diameter becomes maximum is almost the same as the detection timing of the maximum capacity. In addition, it was found that the endothelial function of arteries can be evaluated with the same index as the conventional FMD test. The present invention has been made based on such knowledge.

すなわち、本方法発明の要旨とするところは、(a)生体の一部を巻回する圧迫帯と、前記圧迫帯の圧迫圧を検出する圧力センサと、前記圧迫帯の圧迫圧を制御する圧迫圧制御部とを備え、前記圧迫帯による圧迫により前記生体の一部を駆血後に前記生体内の動脈血管を解放し、前記動脈血管に発生する脈波を前記圧迫帯内の圧迫圧の変動である圧脈派の時間的変化に基づいて前記動脈血管の内皮機能を評価する動脈血管の内皮機能検査方法であって、(b)前記圧迫帯を用いて前記生体の一部を圧迫して所定時間駆血した後に前記生体の一部に対する圧迫を解放する駆血解放工程と、(c)前記圧迫帯の圧迫圧を予め定められた圧脈波採取圧力に保持する圧迫圧保持工程と、(d)前記圧迫帯の圧迫圧が前記圧脈波採取圧力に保持されている状態で前記圧脈波を所定期間連続的に採取する圧脈波採取工程と、(e)前記圧脈波採取工程で連続的に採取された圧脈波を容量変換することで前記動脈血管の拡張率を相当血管径換算で算出する脈波処理工程とを、含むことにある。   That is, the gist of the present invention is that (a) a compression band that wraps a part of a living body, a pressure sensor that detects the compression pressure of the compression band, and a compression that controls the compression pressure of the compression band. A pressure control unit, releasing arterial blood vessels in the living body after driving a part of the living body by compression by the compression band, and changing pulse pressure generated in the arterial blood vessels to pressure pressure in the compression band A method for testing an endothelial function of an arterial blood vessel, which evaluates the endothelial function of the arterial blood vessel based on a temporal change of a pressure pulse group, and (b) compresses a part of the living body using the compression band A blood pressure releasing step of releasing pressure on a part of the living body after blood driving for a predetermined time; and (c) a pressure pressure holding step of holding the pressure of the compression band at a predetermined pressure pulse wave collection pressure; (D) The compression pressure of the compression band is held at the pressure pulse wave sampling pressure A pressure pulse wave collecting step for continuously collecting the pressure pulse wave in a predetermined period in a state; and (e) volume-converting the pressure pulse wave continuously collected in the pressure pulse wave collecting step to And a pulse wave processing step of calculating an expansion rate in terms of equivalent blood vessel diameter.

また、前記方法発明を好適に実施するための装置発明の要旨とするところは、(a)生体の一部を巻回する圧迫帯と、前記圧迫帯の圧迫圧を検出する圧力センサと、前記圧迫帯の圧迫圧を制御する圧迫圧制御部とを備え、前記圧迫帯による圧迫により前記生体の一部を駆血後に前記生体内の動脈血管を解放し、前記動脈血管に発生する脈波を前記圧迫帯内の圧力振動である圧脈派の時間的変化に基づいて前記動脈血管の内皮機能を評価する動脈血管の内皮機能検査装置であって、(b)前記圧迫帯を用いて前記生体の一部を圧迫して所定時間駆血した後に前記生体の一部に対する圧迫を解放する駆血解放制御部と、(c)前記圧迫帯の圧迫圧を予め定められた圧脈波採取圧力に保持する圧迫圧保持制御部と、(d)前記圧迫帯の圧迫圧が前記圧脈波採取圧力に保持されている状態で前記圧脈波を所定期間連続的に採取する圧脈波採取制御部と、(e)前記圧脈波採取制御部で所定期間連続的に採取された圧脈波を容量変換することで前記動脈血管の拡張率を相当血管径換算で算出する脈波処理制御部とを、含むことにある。   Further, the gist of the device invention for suitably carrying out the method invention is that (a) a compression band for winding a part of a living body, a pressure sensor for detecting the compression pressure of the compression band, A compression pressure control unit for controlling the compression pressure of the compression band, and releasing arterial blood vessels in the living body after driving a part of the living body through compression by the compression band, and generating pulse waves generated in the arterial blood vessels An apparatus for testing endothelial function of an arterial blood vessel, which evaluates the endothelial function of the arterial blood vessel based on a temporal change of a pressure pulse which is pressure vibration in the compression band, and (b) the living body using the compression band A blood pressure release control unit that releases a pressure on a part of the living body after compressing a part of the body and delivering blood for a predetermined time; and (c) the compression pressure of the compression band is set to a predetermined pressure pulse wave collection pressure. A compression pressure holding control unit to hold, and (d) the compression pressure of the compression band is A pressure pulse wave collection control unit for continuously collecting the pressure pulse wave for a predetermined period while being held at the pulse wave collection pressure; and (e) the pressure pulse wave collection control unit continuously collected for a predetermined period. And a pulse wave processing control unit that calculates the expansion rate of the arterial blood vessel in terms of equivalent blood vessel diameter by converting the volume of the pressure pulse wave.

このように構成された方法発明の動脈血管の内皮機能検査方法および装置発明の動脈血管の内皮機能検査装置によれば、超音波プローブおよびそれを支持して最適位置を探索するプローブ支持装置、超音波プローブからの信号を処理して超音波画像を生成する超音波画像生成装置などが不要となるため、装置が簡単且つ小型となる。しかも、前記脈波処理工程或いは前記脈波処理制御部において、前記圧脈波採取工程或いは前記圧脈波採取制御部で所定期間連続的に採取された圧脈波を容量変換することで前記動脈血管の拡張率が相当血管径換算を用いて算出されることから、血管に作用したずり応力に起因する血管拡張反応により血管径(血管容積)が最大となるタイミングと所定時間連続的に採取される圧脈波の検出タイミングとがほぼ一致し、従来のFMD検査と同じ指標で信頼性の高い血管の内皮機能検査が可能となる。   According to the method and apparatus for inspecting the endothelial function of arterial blood vessels of the method invention configured as described above, according to the endothelial function testing apparatus for arterial blood vessels of the invention, an ultrasonic probe and a probe support device for supporting the probe to search for an optimal position, Since an ultrasonic image generation device that generates a ultrasonic image by processing a signal from the acoustic probe is not necessary, the device is simple and small. In addition, in the pulse wave processing step or the pulse wave processing control unit, the arterial artery converts the volume of the pressure pulse wave continuously collected for a predetermined period by the pressure pulse wave sampling step or the pressure pulse wave sampling control unit. Since the expansion rate of the blood vessel is calculated using the equivalent blood vessel diameter conversion, the blood vessel diameter (blood vessel volume) is continuously collected for a predetermined time with the timing at which the blood vessel diameter (blood vessel volume) is maximized due to the blood vessel expansion reaction caused by the shear stress acting on the blood vessel. The detection timing of the pressure pulse wave almost coincides, and a highly reliable blood vessel endothelial function test can be performed with the same index as the conventional FMD test.

ここで、好適には、前記駆血解放工程或いは前記駆血解放制御部は、前記圧迫帯を用いて前記生体の一部を内皮機能検査の開始後最初に圧迫して所定時間駆血した後に前記生体の一部に対する圧迫を解放するものである。これによれば、前記生体の一部が内皮機能検査の開始後最初に圧迫された後に解放されるので、その生体の一部内の動脈血管に対して内皮機能検査の開始後最初にずり応力が付与されるので、その駆血解放前に圧迫帯の圧力を高めて脈波を採取する方式に比較して、一層、信頼性の高い血管の内皮機能検査が可能となる。   Here, preferably, after the blood pressure release step or the blood pressure release control unit compresses a part of the living body using the compression band first after the start of the endothelial function test and performs blood supply for a predetermined time. The pressure on a part of the living body is released. According to this, since the part of the living body is released after being first compressed after the start of the endothelial function test, the shear stress is first applied to the arterial blood vessel in the part of the living body after the start of the endothelial function test. Therefore, the blood vessel endothelium function test can be performed more reliably than the method of collecting the pulse wave by increasing the pressure of the compression band before releasing the blood pressure.

