JP2017141311A - Liquid stabilizer and thermoplastic resin composition containing liquid stabilizer - Google Patents

Liquid stabilizer and thermoplastic resin composition containing liquid stabilizer Download PDF

Info

Publication number
JP2017141311A
JP2017141311A JP2014112806A JP2014112806A JP2017141311A JP 2017141311 A JP2017141311 A JP 2017141311A JP 2014112806 A JP2014112806 A JP 2014112806A JP 2014112806 A JP2014112806 A JP 2014112806A JP 2017141311 A JP2017141311 A JP 2017141311A
Authority
JP
Japan
Prior art keywords
resin composition
liquid stabilizer
stabilizer
thermoplastic resin
inorganic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014112806A
Other languages
Japanese (ja)
Inventor
田中加奈子
Kanako Tanaka
中村 司
Tsukasa Nakamura
司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
Original Assignee
Kyowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP2014112806A priority Critical patent/JP2017141311A/en
Priority to PCT/JP2015/065960 priority patent/WO2015182790A1/en
Priority to TW104117150A priority patent/TW201609895A/en
Publication of JP2017141311A publication Critical patent/JP2017141311A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid stabilizer containing inorganic powder having ion exchanging-property as an active ingredient, and to provide a thermoplastic resin composition containing the liquid stabilizer as a thermal stabilizer.SOLUTION: There is provided a thermoplastic resin composition having excellent thermal stability and processing stability by using a liquid stabilizer as a thermal stabilizer, which is produced by uniformly dispersing inorganic powder having ion exchanging property, in particular, a hydrotalcite compound and zeolite, in an organic solvent at high concentration and hardly causes clogging of 200 mesh filter.SELECTED DRAWING: None

Description

本発明は、イオン交換性を有する無機粉体を有効成分とする液状安定剤及びその液状安定剤を熱安定剤とする熱可塑性樹脂組成物に関する。すなわち、イオン交換性を有する無機粉体、特にハイドロタルサイト類化合物やゼオライトを有機溶剤に均一かつ高濃度分散させ、200メッシュフィルターの目詰まりを起こさない液状安定剤と、その液状安定剤を熱安定剤として使用することにより、優れた熱安定性および加工安定性を有する熱可塑性樹脂組成物に関する。 The present invention relates to a liquid stabilizer having an ion-exchangeable inorganic powder as an active ingredient and a thermoplastic resin composition using the liquid stabilizer as a heat stabilizer. That is, an inorganic powder having ion exchange properties, particularly a hydrotalcite compound or zeolite, is uniformly and highly dispersed in an organic solvent, a liquid stabilizer that does not cause clogging of the 200 mesh filter, and the liquid stabilizer is heated. The present invention relates to a thermoplastic resin composition having excellent thermal stability and processing stability when used as a stabilizer.

通常ハイドロタルサイト類化合物は、2価(M2+)および3価(M3+)の金属の複合水酸化物からなる基本層と、その基本層間にアニオン(An−)と水を有する中間層からなる層状の結晶構造である。
基本層は、2価の金属イオンの代わりに3価の金属イオンの一部が配位することで正に帯電しており、基本層の層間にアニオンがインターカレートすることで、トータルの電荷を中和している。
ハイドロタルサイト類化合物は、基本層の層間のアニオン交換が可能であり、その能力によって合成樹脂、合成ゴム、セラミック、塗料、紙、トナー等に配合され、ハロゲン捕捉剤や受酸剤、吸収剤としての効能を有する優れた安定剤として広範な用途に使用されている。
Usually, the hydrotalcite compound is composed of a basic layer composed of a composite hydroxide of divalent (M 2+ ) and trivalent (M 3+ ) metals, and an intermediate layer having an anion (A n− ) and water between the basic layers. It is a layered crystal structure consisting of
The base layer is positively charged by coordinating a part of trivalent metal ions instead of divalent metal ions, and the total charge is obtained by anion intercalating between the layers of the base layer. Is neutralizing.
Hydrotalcite compounds can exchange anions between basic layers, and are blended in synthetic resins, synthetic rubbers, ceramics, paints, papers, toners, etc. depending on their ability, and are used as halogen scavengers, acid acceptors, and absorbents. As an excellent stabilizer having the efficacy of

熱可塑性樹脂の一種である塩化ビニル樹脂は、優れた耐水性、耐酸性、耐アルカリ性、耐溶剤性を有し、更に難燃性かつ電気絶縁性に優れ、安価であることから用途が多岐にわたっている。但し、熱や光に対して不安定なため、加熱熔融して成型する前に熱安定剤を処方する必要がある。 Vinyl chloride resin, a kind of thermoplastic resin, has excellent water resistance, acid resistance, alkali resistance, solvent resistance, flame resistance and electrical insulation, and is inexpensive, so it has a wide range of applications. Yes. However, since it is unstable with respect to heat and light, it is necessary to prescribe a heat stabilizer before molding by heating and melting.

前記欠点を解決するために、種々の熱安定剤が開発され特に鉛(Pb)系やCd/Ba系が優れた安定化効果をもつことが知られている(特許文献1、2)。しかし、近年環境保護、保全に対する関心が高まり、毒性がある安定剤の使用が制限または使用禁止となっており、CdおよびPbを含有する安定剤は使用が急減している。 In order to solve the above-described drawbacks, various heat stabilizers have been developed, and it is known that lead (Pb) and Cd / Ba systems have an excellent stabilizing effect (Patent Documents 1 and 2). However, in recent years, interest in environmental protection and conservation has increased, and the use of toxic stabilizers has been restricted or prohibited, and the use of stabilizers containing Cd and Pb has been rapidly decreasing.

