JP2017142539A - Light source device and image projection apparatus - Google Patents

Light source device and image projection apparatus Download PDF

Info

Publication number
JP2017142539A
JP2017142539A JP2017097395A JP2017097395A JP2017142539A JP 2017142539 A JP2017142539 A JP 2017142539A JP 2017097395 A JP2017097395 A JP 2017097395A JP 2017097395 A JP2017097395 A JP 2017097395A JP 2017142539 A JP2017142539 A JP 2017142539A
Authority
JP
Japan
Prior art keywords
light
excitation light
light source
polarization component
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017097395A
Other languages
Japanese (ja)
Other versions
JP6353583B2 (en
Inventor
晃二 喜田
Koji Kida
晃二 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59627862&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017142539(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2017097395A priority Critical patent/JP6353583B2/en
Publication of JP2017142539A publication Critical patent/JP2017142539A/en
Application granted granted Critical
Publication of JP6353583B2 publication Critical patent/JP6353583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light source device capable of using a solid light-emitting element without using a discharge lamp in various uses, and an image projection apparatus with the same.SOLUTION: A lighting apparatus 1 of the present invention comprises: an excitation light source 11 emitting excitation light including first color light; a fluorescent member 15 including a fluorescent body 32 converting at least part of the excitation light into second color light different from the first color light by causing the excitation light to be incident on the fluorescent body, and a reflection member 31 provided on an opposite side to an excitation light incident side for the fluorescent body 32; and a polarization beam splitter 12 provided on an optical path between the excitation light source 11 and the fluorescent member 15, transmitting one of a first polarization component and a second polarization component of the first color light and reflecting the other polarization component, and transmitting both a first polarization component and a second polarization component of the second color light.SELECTED DRAWING: Figure 1

Description

本発明は、光源装置及び画像投影装置に関し、より詳細には、例えばプロジェクタ等の投影型画像表示装置(画像投影装置)の光源として用いる光源装置及びそれを備える画像投影装置に関する。   The present invention relates to a light source device and an image projecting device, and more particularly to a light source device used as a light source of a projection type image display device (image projecting device) such as a projector and an image projecting device including the same.

近年、家庭内での映画鑑賞や会議でのプレゼンテーション等において、例えばプロジェクタ等の投影型画像表示装置を用いる機会が増えている。このようなプロジェクタでは、一般に、光源として、例えば高輝度の水銀ランプ等の放電型ランプが用いられる。また、最近の固体発光素子(例えば半導体レーザ、発光ダイオード等)の開発技術の進展に伴い、固体発光素子を利用したプロジェクタも提案されている(例えば特許文献1参照)。   In recent years, opportunities for using a projection type image display device such as a projector have increased in appreciation of movies at home and presentations at conferences. In such a projector, a discharge lamp such as a high-intensity mercury lamp is generally used as a light source. A projector using a solid-state light-emitting element has also been proposed with the progress of development technology of recent solid-state light-emitting elements (for example, semiconductor lasers, light-emitting diodes) (see, for example, Patent Document 1).

特許文献1で提案されているプロジェクタは、DLP(Digital Light Processing:登録商標)方式のプロジェクタである。この方式のプロジェクタでは、異なる色の光を1秒間に数千回程度、時分割で表示することにより画像をフルカラー表示する。それゆえ、特許文献1のプロジェクタでは、固体発光素子を用いた赤色発光装置、緑色発光装置及び青色発光装置をそれぞれ別個に用意し、各発光装置からの出射光を時分割制御して外部に射出して画像光を表示する。   The projector proposed in Patent Document 1 is a DLP (Digital Light Processing: registered trademark) type projector. This type of projector displays images in full color by displaying light of different colors in a time-sharing manner several thousand times per second. Therefore, in the projector of Patent Document 1, a red light emitting device, a green light emitting device, and a blue light emitting device each using a solid light emitting element are prepared separately, and the light emitted from each light emitting device is time-division controlled and emitted to the outside. To display image light.

なお、特許文献1のプロジェクタで用いられる各発光装置は、回転駆動される発光ホイールと、発光ホイールの表面に形成され、励起光を吸収して所定色の光を発光する発光体と、励起光を射出する励起光源(固体発光素子)とで構成される。また、各発光装置に用いる励起光源としては、発光体で発光する光の波長帯域より短い波長帯域の励起光を射出する光源が用いられる。   Each light-emitting device used in the projector of Patent Document 1 includes a light-emitting wheel that is driven to rotate, a light-emitting body that is formed on the surface of the light-emitting wheel, absorbs excitation light, and emits light of a predetermined color, and excitation light. And an excitation light source (solid light-emitting element) that emits light. Further, as the excitation light source used for each light emitting device, a light source that emits excitation light in a wavelength band shorter than the wavelength band of light emitted from the light emitter is used.

特開2010−86815号公報JP 2010-86815 A

上述のように、従来、水銀ランプを用いないプロジェクタが提案されており、このようなプロジェクタでは、水銀レスのプロジェクタを実現することができ、近年の環境問題に対応することが可能である。また、例えば半導体レーザ、発光ダイオード等の固体発光素子を光源として用いた場合、水銀ランプに比べて長寿命であり、輝度低下も小さいという利点も得られる。   As described above, a projector that does not use a mercury lamp has been conventionally proposed. With such a projector, a mercury-free projector can be realized, and it is possible to cope with recent environmental problems. Further, when a solid-state light emitting element such as a semiconductor laser or a light emitting diode is used as a light source, there are advantages that it has a longer life than a mercury lamp and a decrease in luminance is small.

しかしながら、上記特許文献1で提案されている技術は、DLP(登録商標)方式のプロジェクタ等のように、互いに波長の異なる複数の単色光を時分割で射出する光源装置(照明装置)にのみ適用可能である。例えば、3LCD(Liquid Crystal Display)方式のプロジェクタ等の画像表示装置のように、白色光を射出する光源装置を必要とする用途には、上記特許文献1で提案されている技術を適用することができない。   However, the technique proposed in Patent Document 1 is applied only to a light source device (illumination device) that emits a plurality of monochromatic lights having different wavelengths in a time-division manner, such as a DLP (registered trademark) projector. Is possible. For example, the technique proposed in Patent Document 1 may be applied to an application that requires a light source device that emits white light, such as an image display device such as a 3LCD (Liquid Crystal Display) projector. Can not.

本発明は、上記現状を鑑みなされたものであり、本発明の目的は、例えば3LCD方式のプロジェクタ等の様々な用途に対しても適用可能な水銀レスの光源装置及びそれを備える画像投影装置を提供することである。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a mercury-less light source device that can be applied to various uses such as a 3LCD projector, and an image projection device including the mercury-free light source device. Is to provide.

上記課題を解決するために、本発明の光源装置は、第1の色光を含む励起光を射出する励起光源と、励起光が入射されることにより励起光の少なくとも一部を第1の色光とは異なる第2の色光に変換する蛍光体と、蛍光体に対して励起光の入射側とは反対側に設けられる反射部材と、を有する蛍光部材と、励起光源と蛍光部材との間の光路上に設けられ、第1の色光における第1偏光成分および第2偏光成分のうちいずれか一方を透過し他方を反射するとともに、第2の色光における第1偏光成分および第2偏光成分の双方を透過する偏光ビームスプリッタと、を備える。本明細書で「波長」という場合は、単一波長だけでなく所定の波長帯域も含む意味である。   In order to solve the above problems, a light source device of the present invention includes an excitation light source that emits excitation light including first color light, and at least part of the excitation light as first color light when the excitation light is incident. Is a fluorescent member having a phosphor that converts to a different second color light, a fluorescent member that is provided on the opposite side of the phosphor from the incident side of the excitation light, and light between the excitation light source and the fluorescent member. Provided on the road, transmits one of the first polarization component and the second polarization component in the first color light, reflects the other, and both the first polarization component and the second polarization component in the second color light. A polarizing beam splitter that transmits the light. In this specification, “wavelength” means not only a single wavelength but also a predetermined wavelength band.

また、本発明の画像投影装置は、光源装置部と、画像投影部とを備える構成とし、各部の機能を次のようにする。光源装置部は、上記本発明の光源装置と同様の構成にする。そして、画像投影部は、光源装置部から射出された光を用いて所定の画像光を生成し、該生成した画像光を外部に投影する。   Moreover, the image projector of this invention is set as the structure provided with a light source device part and an image projector, and the function of each part is as follows. The light source device section has the same configuration as the light source device of the present invention. The image projection unit generates predetermined image light using the light emitted from the light source device unit, and projects the generated image light to the outside.

本発明では、光源装置(光源装置部)は、蛍光体で発光した第2の波長帯を有する光(第2の色光)と、蛍光体及び第1の反射膜で反射した第1の波長帯(第1の色光)を有する励起光の一部とを含む合波光を射出する。すなわち、本発明では、第1の色光を含む励起光及び発光光(第2の色光)とは異なる波長帯域の光を射出する。それゆえ、本発明では、例えば、励起光を青色光とし、発光光を赤色光及び緑色光の両成分を含む光(例えば黄色光等)とした場合には、白色光を光源装置(光源装置部)から射出することができる。   In the present invention, the light source device (light source device unit) includes light having the second wavelength band emitted from the phosphor (second color light) and the first wavelength band reflected by the phosphor and the first reflecting film. Combined light including part of the excitation light having (first color light) is emitted. That is, in the present invention, light having a wavelength band different from that of the excitation light and the emission light (second color light) including the first color light is emitted. Therefore, in the present invention, for example, when the excitation light is blue light and the emitted light is light including both components of red light and green light (for example, yellow light), white light is emitted from the light source device (light source device). Part).

上述のように、本発明の光源装置(光源装置部)では、第1の色光を含む励起光及び発光光(第2の色光)とは異なる波長帯域の光を射出することができ、励起光の第1の波長帯と発光光の第2の波長帯との組み合わせを適宜設定することにより、例えば白色光等の光を射出することができる。それゆえ、本発明によれば、例えば3LCD方式のプロジェクタ等の様々な用途に対しても適用可能な水銀レスの光源装置及びそれを備える画像投影装置を提供することができる。   As described above, the light source device (light source device unit) of the present invention can emit light having a wavelength band different from that of the excitation light including the first color light and the emission light (second color light). By appropriately setting the combination of the first wavelength band and the second wavelength band of the emitted light, for example, light such as white light can be emitted. Therefore, according to the present invention, it is possible to provide a mercury-free light source device that can be applied to various uses such as a 3LCD projector, and an image projection device including the mercury-free light source device.

本発明の一実施形態に係る画像表示装置の概略ブロック構成図である。1 is a schematic block configuration diagram of an image display device according to an embodiment of the present invention. 本発明の一実施形態に係る光源装置部(照明装置)に用いる蛍光部材の概略構成図である。It is a schematic block diagram of the fluorescent member used for the light source device part (illuminating device) which concerns on one Embodiment of this invention. 蛍光部材で用いる反射膜の一構成例を示す図である。It is a figure which shows the example of 1 structure of the reflecting film used with a fluorescent member. 本発明の一実施形態に係る光源装置部で用いる偏光ビームスプリッタの分光特性例を示す図である。It is a figure which shows the example of a spectral characteristic of the polarizing beam splitter used with the light source device part which concerns on one Embodiment of this invention. 偏光ビームスプリッタの動作を説明するための図である。It is a figure for demonstrating operation | movement of a polarizing beam splitter. 本発明の一実施形態に係る光源装置部(照明装置)の出射光のスペクトル特性である。It is the spectrum characteristic of the emitted light of the light source device part (illuminating device) which concerns on one Embodiment of this invention. 変形例1の分光光学系の構成例を示す図である。It is a figure which shows the structural example of the spectroscopy optical system of the modification 1.