また、好適には、前記駆血解放工程或いは前記駆血解放制御部は、前記圧迫帯を用いて前記生体の一部を内皮機能検査の開始後最初に圧迫して所定時間駆血した後に前記圧迫帯の圧迫圧を前記生体の静脈圧以下まで低下させることにより前記生体の一部に対する圧迫を解放し、前記圧迫圧保持工程或いは前記圧迫圧保持制御部は、前記生体の静脈圧以下まで低下させられた前記圧迫帯の圧迫圧を予め定められた圧脈波採取圧力に保持する。これによれば、生体の一部が所定時間駆血した後に前記圧迫帯の圧迫圧が前記生体の静脈圧以下まで低下させることにより、ずり応力がその生体の一部内の動脈血管に確実に付与される。   Preferably, the blood pressure release step or the blood pressure release control unit compresses a part of the living body using the compression band first after the start of the endothelial function test, and after the predetermined time has passed, Release pressure on a part of the living body by reducing the compression pressure of the compression band to below the venous pressure of the living body, and the compression pressure holding step or the compression pressure holding control unit reduces to below the venous pressure of the living body. The compression pressure of the compressed compression band is kept at a predetermined pressure pulse wave sampling pressure. According to this, after a part of the living body has been driven for a predetermined time, the compression pressure of the compression band is reduced to be equal to or lower than the venous pressure of the living body, so that shear stress is reliably applied to the arterial blood vessel in the part of the living body. Is done.

また、好適には、前記圧脈波採取工程或いは前記圧脈波採取制御部により圧脈波が採取される圧迫圧として、前記圧迫圧保持工程或いは前記圧迫圧保持制御部により保持される圧脈波採取圧力は、前記動脈血管の容積変化が前記圧迫帯内の圧力振動として明確に反映することが可能な前記圧迫帯内の圧力範囲内、すなわち前記生体の静脈圧から拡張期圧までの範囲内でたとえば20mmHgから80mmHgの範囲内に設定された値、好適には20mmHg程度の値に設定される。これにより、動脈圧脈波形に影響を与えない状態で圧脈波が採取される利点がある。   Preferably, the pressure pulse held by the compression pressure holding step or the compression pressure holding control unit is used as the compression pressure at which the pressure pulse wave is collected by the pressure pulse wave collecting step or the pressure pulse wave collecting control unit. Wave collection pressure is within the pressure range in which the arterial volume change can be clearly reflected as pressure oscillations in the compression zone, that is, the range from the venous pressure of the living body to the diastolic pressure. For example, the value is set within a range of 20 mmHg to 80 mmHg, preferably about 20 mmHg. Thereby, there is an advantage that the pressure pulse wave is collected without affecting the arterial pressure pulse waveform.

また、好適には、前記圧脈波採取工程或いは前記圧脈波採取制御部により圧脈波が採取される所定期間とは、前記駆血解放工程或いは前記駆血解放制御部により前記圧迫帯を用いて前記生体の一部を圧迫して所定時間駆血した後に前記生体の一部に対する圧迫が解放された時点から、ずり応力が付与されることで前記動脈血管の容積が最大となるタイミングを少なくとも含む期間、たとえば250〜300秒の間の期間である。このようにすれば、動脈血管の拡張反応が最大となるタイミングに所定時間連続的に採取される圧脈波のいずれかの検出タイミングとがほぼ一致するので、信頼性の高い血管の内皮機能検査が可能となる。   Preferably, the predetermined period during which the pressure pulse wave is sampled by the pressure pulse wave sampling step or the pressure pulse wave sampling control unit is defined as the compression band by the blood pressure release step or the blood pressure release control unit. Using the timing at which the volume of the arterial blood vessel is maximized by applying shear stress from the time when the pressure on the part of the living body is released after the part of the living body is compressed and used for a predetermined period of time. It is a period including at least, for example, a period between 250 and 300 seconds. In this way, the detection timing of any one of the pressure pulse waves continuously collected for a predetermined time at the timing when the arterial blood vessel dilation response is maximized almost coincides with the highly reliable endothelial function test of the blood vessel. Is possible.

また、好適には、前記圧脈波採取工程或いは前記圧脈波採取制御部により圧脈波が採取される連続的とは、圧脈波が1拍毎に、或いは2拍毎に続けて採取されるという意味である。このようにすれば、動脈血管の拡張反応が最大となるタイミングに所定時間連続的に採取される圧脈波のいずれかの検出タイミングとがほぼ一致するので、信頼性の高い血管の内皮機能検査が可能となる。   Preferably, the pressure pulse wave is continuously collected every one beat or every two beats when the pressure pulse wave is collected by the pressure pulse wave collecting step or the pressure pulse wave collecting control unit. It means that In this way, the detection timing of any one of the pressure pulse waves continuously collected for a predetermined time at the timing when the arterial blood vessel dilation response is maximized almost coincides with the highly reliable endothelial function test of the blood vessel. Is possible.

また、好適には、駆血のために前記圧迫帯の圧迫圧を昇圧させる場合にそれに供給される空気流量を検出する流量センサが備えられ、前記駆血解放工程或いは前記駆血解放制御部は、駆血状態とされていた前記生体の一部を解放させるに際して、上記空気流量に基づいて算出された制御式を用いてフィードバック制御により前記圧迫帯の圧迫圧力を直線状に低下させる。これによれば、駆血解放時において、同様の割合で動脈血管が解放される利点がある。前記流量センサは、好適には、良く知られた熱線式風速計から構成される。   Preferably, a flow sensor is provided for detecting a flow rate of air supplied to the compression band when the compression pressure of the compression band is increased for the purpose of blood conveyance, and the blood pressure release step or the blood pressure release control unit includes When releasing a part of the living body that has been in a blood-feeding state, the compression pressure of the compression band is linearly reduced by feedback control using a control equation calculated based on the air flow rate. According to this, there is an advantage that the arterial blood vessels are released at the same rate at the time of releasing the tourniquet. The flow sensor is preferably composed of a well-known hot-wire anemometer.

本発明が好適に適用された動脈血管の内皮機能検査装置の一例を概略的に説明する図である。It is a figure which illustrates roughly an example of the endothelial function test | inspection apparatus of the arterial blood vessel to which this invention was applied suitably. 図1の内皮機能検査装置に備えられた電子制御装置の制御機能の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control function of the electronic control apparatus with which the endothelial function test | inspection apparatus of FIG. 1 was equipped. 図2の圧迫圧制御部により制御される圧迫帯の圧迫圧の変化を説明するタイムチャートである。It is a time chart explaining the change of the compression pressure of the compression belt controlled by the compression pressure control part of FIG. 図1の圧迫帯における内容積と圧迫圧との関係を説明する特性図である。It is a characteristic view explaining the relationship between the internal volume and the compression pressure in the compression belt | band | zone of FIG. 図1の圧迫帯における圧迫圧と圧迫帯に流入させられた空気の容積である圧迫帯容量との関係を説明する特性図である。It is a characteristic view explaining the relationship between the compression pressure in the compression band of FIG. 1 and the compression band capacity | capacitance which is the volume of the air flowed into the compression band. 図1の内皮機能検査装置に備えられた電子制御装置の制御作動の要部を説明するフローチャートである。It is a flowchart explaining the principal part of the control action of the electronic control apparatus with which the endothelial function test | inspection apparatus of FIG. 1 was equipped.

以下、本発明の一実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一例である動脈血管の内皮機能検査装置8を説明する略図である。図1において、血圧測定においても用いられるカフと同様に、膨張袋を有する圧迫帯10は、生体の一部たとえば上腕12に巻回されるものである。圧迫帯10には、配管20が接続されており、その配管20を介して、圧迫帯10に供給される空気流量或いは圧迫帯10から排出される空気流量を検出する流量センサ14、および圧迫帯10への空気の供給と圧迫帯10からの空気の排出とにより圧迫帯10内の圧力或いは排出流量を調節する制御弁16を通して空気ポンプ18が接続されている。また、圧迫帯10には、配管20を介して圧力センサ22が接続されており、圧迫帯10の内圧である圧迫圧が検出されるようになっている。   FIG. 1 is a schematic diagram illustrating an arterial blood vessel endothelial function testing device 8 which is an example of the present invention. In FIG. 1, like a cuff used in blood pressure measurement, a compression band 10 having an inflatable bag is wound around a part of a living body, for example, the upper arm 12. A pipe 20 is connected to the compression band 10, and a flow rate sensor 14 that detects an air flow rate supplied to the compression band 10 or an air flow rate discharged from the compression band 10 through the pipe 20, and the compression band An air pump 18 is connected through a control valve 16 that adjusts the pressure in the compression band 10 or the discharge flow rate by supplying air to the discharge line 10 and discharging air from the compression band 10. Further, a pressure sensor 22 is connected to the compression band 10 via a pipe 20 so that a compression pressure that is an internal pressure of the compression band 10 is detected.