他の熱安定剤としては、Ba/ZnおよびCa/Zn等の金属石けん類、スズ(Sn)系およびハイドロタルサイト類化合物、ゼオライトがあるが、コスト面の優位性とCdやPbよりも弱環境影響物質である、スズ系(有機スズ化合物)やBa/Zn系の液状熱安定剤が現在も使用されている。ただし、徐々にBaの環境に対する影響の懸念や、またスズ系においても欧州規制EN71−IIIにより玩具用途について厳格な規制が布かれた。スズ系の代表的な安定剤であるスズメルカプト系は透明性が良好であるが、加工時に特異臭を発したり、加工機や装置の金型を腐食する等の欠点もある。 Other heat stabilizers include metal soaps such as Ba / Zn and Ca / Zn, tin (Sn) -based and hydrotalcite compounds, and zeolite, but they are less costly and weaker than Cd and Pb. Currently, tin-based (organotin compounds) and Ba / Zn-based liquid thermal stabilizers, which are environmental impact substances, are still used. However, there are gradually concerns over the environmental impact of Ba, and strict regulations on toy use have also been put in place in tin-based products due to European regulations EN71-III. Tin mercapto, which is a typical tin-based stabilizer, has good transparency, but also has drawbacks such as producing a specific odor during processing and corroding the molds of processing machines and devices.

以上の経緯より、安全性の高いハイドロタルサイト類化合物、ゼオライトやCa/Zn系が熱安定剤として好ましい。しかしBa/Zn系やスズ系安定剤は液状のため、粉末状であるハイドロタルサイト類化合物、ゼオライトやCa/Zn系への置き換え、もしくは併用となると、加工機や装置の変更もしくは改良を余儀なくされる。Ca/Zn安定剤については一部液状もあるものの、熱安定性が満足いくものではない。以上の理由によりハイドロタルサイト類化合物、ゼオライトやCa/Zn系への置き換えが進んでいない。また粉末状であると、計量や加工時の粉立ちによって作業環境を汚染しやすい。 In view of the above, a highly safe hydrotalcite compound, zeolite, or Ca / Zn system is preferable as the heat stabilizer. However, since Ba / Zn and tin-based stabilizers are liquid, replacement or improvement of processing machines and equipment is unavoidable when they are replaced or combined with hydrotalcite compounds in the form of powder, zeolite or Ca / Zn. Is done. Although some Ca / Zn stabilizers are liquid, the thermal stability is not satisfactory. For the above reasons, replacement with hydrotalcite compounds, zeolites, and Ca / Zn systems has not progressed. Moreover, when it is in a powder form, the working environment is likely to be contaminated by dusting during measurement or processing.

特開平6−306231号公報JP-A-6-306231 特開平8−109299号公報JP-A-8-109299

そこで、本発明者は、現在Ba/Zn系やスズ系安定剤のような液状安定剤を使用している加工機や装置をそのまま使用でき、計量が容易、作業環境の汚染防止対策として、ハイドロタルサイト類化合物やゼオライトの液状化を検討した。ハイドロタルサイト類化合物やゼオライトの液状安定剤が完成すれば、Ba/Zn系やスズ系安定剤への置き換えもしくは併用することによって規制物質であるBaやスズを減量させることも可能となる。また、液状Ca/Zn安定剤との併用により熱安定性の更なる改善も見込まれる。 Therefore, the present inventor can use a processing machine or apparatus that currently uses a liquid stabilizer such as a Ba / Zn-based or tin-based stabilizer as it is. The liquefaction of talcite compounds and zeolites was investigated. If the hydrotalcite compound or zeolite liquid stabilizer is completed, it becomes possible to reduce the amount of regulated substances Ba and tin by replacing with Ba / Zn-based and tin-based stabilizers or using them together. Moreover, further improvement of thermal stability is expected by the combined use with the liquid Ca / Zn stabilizer.

本発明者らは、上記課題を解決するため鋭意検討した結果、イオン交換性を有する無機粉体、特にハイドロタルサイト類化合物やゼオライトを有機溶剤に均一かつ高濃度分散させた液状安定剤の作成に成功した。熱可塑性樹脂組成物中での均一分散が可能となるため、透明性の改善、熱安定性の向上も期待される。 As a result of intensive studies to solve the above problems, the present inventors have made an inorganic powder having ion exchange properties, particularly a liquid stabilizer in which a hydrotalcite compound or zeolite is uniformly and highly dispersed in an organic solvent. succeeded in. Since uniform dispersion in the thermoplastic resin composition becomes possible, improvement in transparency and improvement in thermal stability are also expected.

以下、本発明について詳細に説明する。本発明に用いられるイオン交換性を有する無機粉体のハイドロタルサイト類化合物は、下記化学構造式(1)で表される。
[(Mg)(Zn)(M)1−x(Al)(OH)2−2n
(COx/(2−n)・mHO (1)
但し、式中、M、x、a、b、c、nおよびmは下記条件を満足する値を示す。
Mは、Ca、Ni、Cu等の二価イオン
0.1≦x≦0.5、0<a≦0.9、0≦b≦0.25、0≦c<0.1、
a+b+c=1−x、0.01≦n≦0.03、0≦m<1
Hereinafter, the present invention will be described in detail. The hydrotalcite compound of an inorganic powder having ion exchange properties used in the present invention is represented by the following chemical structural formula (1).
[(Mg) a (Zn) b (M) c ] 1-x (Al) x (OH) 2-2n
(CO 3 ) x / (2-n) · mH 2 O (1)
However, in the formula, M, x, a, b, c, n, and m represent values that satisfy the following conditions.
M is a divalent ion such as Ca, Ni, Cu 0.1 ≦ x ≦ 0.5, 0 <a ≦ 0.9, 0 ≦ b ≦ 0.25, 0 ≦ c <0.1,
a + b + c = 1-x, 0.01 ≦ n ≦ 0.03, 0 ≦ m <1

