JP2017137581A - Aluminum-made clad tube and manufacturing method therefor - Google Patents

Aluminum-made clad tube and manufacturing method therefor Download PDF

Info

Publication number
JP2017137581A
JP2017137581A JP2017071093A JP2017071093A JP2017137581A JP 2017137581 A JP2017137581 A JP 2017137581A JP 2017071093 A JP2017071093 A JP 2017071093A JP 2017071093 A JP2017071093 A JP 2017071093A JP 2017137581 A JP2017137581 A JP 2017137581A
Authority
JP
Japan
Prior art keywords
material layer
anode material
sacrificial anode
aluminum
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071093A
Other languages
Japanese (ja)
Other versions
JP6345296B2 (en
Inventor
大谷良行
Yoshiyuki Otani
寺山和子
Kazuko TERAYAMA
島田隆登志
Takatoshi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2017071093A priority Critical patent/JP6345296B2/en
Publication of JP2017137581A publication Critical patent/JP2017137581A/en
Application granted granted Critical
Publication of JP6345296B2 publication Critical patent/JP6345296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum-made clad tube excellent in durability such as corrosion resistance.SOLUTION: There is provided an aluminum-made clad tube having a core material of an aluminum tube and a sacrifice anode material layer clad to at least one of an inner surface and an outer surface of the core material, wherein the sacrifice anode material layer consists of an aluminum alloy containing Si: 0.10 to 1.50 mass% and Mg: 0.10 to 2.00 mass% and the balance Al with inevitable impurities and 30000/mmor less of a Mg-Si-based crystallization articles with circle equivalent diameter of 1.0 to 10 μm exist in the sacrifice anode material layer.SELECTED DRAWING: None

Description

本発明は、ルームエアコンの配管、自動車用熱交換器の配管、自動車及び各種産業用機器の配管に用いられ、耐食性に優れたアルミニウム製クラッド管に関する。   The present invention relates to an aluminum clad pipe having excellent corrosion resistance, which is used in piping for room air conditioners, piping for heat exchangers for automobiles, piping for automobiles and various industrial equipment.

従来のアルミニウム製クラッド管としては、3000系の母材にZn溶射により犠牲防食層を付与する方法(特許文献1)、或いは、Al−Zn合金クラッドにより犠牲防食層を付与する方法等(特許文献2)によって、Znにより耐食性を向上させたものが提案されている。   As a conventional aluminum clad tube, a method of providing a sacrificial anticorrosion layer by spraying Zn on a 3000 series base material (Patent Document 1), a method of applying a sacrificial anticorrosion layer by Al-Zn alloy cladding, etc. (Patent Document) According to 2), a material whose corrosion resistance is improved by Zn is proposed.

しかしながら、これら先行技術において用いられるZnは、腐食速度を速めるために早期に犠牲防食層が消費されてしまい、目標とする寿命が得られない問題があった。また、Znは将来的に枯渇するとされており、Znを用いない防食手法の確立が求められている。   However, the Zn used in these prior arts has a problem that the sacrificial anticorrosive layer is consumed at an early stage in order to increase the corrosion rate, and the target life cannot be obtained. In addition, Zn is supposed to be depleted in the future, and establishment of a corrosion prevention method that does not use Zn is required.

特開2011−85290号公報JP 2011-85290 A 特開平10−46312号公報JP-A-10-46312

本発明は上記問題等に鑑みてなされたものであり、Znを用いずに耐食性に優れたアルミニウム製クラッド管を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an aluminum clad tube excellent in corrosion resistance without using Zn.

上記課題を解決するため、本発明者等は、犠牲陽極材層中におけるMg−Si系晶出物の面密度に注目し、これを所定以下とすることにより十分な防食効果が発揮できることを見出した。更に、本発明者等は、犠牲陽極材層中においてマトリックスより電位の卑な金属間化合物である微細なMg−Si系析出物に着目した。具体的には、Znが存在しない状態においても、この所定の大きさの析出物の体積密度を所定範囲とすることによる防食効果によって十分な耐食性が発揮されることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have found that a sufficient anticorrosion effect can be exerted by paying attention to the surface density of the Mg—Si-based crystallized material in the sacrificial anode material layer, and making it below a predetermined value. It was. Furthermore, the present inventors paid attention to fine Mg—Si-based precipitates, which are intermetallic compounds having a lower potential than the matrix in the sacrificial anode material layer. Specifically, even in the absence of Zn, the present inventors have found that sufficient corrosion resistance is exhibited by the anticorrosion effect by setting the volume density of precipitates of a predetermined size within a predetermined range, and the present invention is completed. It came to.