上記流量センサ14は、たとえば、白金抵抗体のような抵抗温度係数の高い風速素子を、4抵抗素子の一つとして含むブリッジ回路を備え、ブリッジ回路の出力電圧を風速との間の予め求められた関係から、そのブリッジ回路の出力電圧に基づいて風速を計測する所謂熱線式風速計から構成される。   The flow sensor 14 includes, for example, a bridge circuit including a wind speed element having a high resistance temperature coefficient such as a platinum resistor as one of the four resistance elements, and the output voltage of the bridge circuit is obtained in advance between the wind speed and the wind speed element. Therefore, it is composed of a so-called hot-wire anemometer that measures the wind speed based on the output voltage of the bridge circuit.

流量センサ14により検出された空気流量AFおよび圧力センサ22により検出された圧迫帯10による圧迫圧PCは、A/D変換器を含むインターフェース回路24を介して電子制御装置28へ供給される。電子制御装置28は、CPU28a、RAM28c、ROM28b等を備え、予め記憶されたプログラムに従って入力信号を処理し、処理結果を表示器29へ出力する所謂マイクロコンピュータから構成されている。   The air flow AF detected by the flow sensor 14 and the compression pressure PC by the compression band 10 detected by the pressure sensor 22 are supplied to the electronic control unit 28 via an interface circuit 24 including an A / D converter. The electronic control unit 28 includes a CPU 28 a, a RAM 28 c, a ROM 28 b, and the like, and is configured from a so-called microcomputer that processes an input signal according to a program stored in advance and outputs a processing result to the display device 29.

図2は、電子制御装置28の制御機能を説明する機能ブロック線図である。図2において、圧迫圧制御部30は、駆血解放制御部32と圧迫圧保持制御部34とを備え、カフ空気ポンプ18から圧送される空気圧と圧迫帯10に供給し或いは圧迫帯10内の空気を排気ポートから排出させることで、たとえば図3に示すように、圧迫帯10内の圧迫圧を調圧する。図3は、内皮機能検査開始操作時点t0からの圧迫帯10による圧迫圧PCの経時的変化を示している。駆血解放制御部32は、上腕12内の動脈血管の内皮にずり応力を付与するために、空気ポンプ18および制御弁16を駆動して、被検査者の最高血圧値SBPを十分に超えるようにたとえば180mmHg程度に予め設定された目標昇圧値P1まで、内皮機能検査開始操作時点t0から圧迫圧PCを上昇させ、圧迫圧PCが目標昇圧値P1に到達すると、圧迫圧PCが目標昇圧値P1に所定時間(駆血時間)Hだけ保持した後、その圧迫圧PCを低下させる。この目標昇圧値P1は、圧迫帯10により巻回された上腕12の一部を駆血するための駆血圧でもある。また、この所定時間Hは、圧迫帯10が巻回されている上腕12を駆血するための時間であり、たとえば5分程度に設定されるが、それよりも短い時間たとえば1/3乃至1/2程度の短い時間であってもよい。次いで、所定時間H経過したt2時点において、圧迫圧保持制御部34は、圧迫帯10の圧迫圧PCを大気圧またはそれに近い圧たとえば20mmHgまで低下開始させた後、圧迫帯10の圧迫圧PCを予め設定された圧脈波採取圧力P2まで下降させた後、t3時点において圧迫帯10の圧迫圧PCをその圧脈波採取圧力P2に保持する。この保持は、内皮機能の計測終了時点t4まで継続される。圧脈波採取圧力P2は、平均血圧値よりも低い値、好適には最低血圧値よりも低い値であり、さらに好適には静脈血圧値と同様の値たとえば20mmHg程度の値である。   FIG. 2 is a functional block diagram illustrating the control function of the electronic control unit 28. In FIG. 2, the compression pressure control unit 30 includes a blood pressure release control unit 32 and a compression pressure holding control unit 34, and supplies air pressure fed from the cuff air pump 18 to the compression band 10 or within the compression band 10. By discharging the air from the exhaust port, for example, as shown in FIG. 3, the compression pressure in the compression band 10 is regulated. FIG. 3 shows the change over time of the compression pressure PC by the compression band 10 from the endothelial function test start operation time point t0. In order to apply shear stress to the endothelium of the arterial blood vessel in the upper arm 12, the tourniquet release control unit 32 drives the air pump 18 and the control valve 16 to sufficiently exceed the maximum blood pressure value SBP of the subject. For example, when the compression pressure PC is increased from the endothelial function test start operation time point t0 to the target pressure increase value P1 set in advance to about 180 mmHg and the pressure pressure PC reaches the target pressure increase value P1, the compression pressure PC becomes the target pressure increase value P1. After holding for a predetermined time (blood driving time) H, the compression pressure PC is lowered. The target boost value P1 is also a blood pressure for driving a part of the upper arm 12 wound by the compression band 10. The predetermined time H is a time for driving the upper arm 12 around which the compression band 10 is wound, and is set to about 5 minutes, for example, but a shorter time, for example, 1/3 to 1 The time may be as short as / 2. Next, at time t2 when the predetermined time H has elapsed, the compression pressure holding control unit 34 starts to reduce the compression pressure PC of the compression band 10 to atmospheric pressure or a pressure close thereto, for example, 20 mmHg, and then reduces the compression pressure PC of the compression band 10 to the compression pressure PC. After the pressure pulse wave collection pressure P2 is lowered to a preset value, the compression pressure PC of the compression band 10 is held at the pressure pulse wave collection pressure P2 at time t3. This holding is continued until the end point t4 of the endothelial function measurement. The pressure pulse wave collection pressure P2 is a value lower than the average blood pressure value, preferably a value lower than the lowest blood pressure value, and more preferably a value similar to the venous blood pressure value, for example, a value of about 20 mmHg.

圧脈波採取制御部36は、圧迫帯10の圧迫圧PCが圧脈波採取圧力P2に保持されている状態で圧迫帯10の圧迫圧PCに重畳する圧脈波を、所定期間T1の間、連続的に採取する。この所定期間T1は、圧迫帯10を用いて上腕12を圧迫して所定時間Hだけ駆血した後に上腕12に対する圧迫が解放された時点t3から、その駆血解放によりずり応力が付与されることで生じる血管拡張反応により動脈血管の容積が最大となるタイミングを十分にカバーする期間、たとえば250〜300秒の間の期間である。   The pressure pulse wave collection control unit 36 applies the pressure pulse wave superimposed on the compression pressure PC of the compression band 10 during the predetermined period T1 in a state where the compression pressure PC of the compression band 10 is held at the pressure pulse wave collection pressure P2. Collect continuously. During this predetermined period T1, shear stress is applied by releasing the blood transfusion from the time t3 when the pressure on the upper arm 12 is released after the upper arm 12 is compressed using the compression band 10 and the blood is driven for a predetermined time H. Is a period that sufficiently covers the timing at which the volume of the arterial blood vessel becomes maximum due to the vasodilation reaction occurring in the above, for example, a period between 250 and 300 seconds.

脈波処理制御部38は、圧脈波採取制御部36で所定期間T1の間連続的に採取された圧脈波を容量変換することで、動脈血管の拡張率を相当血管径換算で算出する。以下、詳細に説明する。   The pulse wave processing control unit 38 performs volume conversion on the pressure pulse wave continuously collected for a predetermined period T1 by the pressure pulse wave collection control unit 36, thereby calculating the expansion rate of the arterial blood vessel in terms of equivalent blood vessel diameter. . Details will be described below.