本発明における液状安定剤は、熱可塑性樹脂組成物中での均一分散を考慮すると200メッシュフィルターを目詰まりさせない必要があるため、無機粉体として使用するハイドロタルサイト類化合物は、レーザー回折散乱法で測定された最大粒子径は30μm以下、好ましくは10μm以下が良い。また、熱可塑性樹脂組成物への分散性を考慮すると、2次凝集の少ないハイドロタルサイト類化合物であることが目的達成のために必要であり良好である。 Since the liquid stabilizer in the present invention needs not to clog the 200 mesh filter in consideration of uniform dispersion in the thermoplastic resin composition, the hydrotalcite compound used as the inorganic powder is a laser diffraction scattering method. The maximum particle size measured in (1) is 30 μm or less, preferably 10 μm or less. In consideration of dispersibility in the thermoplastic resin composition, it is necessary and satisfactory for achieving the purpose that the hydrotalcite compound has a small secondary aggregation.

レーザー回折散乱法で測定した平均2次粒子径の上限は2μm、好ましくは1.5μm、下限は0.2μm、好ましくは、0.3μmである。
ハイドロタルサイト類化合物の平均粒子径が、前記値よりも大きくなるほど、分散が不充分となり、樹脂等の中での遊離、ハロゲン捕捉能力が劣り、熱安定性が悪く、機械的強度が低下、外観不良という問題が生じてくる。
The upper limit of the average secondary particle diameter measured by the laser diffraction scattering method is 2 μm, preferably 1.5 μm, and the lower limit is 0.2 μm, preferably 0.3 μm.
As the average particle size of the hydrotalcite compound is larger than the above value, the dispersion becomes insufficient, the liberation in the resin and the like, the halogen capturing ability is inferior, the thermal stability is poor, and the mechanical strength is reduced. The problem of poor appearance arises.

更に、BET法により測定された比表面積の上限は50m/g、好ましくは40m/g、下限は1m/gであり、好ましくは、5m/gが適当である。
ハイドロタルサイト類化合物のBET法により測定された比表面積が50m/gを越えると、樹脂等に対する分散性が低下し熱安定性も低くなる。
Furthermore, the upper limit of the specific surface area measured by the BET method is 50 m 2 / g, preferably 40 m 2 / g, and the lower limit is 1 m 2 / g, preferably 5 m 2 / g.
When the specific surface area of the hydrotalcite compound compound measured by the BET method exceeds 50 m 2 / g, the dispersibility with respect to the resin or the like is lowered and the thermal stability is also lowered.

ハイドロタルサイト類化合物は、熱可塑性樹脂組成物中での分散をよくするために、高級脂肪酸にて表面処理してもよい。高級脂肪酸としては、ステアリン酸、エルカ酸、パルミチン酸、ラウリン酸、ベヘニン酸等の炭素数10以上の高級脂肪酸、よりなる群から選ばれた少なくとも一種の高級脂肪酸が好ましい。特に炭素数14〜26の高級脂肪酸が好ましい。 The hydrotalcite compound may be surface-treated with a higher fatty acid in order to improve dispersion in the thermoplastic resin composition. The higher fatty acid is preferably at least one higher fatty acid selected from the group consisting of higher fatty acids having 10 or more carbon atoms such as stearic acid, erucic acid, palmitic acid, lauric acid, and behenic acid. Higher fatty acids having 14 to 26 carbon atoms are particularly preferable.

ハイドロタルサイト類化合物は酸性側で炭酸イオンが重炭酸イオンになりイオン交換されやすくなるが、中性域以上のpHでは炭酸イオンが安定でアニオン交換されにくい。従って、中性域以上のpHで特定の化合物により表面処理すると大部分が表面に吸着される。 Hydrotalcite compounds are easily exchanged with carbonate ions on the acidic side, and are easily exchanged with ions. However, at pH above the neutral range, the carbonate ions are stable and are not easily exchanged with anions. Therefore, when a surface treatment is carried out with a specific compound at a pH of the neutral range or higher, most is adsorbed on the surface.

本発明に使用されているハイドロタルサイト類化合物を製造する方法は、その方法や条件は何ら制限されない。ハイドロタルサイト類化合物を得るための原料および製造条件はそれ自体公知であり、基本的には、公知の方法に従って製造することが出来る(例えば、特公昭46−2280号公報及びその対応する米国特許第3650704号明細書、特公昭47−32198号公報およびその対応する米国特許第3879525号明細書、特公昭50−30039号公報、特公昭48−29477号公報および特公昭51−29129号公報)。
一方、ハイドロタルサイト類化合物を工業的規模で多量に生産するために使用される原料は、アルミニウム源として硫酸アルミニウム、硝酸アルミニウム、水酸化アルミニウムおよび塩化アルミニウム、マグネシウム源として海水、塩化マグネシウム(ブライン、イオン苦汁)、硝酸マグネシウム、アルカリ源としては、天然の石灰(またはその消化物)が代表例として挙げられているが、天然の石灰は精製が困難であるので、工業用の苛性ソーダもしくはアンモニアが適している。
さらに、炭酸イオンの原料としては工業用の炭酸ソーダまたは炭酸ガスを使用できる。
The method and conditions for producing the hydrotalcite compound used in the present invention are not limited. The raw materials and production conditions for obtaining the hydrotalcite compound are known per se, and can basically be produced according to known methods (for example, Japanese Patent Publication No. 46-2280 and the corresponding US patent). No. 3650704, Japanese Patent Publication No. 47-32198 and the corresponding US Pat. No. 3,879,525, Japanese Patent Publication No. 50-30039, Japanese Patent Publication No. 48-29477, and Japanese Patent Publication No. 51-29129).
On the other hand, raw materials used for producing a large amount of hydrotalcite compounds on an industrial scale are aluminum sulfate, aluminum nitrate, aluminum hydroxide and aluminum chloride as an aluminum source, seawater as a magnesium source, magnesium chloride (brine, Natural lime (or its digest) is listed as a representative example of an ion source), magnesium nitrate, and alkali source. However, natural lime is difficult to purify, so industrial caustic soda or ammonia is suitable. ing.
Furthermore, industrial sodium carbonate or carbon dioxide can be used as a raw material for carbonate ions.