以下に、本発明の実施形態に係る照明装置(光源装置)及びそれを備える画像表示装置の一例を、図面を参照しながら下記の順で説明する。なお、本実施形態では、画像表示装置として、3LCD方式のプロジェクタ(画像投影装置)を例に挙げ説明するが、本発明はこれに限定されず、白色光を必要とする任意の画像表示装置に適用可能であり、同様の効果が得られる。
1.画像表示装置の構成例
2.光源装置部(照明装置)の構成例
3.蛍光部材の構成例
4.偏光ビームスプリッタの構成例
5.光源装置部の動作例
6.各種変形例
Hereinafter, an example of an illumination device (light source device) according to an embodiment of the present invention and an image display device including the illumination device will be described in the following order with reference to the drawings. In the present embodiment, a 3LCD projector (image projection apparatus) is described as an example of the image display apparatus. However, the present invention is not limited to this, and any image display apparatus that requires white light can be used. It can be applied and the same effect can be obtained.
1. 1. Configuration example of image display device 2. Configuration example of light source device section (illumination device) 3. Configuration example of fluorescent member 4. Configuration example of polarization beam splitter 5. Example of operation of light source unit Various modifications

[1.画像表示装置の構成例]
図1に、本発明の一実施形態に係る画像表示装置の概略構成を示す。なお、図1では、説明を簡略化するため、主に、本実施形態の画像表示装置10において画像光を外部に投影する際に動作する要部のみを示す。また、図1には、透過型のLCD光変調素子を用いた3LCD方式のプロジェクタの構成例を示すが、本発明はこれに限定されない。本発明は、反射型のLCD光変調素子を用いる3LCD方式のプロジェクタにも適用可能である。
[1. Configuration example of image display apparatus]
FIG. 1 shows a schematic configuration of an image display apparatus according to an embodiment of the present invention. In FIG. 1, for the sake of simplification of description, only main parts that operate when image light is projected to the outside in the image display apparatus 10 of the present embodiment are mainly shown. FIG. 1 shows a configuration example of a 3LCD type projector using a transmissive LCD light modulation element, but the present invention is not limited to this. The present invention can also be applied to a 3LCD projector using a reflective LCD light modulation element.

画像表示装置10は、光源装置部1(照明装置)と、光学エンジン部2(画像投影部)とを備える。なお、光源装置部1の構成の説明は後で詳述する。   The image display device 10 includes a light source device unit 1 (illumination device) and an optical engine unit 2 (image projection unit). The configuration of the light source device unit 1 will be described in detail later.

光学エンジン部2は、光源装置部1から射出された光(この例では白色光LW)を光学的に処理して画像光LIを生成し、その画像光LIを外部の例えばスクリーン等に拡大投影する。光学エンジン部2は、例えば、分光光学系20と、3つのLCD光変調素子(以下では、それぞれ第1LCDパネル21〜第3LCDパネル23という)と、プリズム24と、投影光学系25とを有する。なお、光学エンジン部2の構成は、図1に示す例に限定されず、例えば用途等に応じて適宜変更できる。例えば、光学エンジン部2内の各構成部間の光路上に必要となる各種光学素子を適宜配置してもよい。   The optical engine unit 2 optically processes light emitted from the light source device unit 1 (in this example, white light LW) to generate image light LI, and enlarges and projects the image light LI onto an external screen, for example, To do. The optical engine unit 2 includes, for example, a spectroscopic optical system 20, three LCD light modulation elements (hereinafter referred to as a first LCD panel 21 to a third LCD panel 23, respectively), a prism 24, and a projection optical system 25. In addition, the structure of the optical engine part 2 is not limited to the example shown in FIG. 1, For example, it can change suitably according to a use etc. For example, various optical elements necessary for the optical path between the components in the optical engine unit 2 may be appropriately arranged.

また、この例の光学エンジン部2では、第1LCDパネル21の光出射面と、第3LCDパネル23の光出射面とが対向するように両者を配置し、その両者の対向方向と直交する方向に第2LCDパネル22を配置する。そして、第1LCDパネル21〜第3LCDパネル23の光出射面で囲まれた領域にプリズム24を配置する。また、この例では、プリズム24を挟んで、第2LCDパネル22の光出射面と対向する位置に投影光学系25を配置する。なお、分光光学系20は、第1LCDパネル21〜第3LCDパネル23の光入射側に設けられる。   Moreover, in the optical engine part 2 of this example, both are arrange | positioned so that the light-projection surface of the 1st LCD panel 21 and the light-projection surface of the 3rd LCD panel 23 may oppose, and it is in the direction orthogonal to the opposing direction of both. A second LCD panel 22 is arranged. Then, the prism 24 is disposed in a region surrounded by the light emission surfaces of the first LCD panel 21 to the third LCD panel 23. In this example, the projection optical system 25 is disposed at a position facing the light emitting surface of the second LCD panel 22 with the prism 24 interposed therebetween. The spectroscopic optical system 20 is provided on the light incident side of the first LCD panel 21 to the third LCD panel 23.

分光光学系20は、例えばダイクロイックミラー、反射ミラー等で構成され、光源装置部1から入射される白色光LWを、青色光LB、緑色光LG及び赤色光LRに分光し、各波長成分の光を対応するLCDパネルに射出する。この例では、分光光学系20は、分光した青色光LB、緑色光LG及び赤色光LRをそれぞれ、第1LCDパネル21、第2LCDパネル22及び第3LCDパネル23に射出する。なお、本実施形態では、分光光学系20内において、各波長成分の偏光方向も所定の方向になるように調整される。   The spectroscopic optical system 20 includes, for example, a dichroic mirror, a reflection mirror, and the like, and splits the white light LW incident from the light source device unit 1 into the blue light LB, the green light LG, and the red light LR, and the light of each wavelength component. To the corresponding LCD panel. In this example, the spectroscopic optical system 20 emits the split blue light LB, green light LG, and red light LR to the first LCD panel 21, the second LCD panel 22, and the third LCD panel 23, respectively. In the present embodiment, in the spectroscopic optical system 20, the polarization direction of each wavelength component is adjusted to be a predetermined direction.

第1LCDパネル21〜第3LCDパネル23のそれぞれは、透過型のLCDパネルで構成される。各LCDパネルは、図示しないパネルドライブ部からの駆動信号に基づいて、液晶セル(不図示)に封入された液晶分子の配列を変化させることにより、入射光を液晶セル単位で透過または遮断する(変調する)。そして、各LCDパネルは、変調した所定波長の光(変調光)をプリズム24に射出する。   Each of the first LCD panel 21 to the third LCD panel 23 is composed of a transmissive LCD panel. Each LCD panel changes the arrangement of liquid crystal molecules sealed in a liquid crystal cell (not shown) based on a drive signal from a panel drive unit (not shown), thereby transmitting or blocking incident light in units of liquid crystal cells ( Modulate). Each LCD panel emits modulated light having a predetermined wavelength (modulated light) to the prism 24.

プリズム24は、第1LCDパネル21〜第3LCDパネル23からそれぞれ入射された各波長成分の変調光を合波し、その合波光、すなわち、画像光LIを投影光学系25に射出する。   The prism 24 combines the modulated light of each wavelength component incident from the first LCD panel 21 to the third LCD panel 23 and emits the combined light, that is, the image light LI to the projection optical system 25.

投影光学系25は、プリズム24から入射された画像光を、例えば外部のスクリーン等の表示面に拡大投影する。   The projection optical system 25 enlarges and projects the image light incident from the prism 24 onto a display surface such as an external screen.

[2.光源装置部1の構成例]
次に、本実施形態の光源装置部1の内部構成を、図1を参照しながら説明する。光源装置部1は、励起光源11と、偏光ビームスプリッタ12(分光光学系)と、1/4波長板13と、集光光学系14(光学系)と、蛍光部材15と、モータ16(駆動部)とを備える。
[2. Configuration example of light source device unit 1]
Next, the internal configuration of the light source device unit 1 of the present embodiment will be described with reference to FIG. The light source unit 1 includes an excitation light source 11, a polarizing beam splitter 12 (spectral optical system), a quarter wavelength plate 13, a condensing optical system 14 (optical system), a fluorescent member 15, and a motor 16 (driving). Part).

本実施形態の光源装置部1では、蛍光部材15側から、蛍光部材15の後述する反射膜31及び蛍光体層32、集光光学系14、1/4波長板13、並びに、偏光ビームスプリッタ12が、この順で蛍光部材15からの出射光の光路上に配置される。また、励起光源11は、蛍光部材15からの出射光の光路と直交する方向で且つ偏光ビームスプリッタ12の一つの光入射面に対向する位置に配置される。   In the light source device unit 1 of the present embodiment, from the fluorescent member 15 side, a reflective film 31 and a phosphor layer 32, a condensing optical system 14, a quarter wavelength plate 13, and a polarizing beam splitter 12 described later of the fluorescent member 15 are described. Are arranged on the optical path of the emitted light from the fluorescent member 15 in this order. The excitation light source 11 is disposed in a direction orthogonal to the optical path of the emitted light from the fluorescent member 15 and at a position facing one light incident surface of the polarization beam splitter 12.

励起光源11は、所定波長(第1の波長)の光を射出する固体発光素子で構成する。この例では、励起光源11として、波長445nmの青色光(励起光Bs)を射出する青色レーザを用いる。また、励起光源11からは、直線偏光(S偏光)の励起光Bsを射出する。なお、本実施形態では、励起光の波長を、蛍光部材15内の後述する蛍光体層32で発光する光(以下、発光光という)の波長より短くする。   The excitation light source 11 is composed of a solid light emitting element that emits light of a predetermined wavelength (first wavelength). In this example, a blue laser that emits blue light having a wavelength of 445 nm (excitation light Bs) is used as the excitation light source 11. The excitation light source 11 emits linearly polarized light (S-polarized) excitation light Bs. In the present embodiment, the wavelength of the excitation light is made shorter than the wavelength of light (hereinafter referred to as emitted light) emitted from a phosphor layer 32 described later in the fluorescent member 15.

また、青色レーザで励起光源11を構成する場合、一つの青色レーザで所定出力の励起光Bsを得る構成にしてもよいが、複数の青色レーザからの出射光を合波して所定出力の励起光Bsを得る構成にしてもよい。さらに、青色光(励起光Bs)の波長は445nmに限定されず、青色光と呼ばれる光の波長帯域内の波長であれば任意の波長を用いることができる。   When the excitation light source 11 is configured with a blue laser, the excitation light Bs with a predetermined output may be obtained with a single blue laser. However, the excitation light Bs with a predetermined output may be combined by combining light emitted from a plurality of blue lasers. You may make it the structure which obtains light Bs. Furthermore, the wavelength of blue light (excitation light Bs) is not limited to 445 nm, and any wavelength can be used as long as it is within the wavelength band of light called blue light.

偏光ビームスプリッタ12(PBS)は、励起光源11から入射される励起光Bsと、蛍光部材15から入射される出射光(合波光)とを分離する。具体的には、偏光ビームスプリッタ12は、励起光源11から入射された励起光Bsを反射して、その反射光を、集光光学系14を介して蛍光部材15に射出する。また、偏光ビームスプリッタ12は、蛍光部材15から射出された光を透過し、その透過光を光学エンジン部2内の分光光学系20に射出する。   The polarization beam splitter 12 (PBS) separates the excitation light Bs incident from the excitation light source 11 and the outgoing light (combined light) incident from the fluorescent member 15. Specifically, the polarization beam splitter 12 reflects the excitation light Bs incident from the excitation light source 11 and emits the reflected light to the fluorescent member 15 via the condensing optical system 14. The polarizing beam splitter 12 transmits the light emitted from the fluorescent member 15 and emits the transmitted light to the spectroscopic optical system 20 in the optical engine unit 2.

本実施形態では、偏光ビームスプリッタ12で上述のような光の分離動作が実現されるように、偏光ビームスプリッタ12の分光特性を設計する。なお、偏光ビームスプリッタ12の分光特性の具体例は後で詳述する。また、励起光源11から入射された励起光Bsと、蛍光部材15からの出射光とを分離する光学系の構成としては、偏光ビームスプリッタ12に限定されず、上述した光の分離動作を可能にする構成であれば、任意の光学系を用いることができる。   In the present embodiment, the spectral characteristics of the polarization beam splitter 12 are designed so that the polarization beam splitter 12 realizes the above-described light separation operation. A specific example of the spectral characteristics of the polarization beam splitter 12 will be described in detail later. Further, the configuration of the optical system that separates the excitation light Bs incident from the excitation light source 11 and the light emitted from the fluorescent member 15 is not limited to the polarization beam splitter 12, and enables the above-described light separation operation. Any optical system can be used as long as it is configured.