圧迫帯10の圧迫圧をPCとし、圧迫帯10の内容量(容積)をVCとし、圧迫帯10による圧迫下の計測部位(圧迫帯10により巻回された部位)の容積変化をΔVC、この容積変化に伴う圧迫圧変化をΔPCとする。但し、圧迫帯10の変形により媒体容量は変化しないと仮定し、温度も一定であると仮定すると、ボイルの法則により(1)式が成立する。
PC×VC=一定 ・・・(1)
The compression pressure of the compression band 10 is set to PC, the internal volume (volume) of the compression band 10 is set to VC, and the volume change of the measurement part (the part wound by the compression band 10) under compression by the compression band 10 is ΔVC. A change in compression pressure accompanying a change in volume is defined as ΔPC. However, if it is assumed that the medium capacity does not change due to the deformation of the compression band 10 and that the temperature is also constant, Equation (1) is established according to Boyle's law.
PC × VC = constant (1)

このとき、動脈血管の脈波の発生による上腕12のふくらみによって圧迫帯10の変形によりその容量にΔVCの減少があったときに、圧迫帯10内の圧力上昇がΔPCであったとすると、次式(2)が得られる。
PC×VC=(PC+ΔPC)×(VC−ΔVC)
=PC×VC+VC×ΔPC−PC×ΔVC−ΔPC×ΔVC ・・・(2)
ここで、ΔPC×ΔVCは微小量であるので省略すると、
VC×ΔPC−PC×ΔVC=0 ・・・(3)
より
VC×ΔPC=PC×ΔVC ・・・(4)
従って、
ΔVC=(VC/PC)×ΔPC ・・・(5)
(5)式において、常時、圧迫帯10内の圧迫圧PCが計測されている場合、VCが判れば、ΔPCを計測することで、ΔVCが求まり、これが測定対象の容量変化となる。
At this time, when the volume of ΔVC is reduced due to deformation of the compression band 10 due to the swelling of the upper arm 12 due to the generation of the pulse wave of the arterial blood vessel, if the pressure increase in the compression band 10 is ΔPC, (2) is obtained.
PC × VC = (PC + ΔPC) × (VC−ΔVC)
= PC * VC + VC * [Delta] PC-PC * [Delta] VC- [Delta] PC * [Delta] VC (2)
Here, since ΔPC × ΔVC is a minute amount, it is omitted.
VC × ΔPC−PC × ΔVC = 0 (3)
VC × ΔPC = PC × ΔVC (4)
Therefore,
ΔVC = (VC / PC) × ΔPC (5)
In the equation (5), when the compression pressure PC in the compression band 10 is always measured, if VC is known, ΔVC is obtained by measuring ΔPC, and this is a change in the capacity of the measurement target.

一方、上記容量変化ΔVCを、圧迫帯10による圧迫対象の上腕12の元の容量Vと比較した変化率ΔVC/Vは、圧迫帯10による圧迫対象領域内の複合的な血管径をD、対象領域の長さをLとし、容量の変化は血管の容積変化と仮定したとき、以下のようになる。ここで、複合的な血管径Dは、圧迫対象領域内で容量変化を生じると考えられる動脈血管の複合的な容量を有する円柱の断面積である。
ΔVC/V=π((D+ΔD)−D)L/πDL ・・・(6)
(6)式の変形により(7)式が得られる。この(7)式は、圧脈波の振幅比である圧力変化比を血管径変化比に換算するために用いられる。
ΔVC/V=(2DΔD+ΔD)/D
=(2D+ΔD)ΔD/D
≒2DΔD/D
=2ΔD/D ・・・(7)
On the other hand, the rate of change ΔVC / V in which the capacitance change ΔVC is compared with the original volume V of the upper arm 12 to be compressed by the compression band 10, D is the composite blood vessel diameter in the compression target region by the compression band 10, D Assuming that the length of the region is L and the change in volume is a change in blood vessel volume, the following is obtained. Here, the composite blood vessel diameter D is a cross-sectional area of a cylinder having a composite capacity of arterial blood vessels considered to cause a capacity change in the compression target region.
ΔVC / V = π ((D + ΔD) 2 −D 2 ) L / πD 2 L (6)
Expression (7) is obtained by modifying Expression (6). This equation (7) is used to convert the pressure change ratio, which is the amplitude ratio of the pressure pulse wave, into a blood vessel diameter change ratio.
ΔVC / V = (2DΔD + ΔD 2 ) / D 2
= (2D + ΔD) ΔD / D 2
≒ 2DΔD / D 2
= 2ΔD / D (7)

ここで、(5)式を(7)式に代入すると、(8)式が得られる。
ΔD/D=(VC×ΔPC)/(2×V×PC) ・・・(8)
Here, when the formula (5) is substituted into the formula (7), the formula (8) is obtained.
ΔD / D = (VC × ΔPC) / (2 × V × PC) (8)

このとき、圧迫帯10が圧迫する測定対象(上腕12)の容積Vの増加と圧迫圧PCの増加との関係は、実験的に図4に示すものであるので、圧迫帯10の容積VCは、(9)式で示されるものとなる。ここで、Vholdは容積変化計測時の圧迫帯10の容量、Voは圧迫帯10の圧迫圧に寄与しない容量である。
VC=Vhold−Vo ・・・(9)
At this time, since the relationship between the increase in the volume V of the measurement target (upper arm 12) to be compressed by the compression band 10 and the increase in the compression pressure PC is experimentally shown in FIG. 4, the volume VC of the compression band 10 is , (9). Here, Vhold is a capacity of the compression band 10 at the time of measuring the volume change, and Vo is a capacity that does not contribute to the compression pressure of the compression band 10.
VC = Vhold−Vo (9)

圧迫帯10内の圧迫圧PC(mmHg)とその圧迫帯10の容量Vとの関係は、流量計を用いて圧迫帯10内に流入する流量を用いると、実験的には図5に示すものである。この関係は、以下の多次元の近似式(10)により表される。(10)式の定数cが前記Voに相当する。
V=a×PC+b×PC+c ・・・(10)
The relationship between the compression pressure PC (mmHg) in the compression band 10 and the capacity V of the compression band 10 is experimentally shown in FIG. 5 when the flow rate flowing into the compression band 10 using a flow meter is used. It is. This relationship is expressed by the following multidimensional approximate expression (10). The constant c in the equation (10) corresponds to the above Vo.
V = a × PC 2 + b × PC + c (10)

上記(10)式の関係は、圧迫帯10の圧迫圧PCを降圧させるときに利用される。(10)式を時間微分すると、
dV/dt=2a×PC×dPC/dt+b×dPC/dt
=(2a×PC+b)×dPC/dt ・・・(11)
ここで、
排気流量Q=dV/dt ・・・(12)
降圧速度K=dPC/dt ・・・(13)
であるので、排気流量Qと降圧速度Kとの関係は、(14)式に示されるものとなる。
Q=K×(2a×PC+b) ・・・(14)
(14)式より、排気流量Qは、設定された降圧速度Kと圧迫帯10内の圧迫圧力PC(計測値)で決定される。降圧速度Kは、降圧開始時の圧力PCsと降圧終了時の圧力PCeと降圧時間ΔTから、以下のように設定される。
K=(PCs−PCe)/ΔT ・・・(15)
The relationship of the above equation (10) is used when the compression pressure PC of the compression band 10 is lowered. When the equation (10) is time-differentiated,
dV / dt = 2a × PC × dPC / dt + b × dPC / dt
= (2a * PC + b) * dPC / dt (11)
here,
Exhaust flow rate Q = dV / dt (12)
Step-down speed K = dPC / dt (13)
Therefore, the relationship between the exhaust flow rate Q and the step-down speed K is expressed by the equation (14).
Q = K × (2a × PC + b) (14)
From the equation (14), the exhaust flow rate Q is determined by the set step-down speed K and the compression pressure PC (measured value) in the compression band 10. The step-down speed K is set as follows from the pressure PCs at the start of step-down, the pressure PCe at the end of step-down, and the step-down time ΔT.
K = (PCs−PCe) / ΔT (15)

脈波処理制御部38は、圧脈波採取制御部36で所定期間T1の間でたとえば1拍毎に連続的に採取された複数個の圧脈波のうちの最大振幅の圧脈波を決定し、その最大振幅の圧脈波(mmHg又はmV)と、たとえば所定期間T1の最初の圧脈波(mmHg又はmV)との圧力差と保持圧との比ΔPC/PCを算出し、(7)式の関係を用いてその圧力比ΔPC/PCから血管径変化比ΔD/Dを算出し、それを表示器29に表示させることで、生体の内皮機能の評価に供する。   The pulse wave processing control unit 38 determines the pressure pulse wave having the maximum amplitude among a plurality of pressure pulse waves continuously collected every beat, for example, by the pressure pulse wave collection control unit 36 during a predetermined period T1. Then, a ratio ΔPC / PC between the pressure difference between the pressure pulse wave (mmHg or mV) having the maximum amplitude and the first pressure pulse wave (mmHg or mV) in the predetermined period T1 and the holding pressure is calculated (7 ) The blood vessel diameter change ratio ΔD / D is calculated from the pressure ratio ΔPC / PC using the relationship of the formula), and is displayed on the display device 29 to be used for evaluation of the endothelial function of the living body.