本発明に用いられるイオン交換性を有する無機粉体のゼオライトとしては、例えばA型ゼオライト、X型ゼオライト、Y型ゼオライト等の合成ゼオライト、その部分ないしは完全酸処理物、あるいはそれらの金属イオン(例えばカルシウム、マグネシウム、亜鉛イオン)交換処理物のアルミノ珪酸塩を挙げることができる。これらの中でも、熱安定性付与が良好なナトリウムイオン交換A型ゼオライトが特に好適である。 Examples of the inorganic powder zeolite having ion exchange properties used in the present invention include synthetic zeolite such as A-type zeolite, X-type zeolite, and Y-type zeolite, partially or completely acid-treated products thereof, or metal ions thereof (for example, Calcium, magnesium, zinc ion) exchange-treated aluminosilicates. Among these, sodium ion-exchanged A-type zeolite that has good thermal stability is particularly suitable.

イオン交換性を有する無機粉体の液状化に際し、用いられる有機溶剤は特に限定されるものではないが、エチレングリコール、ポリエチレングリコール、ジエチレングリコールモノブチルエーテル等グリコール類、流動パラフィン、パラフィン油、ステアリン酸ブチル、各種可塑剤等である。作業面から揮発性の溶剤は好ましくない。 In the liquefaction of the inorganic powder having ion exchange properties, the organic solvent used is not particularly limited, but glycols such as ethylene glycol, polyethylene glycol, diethylene glycol monobutyl ether, liquid paraffin, paraffin oil, butyl stearate, Various plasticizers. Volatile solvents are not preferred from the viewpoint of work.

イオン交換性を有する無機粉体を均一に分散させるために、無機粉体と界面活性剤を併用使用してもよい。
界面活性剤については、アニオン系、カチオン系、ノニオン系、両性系どのタイプの界面活性剤でも良いが、好ましくはノニオン系であるポリオキシエチレンエーテル類、ポリオキシエチレンエステル類、ポリオキシエチレンソルビタンエステル類、アルカノールアミド類、ポリエチレングリコール類、グリセリン脂肪酸エステル、ポリカルボン酸類等が良く、1種もしくは数種組み合わせてもよい。
液状安定剤調製時の界面活性剤の使用量は、イオン交換性を有する無機粉体の100重量部に対して好ましくは1〜30重量部、より好ましくは10〜30重量部である。
In order to uniformly disperse the inorganic powder having ion exchange properties, the inorganic powder and a surfactant may be used in combination.
The surfactant may be any type of anionic, cationic, nonionic or amphoteric surfactant, preferably nonionic polyoxyethylene ethers, polyoxyethylene esters, polyoxyethylene sorbitan esters. , Alkanolamides, polyethylene glycols, glycerin fatty acid esters, polycarboxylic acids and the like may be used, or one or several of them may be combined.
The amount of the surfactant used when preparing the liquid stabilizer is preferably 1 to 30 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the inorganic powder having ion exchange properties.

液状安定剤中のイオン交換性を有する無機粉体固形濃度については、濃度が薄すぎると液状安定剤の量が増加することにより熱可塑性樹脂組成物の耐熱性や機械的強度の低下を招く恐れがある。したがって、固形濃度は10〜50重量%、より好ましくは20〜50重量%が良い。 Regarding the solid concentration of the inorganic powder having ion exchange properties in the liquid stabilizer, if the concentration is too low, the amount of the liquid stabilizer increases, which may lead to a decrease in heat resistance and mechanical strength of the thermoplastic resin composition. There is. Therefore, the solid concentration is 10 to 50% by weight, more preferably 20 to 50% by weight.

液状安定剤を調整する方法は、イオン交換性を有する無機粉体を微分散することができる装置であれば限定されない。
液状安定剤の主成分であるイオン交換性を有する無機粉体の熱可塑性樹脂組成物中の含有量は、ハイドロタルサイト類化合物単独もしくはハイドロタルサイト類化合物とゼオライトの併用のどちらの場合でも、熱可塑性樹脂/塩化ビニル系樹脂100重量部に対し、0.01〜10重量部であり、熱安定性と着色抑制効果の点から、0.05〜5重量部が好ましく、0.1〜3重量部がより好ましい。イオン交換性を有する無機粉体が0.01重量部より少ないと、耐熱性向上効果がほとんどみられない。10重量部を超えてもそれ以上効果は上がらず、むしろ耐熱性と着色抑制効果等に悪影響を与えるおそれがある。
The method for adjusting the liquid stabilizer is not limited as long as the apparatus can finely disperse the inorganic powder having ion exchange properties.
The content of the inorganic powder having ion exchange properties, which is the main component of the liquid stabilizer, in the thermoplastic resin composition is either a hydrotalcite compound alone or a combination of a hydrotalcite compound and zeolite, It is 0.01 to 10 parts by weight with respect to 100 parts by weight of the thermoplastic resin / vinyl chloride resin, and 0.05 to 5 parts by weight is preferable from the viewpoint of thermal stability and coloring suppression effect, and 0.1 to 3 Part by weight is more preferred. When the inorganic powder having ion exchange properties is less than 0.01 parts by weight, the effect of improving heat resistance is hardly observed. Even if it exceeds 10 parts by weight, the effect is not improved any more, but there is a possibility that the heat resistance and the coloring suppression effect are adversely affected.