本発明は請求項1において、アルミニウム管の心材と、当該心材の内面及び外面の少なくとも一方にクラッドされた犠性陽極材層を備えるアルミニウム製クラッド管において、前記犠性陽極材層が、Si:0.10〜1.50mass%、Mg:0.10〜2.00mass%を含有し、Zn:0.05mass%以下に規制され、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠性陽極材層に存在する円相当直径1.0〜10μmのMg−Si系晶出物が30000個/mm以下であり、175℃で5時間の増感処理後に、前記犠牲陽極材層表面から5μmまでの深さの領域において観察され、当該犠牲陽極材のマトリックスより電位が卑な長さ10〜1000nmのMg−Si系析出物が1000〜50000個/μmであることを特徴とするアルミニウム製クラッド管とした。 According to a first aspect of the present invention, in the aluminum clad tube comprising the core material of the aluminum tube and the sacrificial anode material layer clad on at least one of the inner surface and the outer surface of the core material, the sacrificial anode material layer is Si: Containing 0.10 to 1.50 mass%, Mg: 0.10 to 2.00 mass%, Zn: regulated to 0.05 mass% or less, consisting of an aluminum alloy composed of the balance Al and unavoidable impurities, the sacrificial property 30000 pieces / mm 2 or less of Mg—Si based crystals having an equivalent circle diameter of 1.0 to 10 μm existing in the anode material layer, and after sensitizing treatment at 175 ° C. for 5 hours, from the surface of the sacrificial anode material layer observed in the depth of the region of up to 5 [mu] m, the potential from the matrix of the sacrificial anode material is Mg-Si based precipitate of less noble length 10 to 1000 nm 1,000 to 50,000 / Was aluminum cladding tube, characterized in that μm 3.

本発明は請求項2では請求項1において、前記犠牲陽極材層のアルミニウム合金が、Fe:0.05〜1.00mass%、Ni:0.05〜1.00mass%、Cu:0.05〜1.00mass%、Mn:0.05〜1.50mass%、Ti:0.05〜0.30mass%、Zr:0.05〜0.30mass%、Cr:0.05〜0.30mass%及びV:0.05〜0.30mass%から選択される1種以上を更に含有するものとした。   According to a second aspect of the present invention, in the first aspect, the aluminum alloy of the sacrificial anode material layer includes Fe: 0.05 to 1.00 mass%, Ni: 0.05 to 1.00 mass%, Cu: 0.05 to 1.00 mass%, Mn: 0.05 to 1.50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V : One or more selected from 0.05 to 0.30 mass%.

本発明は請求項3では請求項1又は2において、前記アルミニウム管の心材の内面及び外面の一方に犠性陽極材層がクラッドされており、他方にろう材層がクラッドされているものとした。   According to a third aspect of the present invention, in the first or second aspect, the sacrificial anode material layer is clad on one of the inner surface and the outer surface of the core of the aluminum tube, and the brazing material layer is clad on the other. .

また本発明は、請求項1〜3のいずれか一項に記載のアルミニウム製クラッド管の製造方法であって、前記犠牲陽極材層用のアルミニウム合金を半連続鋳造する半連続鋳造工程と;犠牲陽極材層用の鋳塊をアルミニウム管の心材の内面及び外面の少なくとも一方に組み合わせてビレットとする組み合わせ工程と;前記ビレットを押出成形する押出成形工程と;を備え、前記半連続鋳造工程における鋳塊表面の冷却速度を1℃/秒以上とし、前記押出成形工程前にビレットを450〜570℃に加熱する加熱工程と;前記押出成形工程後にクラッド押出管を0.1〜1000℃/秒の速度で冷却する冷却工程と;を更に備えることを特徴とするアルミニウム製クラッド管の製造方法とした。   Moreover, this invention is a manufacturing method of the aluminum clad pipe | tube as described in any one of Claims 1-3, Comprising: The semi-continuous casting process which semi-continuously casts the aluminum alloy for the said sacrificial anode material layers; A casting step in the semi-continuous casting step, comprising: a combination step of combining an ingot for an anode material layer with at least one of an inner surface and an outer surface of a core material of an aluminum tube to form a billet; and an extrusion molding step of extruding the billet. A heating step in which the cooling rate of the lump surface is set to 1 ° C./second or more, and the billet is heated to 450 to 570 ° C. before the extrusion molding step; A cooling step of cooling at a speed; and a method of manufacturing an aluminum clad tube.