1/4波長板13は、入射光に対してπ/2の位相差を生じさせる位相素子であり、入射光が直線偏光の場合には直線偏光を円偏光に変換し、入射光が円偏光の場合には円偏光を直線偏光に変換する。本実施形態では、1/4波長板13は、偏光ビームスプリッタ12から射出される直線偏光の励起光を円偏光の励起光に変換し、蛍光部材15から射出される合波光に含まれる円偏光の励起光成分を直線偏光に変換する。   The quarter-wave plate 13 is a phase element that generates a phase difference of π / 2 with respect to incident light. When the incident light is linearly polarized light, the linearly polarized light is converted into circularly polarized light, and the incident light is circularly polarized light. In this case, circularly polarized light is converted to linearly polarized light. In the present embodiment, the quarter wavelength plate 13 converts the linearly polarized excitation light emitted from the polarization beam splitter 12 into circularly polarized excitation light, and circularly polarized light included in the combined light emitted from the fluorescent member 15. Is converted into linearly polarized light.

集光光学系14は、1/4波長板13から射出された励起光を所定のスポット径に集光し、該集光した励起光(以下、集光光という)を蛍光部材15に射出する。また、集光光学系14は、蛍光部材15から射出される合波光を平行光に変換し、その平行光を1/4波長板13に射出する。なお、集光光学系14は、例えば、一枚のコリメートレンズで構成してもよいし、複数のレンズを用いて入射光を平行光に変換する構成にしてもよい。   The condensing optical system 14 condenses the excitation light emitted from the quarter wavelength plate 13 to a predetermined spot diameter, and emits the condensed excitation light (hereinafter referred to as “condensed light”) to the fluorescent member 15. . The condensing optical system 14 converts the combined light emitted from the fluorescent member 15 into parallel light, and emits the parallel light to the quarter-wave plate 13. In addition, the condensing optical system 14 may be configured by, for example, a single collimator lens, or may be configured to convert incident light into parallel light using a plurality of lenses.

蛍光部材15は、集光光学系14を介して入射された励起光(青色光)の一部を吸収し、所定波長帯域(第2の波長)の光を発光するとともに、残りの励起光を反射する。そして、蛍光部材15は、発光光と反射した励起光の一部とを合波し、その合波光を集光光学系14に射出する。   The fluorescent member 15 absorbs a part of the excitation light (blue light) incident through the condensing optical system 14, emits light in a predetermined wavelength band (second wavelength), and transmits the remaining excitation light. reflect. Then, the fluorescent member 15 combines the emitted light and a part of the reflected excitation light, and emits the combined light to the condensing optical system 14.

この例では、光学エンジン部2に入射する光を白色光LWとするので、蛍光部材15は、励起光により、緑色光及び赤色光を含む波長帯域(約480〜680nm)の光を発光する。そして、本実施形態では、緑色光及び赤色光を含む波長帯域の発光光と、蛍光部材15(後述する反射膜31及び蛍光体層32)で反射する励起光(青色光)の一部とを合波して白色光を生成する。なお、蛍光部材15のより詳細な構成は、後で詳述する。   In this example, since the light incident on the optical engine unit 2 is white light LW, the fluorescent member 15 emits light in a wavelength band (about 480 to 680 nm) including green light and red light by the excitation light. In this embodiment, emitted light in a wavelength band including green light and red light and a part of excitation light (blue light) reflected by the fluorescent member 15 (a reflective film 31 and a phosphor layer 32 described later) are used. Combine to produce white light. A more detailed configuration of the fluorescent member 15 will be described in detail later.

また、蛍光部材15から射出される発光光は、ランバーシアン(均等拡散)状に広がる光であるので、集光光学系14と蛍光部材15との間の距離が長いと集光光学系14で発光光を十分集光することができなくなり、励起光の利用効率が低下する。また、蛍光部材15に照射する励起光のスポット径が大きすぎると、発光光の広がりも大きくなり、この場合も同様に励起光の利用効率が低下する。それゆえ、本実施形態では、十分な励起光の利用効率が得られるように、集光光学系14の例えばレンズ構成、焦点距離及び配置位置等の構成や、集光光学系14と蛍光部材15との距離が設定される。   Further, since the emitted light emitted from the fluorescent member 15 is light that spreads in a Lambertian (uniform diffusion) shape, if the distance between the condensing optical system 14 and the fluorescent member 15 is long, the condensing optical system 14 The emitted light cannot be sufficiently collected, and the utilization efficiency of the excitation light is reduced. If the spot diameter of the excitation light applied to the fluorescent member 15 is too large, the spread of the emitted light also increases. In this case as well, the utilization efficiency of the excitation light decreases. Therefore, in the present embodiment, the condensing optical system 14 has a configuration such as a lens configuration, a focal length, and an arrangement position, and the condensing optical system 14 and the fluorescent member 15 so that sufficient excitation light utilization efficiency can be obtained. And the distance is set.

モータ16は、蛍光部材15を所定の回転数で回転駆動する。この際、モータ16は、励起光の照射方向に直交する面(後述する蛍光体層32の励起光の照射面)内で、蛍光部材15が回転するように蛍光部材15を駆動する。これにより、蛍光部材15内の励起光の照射位置が、励起光の照射方向に直交する面内において回転数に対応した速度で時間的に変化(移動)する。   The motor 16 rotationally drives the fluorescent member 15 at a predetermined rotational speed. At this time, the motor 16 drives the fluorescent member 15 so that the fluorescent member 15 rotates in a plane orthogonal to the excitation light irradiation direction (an excitation light irradiation surface of the phosphor layer 32 described later). As a result, the irradiation position of the excitation light in the fluorescent member 15 changes (moves) in time at a speed corresponding to the rotational speed in a plane orthogonal to the irradiation direction of the excitation light.

上述のように蛍光部材15をモータ16で回転駆動して蛍光部材15内の励起光の照射位置を時間とともに変化させることにより、照射位置の温度上昇を抑制することができ、蛍光体層32の発光効率の低下を防止することができる。また、蛍光体原子が励起光を吸収して発光するまでに多少時間(例えば数nsec程度)が掛かり、その励起期間中に、次の励起光が蛍光体原子に照射されてもその励起光に対しては発光しない。しかしながら、本実施形態のように蛍光部材15内の励起光の照射位置を時間とともに変化させることにより、励起光の照射位置には、励起されていない蛍光体原子が次々と配置されることになり、蛍光体層32をより効率よく発光させることができる。   As described above, the fluorescent member 15 is rotationally driven by the motor 16 and the irradiation position of the excitation light in the fluorescent member 15 is changed with time, so that the temperature rise at the irradiation position can be suppressed. A decrease in luminous efficiency can be prevented. In addition, it takes some time (for example, several nsec) until the phosphor atoms absorb the excitation light and emit light, and even if the next excitation light is irradiated to the phosphor atoms during the excitation period, It does not emit light. However, by changing the irradiation position of the excitation light in the fluorescent member 15 with time as in the present embodiment, phosphor atoms that are not excited are successively arranged at the irradiation position of the excitation light. The phosphor layer 32 can emit light more efficiently.

なお、本実施形態では、モータ16により蛍光部材15を回転駆動する例を示すが、本発明はこれに限定されず、蛍光部材15中の励起光の照射位置が時間とともに変化する構成であれば任意の構成にすることができる。例えば、蛍光部材15を、励起光の照射方向に直交する面内の所定方向に直線的に往復運動させることにより、励起光の照射位置を時間とともに変化させてもよい。また、蛍光部材15を固定し、励起光源11及び各種光学系を蛍光部材15に対して相対的に移動させることにより、励起光の照射位置を時間とともに変化させてもよい。   In the present embodiment, an example in which the fluorescent member 15 is rotationally driven by the motor 16 is shown. However, the present invention is not limited to this, and the irradiation position of the excitation light in the fluorescent member 15 may be changed with time. Any configuration can be used. For example, the irradiation position of the excitation light may be changed with time by linearly reciprocating the fluorescent member 15 in a predetermined direction in a plane orthogonal to the irradiation direction of the excitation light. Further, the irradiation position of the excitation light may be changed with time by fixing the fluorescent member 15 and moving the excitation light source 11 and various optical systems relative to the fluorescent member 15.

[3.蛍光部材の構成例]
次に、蛍光部材15のより詳細な構成を、図2(a)〜(c)を参照しながら説明する。なお、図2(a)は、集光光学系14側から見た蛍光部材15の正面図であり、図2(b)は、図2(a)中のA−A断面図であり、図2(c)は、集光光学系14とは反対側から見た蛍光部材15の正面図である。
[3. Configuration example of fluorescent member]
Next, a more detailed configuration of the fluorescent member 15 will be described with reference to FIGS. 2A is a front view of the fluorescent member 15 viewed from the light collecting optical system 14 side, and FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2 (c) is a front view of the fluorescent member 15 viewed from the side opposite to the condensing optical system 14. FIG.

蛍光部材15は、円盤状の基板30と、基板30の一方(励起光の入射側)の表面上に形成された反射膜31(第1の反射膜)及び蛍光体層32(蛍光体)とを有する。   The fluorescent member 15 includes a disk-shaped substrate 30, a reflective film 31 (first reflective film) and a phosphor layer 32 (phosphor) formed on the surface of one side (excitation light incident side) of the substrate 30. Have

基板30は、例えばガラス、透明樹脂等の透明材料で形成される。なお、基板30の形成材料は透明材料に限定されず、所定の強度を有する材料であれば任意の材料で形成することができる。なお、基板30の厚さ等のサイズは、例えば必要とする強度、重量等を考慮して適宜設定される。また、基板30の中心は、モータ16の回転軸16aに取り付けられ、固定ハブ16bにより基板30が回転軸16aに固定される。   The substrate 30 is made of a transparent material such as glass or transparent resin. The material for forming the substrate 30 is not limited to a transparent material, and any material can be used as long as it has a predetermined strength. The size such as the thickness of the substrate 30 is appropriately set in consideration of, for example, required strength and weight. The center of the substrate 30 is attached to the rotating shaft 16a of the motor 16, and the substrate 30 is fixed to the rotating shaft 16a by a fixing hub 16b.

反射膜31は、図2(a)に示すように、基板30の一方の表面上にドーナツ状に形成される。そして、ドーナツ状の反射膜31と基板30とが同心円となるように、反射膜31が基板30上に配置される。なお、反射膜31の半径方向の幅は、集光光学系14により集光される励起光(集光光)のスポットサイズより大きくなるように設定される。   The reflective film 31 is formed in a donut shape on one surface of the substrate 30 as shown in FIG. The reflective film 31 is arranged on the substrate 30 so that the donut-shaped reflective film 31 and the substrate 30 are concentric. The radial width of the reflective film 31 is set to be larger than the spot size of the excitation light (condensed light) collected by the condensing optical system 14.

反射膜31は、入射される光の波長及び入射角に関係なく、全ての光を反射する。それゆえ、反射膜31は、蛍光体層32で励起された光(発光光)を集光光学系14側に反射するだけでなく、蛍光体層32を透過した励起光(青色光)の一部も集光光学系14側に反射する。   The reflective film 31 reflects all light regardless of the wavelength and incident angle of incident light. Therefore, the reflection film 31 not only reflects the light (emitted light) excited by the phosphor layer 32 to the condensing optical system 14 side but also one of the excitation light (blue light) transmitted through the phosphor layer 32. The part is also reflected to the condensing optical system 14 side.