本発明の液状安定剤が配合される熱可塑性樹脂組成物は、具体的に含ハロゲン樹脂とその他の樹脂に大別される。
含ハロゲン樹脂は、通常成形品として使用されるものであればよく、その例としては、ポリ塩化ビニルの他に、ポリ塩化ビニリデン、塩素化ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−エチレン共重合体、塩化ビニル−プロピレン共重合体、塩化ビニル−ブタジエン共重合体、塩化ビニル−スチレン共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−ウレタン共重合体、塩化ビニル−スチレン−無水マレイン酸三元共重合体、及び塩素化ポリエチレン、塩素化ポリプロピレン等の塩素化オレフィン重合体等を例示することが出来る。
その他の樹脂は、その例として、ポリスチレン(PS)、スチレンとアクリロニトリル(AS)、ABS等のスチレン系樹脂、ポリエチレン(PE)、ポリプロピレン(PP)等のオレフィン系樹脂やその共重合体、ポリメタクリル酸メチル樹脂(PMMA)、ポリ酢酸ビニル(PVAc)、ポリビニルアルコール(PVA)、エチレンと酢酸ビニル、アクリル酸エチルとの共重合体(EVA、EEA)、エンプラ(POM、PET、PBT、PA、PC等)、スーパーエンプラ(PPS等)で、ハロゲン化物や酸性物質を含有する触媒(例としてチーグラー型重合触媒)を用いて製造、もしくは担体成分として使用して製造、ハロゲンや酸性物質を含有する熱可塑性樹脂である。
Specifically, the thermoplastic resin composition in which the liquid stabilizer of the present invention is blended is broadly classified into halogen-containing resins and other resins.
Any halogen-containing resin may be used as long as it is usually used as a molded article. Examples thereof include polyvinyl chloride, polyvinylidene chloride, chlorinated polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, chloride chloride. Vinyl-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-butadiene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-urethane copolymer, vinyl chloride Examples thereof include styrene-maleic anhydride terpolymers, and chlorinated olefin polymers such as chlorinated polyethylene and chlorinated polypropylene.
Other resins include, for example, polystyrene (PS), styrene resins such as styrene and acrylonitrile (AS), ABS, olefin resins such as polyethylene (PE) and polypropylene (PP) and copolymers thereof, polymethacryl Methyl acid resin (PMMA), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), copolymer of ethylene and vinyl acetate, ethyl acrylate (EVA, EEA), engineering plastic (POM, PET, PBT, PA, PC) Etc.), super engineering plastics (PPS, etc.), manufactured using a catalyst containing a halide or acidic substance (eg Ziegler type polymerization catalyst), or manufactured as a carrier component, heat containing halogen or acidic substance It is a plastic resin.

本発明の液状安定剤以外にも慣用の他の添加材を配合しても良い。このような添加剤としては、例えば酸化防止剤(リン系、フェノール系、硫黄系)、紫外線防止剤、帯電防止剤、顔料、発泡剤、可塑剤、充填剤、補強剤、難燃剤、架橋剤、光安定剤、紫外線吸収剤、着色防止剤、滑材、他の無機系および有機系熱安定剤、安定化助剤等を例示できる。 In addition to the liquid stabilizer of the present invention, other conventional additives may be blended. Examples of such additives include antioxidants (phosphorous, phenolic, and sulfur-based), UV inhibitors, antistatic agents, pigments, foaming agents, plasticizers, fillers, reinforcing agents, flame retardants, and crosslinking agents. , Light stabilizers, ultraviolet absorbers, anti-coloring agents, lubricants, other inorganic and organic heat stabilizers, stabilizing aids and the like.

本発明の熱可塑性樹脂組成物の製造法に特に制限はない。組成物の各成分が実質的に均一に分散、混合、混練される方法であれば、どのような製造法をも採用することができ、そのための設備としても任意のものを用いることができる。例えば、ヘンシェルミキサー、リボンブレンダー、タンブラーミキサー等でドライブレンドした後の配合物を直接成形することもでき、また、押出機、ミキシングロール等で溶融混練した後ペレット化してこれを成形することもできる。成形方法は任意であり、押出成形、射出成形、ブロー成形、カレンダー成形、真空成形等の方法から、望まれる製品に応じて選択することができる。
次に、本発明を実施例によりさらに説明するが、本発明はこれら実施例に限定されるものではない。
There is no restriction | limiting in particular in the manufacturing method of the thermoplastic resin composition of this invention. Any production method can be adopted as long as each component of the composition is substantially uniformly dispersed, mixed, and kneaded, and any equipment can be used for that purpose. For example, the compound after dry blending with a Henschel mixer, ribbon blender, tumbler mixer, etc. can be directly molded, or melt-kneaded with an extruder, mixing roll, etc., and then pelletized to be molded. . The molding method is arbitrary, and can be selected from methods such as extrusion molding, injection molding, blow molding, calendar molding, vacuum molding, and the like according to the desired product.
EXAMPLES Next, although an Example demonstrates this invention further, this invention is not limited to these Examples.

2−(2−ブトキシエトキシ)エタノール 200gにSYグリスターPO−3S(阪本薬品工業株式会社製)を30g溶解させ、アルカマイザー1(協和化学工業株式会社製、ハイドロタルサイト類化合物) 100gをホモミキサーにて十分分散させた。ハイドロタルサイト類化合物の固形分濃度が30w%の液状安定剤が得られた。 In 200 g of 2- (2-butoxyethoxy) ethanol, 30 g of SY glister PO-3S (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) is dissolved, and 100 g of Alkamizer 1 (Kyowa Chemical Industry Co., Ltd., hydrotalcite compound) is homomixed. Was sufficiently dispersed. A liquid stabilizer having a hydrotalcite compound solid content concentration of 30 w% was obtained.