更に本発明は上記アルミニウム製クラッド管の製造方法において、前記冷却工程後に、クラッド押出管を100〜300℃で5分間以上熱処理する熱処理工程を更に備えるものとした。   Furthermore, the present invention further includes a heat treatment step of heat-treating the clad extruded tube at 100 to 300 ° C. for 5 minutes or more after the cooling step in the method for producing the aluminum clad tube.

本発明に係るアルミニウム製クラッド管は、ルームエアコンの配管、自動車用熱交換器の配管、自動車及び各種産業用機器の配管として、大気環境、塩害環境、海水環境、酸性やアルカリ性の特殊環境等においても良好な耐食性を発揮することができる。   The aluminum clad pipe according to the present invention is used as piping for room air conditioners, piping for heat exchangers for automobiles, piping for automobiles and various industrial equipment, in atmospheric environment, salt damage environment, seawater environment, acidic or alkaline special environment, etc. Can exhibit good corrosion resistance.

1.アルミニウム製クラッド管
1−1.構造
本発明に係るアルミニウム製クラッド管は、ルームエアコンの配管、自動車用熱交換器の配管、自動車及び各種産業用機器の配管などに好適に用いられる。このような配管は、アルミニウム管の心材の内面及び外面のいずれか一方に犠牲陽極材層をクラッドした二層クラッド管として構成される。例えば、犠牲陽極材層側が外部環境に曝される配管外面となるように管状に成形される。管内部が、フロンなどの冷媒の流路となる。
1. 1. Aluminum clad tube 1-1. Structure The aluminum clad pipe according to the present invention is suitably used for piping for room air conditioners, piping for heat exchangers for automobiles, piping for automobiles and various industrial equipment, and the like. Such a pipe is configured as a two-layer clad pipe in which a sacrificial anode material layer is clad on either the inner surface or the outer surface of the core material of the aluminum tube. For example, the sacrificial anode material layer side is formed into a tubular shape so as to be an outer surface of a pipe exposed to the external environment. The inside of the tube serves as a flow path for a refrigerant such as chlorofluorocarbon.

これに代わって、犠牲陽極材層側が配管内面になるように成形してもよい。また、犠牲陽極材層/心材/ろう材層の三クラッド管(犠牲陽極材層が配管の内面又は外面のいずれでもよい)、或いは、犠牲陽極材層/心材/犠牲陽極材層の三層クラッド管を用いて配管を構成してもよい。   Instead of this, the sacrificial anode material layer side may be formed to be the inner surface of the pipe. Also, a sacrificial anode material layer / core material / brazing material layer three-clad tube (the sacrificial anode material layer may be either the inner surface or the outer surface of the pipe) or a sacrificial anode material layer / heart material / sacrificial anode material layer three-layer clad You may comprise piping using a pipe | tube.

アルミニウム合金製クラッド管の犠牲陽極材層の厚さは特に限定されるものではないが、10〜300μmとするのが好ましい。犠牲陽極材層の片面クラッド率は、5〜30%とするのが好ましい。また、犠牲陽極材層/心材/ろう材層の三層クラッド管において、ろう材層の厚さは特に限定されるものではないが、10〜300μmとするのが好ましい。ろう材の片面クラッド率は、5〜30%とするのが好ましい。   The thickness of the sacrificial anode material layer of the aluminum alloy clad tube is not particularly limited, but is preferably 10 to 300 μm. The single-sided cladding rate of the sacrificial anode material layer is preferably 5 to 30%. Further, in the sacrificial anode material layer / core material / brazing material layer three-layer clad tube, the thickness of the brazing material layer is not particularly limited, but is preferably 10 to 300 μm. The single-sided cladding rate of the brazing material is preferably 5 to 30%.

1−2.合金組成
次に、本発明に係るアルミニウム製クラッド管における各構成材の組成について説明する。
1-2. Alloy Composition Next, the composition of each component in the aluminum clad tube according to the present invention will be described.