圧迫圧制御部30の駆血解放制御部32は、圧迫圧PCが直線状に低下するように、且つ図3のt1からt2に示される駆血区間の終了時点t2から、t3からt4に示される保持区間の開始時点t3までの時間すなわち解放期間(降圧時間)ΔTが拡張反応が開始される時刻前のたとえば20秒以下となるように、(15)式からPCs、PCe、ΔTを用いて目標降圧速度K*を決定し、逐次求められる実際の降圧速度Kがその目標降圧速度K*と一致するように制御弁16を調節する。   The tourniquet release control unit 32 of the compression pressure control unit 30 shows the compression pressure PC from t3 to t4 from the end point t2 of the tourniquet period shown by t1 to t2 in FIG. Using the PCs, PCe, and ΔT from the equation (15) such that the time until the start time t3 of the holding interval, that is, the release period (step-down time) ΔT is, for example, 20 seconds or less before the time when the extension reaction starts. The target step-down speed K * is determined, and the control valve 16 is adjusted so that the actual step-down speed K obtained sequentially matches the target step-down speed K *.

図6は、電子制御装置28の制御作動の要部を説明するタイムチャートであって、動脈血管の内皮機能検査装置8の起動操作により開始される血管拡張率測定ルーチンを示している。図6において、ステップS1(以下、ステップを省略する)からS6は、圧迫圧制御部30に対応し、そのうちのS1からS4は駆血解放工程或いは駆血解放制御部32に対応し、S5からS6は圧迫圧保持工程或いは圧迫圧保持制御部34に対応している。また、S7は圧脈波採取工程或いは圧脈波採取制御部36に対応し、S8は脈波処理工程或いは脈波処理制御部38に対応している。   FIG. 6 is a time chart for explaining a main part of the control operation of the electronic control device 28, and shows a vasodilatation rate measurement routine started by the activation operation of the endothelial function testing device 8 for arterial blood vessels. In FIG. 6, steps S1 (hereinafter, steps are omitted) to S6 correspond to the compression pressure control unit 30, and S1 to S4 of them correspond to the tourniquet release process or the tourniquet release control unit 32, and from S5. S6 corresponds to the compression pressure holding step or the compression pressure holding control unit 34. S7 corresponds to the pressure pulse wave sampling process or the pressure pulse wave sampling control unit 36, and S8 corresponds to the pulse wave processing process or the pulse wave processing control unit 38.

S1では、空気ポンプ18が駆動され且つ制御弁16が制御されることにより、生体の一部すなわち上腕12に巻回された圧迫帯10の内圧である圧迫圧PCが上昇させられるとともに、流量センサ14により圧迫帯10へ供給される空気流量が計測される。次いで、S2において、圧迫帯10の内圧である圧迫圧PCが予め設定された目標昇圧値P1に到達したか否かが判断される。このS2の判断が否定される場合はS1以下が繰り返し実行されるが、肯定される場合はS3が開始される。図3のt1時点はこの状態を示している。   In S <b> 1, the air pump 18 is driven and the control valve 16 is controlled, whereby the compression pressure PC, which is the internal pressure of the compression band 10 wound around the upper arm 12, is increased, and the flow rate sensor 14 is used to measure the flow rate of air supplied to the compression band 10. Next, in S2, it is determined whether or not the compression pressure PC that is the internal pressure of the compression band 10 has reached a preset target pressure increase value P1. If the determination in S2 is negative, S1 and subsequent steps are repeatedly executed. If the determination is positive, S3 is started. This state is shown at time t1 in FIG.

S3では、圧迫帯10の内圧である圧迫圧PCが目標昇圧値P1に維持されて上腕12のうちの圧迫帯10が巻回された部分の駆血が行なわれるともに、続くS4では、駆血開始時点t1から予め設定された所定時間(駆血時間)Hが経過したt2時点で、圧迫帯10による圧迫がフィードバック制御により解放される。すなわち、この解放に際しては、圧迫圧PCが直線状に低下するように、且つ図5のt1からt2示される駆血区間の終了時点t2から、t3からt4示される保持区間の開始時点t3までの時間すなわち降圧時間ΔTが拡張反応が開始される時刻前のたとえば20秒以下となるように、(14)式からPCs、PCe、ΔTを用いて目標降圧速度K*を決定し、逐次求められる実際の降圧速度Kがその目標降圧速度K*と一致するように制御弁16が調節される。   In S3, the compression pressure PC, which is the internal pressure of the compression band 10, is maintained at the target pressure increase value P1, and the portion of the upper arm 12 around which the compression band 10 is wound is subjected to blood pressure. At the time t2 when a predetermined time (blood transduction time) H elapses from the start time t1, the compression by the compression band 10 is released by feedback control. That is, at the time of release, the compression pressure PC decreases linearly and from the end time t2 of the blood feeding section indicated by t1 to t2 in FIG. 5 to the start time t3 of the holding section indicated by t3 to t4. The target step-down speed K * is determined by using PCs, PCe, and ΔT from the equation (14) so that the time, that is, the step-down time ΔT is, for example, 20 seconds or less before the time when the extended reaction is started. The control valve 16 is adjusted so that the step-down speed K of the engine coincides with the target step-down speed K *.

次に、S5では、圧迫帯10の圧迫圧PCが予め設定された圧脈波採取圧力P2以下に効果したか否かが判断される。このS5の判断が否定されるうちはS4以下が繰り返し実行されるが、肯定される場合は、続くS6において、圧迫帯10の圧迫圧PCが予め設定された圧脈波採取圧力P2に保持される。   Next, in S5, it is determined whether or not the compression pressure PC of the compression band 10 is effective for a pressure pulse wave collection pressure P2 or less set in advance. While the determination of S5 is denied, S4 and subsequent steps are repeatedly executed. If the determination is affirmative, in the subsequent S6, the compression pressure PC of the compression band 10 is held at the preset pressure pulse wave collection pressure P2. The

続くS7では、圧迫帯10の圧迫圧PCが比較的低い値である圧脈波採取圧力P2に保持されている保持期間T1において、圧力センサ22により検出される圧迫帯10の圧迫圧PCに1拍毎に重畳する圧力振動である圧脈波を、逐次採取する。この採取は、時点t3の駆血解放によりずり応力が付与されることで生じる血管拡張反応により動脈血管の容積が最大となるタイミングを十分にカバーする期間、たとえば250〜300秒の間の期間である。   In subsequent S7, the compression pressure PC of the compression band 10 detected by the pressure sensor 22 in the holding period T1 in which the compression pressure PC of the compression band 10 is held at the pressure pulse wave sampling pressure P2, which is a relatively low value, is set to 1. A pressure pulse wave, which is a pressure vibration superimposed on each beat, is sequentially collected. This collection is performed in a period that sufficiently covers the timing at which the volume of the arterial blood vessel becomes maximum due to the vasodilation reaction caused by the shear stress applied by the release of the tourniquet at time t3, for example, a period between 250 and 300 seconds. is there.

次いで、S8では、S7において所定期間T1の間でたとえば1拍毎に連続的に採取された複数個の圧脈波のうち最大振幅の圧脈波を決定し、その最大振幅の圧脈波(mmHg又はmV)と、たとえば所定期間T1の最初の圧脈波(mmHg又はmV)との圧力差と保持圧との比ΔPC/PCを算出し、(7)式の関係を用いてその圧力比ΔPC/PCから血管径変化比ΔD/Dを算出し、それを表示器29に表示させる。この血管径変化比ΔD/Dにより、生体の内皮機能の評価に供する。   Next, in S8, for example, a pressure pulse wave having the maximum amplitude is determined from among a plurality of pressure pulse waves continuously collected every beat during the predetermined period T1 in S7, and the pressure pulse wave having the maximum amplitude ( mmHg or mV) and, for example, the ratio ΔPC / PC of the pressure difference between the first pressure pulse wave (mmHg or mV) and the holding pressure in the predetermined period T1 is calculated, and the pressure ratio is calculated using the relationship of equation (7). The blood vessel diameter change ratio ΔD / D is calculated from ΔPC / PC and is displayed on the display device 29. This blood vessel diameter change ratio ΔD / D is used to evaluate the endothelial function of the living body.

そして、S9では、各レジスタのリセット等の終了処理が実行された後、本ルーチンが終了させられる。   In S9, after completion processing such as reset of each register is executed, this routine is terminated.