2−(2−ブトキシエトキシ)エタノール 200gにSYグリスターPO−3S(阪本薬品工業株式会社製)を30g溶解させ、アルカマイザーP93(協和化学工業株式会社製、ハイドロタルサイト類化合物) 100gをホモミキサーにて十分分散させた。ハイドロタルサイト類化合物の固形分濃度が30w%の液状安定剤が得られた。 In 200 g of 2- (2-butoxyethoxy) ethanol, 30 g of SY glister PO-3S (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) was dissolved, and Alkamizer P93 (Kyowa Chemical Industry Co., Ltd., hydrotalcite compound) 100 g was homomixed. Was sufficiently dispersed. A liquid stabilizer having a hydrotalcite compound solid content concentration of 30 w% was obtained.

2−(2−ブトキシエトキシ)エタノール 200gにイオネットS−85(三洋化成工業株式会社製)を30g溶解させ、A型ゼオライト(和光純薬製、合成ゼオライト) 100gをホモミキサーにて十分分散させた。A型ゼオライトの固形分濃度が30w%の液状安定剤が得られた。 30 g of Ionette S-85 (manufactured by Sanyo Chemical Industries) was dissolved in 200 g of 2- (2-butoxyethoxy) ethanol, and 100 g of A-type zeolite (manufactured by Wako Pure Chemical Industries, synthetic zeolite) was sufficiently dispersed with a homomixer. . A liquid stabilizer having a solid content concentration of type A zeolite of 30 w% was obtained.

熱安定剤として実施例1の液状安定剤を用いて表1の配合からなる樹脂組成物を得た。
熱安定性試験は、180℃で5分間ロール混練し、得られた1mmのロールシートを180℃ギアオーブンにて樹脂が茶褐色化するまでの時間を測定した。
透明性については、上記混練したシートを、185℃、圧力約150kg/cmで3分間プレス成型(厚さ1mm)後、日立分光光度計U−4100により波長600nm可視光線透過率を測定し、以下の指標で評価した。
○;可視光線透過率が85%以上
△;可視光線透過率が80%以上85%未満
×;可視光線透過率が80%未満
またほかに、樹脂組成物調整時の作業性(粉立ち等)についても比較した。
Using the liquid stabilizer of Example 1 as a heat stabilizer, a resin composition having the composition shown in Table 1 was obtained.
In the thermal stability test, rolls were kneaded at 180 ° C. for 5 minutes, and the resulting 1 mm roll sheet was measured for the time until the resin turned brown in a 180 ° C. gear oven.
For transparency, the kneaded sheet was press-molded at 185 ° C. under a pressure of about 150 kg / cm 2 for 3 minutes (thickness 1 mm), and then the visible light transmittance at a wavelength of 600 nm was measured with a Hitachi spectrophotometer U-4100. The following indicators were used for evaluation.
○: Visible light transmittance is 85% or more Δ; Visible light transmittance is 80% or more and less than 85% ×; Visible light transmittance is less than 80% In addition, workability when adjusting the resin composition (powdering, etc.) Also compared.

(比較例1)
熱安定剤としてハイドロタルサイト粉末(アルカマイザー1、協和化学工業株式会社製)に変更したほかは、実施例4同様に樹脂組成物およびテストピースを作成して、各種評価を行った。
(Comparative Example 1)
A resin composition and a test piece were prepared in the same manner as in Example 4 except that the heat stabilizer was changed to hydrotalcite powder (Alkamizer 1, manufactured by Kyowa Chemical Industry Co., Ltd.), and various evaluations were performed.

(比較例2)
熱安定剤をBa/Zn系安定剤に変更したほかは、実施例4同様に樹脂組成物およびテストピースを作成して、各種評価を行った。
(Comparative Example 2)
A resin composition and a test piece were prepared in the same manner as in Example 4 except that the heat stabilizer was changed to a Ba / Zn stabilizer, and various evaluations were performed.

Figure 2017141311
Figure 2017141311

熱安定剤として実施例1の液状安定剤を用いて表2の配合からなる樹脂組成物を得た。
熱安定性試験は、180℃で5分間ロール混練し、得られた1mmのロールシートを180℃ギアオーブンにて樹脂が茶褐色化するまでの時間を測定した。
透明性については、上記混練したシートを、185℃、圧力約150kg/cmで3分間プレス成型(厚さ1mm)後、日立分光光度計U−4100により波長600nm可視光線透過率を測定し、以下の指標で評価した。
○;可視光線透過率が85%以上
△;可視光線透過率が80%以上85%未満
×;可視光線透過率が80%未満
またほかに、樹脂組成物調整時の作業性(粉立ち等)についても比較した。
Using the liquid stabilizer of Example 1 as a heat stabilizer, a resin composition having the composition shown in Table 2 was obtained.
In the thermal stability test, rolls were kneaded at 180 ° C. for 5 minutes, and the resulting 1 mm roll sheet was measured for the time until the resin turned brown in a 180 ° C. gear oven.
For transparency, the kneaded sheet was press-molded at 185 ° C. under a pressure of about 150 kg / cm 2 for 3 minutes (thickness 1 mm), and then the visible light transmittance at a wavelength of 600 nm was measured with a Hitachi spectrophotometer U-4100. The following indicators were used for evaluation.
○: Visible light transmittance is 85% or more Δ; Visible light transmittance is 80% or more and less than 85% ×; Visible light transmittance is less than 80% In addition, workability when adjusting the resin composition (powdering, etc.) Also compared.