(a)犠牲陽極材層
犠牲陽極材層は、Si:0.10〜1.50mass%(以下、単に「%」と記す)、Mg:0.10〜2.00%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなる。すなわち、これらSi及びMgを必須元素とする。Si及びMgは、犠牲陽極材層中にMgとSiを主成分とする微細なMg−Si系析出物を形成する。このMg−Si系析出物は、ろう付後の冷却中や室温においても析出する。
(A) Sacrificial anode material layer The sacrificial anode material layer contains Si: 0.10 to 1.50 mass% (hereinafter simply referred to as “%”), Mg: 0.10 to 2.00%, and the balance Al. And an aluminum alloy composed of inevitable impurities. That is, these Si and Mg are essential elements. Si and Mg form fine Mg—Si based precipitates containing Mg and Si as main components in the sacrificial anode material layer. This Mg—Si-based precipitate is deposited during cooling after brazing and also at room temperature.

このMg−Si系析出物は、針状のβ’’相(MgSi)であり、Cuが添加されている場合は同一形状のQ’’相(Al−Mg−Si−Cu)である。Mg−Si系析出物は、マトリックスよりも孔食電位が卑であるために優先的に溶解するので、Znを用いることなく犠牲防食効果を発現できる。また、Mg−Si系析出物には、その溶解時にMgが優先的に溶出して表面にSi濃縮層を形成する働きもあり、これによって耐食性が更に向上する。 This Mg—Si based precipitate is a needle-like β ″ phase (Mg 2 Si), and when Cu is added, it is a Q ″ phase (Al—Mg—Si—Cu) having the same shape. . Since Mg-Si-based precipitates are preferentially dissolved because the pitting potential is lower than that of the matrix, the sacrificial anticorrosive effect can be expressed without using Zn. Further, the Mg—Si based precipitate also has a function of preferentially eluting Mg at the time of dissolution to form a Si concentrated layer on the surface, thereby further improving the corrosion resistance.

Si含有量とMg含有量の少なくともいずれか一方が0.10%未満の場合には、強度が低下し、クラッド管製造時に犠牲陽極材層の不均一な伸びが発生し、犠牲陽極材層のクラッド率が不均一となる。Si含有量が1.50%を超えると融点が低下するため、ろう付加熱時に犠牲陽極材層の一部又は全体が溶融してしまう。Mg含有量が2.00%を超えると犠牲陽極材層表面の酸化膜厚さが厚くなり、心材との良好なクラッド板を得るのが困難となる。以上により、犠牲陽極材層のSi含有量を0.10〜1.50%、Mg含有量を0.10〜2.00%と規定する。好ましいSi含有量は0.20〜1.00%であり、好ましいMg含有量は0.30〜1.00%である。   When at least one of the Si content and the Mg content is less than 0.10%, the strength is lowered, and the sacrificial anode material layer is unevenly stretched during the production of the clad tube. The cladding rate becomes non-uniform. Since melting | fusing point will fall when Si content exceeds 1.50%, a part or all of a sacrificial anode material layer will fuse | melt at the time of brazing addition heat. If the Mg content exceeds 2.00%, the oxide film thickness on the surface of the sacrificial anode material layer becomes thick, and it becomes difficult to obtain a good clad plate with the core material. Thus, the Si content of the sacrificial anode material layer is defined as 0.10 to 1.50%, and the Mg content is defined as 0.10 to 2.00%. A preferable Si content is 0.20 to 1.00%, and a preferable Mg content is 0.30 to 1.00%.

犠牲陽極材層のアルミニウム合金は選択的添加元素として、Fe:0.05〜1.00mass%、Ni:0.05〜1.00mass%、Cu:0.05〜1.00mass%、Mn:0.05〜1.50mass%、Ti:0.05〜0.30mass%、Zr:0.05〜0.30mass%、Cr:0.05〜0.30mass%、V:0.05〜0.30mass%から選択される1種以上を更に含有するのが好ましい。   The aluminum alloy of the sacrificial anode material layer has, as selective additive elements, Fe: 0.05 to 1.00 mass%, Ni: 0.05 to 1.00 mass%, Cu: 0.05 to 1.00 mass%, Mn: 0 0.05 to 1.50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, V: 0.05 to 0.30 mass It is preferable to further contain one or more selected from%.