ここで、図3に、反射膜31の一構成例を示す。反射膜31は、例えばSiO層やMgF層等からなる第1の誘電体層31aと、例えばTiO層やTa層等からなる第2の誘電体層31bとを基板30上に交互に積層して形成される。すなわち、反射膜31は、ダイクロイックミラー(ダイクロイック膜)で構成することができる。反射膜31を例えば図3に示すようなダイクロイックミラーで構成した場合には、各誘電体層の積層数、各誘電体層の厚さ、各誘電体層の形成材料等を調整することにより、反射膜31の反射(透過)特性が所定の特性になるように設定することができる。なお、第1の誘電体層31a及び第2の誘電体層31bの積層数は、通常、数層〜数十層である。また、第1の誘電体層31a及び第2の誘電体層31bは、例えば蒸着法やスパッタ法等の積層手法を用いて形成される。なお、反射膜31の構成は図3に示す例に限定されず、例えば、アルミニウム等の金属膜で構成してもよい。 Here, FIG. 3 shows a configuration example of the reflective film 31. The reflective film 31 includes a first dielectric layer 31 a made of, for example, a SiO 2 layer or a MgF 2 layer, and a second dielectric layer 31 b made of, for example, a TiO 2 layer or a Ta 2 O 3 layer on the substrate 30. Are alternately stacked. That is, the reflective film 31 can be formed of a dichroic mirror (dichroic film). When the reflective film 31 is configured by a dichroic mirror as shown in FIG. 3, for example, by adjusting the number of dielectric layers stacked, the thickness of each dielectric layer, the formation material of each dielectric layer, etc. The reflection (transmission) characteristic of the reflection film 31 can be set to a predetermined characteristic. In addition, the number of laminated layers of the first dielectric layer 31a and the second dielectric layer 31b is usually several to several tens. Further, the first dielectric layer 31a and the second dielectric layer 31b are formed using a lamination method such as a vapor deposition method or a sputtering method. Note that the configuration of the reflective film 31 is not limited to the example shown in FIG. 3, and may be configured of a metal film such as aluminum.

蛍光体層32は、層状の蛍光体で形成され、励起光が入射された際に、励起光の一部を吸収して所定波長帯域の光を発光する。さらに、蛍光体層32は、吸収されない残りの励起光のうち、一部の励起光を透過させ且つ残りの励起光を拡散(反射)する。なお、蛍光体層32で反射された励起光成分は、無偏光の光となる。   The phosphor layer 32 is formed of a layered phosphor, and absorbs a part of the excitation light and emits light in a predetermined wavelength band when the excitation light is incident. Further, the phosphor layer 32 transmits part of the remaining excitation light that is not absorbed and diffuses (reflects) the remaining excitation light. The excitation light component reflected by the phosphor layer 32 becomes non-polarized light.

本実施形態では、反射膜31及び蛍光体層32で反射された励起光の一部と、蛍光体層32での発光光とを合波して白色光を生成するので、蛍光体層32を、例えばYAG(Yttrium Aluminum Garnet)系蛍光材料等で形成する。この場合、青色の励起光が入射されると、蛍光体層32は波長480〜680nmの帯域の光(黄色光)を発光する。   In the present embodiment, part of the excitation light reflected by the reflective film 31 and the phosphor layer 32 and the emitted light from the phosphor layer 32 are combined to generate white light. For example, it is made of YAG (Yttrium Aluminum Garnet) fluorescent material. In this case, when blue excitation light is incident, the phosphor layer 32 emits light (yellow light) in a wavelength band of 480 to 680 nm.

なお、蛍光体層32としては、赤色光及び緑色光を含む波長帯域の光を発光する膜であれば、任意の構成及び材料の膜を用いることができるが、発光効率及び耐熱性の観点ではYAG系蛍光体材料で形成された膜を用いることが好ましい。   As the phosphor layer 32, any film having any structure and material can be used as long as it emits light in a wavelength band including red light and green light. However, from the viewpoint of light emission efficiency and heat resistance. It is preferable to use a film formed of a YAG phosphor material.

蛍光体層32は、蛍光材料とバインダとを混合した所定の蛍光剤を反射膜31上に塗布することにより形成される。図2(a)〜(c)に示す例では蛍光体層32を反射膜31の全面に渡って形成するので、蛍光体層32の表面形状もドーナッツ状となる。なお、蛍光体層32は、励起光が照射される領域に形成されていればよいので、蛍光体層32の形状は、図2(a)〜(c)に示す例に限定されず、例えば、蛍光体層32の半径方向の幅が、反射膜31のそれより狭くてもよい。   The phosphor layer 32 is formed by applying a predetermined fluorescent agent mixed with a fluorescent material and a binder on the reflective film 31. In the example shown in FIGS. 2A to 2C, since the phosphor layer 32 is formed over the entire surface of the reflective film 31, the surface shape of the phosphor layer 32 is also a donut shape. In addition, since the fluorescent substance layer 32 should just be formed in the area | region where excitation light is irradiated, the shape of the fluorescent substance layer 32 is not limited to the example shown to Fig.2 (a)-(c), For example, The width of the phosphor layer 32 in the radial direction may be narrower than that of the reflective film 31.

また、蛍光体層32における、発光量、並びに、励起光の透過量及び反射量(拡散量)の割合は、例えば蛍光体層32の厚さや蛍光体密度(含有量)等により調整することができる。それゆえ、本実施形態では、光源装置部1からの出射光が白色光となるように、蛍光体層32の厚さや蛍光体密度等を調整する。   In addition, the light emission amount and the ratio of the amount of transmitted and reflected light and the amount of reflection (diffusion amount) in the phosphor layer 32 can be adjusted by, for example, the thickness of the phosphor layer 32 and the phosphor density (content). it can. Therefore, in the present embodiment, the thickness of the phosphor layer 32, the phosphor density, and the like are adjusted so that the emitted light from the light source device unit 1 becomes white light.

なお、上記実施形態の蛍光部材15では、基板30上に反射膜31を介して層状の蛍光体(蛍光体層32)を設ける例を説明したが、本発明はこれに限定されない。例えば、蛍光体を十分な剛性を有する板状部材で構成した場合には、基板30を設けなくてもよい。また、この場合、反射膜31を板状部材からなる蛍光体の一方の表面に直接形成してもよいし、蛍光体とは別個に反射ミラーを用意し、その反射ミラーを反射膜31の代わりに用いてもよい。   In addition, although the fluorescent member 15 of the said embodiment demonstrated the example which provides a layered fluorescent substance (phosphor layer 32) on the board | substrate 30 via the reflecting film 31, this invention is not limited to this. For example, when the phosphor is composed of a plate member having sufficient rigidity, the substrate 30 may not be provided. In this case, the reflection film 31 may be formed directly on one surface of the phosphor made of a plate-like member, or a reflection mirror is prepared separately from the phosphor, and the reflection mirror is used instead of the reflection film 31. You may use for.

[4.偏光ビームスプリッタの構成例]
本実施形態の光源装置部1では、図1に示すように、励起光源11から偏光ビームスプリッタ12を介して蛍光部材15に入射される励起光の光路と、蛍光部材15から光学エンジン部2に入射される合波光の光路とが重なる。それゆえ、本実施形態では、上述したように、偏光ビームスプリッタ12の分光特性を適宜調整して両方の光を分離する。
[4. Configuration example of polarization beam splitter]
In the light source device unit 1 of the present embodiment, as shown in FIG. 1, the optical path of the excitation light incident on the fluorescent member 15 from the excitation light source 11 via the polarization beam splitter 12, and the fluorescent member 15 to the optical engine unit 2. The optical path of the incident combined light overlaps. Therefore, in this embodiment, as described above, the spectral characteristics of the polarization beam splitter 12 are adjusted as appropriate to separate both lights.

図4に、本実施形態で用いる偏光ビームスプリッタ12の分光特性例を示す。なお、図4に示す分光特性の横軸は波長であり、縦軸は透過率である。また、図4中の実線で示す特性Tpは、P偏光の入射光に対する偏光ビームスプリッタ12の透過率特性であり、破線で示す特性Rpは、P偏光の入射光に対する偏光ビームスプリッタ12の反射率特性である。さらに、図4中の点線で示す特性Tsは、S偏光の入射光に対する偏光ビームスプリッタ12の透過率特性であり、一点鎖線で示す特性Rsは、S偏光の入射光に対する偏光ビームスプリッタ12の反射率特性である。   FIG. 4 shows an example of spectral characteristics of the polarizing beam splitter 12 used in this embodiment. The horizontal axis of the spectral characteristics shown in FIG. 4 is the wavelength, and the vertical axis is the transmittance. Also, a characteristic Tp indicated by a solid line in FIG. 4 is a transmittance characteristic of the polarizing beam splitter 12 with respect to incident light of P-polarized light, and a characteristic Rp indicated by a broken line is the reflectance of the polarizing beam splitter 12 with respect to incident light of P-polarized light. It is a characteristic. Further, a characteristic Ts indicated by a dotted line in FIG. 4 is a transmittance characteristic of the polarization beam splitter 12 with respect to S-polarized incident light, and a characteristic Rs indicated by a one-dot chain line is a reflection of the polarization beam splitter 12 with respect to S-polarized incident light. It is a rate characteristic.

本実施形態で用いる偏光ビームスプリッタ12では、図4に示すように、蛍光体層32から射出される波長480〜680nmの帯域の光成分に対しては、偏光方向に関係なく、透過率は約100%となり、反射率は約0%となる。すなわち、波長480〜680nmの帯域の光(黄色光)は、全て、偏光ビームスプリッタ12を透過する。   In the polarizing beam splitter 12 used in the present embodiment, as shown in FIG. 4, the transmittance of the light component in the wavelength band of 480 to 680 nm emitted from the phosphor layer 32 is approximately regardless of the polarization direction. 100% and the reflectance is about 0%. That is, all the light in the wavelength band of 480 to 680 nm (yellow light) is transmitted through the polarization beam splitter 12.

一方、偏光ビームスプリッタ12のP偏光の青色光に対する透過率は、図4に示すように、約100%となり、反射率は約0%となる。また、偏光ビームスプリッタ12のS偏光の青色光に対する透過率は約0%となり、反射率は約100%となる。すなわち、偏光ビームスプリッタ12は、P偏光の青色光が入射された際には、その光を透過し、S偏光の青色光が入射された際には、その光を反射する。   On the other hand, the transmittance of the polarization beam splitter 12 with respect to the P-polarized blue light is about 100% and the reflectance is about 0%, as shown in FIG. Further, the transmittance of the polarizing beam splitter 12 with respect to S-polarized blue light is about 0%, and the reflectance is about 100%. That is, the polarization beam splitter 12 transmits the light when P-polarized blue light is incident, and reflects the light when S-polarized blue light is incident.

偏光ビームスプリッタ12の分光特性を図4に示すような特性に設定することにより、蛍光部材15に入射する励起光と、蛍光部材15からの出射光とを分離することができる。具体的には、励起光源11から入射される励起光Bs(青色光)は、S偏光の光であるので、偏光ビームスプリッタ12により反射され、蛍光部材15に導かれる。   By setting the spectral characteristics of the polarizing beam splitter 12 to the characteristics shown in FIG. 4, the excitation light incident on the fluorescent member 15 and the outgoing light from the fluorescent member 15 can be separated. Specifically, since the excitation light Bs (blue light) incident from the excitation light source 11 is S-polarized light, it is reflected by the polarization beam splitter 12 and guided to the fluorescent member 15.

一方、蛍光部材15から射出される合波光に含まれる発光光成分は、480〜680nmの波長帯域の光成分であるので、偏光ビームスプリッタ12を透過する。また、蛍光部材15から射出される合波光に含まれる励起光(青色光)成分のうち、反射膜31から反射される励起光成分は後述するようにP偏光の光であるので、偏光ビームスプリッタ12を透過する。さらに、蛍光部材15から射出される合波光に含まれる励起光成分のうち、蛍光体層32から直接反射される励起光成分は無偏光であるので、その励起光成分の約半分程度が偏光ビームスプリッタ12を透過する。すなわち、蛍光部材15から射出された合波光の一部は、偏光ビームスプリッタ12を透過し、その透過した合波光が白色光LWとして光学エンジン部2内の分光光学系20に導かれる。   On the other hand, the emitted light component included in the combined light emitted from the fluorescent member 15 is a light component in the wavelength band of 480 to 680 nm, and thus passes through the polarization beam splitter 12. In addition, among the excitation light (blue light) components included in the combined light emitted from the fluorescent member 15, the excitation light component reflected from the reflective film 31 is P-polarized light as will be described later. 12 is transmitted. Further, among the excitation light components included in the combined light emitted from the fluorescent member 15, the excitation light component directly reflected from the phosphor layer 32 is non-polarized, so about half of the excitation light component is a polarized beam. It passes through the splitter 12. That is, a part of the combined light emitted from the fluorescent member 15 is transmitted through the polarization beam splitter 12, and the transmitted combined light is guided to the spectral optical system 20 in the optical engine unit 2 as white light LW.