熱安定剤を実施例2に変更したほかは、実施例5と同様に樹脂組成物およびテストピースを作成して、各種評価を行った。 Except having changed the heat stabilizer into Example 2, the resin composition and the test piece were created similarly to Example 5, and various evaluation was performed.

(比較例3)
熱安定剤をハイドロタルサイト粉末(アルカマイザー1、協和化学工業株式会社製)に変更したほかは、実施例5と同様に樹脂組成物およびテストピースを作成して、各種評価を行った。
(Comparative Example 3)
A resin composition and a test piece were prepared in the same manner as in Example 5 except that the heat stabilizer was changed to hydrotalcite powder (Alkamizer 1, manufactured by Kyowa Chemical Industry Co., Ltd.), and various evaluations were performed.

(比較例4)
熱安定剤をハイドロタルサイト粉末(アルカマイザーP93、協和化学工業株式会社製)に変更したほかは、実施例5と同様に樹脂組成物およびテストピースを作成して、各種評価を行った。
(Comparative Example 4)
A resin composition and a test piece were prepared in the same manner as in Example 5 except that the heat stabilizer was changed to hydrotalcite powder (Alkamizer P93, manufactured by Kyowa Chemical Industry Co., Ltd.), and various evaluations were performed.

(比較例5)
熱安定剤をスズ系安定剤(スズメルカプト)に変更したほかは、実施例5と同様に樹脂組成物およびテストピースを作成して、各種評価を行った。
(Comparative Example 5)
A resin composition and a test piece were prepared in the same manner as in Example 5 except that the heat stabilizer was changed to a tin-based stabilizer (tin mercapto), and various evaluations were performed.

Figure 2017141311
Figure 2017141311

熱安定剤として実施例2の液状安定剤を用いて表3の配合からなる樹脂組成物を得た。
熱安定性試験は、180℃で5分間ロール混練し、得られた1mmのロールシートを180℃ギアオーブンにて樹脂が茶褐色化するまでの時間を測定した。
透明性については、上記混練したシートを、185℃、圧力約150kg/cmで3分間プレス成型(厚さ1mm)後、日立分光光度計U−4100により波長600nm可視光線透過率を測定し、以下の指標で評価した。
○;可視光線透過率が85%以上
△;可視光線透過率が80%以上85%未満
×;可視光線透過率が80%未満
またほかに、樹脂組成物調整時の作業性(粉立ち等)についても比較した。
Using the liquid stabilizer of Example 2 as a heat stabilizer, a resin composition having the composition shown in Table 3 was obtained.
In the thermal stability test, rolls were kneaded at 180 ° C. for 5 minutes, and the resulting 1 mm roll sheet was measured for the time until the resin turned brown in a 180 ° C. gear oven.
For transparency, the kneaded sheet was press-molded at 185 ° C. under a pressure of about 150 kg / cm 2 for 3 minutes (thickness 1 mm), and then the visible light transmittance at a wavelength of 600 nm was measured with a Hitachi spectrophotometer U-4100. The following indicators were used for evaluation.
○: Visible light transmittance is 85% or more Δ; Visible light transmittance is 80% or more and less than 85% ×; Visible light transmittance is less than 80% In addition, workability when adjusting the resin composition (powdering, etc.) Also compared.

熱安定剤を実施例2と実施例3の併用に変更したほかは、実施例7と同様に樹脂組成物およびテストピースを作成して、各種評価を行った。 A resin composition and a test piece were prepared in the same manner as in Example 7 except that the heat stabilizer was changed to the combined use of Example 2 and Example 3, and various evaluations were performed.

(比較例6)
熱安定剤をハイドロタルサイト粉末(アルカマイザーP93、協和化学工業株式会社製)に変更したほかは、実施例7と同様に樹脂組成物およびテストピースを作成して、各種評価を行った。
(Comparative Example 6)
A resin composition and a test piece were prepared in the same manner as in Example 7 except that the heat stabilizer was changed to hydrotalcite powder (Alkamizer P93, manufactured by Kyowa Chemical Industry Co., Ltd.), and various evaluations were performed.

(比較例7)
熱安定剤をスズ系安定剤(スズメルカプト)に変更したほかは、実施例7と同様に樹脂組成物およびテストピースを作成して、各種評価を行った。
(Comparative Example 7)
A resin composition and a test piece were prepared in the same manner as in Example 7 except that the heat stabilizer was changed to a tin-based stabilizer (tin mercapto), and various evaluations were performed.

Figure 2017141311
Figure 2017141311

Claims (7)

イオン交換性を有する無機粉体が有機溶剤中に均一かつ高濃度分散し、かつ200メッシュフィルターの目詰まりを起こさない液状安定剤。 A liquid stabilizer in which an inorganic powder having ion exchange properties is uniformly and highly dispersed in an organic solvent and does not cause clogging of a 200 mesh filter. 無機粉体の含有割合が10〜50重量%である、請求項1記載の液状安定剤。 The liquid stabilizer according to claim 1, wherein the content of the inorganic powder is 10 to 50% by weight. 界面活性剤を含む請求項1記載の液状安定剤。 The liquid stabilizer according to claim 1, comprising a surfactant. 請求項1記載の無機粉体が、ハイドロタルサイト類化合物およびゼオライトから選ばれる液状安定剤。 A liquid stabilizer wherein the inorganic powder according to claim 1 is selected from a hydrotalcite compound and a zeolite. 請求項1記載の液状安定剤を含有する熱可塑性樹脂組成物。 A thermoplastic resin composition comprising the liquid stabilizer according to claim 1. 請求項5記載の熱可塑性樹脂組成物から形成された透明性に優れた成形品。 A molded article excellent in transparency formed from the thermoplastic resin composition according to claim 5. 請求項5記載の熱可塑性樹脂組成物がポリ塩化ビニル樹脂組成物である。

The thermoplastic resin composition according to claim 5 is a polyvinyl chloride resin composition.