FeとNiは、耐食性の向上に寄与する。これらの元素はAlの腐食速度を増大させる作用があるが、Fe系化合物やNi系化合物を均一に分布させると腐食が分散し、結果として貫通寿命が向上する。FeとNiの含有量が0.05%未満では、貫通寿命の向上効果が不十分となる。一方、FeとNiの含有量が1.00%を超えると、腐食速度の増大が著しくなる。以上により、FeとNiの含有量は、0.05〜1.00%とするのが好ましく、0.1〜0.5%とするのが更に好ましい。   Fe and Ni contribute to improvement of corrosion resistance. These elements have the effect of increasing the corrosion rate of Al. However, when the Fe-based compound and Ni-based compound are uniformly distributed, the corrosion is dispersed, and as a result, the penetration life is improved. If the content of Fe and Ni is less than 0.05%, the effect of improving the penetrating life is insufficient. On the other hand, if the content of Fe and Ni exceeds 1.00%, the increase in corrosion rate becomes significant. As described above, the content of Fe and Ni is preferably 0.05 to 1.00%, and more preferably 0.1 to 0.5%.

Cuが含有されることによって、上記Mg−Si系析出物がQ’’相(Al−Mg−Si−Cu)となり、この析出物をより微細に分散させることができる。そのためには、Cu含有量を0.05%以上とするのが好ましい。但し、Cu含有量が1.00%を超えると、腐食速度の増大が著しくなる。以上により、Cu量の含有量は、0.05〜1.00%とするのが好ましく、0.1〜0.5%とするのが更に好ましい。   By containing Cu, the Mg—Si based precipitate becomes a Q ″ phase (Al—Mg—Si—Cu), and the precipitate can be more finely dispersed. For this purpose, the Cu content is preferably 0.05% or more. However, when the Cu content exceeds 1.00%, the increase in corrosion rate becomes significant. Accordingly, the Cu content is preferably 0.05 to 1.00%, more preferably 0.1 to 0.5%.

MnはAl−Mn系金属間化合物として晶出又は析出して、強度の向上に寄与する。また、Al−Mn系金属間化合物はFeを取り込むために、不可避的不純物としてのFe及び耐食性を向上させる目的で添加するFeによる腐食速度増大作用を抑制する働きを有する。これらの効果を得るためには、Mn含有量を0.05%以上とするのが好ましい。但し、Mn含有量が1.50%を超えると、巨大な金属間化合物が晶出して製造性を阻害する場合がある。以上により、Mn量の含有量は、0.05〜1.50%とするのが好ましく、0.1〜1.0%とするのが更に好ましい。   Mn crystallizes or precipitates as an Al—Mn intermetallic compound and contributes to the improvement of strength. Further, since the Al—Mn-based intermetallic compound takes in Fe, it has a function of suppressing the corrosion rate increasing action by Fe added as an inevitable impurity and Fe added for the purpose of improving the corrosion resistance. In order to obtain these effects, the Mn content is preferably 0.05% or more. However, if the Mn content exceeds 1.50%, a huge intermetallic compound may be crystallized to hinder manufacturability. As described above, the Mn content is preferably 0.05 to 1.50%, and more preferably 0.1 to 1.0%.

Ti、Zr、Cr及びVは、耐食性、特に耐孔食性の向上に寄与する。アルミニウム合金中に添加されたTi、Zr、Cr、Vは、その濃度の高い領域と濃度の低い領域とに分かれ、それらが犠牲陽極材層の板厚方向に沿って交互に積層状に分布する。ここで、濃度の低い領域は、濃度の高い領域よりも優先的に腐食することにより腐食形態が層状となる。その結果、犠牲陽極材層の板厚方向に沿った腐食に部分的に遅速が生じ、全体として腐食の進行が抑制されて耐孔食性が向上する。このような耐孔食性向上の効果を十分に得るためには、Ti、Zr、Cr、Vの含有量を0.05%以上とするのが好ましい。一方、Ti、Zr、Cr、Vの含有量が0.30%を超えると、鋳造時に粗大な化合物が生成されて製造性を阻害する場合がある。以上により、Ti、Zr、Cr、Vの含有量は0.05〜0.30%とするのが好ましく、0.1〜0.2%とするのが更に好ましい。   Ti, Zr, Cr and V contribute to the improvement of corrosion resistance, particularly pitting corrosion resistance. Ti, Zr, Cr, and V added to the aluminum alloy are divided into a high concentration region and a low concentration region, and they are alternately distributed in the thickness direction of the sacrificial anode material layer. . Here, the low-concentration region corrodes preferentially over the high-concentration region, and the corrosion form becomes layered. As a result, the corrosion along the thickness direction of the sacrificial anode material layer is partially slowed, and the progress of the corrosion is suppressed as a whole and the pitting corrosion resistance is improved. In order to sufficiently obtain such an effect of improving the pitting corrosion resistance, the content of Ti, Zr, Cr, V is preferably 0.05% or more. On the other hand, if the content of Ti, Zr, Cr, and V exceeds 0.30%, a coarse compound may be generated during casting, which may impair manufacturability. As described above, the content of Ti, Zr, Cr, and V is preferably 0.05 to 0.30%, and more preferably 0.1 to 0.2%.