上述のように、本実施例の内皮機能検査装置8によれば、超音波プローブおよびそれを支持して最適位置を探索するプローブ支持装置、超音波プローブからの信号を処理して超音波画像を生成する超音波画像生成装置などが不要となるため、装置が簡単且つ小型となる。しかも、脈波処理工程或いは前記脈波処理制御部38において、圧脈波採取工程或いは圧脈波採取制御部36で所定期間T1において連続的に採取された圧脈波を容量変換することで前記動脈血管の拡張率が相当血管径換算を用いて算出されることから、動脈血管に作用したずり応力に起因する血管拡張反応により血管径(血管容積)が最大となるタイミングと所定時間連続的に採取される圧脈波のいずれかの検出タイミングとがほぼ一致するので、信頼性の高い血管の内皮機能検査が可能となる。   As described above, according to the endothelial function testing device 8 of the present embodiment, the ultrasound probe, the probe support device that supports the ultrasound probe and searches for the optimum position, the signal from the ultrasound probe is processed, and the ultrasound image is processed. Since an ultrasonic image generating device or the like to be generated becomes unnecessary, the device becomes simple and small. In addition, in the pulse wave processing step or the pulse wave processing control unit 38, the pressure pulse wave continuously collected in the predetermined period T1 in the pressure pulse wave sampling step or the pressure pulse wave sampling control unit 36 is subjected to capacity conversion. Since the expansion rate of the arterial blood vessel is calculated using the equivalent blood vessel diameter conversion, the blood vessel diameter (blood vessel volume) is maximized by a vasodilation reaction caused by the shear stress acting on the arterial blood vessel and continuously for a predetermined time. Since the detection timing of any one of the collected pressure pulse waves almost coincides, a highly reliable blood vessel endothelial function test can be performed.

また、本実施例の内皮機能検査装置8によれば、駆血解放工程或いは駆血解放制御部32は、圧迫帯10を用いて上腕(生体の一部)12を内皮機能検査の開始後に最初に圧迫して所定時間駆血した後に前記生体の一部に対する圧迫を解放するものである。このため、上腕12が内皮機能検査の開始後最初に圧迫された後に解放されるので、その上腕12内の動脈血管に対して内皮機能検査の開始後最初にずり応力が付与されるので、その駆血解放前に圧迫帯の圧力を高めて脈波を採取する方式に比較して、一層、信頼性の高い血管の内皮機能検査が可能となる。   Further, according to the endothelial function testing device 8 of the present embodiment, the tourniquet release process or the tourniquet release control unit 32 first uses the compression band 10 to move the upper arm (part of the living body) 12 after the start of the endothelial function test. The pressure on the part of the living body is released after the pressure is applied and the blood is driven for a predetermined time. Therefore, since the upper arm 12 is released after being first compressed after the start of the endothelial function test, shear stress is first applied to the arterial blood vessel in the upper arm 12 after the start of the endothelial function test. Compared with the method of collecting the pulse wave by increasing the pressure of the compression band before releasing the blood transfusion, the blood vessel endothelial function test with higher reliability can be performed.

また、本実施例の内皮機能検査装置8によれば、駆血解放工程或いは駆血解放制御部32は、圧迫帯10を用いて上腕12を内皮機能検査の開始後最初に圧迫して所定時間駆血した後に圧迫帯10の圧迫圧を30mmHgを下まわる静脈圧以下まで低下させることにより上腕12に対する圧迫を解放し、圧迫圧保持工程或いは圧迫圧保持制御部34は、静脈圧以下まで低下させられた圧迫帯10の圧迫圧を予め定められた圧脈波採取圧力P2に保持する。このように、上腕12が所定時間駆血した後に圧迫帯10の圧迫圧Pcが静脈圧付近まで低下させることにより、その上腕12内の動脈血管に対して確実にずり応力が付与される。   Further, according to the endothelial function testing device 8 of the present embodiment, the tourniquet release process or the tourniquet release control unit 32 uses the compression band 10 to compress the upper arm 12 for the first time after the start of the endothelial function test. The pressure on the upper arm 12 is released by lowering the compression pressure of the compression band 10 to 30% Hg or less after blood pumping, and the compression pressure holding process or the compression pressure holding control unit 34 reduces the pressure to below the venous pressure. The compression pressure of the obtained compression band 10 is held at a predetermined pressure pulse wave collection pressure P2. In this manner, after the upper arm 12 is driven for a predetermined time, the compression pressure Pc of the compression band 10 is reduced to the vicinity of the venous pressure, so that shear stress is reliably applied to the arterial blood vessel in the upper arm 12.

また、本実施例の内皮機能検査装置8によれば、圧脈波採取工程或いは圧脈波採取制御部36により圧脈波が採取される圧迫圧として、圧迫圧保持工程或いは圧迫圧保持制御部34により保持される圧脈波採取圧力P2は、動脈血管の容積変化が圧迫帯10内の圧力振動として明確に反映することが可能な圧迫帯10内の圧力範囲内、すなわち静脈圧から拡張期圧(最低血圧)までの範囲内でたとえば20mmHgから80mmHgの範囲内設定された値、好適には20mmHg程度の値に設定される。これにより、明確な圧脈波が採取される利点がある。   Further, according to the endothelial function testing apparatus 8 of the present embodiment, the compression pressure holding step or the compression pressure holding control unit is used as the compression pressure at which the pressure pulse wave is collected by the pressure pulse wave collecting step or the pressure pulse wave collecting control unit 36. The pressure pulse wave collection pressure P2 held by 34 is within the pressure range in the compression zone 10 where the volume change of the arterial blood vessel can be clearly reflected as pressure oscillations in the compression zone 10, that is, from venous pressure to diastole For example, a value set within the range of 20 mmHg to 80 mmHg within the range up to the pressure (minimum blood pressure), preferably about 20 mmHg. Thereby, there is an advantage that a clear pressure pulse wave is collected.

また、本実施例の内皮機能検査装置8によれば、圧脈波採取工程或いは圧脈波採取制御部36により圧脈波が採取される所定期間T1とは、駆血解放工程或いは駆血解放制御部32により圧迫帯10を用いて上腕12を圧迫して所定時間駆血した後に上腕12に対する圧迫が解放開始された時点t2から、ずり応力が付与されることで動脈血管の容積が最大となるタイミングを少なくとも含む期間、たとえば250〜300秒の間の期間である。このようにすれば、動脈血管の拡張反応が最大となるタイミングに所定時間連続的に採取される圧脈波のいずれかの検出タイミングとがほぼ一致するので、信頼性の高い血管の内皮機能検査が可能となる。   Further, according to the endothelial function testing apparatus 8 of the present embodiment, the predetermined period T1 during which the pressure pulse wave is collected by the pressure pulse wave collecting step or the pressure pulse wave collecting control unit 36 is the blood pressure releasing step or the blood pressure releasing step. The volume of the arterial blood vessel is maximized by applying shear stress from the time point t2 when the compression of the upper arm 12 is started to be released after the upper arm 12 is compressed by the control unit 32 using the compression band 10 and blood is driven for a predetermined time. For example, a period between 250 and 300 seconds. In this way, the detection timing of any one of the pressure pulse waves continuously collected for a predetermined time at the timing when the arterial blood vessel dilation response is maximized almost coincides with the highly reliable endothelial function test of the blood vessel. Is possible.

また、本実施例の内皮機能検査装置8によれば、圧脈波採取工程或いは圧脈波採取制御部36により圧脈波が採取される連続的に、たとえば、圧脈波が1拍毎に、或いは2拍毎等の数拍毎に続けて採取される。このようにすれば、動脈血管の拡張反応が最大となるタイミングに所定時間連続的に採取される圧脈波のいずれかの検出タイミングとがほぼ一致するので、信頼性の高い血管の内皮機能検査が可能となる。   Further, according to the endothelial function testing apparatus 8 of the present embodiment, the pressure pulse wave is continuously collected by the pressure pulse wave collecting step or the pressure pulse wave collecting control unit 36, for example, the pressure pulse wave is generated every beat. Or every two beats, such as every two beats. In this way, the detection timing of any one of the pressure pulse waves continuously collected for a predetermined time at the timing when the arterial blood vessel dilation response is maximized almost coincides with the highly reliable endothelial function test of the blood vessel. Is possible.