[5.光源装置部の動作例]
次に、本実施形態の光源装置部の動作例を、図1及び5を参照しながら具体的に説明する。なお、図5は、本実施形態の偏光ビームスプリッタ12の分光動作の様子を示す図であり、図5中の丸印A1がS偏光の偏光方向を示し、白抜き矢印A2がP偏光の偏光方向を示す。また、図5では、説明を簡略化するため、蛍光体層32から直接反射される無偏光の励起光成分の図示は省略する。
[5. Example of operation of light source unit]
Next, an example of the operation of the light source device unit of the present embodiment will be specifically described with reference to FIGS. FIG. 5 is a diagram showing the state of spectral operation of the polarizing beam splitter 12 of the present embodiment, in which the circle A1 in FIG. 5 indicates the polarization direction of S-polarized light, and the white arrow A2 is polarization of P-polarized light. Indicates direction. In FIG. 5, the illustration of the non-polarized excitation light component directly reflected from the phosphor layer 32 is omitted to simplify the description.

まず、励起光源11は、偏光ビームスプリッタ12にS偏光の励起光Bs(青色光)を射出する。次いで、偏光ビームスプリッタ12は、入射された励起光Bsを蛍光部材15に向かう方向に反射する。次いで、偏光ビームスプリッタ12は、反射した励起光を、1/4波長板13を介して集光光学系14に射出する。そして、集光光学系14は、入射された励起光を所定のスポット径に集光し、その集光光を蛍光部材15に照射する。   First, the excitation light source 11 emits S-polarized excitation light Bs (blue light) to the polarization beam splitter 12. Next, the polarization beam splitter 12 reflects the incident excitation light Bs in a direction toward the fluorescent member 15. Next, the polarization beam splitter 12 emits the reflected excitation light to the condensing optical system 14 via the quarter wavelength plate 13. The condensing optical system 14 condenses the incident excitation light to a predetermined spot diameter and irradiates the fluorescent member 15 with the condensed light.

次いで、蛍光部材15の蛍光体層32に励起光が照射されると、蛍光体層32は、その励起光の一部を吸収し、これにより、赤色光及び緑色光を含む波長480〜680nmの帯域の光(黄色光)を発光する。また、この際、蛍光体層32は、蛍光体層32で吸収されない励起光の一部を拡散して集光光学系14側に反射するとともに、吸収されない励起光の残りの一部を透過させ、反射膜31に導く。そして、反射膜31は、蛍光体層32を透過した励起光を集光光学系14側に反射する。なお、この際、蛍光体層32の発光光の一部も反射膜31により集光光学系14側に反射される。   Next, when the phosphor layer 32 of the phosphor member 15 is irradiated with excitation light, the phosphor layer 32 absorbs part of the excitation light, and thereby has a wavelength of 480 to 680 nm including red light and green light. It emits light in the band (yellow light). At this time, the phosphor layer 32 diffuses a part of the excitation light that is not absorbed by the phosphor layer 32 and reflects it to the condensing optical system 14 side, and transmits the remaining part of the excitation light that is not absorbed. To the reflective film 31. The reflection film 31 reflects the excitation light transmitted through the phosphor layer 32 toward the condensing optical system 14. At this time, part of the light emitted from the phosphor layer 32 is also reflected by the reflective film 31 toward the condensing optical system 14.

その結果、蛍光部材15内で、蛍光体層32からの発光光と、蛍光体層32及び反射膜31から反射された励起光の一部とが合波され、蛍光部材15からその合波光が集光光学系14に射出される。   As a result, the emitted light from the phosphor layer 32 and a part of the excitation light reflected from the phosphor layer 32 and the reflection film 31 are combined in the fluorescent member 15, and the combined light is emitted from the fluorescent member 15. The light is emitted to the condensing optical system 14.

次いで、集光光学系14は、蛍光部材15から射出された合波光を平行光に変換し、その平行光を1/4波長板13を介して偏光ビームスプリッタ12に射出する。   Next, the condensing optical system 14 converts the combined light emitted from the fluorescent member 15 into parallel light, and emits the parallel light to the polarization beam splitter 12 via the quarter wavelength plate 13.

この際、1/4波長板13を通過する合波光に含まれる発光光成分、すなわち、赤色光成分Rps(図5中の破線矢印)及び緑色光成分Gps(一点鎖線矢印)は無偏光(P偏光成分及びS偏光成分の両方を含む)である。それゆえ、合波光に含まれる赤色光成分Rps及び緑色光成分Gpsは、1/4波長板13をそのまま通過し、偏光ビームスプリッタ12に入射される。   At this time, the emitted light component included in the combined light passing through the quarter-wave plate 13, that is, the red light component Rps (broken arrow in FIG. 5) and the green light component Gps (dashed line arrow) are not polarized (P Including both polarization component and S polarization component). Therefore, the red light component Rps and the green light component Gps included in the combined light pass through the quarter-wave plate 13 as they are and enter the polarization beam splitter 12.

一方、合波光に含まれる励起光成分(青色光成分)のうち、反射膜31から反射された励起光成分は、偏光ビームスプリッタ12に入射されるまでに、1/4波長板13をトータルで2回通過する。具体的には、反射膜31から反射される励起光成分は、励起光源11から蛍光部材15に至る励起光の光路及び蛍光部材15から偏光ビームスプリッタ12に至る合波光の光路において、それぞれ1回ずつ1/4波長板13を通過する。それゆえ、1/4波長板13を通過した後の合波光に含まれる反射膜31からの反射光成分の偏光方向は、励起光源11から射出された励起光Bsに対して90度回転する。   On the other hand, among the excitation light components (blue light components) included in the combined light, the excitation light component reflected from the reflective film 31 is not applied to the quarter wavelength plate 13 until it enters the polarization beam splitter 12. Pass twice. Specifically, the excitation light component reflected from the reflective film 31 is once each in the optical path of excitation light from the excitation light source 11 to the fluorescent member 15 and in the optical path of combined light from the fluorescent member 15 to the polarization beam splitter 12. Pass through the quarter-wave plate 13 one by one. Therefore, the polarization direction of the reflected light component from the reflective film 31 included in the combined light after passing through the quarter-wave plate 13 is rotated by 90 degrees with respect to the excitation light Bs emitted from the excitation light source 11.

本実施形態では、励起光源11から射出された励起光BsはS偏光の光であるので、偏光ビームスプリッタ12に入射される反射膜31から反射された励起光成分Bp(青色光)は、図5に示すように、P偏光の光となる。一方、蛍光体層32から直接反射された励起光成分(図5では不図示)は、無偏光であるので、1/4波長板13をそのまま通過し、偏光ビームスプリッタ12に入射される(図5では不図示)。   In this embodiment, since the excitation light Bs emitted from the excitation light source 11 is S-polarized light, the excitation light component Bp (blue light) reflected from the reflective film 31 incident on the polarization beam splitter 12 is As shown in FIG. 5, it becomes P-polarized light. On the other hand, since the excitation light component (not shown in FIG. 5) directly reflected from the phosphor layer 32 is non-polarized light, it passes through the quarter-wave plate 13 as it is and enters the polarization beam splitter 12 (FIG. 5). 5 (not shown).

そして、本実施形態では、偏光ビームスプリッタ12に図4に示すような分光特性を持たせているので、偏光ビームスプリッタ12は、合波光に含まれる赤色光成分Rps及び緑色光成分Gpsをそのまま通過させる。   In this embodiment, since the polarization beam splitter 12 has the spectral characteristics as shown in FIG. 4, the polarization beam splitter 12 passes the red light component Rps and the green light component Gps included in the combined light as they are. Let

また、偏光ビームスプリッタ12に入射された励起光成分のうち、反射膜31からの反射光成分(Bp)はP偏光の光であるので、偏光ビームスプリッタ12は、反射膜31からの反射光成分(Bp)をそのまま通過させる。しかしながら、偏光ビームスプリッタ12に入射された励起光成分のうち、蛍光体層32からの反射光成分は無偏光の光であるので、偏光ビームスプリッタ12は、その反射光成分のうち、P偏光の光成分のみを通過させる。この際、蛍光体層32から反射された励起光成分のうち、偏光ビームスプリッタ12を通過する割合は約50%程度となる。それゆえ、本実施形態では、蛍光部材15から射出された励起光成分のうち、約70〜80%の励起光成分が偏光ビームスプリッタ12を通過することになる。   Of the excitation light components incident on the polarizing beam splitter 12, the reflected light component (Bp) from the reflecting film 31 is P-polarized light, so that the polarizing beam splitter 12 reflects the reflected light component from the reflecting film 31. Pass (Bp) as it is. However, since the reflected light component from the phosphor layer 32 among the excitation light components incident on the polarizing beam splitter 12 is non-polarized light, the polarizing beam splitter 12 has the P-polarized light among the reflected light components. Pass only light components. At this time, the proportion of the excitation light component reflected from the phosphor layer 32 that passes through the polarization beam splitter 12 is about 50%. Therefore, in this embodiment, about 70 to 80% of the excitation light component emitted from the fluorescent member 15 passes through the polarization beam splitter 12.

この結果、偏光ビームスプリッタ12の光学エンジン部2側の出射面からは、赤色光成分Rps及び緑色光成分Gpsと、反射膜31及び蛍光体層32で反射された励起光成分(青色光成分)の一部とが合波された光、すなわち、白色光LWが射出される。本実施形態では、このようにして、光源装置部1から白色光LWを射出する。   As a result, the red light component Rps and the green light component Gps, and the excitation light component (blue light component) reflected by the reflective film 31 and the phosphor layer 32 from the exit surface of the polarization beam splitter 12 on the optical engine unit 2 side. , Ie, white light LW is emitted. In the present embodiment, the white light LW is emitted from the light source device unit 1 in this way.

上記構成の本実施形態の光源装置部1において、本発明者は、光源装置部1の各部のパラメータを次のように設定し、光源装置部1からの出射光のスペクトル特性を調べた。
励起光源11(青色レーザ)の波長:445nm
励起光の集光径:1mm
励起光の入射角θ:20度以下
偏光ビームスプリッタ12の分光特性:図4に示す特性
集光光学系14及び蛍光体層32間の距離:1mm以下
蛍光部材15の回転数:3000rpm
蛍光体層32の形成材料:YAG系蛍光体
蛍光体層32の厚さ:50μm
蛍光体層32の幅:5mm
In the light source device unit 1 of the present embodiment configured as described above, the inventor set the parameters of each part of the light source device unit 1 as follows, and examined the spectral characteristics of the light emitted from the light source device unit 1.
Wavelength of excitation light source 11 (blue laser): 445 nm
Condensing diameter of excitation light: 1mm
Incident angle θ of excitation light: 20 degrees or less Spectral characteristics of polarizing beam splitter 12: characteristics shown in FIG. 4 Distance between condensing optical system 14 and phosphor layer 32: 1 mm or less Rotation speed of fluorescent member 15: 3000 rpm
Forming material of phosphor layer 32: YAG-based phosphor Thickness of phosphor layer 32: 50 μm
Width of phosphor layer 32: 5 mm

図6に、上記条件で得られた光源装置部1からの出射光のスペクトル特性を示す。なお、図6に示す特性では、横軸が波長であり、縦軸が出射光の強度(任意単位)である。図6から明らかなように、上記条件では、出射光に、波長445nm付近の光成分(青色光成分)と、約480〜680nmに渡る波長領域の光成分、すなわち、赤色光成分及び緑色光成分を含む光成分とが含まれていることが分かる。このことからも、本実施形態の光源装置部1から、白色光が出射されていることが分かる。   FIG. 6 shows the spectral characteristics of the emitted light from the light source unit 1 obtained under the above conditions. In the characteristics shown in FIG. 6, the horizontal axis is the wavelength, and the vertical axis is the intensity (arbitrary unit) of the emitted light. As is apparent from FIG. 6, under the above conditions, the emitted light includes a light component in the vicinity of a wavelength of 445 nm (blue light component) and a light component in a wavelength region extending over about 480 to 680 nm, that is, a red light component and a green light component. It can be seen that a light component including This also shows that white light is emitted from the light source device unit 1 of the present embodiment.