以上述べた必須元素及び選択的添加元素の他に不可避的不純物として、Fe、Zn、Na、Ca、Sr等を単独で0.05%以下、合計で0.15%以下含有していても、犠牲陽極材層の作用を損なうことはない。なお、不可避的不純物としてのFeは、選択的添加元素として積極的に含有させない場合に、地金に不純物として存在するものである。   In addition to the essential elements and selective additive elements described above, as unavoidable impurities, Fe, Zn, Na, Ca, Sr, etc. may be contained alone by 0.05% or less, and in total 0.15% or less, The function of the sacrificial anode material layer is not impaired. Note that Fe as an unavoidable impurity exists as an impurity in the base metal when not actively contained as a selective additive element.

(b)心材
本発明に係るアルミニウム製クラッド管の心材の材質は、アルミニウム材であれば特に限定されるものではない。ここで、アルミニウム材とは、純アルミニウムとアルミニウム合金をいう。純アルミニウムとは、純度99%以上のアルミニウムであって、例えば1000系のアルミニウム材が挙げられる。アルミニウム合金としては、例えばAl−Cu系(2000系)、Al−Mn系(3000系)、Al−Si系(4000系)、Al−Mg系(5000系)、Al−Mg−Si系(6000系)、Al−Mg−Zn系(7000系)等のアルミニウム材が好適に用いられる。
(B) Core Material The material of the core material of the aluminum clad tube according to the present invention is not particularly limited as long as it is an aluminum material. Here, the aluminum material means pure aluminum and an aluminum alloy. Pure aluminum is aluminum having a purity of 99% or more, and examples thereof include 1000 series aluminum materials. Examples of the aluminum alloy include Al—Cu (2000), Al—Mn (3000), Al—Si (4000), Al—Mg (5000), and Al—Mg—Si (6000). Type) and Al-Mg-Zn type (7000 type) aluminum materials are preferably used.

(b)ろう材層
ろう材層に用いられるアルミニウム材は特に限定されるものではないが、通常のろう付において用いられるAl−Si系合金ろう材が好適に用いられる。例えば、JIS4343、4045、4047の各アルミニウム合金(Al−7〜13%Si)を用いるのが好ましい。
(B) Brazing material layer The aluminum material used for the brazing material layer is not particularly limited, but an Al-Si alloy brazing material used in normal brazing is preferably used. For example, it is preferable to use each aluminum alloy (Al-7 to 13% Si) of JIS 4343, 4045, and 4047.

1−3.犠牲陽極材層中に存在するMg−Si系晶出物の面密度
本発明に係るアルミニウム製クラッド板の犠牲陽極材層には、円相当直径1.0〜10μmのMg−Si系晶出物が面密度として30000個/mm以下存在する。Mg−Si系晶出物とは、基本的にMgとSiが原子個数比2対1で構成されるものである。この晶出物には、犠牲陽極材層に選択的添加元素としてFeやCuが含有される場合には、MgSiの他にMg−Si−Fe、Mg−Si−Cuの3元組成や、Mg−Si−Fe−Cuの4元組成も含まれる。
1-3. Surface density of Mg—Si based crystallized material existing in sacrificial anode material layer The sacrificial anode material layer of the aluminum clad plate according to the present invention has a Mg—Si based crystallized material having a circle equivalent diameter of 1.0 to 10 μm. The surface density is 30000 pieces / mm 2 or less. The Mg—Si based crystallized product is basically composed of Mg and Si in an atomic number ratio of 2: 1. In this crystallized product, when the sacrificial anode material layer contains Fe or Cu as a selective additive element, in addition to Mg 2 Si, a ternary composition of Mg—Si—Fe, Mg—Si—Cu A quaternary composition of Mg-Si-Fe-Cu is also included.