また、本実施例の内皮機能検査装置8によれば、駆血のために前記圧迫帯の圧迫圧を昇圧させる場合にそれに供給される空気流量を検出する流量センサ14が備えられ、駆血解放工程或いは駆血解放制御部32は、駆血状態とされていた上腕12を解放させるに際して、上記空気流量に基づいて算出された制御式を用いてフィードバック制御により前記圧迫帯の圧迫圧力を直線状に低下させる。これによれば、駆血解放時において、同様の割合で動脈血管が解放される利点がある。   In addition, according to the endothelial function testing device 8 of the present embodiment, the flow sensor 14 is provided to detect the flow rate of air supplied to the compression band when the compression pressure of the compression band is increased for the purpose of blood conveyance. When releasing the upper arm 12 that has been in the blood-feeding state, the process or blood-feeding release control unit 32 linearly adjusts the compression pressure of the compression band by feedback control using a control equation calculated based on the air flow rate. To lower. According to this, there is an advantage that the arterial blood vessels are released at the same rate at the time of releasing the tourniquet.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

例えば、前述の実施例では、圧迫帯10に圧迫圧PCを発生させるために、圧縮流体である空気が供給されていたが、それに替えて、非圧縮流体たとえば水、油が用いられても差し支えない。   For example, in the above-described embodiment, air that is a compressed fluid is supplied in order to generate the compression pressure PC in the compression band 10, but an uncompressed fluid such as water or oil may be used instead. Absent.

また、前述の実施例において、圧迫帯10は上腕12に巻回されているが、下肢など生体の一部であれば、いずれの部位であってもよい。   In the above-described embodiment, the compression band 10 is wound around the upper arm 12, but may be any part as long as it is a part of a living body such as the lower limb.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

8:内皮機能検査装置
10:圧迫帯
12:上腕(生体の一部)
14:流量センサ
16:制御弁
18:空気ポンプ
20:配管
22:圧力センサ
30:圧迫圧制御部
32:駆血解放制御部
34:圧迫圧保持制御部
36:圧脈波採取制御部
38:脈波処理制御部
8: Endothelial function testing device 10: Compression band 12: Upper arm (part of living body)
14: flow sensor 16: control valve 18: air pump 20: piping 22: pressure sensor 30: compression pressure control unit 32: blood pressure release control unit 34: compression pressure holding control unit 36: pressure pulse wave collection control unit 38: pulse Wave processing controller

Claims (8)

生体の一部を巻回する圧迫帯と、前記圧迫帯の圧迫圧を検出する圧力センサと、前記圧迫帯の圧迫圧を制御する圧迫圧制御部とを備え、前記圧迫帯による圧迫により前記生体の一部を駆血後に前記生体内の動脈血管を解放し、前記動脈血管に発生する脈波を前記圧迫帯内の圧迫圧の変動である圧脈波の時間的変化に基づいて前記動脈血管の内皮機能を評価する動脈血管の内皮機能検査方法であって、
前記圧迫帯を用いて前記生体の一部を圧迫して所定時間駆血した後に前記生体の一部に対する圧迫を解放する駆血解放工程と、
前記圧迫帯の圧迫圧を予め定められた圧脈波採取圧力に保持する圧迫圧保持工程と、
前記圧迫帯の圧迫圧が前記圧脈波採取圧力に保持されている状態で前記圧脈波を所定期間連続的に採取する圧脈波採取工程と、
前記圧脈波採取工程で連続的に採取された圧脈波を容量変換することで前記動脈血管の拡張率を相当血管径換算で算出する脈波処理工程と
を、含むことを特徴とする動脈血管の内皮機能検査方法。
A compression band for winding a part of the living body; a pressure sensor for detecting the compression pressure of the compression band; and a compression pressure control unit for controlling the compression pressure of the compression band. The arterial blood vessels in the living body are released after part of the blood is pumped, and the pulse waves generated in the arterial blood vessels are converted into the arterial blood vessels based on temporal changes in the pressure pulse waves, which are fluctuations in the compression pressure in the compression band A method for testing endothelial function of arterial blood vessels to evaluate the endothelial function of
A blood pressure release step of releasing the pressure on the part of the living body after pressing the part of the living body using the compression band and driving the blood for a predetermined time;
A compression pressure holding step of holding the compression pressure of the compression band at a predetermined pressure pulse wave sampling pressure;
A pressure pulse wave sampling step of continuously sampling the pressure pulse wave for a predetermined period in a state where the compression pressure of the compression band is held at the pressure pulse wave sampling pressure;
A pulse wave processing step of calculating a volume expansion rate of the arterial blood vessel in terms of an equivalent blood vessel diameter by volume-converting the pressure pulse wave continuously collected in the pressure pulse wave sampling step. Vascular endothelial function test method.
生体の一部を巻回する圧迫帯と、前記圧迫帯の圧迫圧を検出する圧力センサと、前記圧迫帯の圧迫圧を制御する圧迫圧制御部とを備え、前記圧迫帯による圧迫により前記生体の一部を駆血後に前記生体内の動脈血管を解放し、前記動脈血管に発生する脈波を前記圧迫帯内の圧力振動である圧脈波の時間的変化に基づいて前記動脈血管の内皮機能を評価する動脈血管の内皮機能検査装置であって、
前記圧迫帯を用いて前記生体の一部を圧迫して所定時間駆血した後に前記生体の一部に対する圧迫を解放する駆血解放制御部と、
前記圧迫帯の圧迫圧を予め定められた圧脈波採取圧力に保持する圧迫圧保持制御部と、
前記圧迫帯の圧迫圧が前記圧脈波採取圧力に保持されている状態で前記圧脈波を所定期間連続的に採取する圧脈波採取制御部と、
前記圧脈波採取制御部で所定期間連続的に採取された圧脈波を容量変換することで前記動脈血管の拡張率を相当血管径換算で算出する脈波処理制御部と
を、含むことを特徴とする動脈血管の内皮機能検査装置。
A compression band for winding a part of the living body; a pressure sensor for detecting the compression pressure of the compression band; and a compression pressure control unit for controlling the compression pressure of the compression band. The arterial blood vessel in the living body is released after blood is partially pumped, and the pulse wave generated in the arterial blood vessel is changed based on the temporal change of the pressure pulse wave that is the pressure vibration in the compression band. An apparatus for testing endothelial function of arterial blood vessels for evaluating function,
A tourniquet release control unit that releases the pressure on the part of the living body after the part of the living body is compressed using the compression band and the body is driven for a predetermined time;
A compression pressure holding control unit for holding the compression pressure of the compression band at a predetermined pressure pulse wave sampling pressure;
A pressure pulse wave collection control unit for continuously collecting the pressure pulse wave for a predetermined period in a state where the compression pressure of the compression band is held at the pressure pulse wave collection pressure;
A pulse wave processing control unit that calculates the expansion rate of the arterial blood vessel in terms of equivalent blood vessel diameter by performing volume conversion on the pressure pulse wave continuously collected for a predetermined period by the pressure pulse wave collection control unit. A device for testing endothelial function of arterial blood vessels.
前記駆血解放制御部は、前記圧迫帯を用いて前記生体の一部を内皮機能検査の開始後最初に圧迫して所定時間駆血した後に前記生体の一部に対する圧迫を解放する
ことを特徴とする請求項2の動脈血管の内皮機能検査装置。
The blood transfusion release control unit uses the compression band to compress a part of the living body for the first time after starting the endothelial function test and release the pressure on the part of the living body. The apparatus for testing endothelial function of arterial blood vessels according to claim 2.
前記駆血解放制御部は、前記圧迫帯を用いて前記生体の一部を内皮機能検査の開始後最初に圧迫して所定時間駆血した後に前記圧迫帯の圧迫圧を前記生体の静脈圧以下まで低下させることにより前記生体の一部に対する圧迫を解放し、前記圧迫圧保持制御部は、前記生体の静脈圧以下まで低下させられた前記圧迫帯の圧迫圧でその圧脈波採取圧力に保持する
ことを特徴とする請求項2または3の動脈血管の内皮機能検査装置。
The blood transfusion release control unit compresses a part of the living body using the compression band first after the start of the endothelial function test, and after a predetermined period of time, the compression pressure of the compression band is less than the venous pressure of the living body. The pressure on the part of the living body is released by reducing the pressure to a value, and the compression pressure holding control unit holds the pressure pulse wave collection pressure at the compression pressure of the compression band that has been reduced below the venous pressure of the living body. The apparatus for examining endothelial function of arterial blood vessels according to claim 2 or 3.
前記圧脈波採取制御部により圧脈波が採取される圧迫圧として、前記圧迫圧保持制御部により保持される圧脈波採取圧力は、前記生体の静脈圧から拡張期圧までの範囲内で設定された値である
ことを特徴とする請求項2から4のいずれか1に記載の動脈血管の内皮機能検査装置。
As the pressure at which the pressure pulse wave is collected by the pressure pulse wave collection control unit, the pressure pulse wave collection pressure held by the compression pressure holding control unit is within a range from the venous pressure of the living body to the diastolic pressure. The endothelial function testing device for arterial blood vessels according to any one of claims 2 to 4, wherein the device is a set value.
前記圧脈波採取制御部により圧脈波が採取される所定期間は、前記駆血解放制御部により前記圧迫帯を用いて前記生体の一部を圧迫して所定時間駆血した後に前記生体の一部に対する圧迫が解放された時点から、ずり応力が付与されることで前記動脈血管の容積が最大となるタイミングを少なくとも含む期間である
ことを特徴とする請求項2から5のいずれか1に記載の動脈血管の内皮機能検査装置。
During a predetermined period in which the pressure pulse wave is collected by the pressure pulse wave collection control unit, a part of the living body is compressed using the compression band by the blood pressure release control unit and blood is fed for a predetermined time. 6. The method according to claim 2, wherein a period including at least a timing at which the volume of the arterial blood vessel is maximized by applying shear stress is applied from the time point when the pressure on the part is released. The arterial blood vessel endothelial function test device as described.
前記圧脈波採取制御部による圧脈波の採取は、圧脈波が1拍乃至数拍毎に続けて採取されるという連続的且つ継続的に行なわれる
ことを特徴とする請求項2から6のいずれか1に記載の動脈血管の内皮機能検査装置。
The pressure pulse wave sampling by the pressure pulse wave sampling control unit is performed continuously and continuously in such a manner that the pressure pulse wave is continuously sampled every one to several beats. The endothelial function test apparatus for arterial blood vessels according to any one of the above.
駆血のために前記圧迫帯の圧迫圧を昇圧させる場合にそれに供給される空気流量を検出する流量センサが備えられ、
前記駆血解放制御部は、駆血状態とされていた前記生体の一部を解放させるに際して、上記空気流量に基づいて算出された制御式を用いてフィードバック制御により前記圧迫帯の圧迫圧を直線状に低下させる
ことを特徴とする請求項2から7のいずれか1に記載の動脈血管の内皮機能検査装置。
A flow sensor for detecting the flow rate of air supplied to the compression band when increasing the compression pressure of the compression band for blood transfusion,
When releasing a part of the living body that has been in a blood-driven state, the blood-pulsation release control unit linearizes the compression pressure of the compression band by feedback control using a control formula calculated based on the air flow rate. The endothelial function test apparatus for arterial blood vessels according to any one of claims 2 to 7, characterized in that the apparatus is reduced to a shape.
JP2016032515A 2016-02-23 2016-02-23 Endothelial function tester for arterial blood vessels Active JP6855027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032515A JP6855027B2 (en) 2016-02-23 2016-02-23 Endothelial function tester for arterial blood vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032515A JP6855027B2 (en) 2016-02-23 2016-02-23 Endothelial function tester for arterial blood vessels