上述のように、本実施形態では、固体発光素子を用いて光源装置部1から白色光を射出することができる。それゆえ、本実施形態は、例えば3LCD方式のプロジェクタ等のように、白色光を射出する光源装置を必要とする用途にも適用可能である。すなわち、本実施形態では、様々な用途に適用可能な水銀レスの光源装置部1(照明装置)及びそれを備える画像表示装置10を提供することができる。   As described above, in the present embodiment, white light can be emitted from the light source device unit 1 using a solid light emitting element. Therefore, the present embodiment can also be applied to applications that require a light source device that emits white light, such as a 3LCD projector. That is, in the present embodiment, it is possible to provide a mercury-less light source device unit 1 (illumination device) that can be applied to various uses and an image display device 10 including the same.

本実施形態の光源装置部1は、水銀ランプを用いる必要が無いので、近年の環境問題に対応することができる。また、本実施形態では、水銀ランプに比べてより長寿命で且つ輝度低下も小さい光源装置部1及び画像表示装置10を提供することができる。さらに、本実施形態のように、励起光源11に固体発光素子を用いた場合には、水銀ランプに比べて点灯時間をより短縮することができる。   Since the light source device unit 1 of this embodiment does not need to use a mercury lamp, it can cope with recent environmental problems. Further, in the present embodiment, it is possible to provide the light source device unit 1 and the image display device 10 that have a longer lifetime and a lower luminance reduction than the mercury lamp. Further, when a solid light emitting element is used as the excitation light source 11 as in the present embodiment, the lighting time can be further shortened as compared with a mercury lamp.

また、本実施形態の光源装置部1のように励起光源11として半導体レーザを用いた場合には、例えばLED(Light Emitting Diode)等の固体光源に比べても、十分高輝度の光を射出することができ、高輝度光源の実現が可能になる。さらに、本実施形態のように、青色光レーザで蛍光体層32を発光させて白色光を生成する構成は、赤色光、緑色光及び青色光の各固体光源を個別に用意して白色光を生成する構成に比べてより簡易で且つ安価である。   Further, when a semiconductor laser is used as the excitation light source 11 as in the light source device unit 1 of the present embodiment, light with sufficiently high luminance is emitted even when compared with a solid light source such as an LED (Light Emitting Diode). Therefore, a high-intensity light source can be realized. Further, as in the present embodiment, the configuration in which the phosphor layer 32 is caused to emit light with a blue light laser to generate white light is prepared by separately preparing each solid light source of red light, green light, and blue light. It is simpler and cheaper than the configuration to be generated.

[6.各種変形例]
(1)変形例1
本実施形態では、偏光ビームスプリッタ12を用いて、蛍光部材15に入射する励起光と、光学エンジン部2に入射する白色光とを分離する例を説明したが、本発明はこれに限定されない。例えば、偏光ビームスプリッタ12の代わりに、一部の領域で青色光を反射するような構成の反射ミラーを用いてもよい。その一例(変形例1)を図7に示す。
[6. Various modifications]
(1) Modification 1
In the present embodiment, the example in which the polarization beam splitter 12 is used to separate the excitation light incident on the fluorescent member 15 and the white light incident on the optical engine unit 2 has been described, but the present invention is not limited to this. For example, instead of the polarizing beam splitter 12, a reflection mirror configured to reflect blue light in a partial region may be used. An example (Modification 1) is shown in FIG.

変形例1の反射ミラー40(分光光学系)は、板状の透明基板41(基材)と、その一方の表面の一部に形成された反射膜42(第2の反射膜)とで構成される。また、反射膜42は、励起光のスポット径程度のサイズで形成される。なお、この例では、励起光の照射位置に反射膜42が配置され且つ反射ミラー40の表面が励起光の入射方向に対して約45度傾斜するように、反射ミラー40を光源装置部1内に配置する。   The reflection mirror 40 (spectral optical system) of Modification 1 includes a plate-like transparent substrate 41 (base material) and a reflection film 42 (second reflection film) formed on a part of one surface thereof. Is done. The reflective film 42 is formed with a size that is approximately the spot diameter of the excitation light. In this example, the reflection mirror 40 is disposed in the light source unit 1 so that the reflection film 42 is disposed at the excitation light irradiation position and the surface of the reflection mirror 40 is inclined by about 45 degrees with respect to the excitation light incident direction. To place.

透明基板41は、例えばガラスや透明樹脂等の透明材料で形成され、反射膜42は、例えば、図3に示すようなダイクロイックミラー(ダイクロイック膜)で構成することができる。反射膜42をダイクロイックミラーで構成した場合、各誘電体層の形成材料、並びに、誘電体層の厚さ及び積層数等を調整することにより、青色光のみを選択的に反射し、その他の波長成分を透過させることもできる。また、反射膜42を例えばアルミニウム等の金属膜で形成してもよい。   The transparent substrate 41 is formed of a transparent material such as glass or transparent resin, and the reflection film 42 can be formed of, for example, a dichroic mirror (dichroic film) as shown in FIG. When the reflective film 42 is composed of a dichroic mirror, only the blue light is selectively reflected by adjusting the formation material of each dielectric layer, the thickness of the dielectric layer, the number of stacked layers, and the like. The component can also be permeated. Further, the reflective film 42 may be formed of a metal film such as aluminum.

図7に示すような構成の反射ミラー40を用いた場合には、励起光源11からの励起光は反射膜42で反射され、蛍光部材15に入射される。一方、蛍光部材15から集光光学系14を介して反射ミラー40に入射される合波光(白色光LW)は主に、反射膜42が形成されていない領域を通過して、光学エンジン部2に入射される。なお、反射膜42を青色光以外の波長帯域の光を透過するように設計した場合には、合波光(白色光LW)に含まれる赤色光成分及び緑色光成分もまた反射膜42の形成領域を通過する。   When the reflection mirror 40 configured as shown in FIG. 7 is used, the excitation light from the excitation light source 11 is reflected by the reflection film 42 and is incident on the fluorescent member 15. On the other hand, the combined light (white light LW) incident on the reflection mirror 40 from the fluorescent member 15 via the condensing optical system 14 mainly passes through the region where the reflection film 42 is not formed, and the optical engine unit 2. Is incident on. When the reflective film 42 is designed to transmit light in a wavelength band other than blue light, the red light component and the green light component included in the combined light (white light LW) are also formed in the region where the reflective film 42 is formed. Pass through.

この例において、励起光源11として半導体レーザを用いた場合には、励起光源11から射出される励起光のスポット径は、集光光学系14から射出される合波光(白色光LW)のそれに比べて十分小さい。それゆえ、この例の構成においても、十分大きな強度の白色光LWを光源装置部1から射出することができる。   In this example, when a semiconductor laser is used as the excitation light source 11, the spot diameter of the excitation light emitted from the excitation light source 11 is compared with that of the combined light (white light LW) emitted from the condensing optical system 14. Small enough. Therefore, even in the configuration of this example, the white light LW having a sufficiently large intensity can be emitted from the light source device unit 1.

また、この例のように、蛍光部材15に入射する励起光と光学エンジン部2に入射する合波光とを分離するための分光光学系として反射ミラー40を用いた場合には、分光光学系の構成をより簡易にすることができる。さらに、この例の構成では、反射ミラー40に入射される光の偏光方向を考慮する必要がないので、上記実施形態のように1/4波長板13を設ける必要が無くなる。それゆえ、この例では、光源装置部1の構成をより簡易にすることができ、より安価な光源装置部1を提供することができる。   Further, as in this example, when the reflection mirror 40 is used as a spectroscopic optical system for separating the excitation light incident on the fluorescent member 15 and the combined light incident on the optical engine unit 2, The configuration can be simplified. Further, in the configuration of this example, it is not necessary to consider the polarization direction of the light incident on the reflection mirror 40, so that it is not necessary to provide the quarter wavelength plate 13 as in the above embodiment. Therefore, in this example, the configuration of the light source device unit 1 can be simplified, and the cheaper light source device unit 1 can be provided.

(2)変形例2
上記実施形態及び変形例1では、分光光学系(偏光ビームスプリッタ12又は反射ミラー40)により、励起光源11から射出された励起光を反射し、且つ、蛍光部材15から射出された合波光を透過させる例を説明した。しかしながら、本発明はこれに限定されない。
(2) Modification 2
In the above embodiment and the first modification, the spectroscopic optical system (the polarizing beam splitter 12 or the reflection mirror 40) reflects the excitation light emitted from the excitation light source 11 and transmits the combined light emitted from the fluorescent member 15. The example of making it explained was explained. However, the present invention is not limited to this.

例えば、分光光学系を、励起光源11から射出された励起光を透過して蛍光部材15に導き、且つ、蛍光部材15から射出された合波光を反射して光学エンジン部2に導くように構成してもよい。なお、この場合には、励起光源11から偏光ビームスプリッタ12に入射する励起光をP偏光の光にする。   For example, the spectroscopic optical system is configured to transmit the excitation light emitted from the excitation light source 11 and guide it to the fluorescent member 15, and to reflect the combined light emitted from the fluorescent member 15 and guide it to the optical engine unit 2. May be. In this case, the excitation light incident on the polarization beam splitter 12 from the excitation light source 11 is converted to P-polarized light.

(3)変形例3
上記実施形態では、光源装置部1内に1/4波長板13を設ける例を説明したが、本発明はこれに限定されず、例えば、高出力の白色光を必要としない用途では、1/4波長板13を設けなくてもよい。
(3) Modification 3
In the above embodiment, an example in which the quarter wavelength plate 13 is provided in the light source device unit 1 has been described. However, the present invention is not limited to this, and for example, in applications that do not require high-output white light, The four-wave plate 13 may not be provided.

1/4波長板13を設けない場合、S偏光の励起光が偏光ビームスプリッタ12及び集光光学系14を介して蛍光体層32に直接入射される。この場合、蛍光体層32に入射された励起光の一部は蛍光体層32内で拡散され、集光光学系14に無偏光の励起光成分が反射される。そして、蛍光体層32から反射される励起光成分のうち、P偏光成分のみが偏光ビームスプリッタ12を透過する。また、反射膜31から反射される励起光成分はS偏光の光となるので、この励起光成分は偏光ビームスプリッタ12を透過しない。それゆえ、この例の構成では、蛍光体層32から反射される励起光のP偏光成分と、蛍光体層32からの発光光とを含む白色光が光源装置部1から射出される。   When the quarter-wave plate 13 is not provided, S-polarized excitation light is directly incident on the phosphor layer 32 via the polarizing beam splitter 12 and the condensing optical system 14. In this case, part of the excitation light incident on the phosphor layer 32 is diffused in the phosphor layer 32, and the non-polarized excitation light component is reflected by the condensing optical system 14. Of the excitation light components reflected from the phosphor layer 32, only the P-polarized light component is transmitted through the polarization beam splitter 12. Further, since the excitation light component reflected from the reflection film 31 is S-polarized light, the excitation light component does not pass through the polarization beam splitter 12. Therefore, in the configuration of this example, white light including the P-polarized component of the excitation light reflected from the phosphor layer 32 and the emitted light from the phosphor layer 32 is emitted from the light source device unit 1.

なお、この例の構成では、光源装置部1から射出される白色光(合波光)に含まれる励起光成分は、蛍光体層32から反射されるP偏光成分のみとなる。それゆえ、この例では、上記実施形態に比べて出射光の強度及び励起光の利用効率は低下する。しかしながら、この例の光源装置部1では、1/4波長板13を設ける必要がないので、上記実施形態に比べてより簡易な構成となる。   In the configuration of this example, the excitation light component included in the white light (combined light) emitted from the light source device unit 1 is only the P-polarized component reflected from the phosphor layer 32. Therefore, in this example, the intensity of the emitted light and the utilization efficiency of the excitation light are reduced as compared with the above embodiment. However, in the light source device unit 1 of this example, since it is not necessary to provide the quarter wavelength plate 13, the configuration is simpler than that in the above embodiment.