JP2014112806A 2014-05-30 2014-05-30 Liquid stabilizer and thermoplastic resin composition containing liquid stabilizer Pending JP2017141311A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014112806A JP2017141311A (en) 2014-05-30 2014-05-30 Liquid stabilizer and thermoplastic resin composition containing liquid stabilizer
PCT/JP2015/065960 WO2015182790A1 (en) 2014-05-30 2015-05-27 Liquid stabilizer and resin composition containing said liquid stabilizer
TW104117150A TW201609895A (en) 2014-05-30 2015-05-28 Liquid stabilizer and resin composition containing said liquid stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112806A JP2017141311A (en) 2014-05-30 2014-05-30 Liquid stabilizer and thermoplastic resin composition containing liquid stabilizer

Publications (1)

Publication Number Publication Date
JP2017141311A true JP2017141311A (en) 2017-08-17

Family

ID=54699107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112806A Pending JP2017141311A (en) 2014-05-30 2014-05-30 Liquid stabilizer and thermoplastic resin composition containing liquid stabilizer

Country Status (3)

Country Link
JP (1) JP2017141311A (en)
TW (1) TW201609895A (en)
WO (1) WO2015182790A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044029A (en) * 2016-09-12 2018-03-22 戸田工業株式会社 White pigment solvent-based dispersion band coated film body using the same
CN110724401A (en) * 2019-11-22 2020-01-24 浙江丰虹新材料股份有限公司 Synergistic self-repairing corrosion-resistant additive and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3330220A1 (en) * 1983-08-22 1985-03-07 Henkel KGaA, 4000 Düsseldorf Stabilised, aqueous zeolite suspension
JPS6243447A (en) * 1985-08-21 1987-02-25 Mitsubishi Kasei Vinyl Co Vinyl chloride based resin plastisol composition
JPS63286343A (en) * 1987-05-18 1988-11-24 Mitsubishi Kasei Vinyl Co Laminate film for agriculture
JPS63312361A (en) * 1987-06-15 1988-12-20 Mitsubishi Kasei Vinyl Co Agricultural covering material made of synthetic resin
JPH0819169B2 (en) * 1987-09-16 1996-02-28 三菱化学株式会社 Method for producing vinyl chloride polymer for paste
JP2965773B2 (en) * 1990-12-05 1999-10-18 協和化学工業株式会社 Heat stabilized halogen-containing resin composition having antistatic ability
DE4124247A1 (en) * 1991-07-22 1993-01-28 Henkel Kgaa METHOD FOR STABILIZING AQUEOUS ZEOLITE SUSPENSIONS
JP3541507B2 (en) * 1995-07-04 2004-07-14 東亞合成株式会社 Antibacterial polyolefin resin composition
JP2002240217A (en) * 2001-02-20 2002-08-28 Chisso Corp Multilayer film of thermoplastic resin for agriculture
JP2006206660A (en) * 2005-01-26 2006-08-10 Nippon Zeon Co Ltd Hydrotalcite suspension, polymer blend composition and warmed rubber composition

Also Published As

Publication number Publication date
TW201609895A (en) 2016-03-16
WO2015182790A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
KR101207101B1 (en) hydrotalcite and synthetic resin composition
EP2875069B1 (en) Pvc flame retardant compositions
KR101360537B1 (en) Hydrotalcite particles, resin stabilizers comprising the same, halogen-containing resin compositions, and anion scavengers comprising the particles
Pan et al. Hierarchical nanoporous silica doped with tin as novel multifunctional hybrid material to flexible poly (vinyl chloride) with greatly improved flame retardancy and mechanical properties
DE102013001520B4 (en) Novel inorganic, halogen-free flame retardant based on chemically modified recarbonized red mud, its production and use as well as a fire-protected material system
EP2373730B1 (en) Compacted pelletized additive blends for polymers
KR101040942B1 (en) Hydrotalcite for stabilizing synthetic resin and synthetic resin composition containing thereof
EP3468914A1 (en) Modified graphite intercalated compounds and methods of making and using them
KR20130008580A (en) Filler for synthetic resin, synthetic resin composition, manufacturing method therefor, and molded object made therefrom
JP2017141311A (en) Liquid stabilizer and thermoplastic resin composition containing liquid stabilizer
KR20110087966A (en) Resin composition using phyllite fine powder
US20080161466A1 (en) Composition For Production Flame Retardant Insulating Material of Halogen Free Type Using Nano-Technology
CN104558775B (en) Hydrotalcite acid acceptor for polyolefin
JP5211301B2 (en) Flame retardant aid
JP6650729B2 (en) Blown film composition
JP6709782B2 (en) Manufacturing method of transparent synthetic resin moldings using hydrotalcite particles
JP2019034994A (en) Hygroscopic antibacterial resin composition and molded body
CN112795053A (en) Method for recycling melamine formaldehyde resin foam waste and flame retardant prepared by method
JP5780805B2 (en) Flame retarding method for resin or resin composition.
JP3444732B2 (en) Flame retardant composition for chlorine-containing polymer and resin composition containing the same
JP2002003848A (en) Flame-retardant
CN105885214A (en) Halogen-free flame-retardant polypropylene material
TWI440702B (en) Flame retardant polyolefin composition
KR20110087860A (en) Resin composition using surface treated phyllite powder
WO2007123264A1 (en) Novel aluminum complex hydroxide salt and method for producing the same