Publications (2)

Publication Number Publication Date
JP2017148195A true JP2017148195A (en) 2017-08-31
JP6855027B2 JP6855027B2 (en) 2021-04-07

Family

ID=59741215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032515A Active JP6855027B2 (en) 2016-02-23 2016-02-23 Endothelial function tester for arterial blood vessels

Country Status (1)

Country Link
JP (1) JP6855027B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108245191A (en) * 2018-01-24 2018-07-06 太原理工大学 Medical ultrasonic probe handle booster
CN110236635A (en) * 2019-05-31 2019-09-17 中国科学院深圳先进技术研究院 Tourniquet and Hemostasis
WO2020121377A1 (en) * 2018-12-10 2020-06-18 国立大学法人東海国立大学機構 Biological information measurement device
CN113507883A (en) * 2019-02-27 2021-10-15 人类纽带有限会社 Vascular endothelial function evaluation device, vascular endothelial function evaluation method, and vascular endothelial function evaluation system
JP7002020B1 (en) * 2020-09-25 2022-01-20 LaView株式会社 Biometric information measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020111554A1 (en) * 2000-06-12 2002-08-15 Drzewiecki Gary M. Method and system for detecting vascular conditions using an occlusive arm cuff plethysmograph
JP2004041244A (en) * 2002-05-14 2004-02-12 Nippon Colin Co Ltd Instrument for evaluating vascular endothelium function
JP2007209492A (en) * 2006-02-08 2007-08-23 National Institute Of Advanced Industrial & Technology Evaluation system for vascular endothelial function
WO2010132273A1 (en) * 2009-05-12 2010-11-18 Angiologix, Inc. System and method of measuring changes in arterial volume of a limb segment
JP2011056200A (en) * 2009-09-14 2011-03-24 Hiroshima Univ Apparatus for evaluating vascular endothelial function
WO2015138026A1 (en) * 2014-03-11 2015-09-17 Cordex Systems, Inc. Method and device for detecting and assessing reactive hyperemia using segmental plethysmography
JP2015167685A (en) * 2014-03-06 2015-09-28 日本光電工業株式会社 Vascular endothelium function examination device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020111554A1 (en) * 2000-06-12 2002-08-15 Drzewiecki Gary M. Method and system for detecting vascular conditions using an occlusive arm cuff plethysmograph
JP2004041244A (en) * 2002-05-14 2004-02-12 Nippon Colin Co Ltd Instrument for evaluating vascular endothelium function
JP2007209492A (en) * 2006-02-08 2007-08-23 National Institute Of Advanced Industrial & Technology Evaluation system for vascular endothelial function
WO2010132273A1 (en) * 2009-05-12 2010-11-18 Angiologix, Inc. System and method of measuring changes in arterial volume of a limb segment
JP2011056200A (en) * 2009-09-14 2011-03-24 Hiroshima Univ Apparatus for evaluating vascular endothelial function
JP2015167685A (en) * 2014-03-06 2015-09-28 日本光電工業株式会社 Vascular endothelium function examination device
WO2015138026A1 (en) * 2014-03-11 2015-09-17 Cordex Systems, Inc. Method and device for detecting and assessing reactive hyperemia using segmental plethysmography

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108245191A (en) * 2018-01-24 2018-07-06 太原理工大学 Medical ultrasonic probe handle booster
WO2020121377A1 (en) * 2018-12-10 2020-06-18 国立大学法人東海国立大学機構 Biological information measurement device
EP3895608A4 (en) * 2018-12-10 2022-03-16 National University Corporation Tokai National Higher Education and Research System Biological information measurement device
CN113507883A (en) * 2019-02-27 2021-10-15 人类纽带有限会社 Vascular endothelial function evaluation device, vascular endothelial function evaluation method, and vascular endothelial function evaluation system
CN110236635A (en) * 2019-05-31 2019-09-17 中国科学院深圳先进技术研究院 Tourniquet and Hemostasis
JP7002020B1 (en) * 2020-09-25 2022-01-20 LaView株式会社 Biometric information measuring device
WO2022064773A1 (en) * 2020-09-25 2022-03-31 LaView株式会社 Biological information measuring device

Also Published As

Publication number Publication date
JP6855027B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP2017148195A (en) Method and apparatus for examination of endothelial function of arterial blood vessel
JP3675764B2 (en) Atherosclerosis inspection device
JP3587837B2 (en) Arterial stiffness evaluation device
JP5363795B2 (en) Vascular endothelial function evaluation apparatus and vascular endothelial function evaluation method
JP3643567B2 (en) Amplitude increase index measuring device
JP4795777B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP3590613B2 (en) Amplitude increase index calculation device and arteriosclerosis test device
JP5584077B2 (en) Automatic blood pressure measurement device
EP0456844A1 (en) Non-invasive automatic blood pressure measuring apparatus
JP3621395B2 (en) Blood pressure measurement device with waveform analysis function
JP2004105550A (en) Arteriostenosis examination apparatus
JP3649703B2 (en) Blood pressure measurement device with amplitude increase index measurement function
EP1356767A2 (en) Augmentation-index measuring apparatus
JP4187498B2 (en) Endothelial function test device
JP3623493B2 (en) Blood pressure measurement device with pulse wave detection function
JP2003135412A (en) Blood pressure measuring unit
JP2006247220A (en) Blood pressure measuring apparatus
WO2008065715A1 (en) Ultrasonograph for measuring diameter of blood vessel
JP2024063672A (en) Arterial endothelial function testing device
JP6001683B2 (en) Blood pressure measurement device
JP2506119B2 (en) Electronic blood pressure monitor
JP3751115B2 (en) Blood pressure monitoring device
JP3975604B2 (en) Arteriosclerosis measuring device
JP2008168055A (en) Stroke volume estimating apparatus
JP6651087B1 (en) Biological information measurement device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6855027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250