(4)変形例4
上記実施形態及び変形例1では、分光光学系(偏光ビームスプリッタ12または反射ミラー40)を用いて、蛍光部材15に入射する励起光と、蛍光部材15から射出される合波光とを分離する例を説明したが、本発明は、これに限定されない。例えば、励起光を蛍光部材15に対して斜め入射し、励起光の入射光路とは異なる光路で、蛍光部材15から射出される合波光を集光する場合には、上述した分光光学系や1/4波長板13を設けなくてもよい。この場合には、光源装置部1の構成がより簡易になる。
(4) Modification 4
In the above embodiment and Modification 1, an example in which excitation light incident on the fluorescent member 15 and combined light emitted from the fluorescent member 15 are separated using a spectroscopic optical system (the polarizing beam splitter 12 or the reflection mirror 40). However, the present invention is not limited to this. For example, when the excitation light is obliquely incident on the fluorescent member 15 and the combined light emitted from the fluorescent member 15 is collected by an optical path different from the incident optical path of the excitation light, the above-described spectroscopic optical system or 1 The / 4 wavelength plate 13 may not be provided. In this case, the configuration of the light source device unit 1 becomes simpler.

(5)変形例5
上記実施形態では、光源装置部1内に、集光光学系14を設ける例を説明したが、本発明はこれに限定されない。例えば、高出力の出射光を必要としない用途等に本実施形態の光源装置部1を適用する場合には、光源装置部1を、集光光学系14を備えない構成にしてもよい。
(5) Modification 5
In the above embodiment, the example in which the condensing optical system 14 is provided in the light source device 1 has been described, but the present invention is not limited to this. For example, when the light source device unit 1 of the present embodiment is applied to an application that does not require high output light, the light source device unit 1 may be configured without the condensing optical system 14.

(6)変形例6
上記実施形態では、光源装置部1(照明装置)の出射光を白色光とする例を説明したが、本発明はこれに限定されない。例えば、出射光としてシアン光(またはマゼンダ光)を必要とする用途では、励起光として青色光を用い、蛍光体層32を緑色光(または赤色光)のみを発光する蛍光材料で形成すればよい。すなわち、必要とする出射光の波長(色)に応じて、励起光の波長と蛍光体層32の形成材料との組み合わせを適宜選択すればよい。この場合、適用可能な用途の範囲をより一層広げることができる。
(6) Modification 6
In the above embodiment, the example in which the emitted light of the light source device unit 1 (illumination device) is white light has been described, but the present invention is not limited to this. For example, in applications that require cyan light (or magenta light) as outgoing light, blue light may be used as excitation light, and the phosphor layer 32 may be formed of a fluorescent material that emits only green light (or red light). . That is, a combination of the wavelength of the excitation light and the material for forming the phosphor layer 32 may be appropriately selected according to the required wavelength (color) of the emitted light. In this case, the range of applicable uses can be further expanded.

1…光源装置部、2…光学エンジン部、10…画像表示装置、11…励起光源、12…偏光ビームスプリッタ、13…1/4波長板、14…集光光学系、15…蛍光部材、16…モータ、20…分光光学系、21…第1LCDパネル、22…第2LCDパネル、23…第3LCDパネル、24…プリズム、25…投影光学系、30…基板、31,42…反射膜、32…蛍光体層、40…反射ミラー、41…透明基板   DESCRIPTION OF SYMBOLS 1 ... Light source device part, 2 ... Optical engine part, 10 ... Image display apparatus, 11 ... Excitation light source, 12 ... Polarizing beam splitter, 13 ... 1/4 wavelength plate, 14 ... Condensing optical system, 15 ... Fluorescent member, 16 DESCRIPTION OF SYMBOLS ... Motor, 20 ... Spectral optical system, 21 ... 1st LCD panel, 22 ... 2nd LCD panel, 23 ... 3rd LCD panel, 24 ... Prism, 25 ... Projection optical system, 30 ... Substrate, 31, 42 ... Reflective film, 32 ... Phosphor layer, 40 ... reflection mirror, 41 ... transparent substrate

上記課題を解決するために、本発明の光源装置は、第1の色光を含む励起光を射出する励起光源と、励起光が入射されることにより励起光の少なくとも一部を第1の色光とは異なる第2の色光に変換する蛍光体と、蛍光体に対して励起光の入射側とは反対側に設けられる反射部材と、を有する蛍光部材と、励起光源と蛍光部材との間の光路上に設けられ、第1の色光における第1偏光成分および第2偏光成分のうち第2偏光成分を第1偏光成分へ変換し、第1偏光成分に変換された第1の色光と反射部材で反射された第2の色光を射出する1/4波長板と、を備える。本明細書で「波長」という場合は、単一波長だけでなく所定の波長帯域も含む意味である。
In order to solve the above problems, a light source device of the present invention includes an excitation light source that emits excitation light including first color light, and at least part of the excitation light as first color light when the excitation light is incident. Is a fluorescent member having a phosphor that converts to a different second color light, a fluorescent member that is provided on the opposite side of the phosphor from the incident side of the excitation light, and light between the excitation light source and the fluorescent member. A first color light that is provided on the road, converts the second polarization component of the first polarization component and the second polarization component in the first color light into the first polarization component, and is converted into the first polarization component and the reflection member. A quarter-wave plate for emitting the reflected second color light . In this specification, “wavelength” means not only a single wavelength but also a predetermined wavelength band.

Claims (34)

第1の色光を含む励起光を射出する励起光源と、
前記励起光が入射されることにより前記励起光の少なくとも一部を前記第1の色光とは異なる第2の色光に変換する蛍光体と、前記蛍光体に対して前記励起光の入射側とは反対側に設けられる反射部材と、を有する蛍光部材と、
前記励起光源と前記蛍光部材との間の光路上に設けられ、前記第1の色光における第1偏光成分および第2偏光成分のうちいずれか一方を透過し他方を反射するとともに、前記第2の色光における第1偏光成分および第2偏光成分の双方を透過する偏光ビームスプリッタと、を備える
光源装置。
An excitation light source that emits excitation light including first color light;
A phosphor that converts at least a part of the excitation light into a second color light different from the first color light when the excitation light is incident, and an incident side of the excitation light with respect to the phosphor A fluorescent member having a reflective member provided on the opposite side;
Provided on the optical path between the excitation light source and the fluorescent member, transmits one of the first polarization component and the second polarization component in the first color light, reflects the other, and the second And a polarization beam splitter that transmits both the first polarization component and the second polarization component of the color light.
前記偏光ビームスプリッタは、前記第1の色光における第1偏光成分を透過し第2偏光成分を反射する
請求項1に記載の光源装置。
The light source device according to claim 1, wherein the polarization beam splitter transmits a first polarization component and reflects a second polarization component in the first color light.
前記偏光ビームスプリッタは、前記励起光源から射出された励起光の第2偏光成分を反射する
請求項1又は2に記載の光源装置。
The light source device according to claim 1, wherein the polarization beam splitter reflects a second polarization component of excitation light emitted from the excitation light source.
前記偏光ビームスプリッタは、前記蛍光体で変換され前記反射部材で反射された前記第2の色光の第1偏光成分および第2偏光成分を透過する
請求項1乃至3のいずれかに記載の光源装置。
4. The light source device according to claim 1, wherein the polarization beam splitter transmits the first polarization component and the second polarization component of the second color light converted by the phosphor and reflected by the reflection member. 5. .
前記励起光源から射出された励起光の第2偏光成分を第1偏光成分へ変換する1/4波長板、をさらに備える
請求項1乃至4のいずれかに記載の光源装置。
The light source device according to any one of claims 1 to 4, further comprising a quarter-wave plate that converts a second polarization component of excitation light emitted from the excitation light source into a first polarization component.
前記1/4波長板は、前記第1の色光が2度通過されることで、前記第1の色光における第1偏光成分を第2偏光成分に変換する
請求項5に記載の光源装置。
The light source device according to claim 5, wherein the quarter-wave plate converts the first polarization component in the first color light into a second polarization component by allowing the first color light to pass twice.
前記偏光ビームスプリッタは、前記励起光源からの前記励起光の射出方向と、前記蛍光部材からの前記第2の色光の射出方向とが直交する位置に配置される
請求項1乃至6のいずれかに記載の光源装置。
The polarization beam splitter is disposed at a position where an emission direction of the excitation light from the excitation light source and an emission direction of the second color light from the fluorescent member are orthogonal to each other. The light source device described.
前記第1偏光成分はP偏光成分であり、前記第2偏光成分はS偏光成分である
請求項1乃至7のいずれかに記載の光源装置。
The light source device according to claim 1, wherein the first polarization component is a P polarization component, and the second polarization component is an S polarization component.
前記励起光源は、直線偏光の励起光を射出する
請求項1乃至8のいずれかに記載の光源装置。
The light source device according to claim 1, wherein the excitation light source emits linearly polarized excitation light.
前記励起光源は、前記直線偏光の励起光として、前記第1の色光における前記第2偏光成分の励起光を射出する
請求項9に記載の光源装置。
The light source device according to claim 9, wherein the excitation light source emits excitation light of the second polarization component in the first color light as the linearly polarized excitation light.
前記第1の色光は青色光成分を含み、前記第2の色光は赤色光成分と緑色光成分を含む
請求項1乃至10のいずれかに記載の光源装置。
The light source device according to claim 1, wherein the first color light includes a blue light component, and the second color light includes a red light component and a green light component.
前記蛍光部材は、円盤状の形状を有する
請求項1乃至11のいずれかに記載の光源装置。
The light source device according to claim 1, wherein the fluorescent member has a disk shape.
前記蛍光部材の中心に対応する位置に駆動軸が接続され、前記蛍光体上における前記励起光の照射位置が時間とともに回転円周方向に移動するよう前記蛍光部材を回転させる駆動部、をさらに備え、
前記駆動部が、前記蛍光部材を、前記蛍光体の前記励起光の照射面内の所定方向に回転させている状態で、前記励起光を前記蛍光体に照射する
請求項1乃至12のいずれかに記載の光源装置。
A drive unit connected to a position corresponding to the center of the fluorescent member, and a drive unit that rotates the fluorescent member so that the irradiation position of the excitation light on the phosphor moves in the rotation circumferential direction with time; ,
The said drive part irradiates the said excitation light to the said fluorescent substance in the state which is rotating the said fluorescent member in the predetermined direction in the irradiation surface of the said excitation light of the said fluorescent substance. The light source device according to 1.
前記蛍光部材の前記励起光の入射側に設けられ、前記励起光源から射出された励起光を前記蛍光体上で所定のスポット径となるように集光するとともに、前記蛍光体で発光され前記蛍光部材から射出された発光光を略平行光に変換する光学系、をさらに備える
請求項1乃至13のいずれかに記載の光源装置。
Provided on the excitation light incident side of the fluorescent member, and condenses the excitation light emitted from the excitation light source so as to have a predetermined spot diameter on the phosphor, and is emitted by the phosphor to emit the fluorescence. The light source device according to claim 1, further comprising an optical system that converts emitted light emitted from the member into substantially parallel light.
前記反射部材は、少なくとも前記第2の色光を反射する
請求項1乃至14のいずれかに記載の光源装置。
The light source device according to claim 1, wherein the reflection member reflects at least the second color light.
前記蛍光部材は、基板をさらに有し、
前記反射部材は、前記基板上に配置される
請求項1乃至15のいずれかに記載の光源装置。
The fluorescent member further includes a substrate,
The light source device according to claim 1, wherein the reflecting member is disposed on the substrate.
固定ハブにより前記基板が前記駆動軸に固定される
請求項13を引用する請求項16に記載の光源装置。
The light source device according to claim 16, wherein the substrate is fixed to the drive shaft by a fixing hub.
第1の色光を含む励起光を射出する励起光源と、
前記励起光が入射されることにより前記励起光の少なくとも一部を前記第1の色光とは異なる第2の色光に変換する蛍光体と、前記蛍光体に対して前記励起光の入射側とは反対側に設けられる反射部材と、を有する蛍光部材と、
前記励起光源と前記蛍光部材との間の光路上に設けられ、前記第1の色光における第1偏光成分および第2偏光成分のうちいずれか一方を透過し他方を反射するとともに、前記第2の色光における第1偏光成分および第2偏光成分の双方を透過する偏光ビームスプリッタと、を有する光源装置部と、
前記光源装置部から射出された光を用いて所定の画像光を生成し、該生成した画像光を外部に投影する画像投影部と、を備える
画像投影装置。
An excitation light source that emits excitation light including first color light;
A phosphor that converts at least a part of the excitation light into a second color light different from the first color light when the excitation light is incident, and an incident side of the excitation light with respect to the phosphor A fluorescent member having a reflective member provided on the opposite side;
Provided on the optical path between the excitation light source and the fluorescent member, transmits one of the first polarization component and the second polarization component in the first color light, reflects the other, and the second A light source device having a polarization beam splitter that transmits both the first polarization component and the second polarization component in the color light;
An image projection apparatus comprising: an image projection unit that generates predetermined image light using light emitted from the light source unit and projects the generated image light to the outside.
前記偏光ビームスプリッタは、前記第1の色光における第1偏光成分を透過し第2偏光成分を反射する
請求項18に記載の画像投影装置。
The image projector according to claim 18, wherein the polarization beam splitter transmits a first polarization component and reflects a second polarization component in the first color light.
前記偏光ビームスプリッタは、前記励起光源から射出された励起光の第2偏光成分を反射する
請求項18又は19に記載の画像投影装置。
The image projection device according to claim 18, wherein the polarization beam splitter reflects a second polarization component of excitation light emitted from the excitation light source.
前記偏光ビームスプリッタは、前記蛍光体で変換され前記反射部材で反射された前記第2の色光の第1偏光成分および第2偏光成分を透過する
請求項18乃至20のいずれかに記載の画像投影装置。
21. The image projection according to claim 18, wherein the polarization beam splitter transmits the first polarization component and the second polarization component of the second color light converted by the phosphor and reflected by the reflection member. apparatus.
前記励起光源から射出された励起光の第2偏光成分を第1偏光成分へ変換する1/4波長板、をさらに備える
請求項18乃至21のいずれかに記載の画像投影装置。
The image projection device according to claim 18, further comprising a quarter-wave plate that converts a second polarization component of excitation light emitted from the excitation light source into a first polarization component.
前記1/4波長板は、前記第1の色光が2度通過されることで、前記第1の色光における第1偏光成分を第2偏光成分に変換する
請求項22に記載の画像投影装置。
The image projection device according to claim 22, wherein the quarter-wave plate converts the first polarization component in the first color light into a second polarization component by allowing the first color light to pass twice.
前記偏光ビームスプリッタは、前記励起光源からの前記励起光の射出方向と、前記蛍光部材からの前記第2の色光の射出方向とが直交する位置に配置される
請求項18乃至23のいずれかに記載の画像投影装置。
The polarization beam splitter is disposed at a position where an emission direction of the excitation light from the excitation light source and an emission direction of the second color light from the fluorescent member are orthogonal to each other. The image projection apparatus described.
前記第1偏光成分はP偏光成分であり、前記第2偏光成分はS偏光成分である
請求項18乃至24のいずれかに記載の画像投影装置。
The image projection device according to any one of claims 18 to 24, wherein the first polarization component is a P polarization component, and the second polarization component is an S polarization component.
前記励起光源は、直線偏光の励起光を射出する
請求項18乃至25のいずれかに記載の画像投影装置。
The image projection device according to claim 18, wherein the excitation light source emits linearly polarized excitation light.
前記励起光源は、前記直線偏光の励起光として、前記第1の色光における前記第2偏光成分の励起光を射出する
請求項26に記載の画像投影装置。
The image projection device according to claim 26, wherein the excitation light source emits the excitation light of the second polarization component in the first color light as the linearly polarized excitation light.
前記第1の色光は青色光成分を含み、前記第2の色光は赤色光成分と緑色光成分を含む
請求項18乃至27のいずれかに記載の画像投影装置。
The image projector according to any one of claims 18 to 27, wherein the first color light includes a blue light component, and the second color light includes a red light component and a green light component.
前記蛍光部材は、円盤状の形状を有する
請求項18乃至28のいずれかに記載の画像投影装置。
The image projection device according to any one of claims 18 to 28, wherein the fluorescent member has a disk shape.
前記蛍光部材の中心に対応する位置に駆動軸が接続され、前記蛍光体上における前記励起光の照射位置が時間とともに回転円周方向に移動するよう前記蛍光部材を回転させる駆動部、をさらに備え、
前記駆動部が、前記蛍光部材を、前記蛍光体の前記励起光の照射面内の所定方向に回転させている状態で、前記励起光を前記蛍光体に照射する
請求項18乃至29のいずれかに記載の画像投影装置。
A drive unit connected to a position corresponding to the center of the fluorescent member, and a drive unit that rotates the fluorescent member so that the irradiation position of the excitation light on the phosphor moves in the rotation circumferential direction with time; ,
30. The driving unit irradiates the phosphor with the excitation light in a state in which the phosphor member is rotated in a predetermined direction within the excitation light irradiation surface of the phosphor. The image projection apparatus described in 1.
前記蛍光部材の前記励起光の入射側に設けられ、前記励起光源から射出された励起光を前記蛍光体上で所定のスポット径となるように集光するとともに、前記蛍光体で発光され前記蛍光部材から射出された発光光を略平行光に変換する光学系、をさらに備える
請求項18乃至30のいずれかに記載の画像投影装置。
Provided on the excitation light incident side of the fluorescent member, and condenses the excitation light emitted from the excitation light source so as to have a predetermined spot diameter on the phosphor, and is emitted by the phosphor to emit the fluorescence. The image projection device according to any one of claims 18 to 30, further comprising: an optical system that converts emitted light emitted from the member into substantially parallel light.
前記反射部材は、少なくとも前記第2の色光を反射する
請求項18乃至31のいずれかに記載の画像投影装置。
The image projection device according to claim 18, wherein the reflection member reflects at least the second color light.
前記蛍光部材は、基板をさらに有し、
前記反射部材は、前記基板上に配置される
請求項18乃至32のいずれかに記載の画像投影装置。
The fluorescent member further includes a substrate,
The image projection device according to claim 18, wherein the reflecting member is disposed on the substrate.
固定ハブにより前記基板が前記駆動軸に固定される
請求項30を引用する請求項33に記載の画像投影装置。
The image projection apparatus according to claim 33, wherein the substrate is fixed to the drive shaft by a fixed hub.
JP2017097395A 2017-05-16 2017-05-16 Light source device and image projection device Active JP6353583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017097395A JP6353583B2 (en) 2017-05-16 2017-05-16 Light source device and image projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097395A JP6353583B2 (en) 2017-05-16 2017-05-16 Light source device and image projection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016172604A Division JP6149991B2 (en) 2016-09-05 2016-09-05 Light source device and image projection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018110299A Division JP6680312B2 (en) 2018-06-08 2018-06-08 Light source device and image projection device

Publications (2)

Publication Number Publication Date
JP2017142539A true JP2017142539A (en) 2017-08-17
JP6353583B2 JP6353583B2 (en) 2018-07-04

Family

ID=59627862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097395A Active JP6353583B2 (en) 2017-05-16 2017-05-16 Light source device and image projection device

Country Status (1)

Country Link
JP (1) JP6353583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021699A1 (en) 2017-07-24 2019-01-31 パナソニックIpマネジメント株式会社 Light-emitting device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327361A (en) * 2003-04-28 2004-11-18 Seiko Epson Corp Lighting device and projection type display device
JP2005345561A (en) * 2004-05-31 2005-12-15 Olympus Corp Scanning type laser microscope device
JP2005352187A (en) * 2004-06-10 2005-12-22 Fujinon Corp Projector
JP2006047903A (en) * 2004-08-09 2006-02-16 Canon Inc Polarized beam splitter and projection device having the same
JP2006343721A (en) * 2005-03-31 2006-12-21 Sony Deutsche Gmbh Image generating unit
JP2007199538A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Projection-type video display device
JP2008052070A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Color wheel, visible light source, and projection image display device and method
JP2008165066A (en) * 2006-12-28 2008-07-17 Samsung Electronics Co Ltd Projection type image projection device
JP2009521786A (en) * 2005-12-23 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー LED-based multicolor polarized illumination light source
JP2009245712A (en) * 2008-03-31 2009-10-22 Stanley Electric Co Ltd Illumination fixture
JP2009277516A (en) * 2008-05-15 2009-11-26 Casio Comput Co Ltd Light source unit and projector
JP2010086815A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Light-emitting device, light source device, and projector using the light source device
JP2011129354A (en) * 2009-12-17 2011-06-30 Stanley Electric Co Ltd Light source device and lighting system
JP2011129406A (en) * 2009-12-18 2011-06-30 Stanley Electric Co Ltd Light source device and lighting system
JP2011165555A (en) * 2010-02-12 2011-08-25 Hitachi Consumer Electronics Co Ltd Solid light source device
JP2011197212A (en) * 2010-03-18 2011-10-06 Seiko Epson Corp Lighting system and projector
JP6149991B2 (en) * 2016-09-05 2017-06-21 ソニー株式会社 Light source device and image projection device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327361A (en) * 2003-04-28 2004-11-18 Seiko Epson Corp Lighting device and projection type display device
JP2005345561A (en) * 2004-05-31 2005-12-15 Olympus Corp Scanning type laser microscope device
JP2005352187A (en) * 2004-06-10 2005-12-22 Fujinon Corp Projector
JP2006047903A (en) * 2004-08-09 2006-02-16 Canon Inc Polarized beam splitter and projection device having the same
JP2006343721A (en) * 2005-03-31 2006-12-21 Sony Deutsche Gmbh Image generating unit
JP2009521786A (en) * 2005-12-23 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー LED-based multicolor polarized illumination light source
JP2007199538A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Projection-type video display device
JP2008052070A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Color wheel, visible light source, and projection image display device and method
JP2008165066A (en) * 2006-12-28 2008-07-17 Samsung Electronics Co Ltd Projection type image projection device
JP2009245712A (en) * 2008-03-31 2009-10-22 Stanley Electric Co Ltd Illumination fixture
JP2009277516A (en) * 2008-05-15 2009-11-26 Casio Comput Co Ltd Light source unit and projector
JP2010086815A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Light-emitting device, light source device, and projector using the light source device
JP2011129354A (en) * 2009-12-17 2011-06-30 Stanley Electric Co Ltd Light source device and lighting system
JP2011129406A (en) * 2009-12-18 2011-06-30 Stanley Electric Co Ltd Light source device and lighting system
JP2011165555A (en) * 2010-02-12 2011-08-25 Hitachi Consumer Electronics Co Ltd Solid light source device
JP2011197212A (en) * 2010-03-18 2011-10-06 Seiko Epson Corp Lighting system and projector
JP6149991B2 (en) * 2016-09-05 2017-06-21 ソニー株式会社 Light source device and image projection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021699A1 (en) 2017-07-24 2019-01-31 パナソニックIpマネジメント株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP6353583B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
US10852630B2 (en) Illumination device and image display apparatus
US10429636B2 (en) Illumination device and image display apparatus
JP6137238B2 (en) Light source device and image projection device
JP6819759B2 (en) Light source device and image projection device
JP6353583B2 (en) Light source device and image projection device
JP6149991B2 (en) Light source device and image projection device
JP6388051B2 (en) Light source device and image projection device
JP6680312B2 (en) Light source device and image projection device
JP6680340B2 (en) Light source device and image projection device
JP6453495B2 (en) Light source device and image projection device
JP6279516B2 (en) Light source device and image projection device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170602

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180608

R150 Certificate of patent or registration of utility model

Ref document number: 6353583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150