粗大なMg−Si系晶出物は、腐食の集中を招き、耐食性を低下させる。この粗大なMg−Si系晶出物は、熱間押出し以降の工程では再固溶できない場合がある。そのため、熱間押出し工程までに晶出物を減少させておく必要がある。   Coarse Mg—Si-based crystallized substances cause concentration of corrosion and reduce corrosion resistance. This coarse Mg-Si crystallized product may not be re-dissolved in the steps after hot extrusion. Therefore, it is necessary to reduce the crystallized product before the hot extrusion process.

本発明者らが種々検討したところ、犠牲陽極材層中に存在する粗大Mg−Si系晶出物の面密度を所定範囲に規定することにより、上述の犠牲防食層としての機能低下を防止できることを見出した。通常、犠牲陽極材層中に存在するMg−Si系晶出物の大きさは、円相当直径として0.1〜10μmであるが、犠牲防食機能を低下させる粗大なMg−Si系晶出物の大きさは、円相当直径として1.0〜10μmであることが判明した。円相当直径が1.0μm未満のMg−Si系晶出物は、犠牲防食機能を低下させるものではない。また、円相当直径が10μmを超えるMg−Si系晶出物は、均質化処理などの熱処理によって再固溶するため殆ど存在しない。詳細な検討の結果、このような円相当直径1.0〜10μmの粗大Mg−Si系晶出物の面密度が30000個/mmを超えると、腐食が晶出物に集中して犠牲防食機能を大きく低下させることが判明した。なお、この面密度は小さい程好ましく、0個/mmが最も好ましい。 As a result of various studies by the present inventors, it is possible to prevent the above-described deterioration of the function as the sacrificial anticorrosive layer by defining the surface density of the coarse Mg-Si-based crystallized material present in the sacrificial anode material layer within a predetermined range. I found. Usually, the size of the Mg—Si based crystallized substance present in the sacrificial anode material layer is 0.1 to 10 μm as the equivalent circle diameter, but a coarse Mg—Si based crystallized substance that deteriorates the sacrificial anticorrosive function. Was found to be 1.0-10 μm in terms of equivalent circle diameter. Mg-Si based crystals having an equivalent circle diameter of less than 1.0 μm do not lower the sacrificial anticorrosive function. Further, Mg—Si based crystals having an equivalent circle diameter exceeding 10 μm hardly exist because they are re-dissolved by heat treatment such as homogenization. As a result of detailed examination, when the surface density of such a coarse Mg-Si based crystallized material having an equivalent circle diameter of 1.0 to 10 μm exceeds 30000 pieces / mm 2 , corrosion concentrates on the crystallized material and sacrifice corrosion prevention It has been found that the function is greatly reduced. In addition, this surface density is so preferable that it is small, and 0 piece / mm < 2 > is the most preferable.

上記Mg−Si系晶出物の面密度は、犠牲陽極材層の任意の部分を顕微鏡観察することによって測定される。例えば、厚さ方向に沿った断面や板材表面と平行な断面を観察するものである。簡便性の観点から、厚さ方向に沿った断面について測定するのが好ましい。なお、面密度は、複数個所の測定値の算術平均値として規定される。   The surface density of the Mg—Si-based crystallized product is measured by observing an arbitrary portion of the sacrificial anode material layer with a microscope. For example, a cross section along the thickness direction or a cross section parallel to the plate material surface is observed. From the viewpoint of simplicity, it is preferable to measure a cross section along the thickness direction. The surface density is defined as an arithmetic average value of measured values at a plurality of locations.

1−4.犠牲陽極材層中のMg−Si系析出物の体積密度
本発明に係るアルミニウム製クラッド管では、犠牲陽極材層表面から所定の深さ領域に存在する微細なMg−Si系析出物の体積密度を所定範囲に規定する。本発明者らは、本発明に係るアルミニウム製クラッド管の犠牲陽極材層がZnを含有しないにも拘わらず犠牲防食効果を発揮することを見出した。これは、犠牲陽極材層に、母材よりも卑な相や生成物が存在することを示唆するものである。検討の結果、顕微鏡観察では視認するのが難しい極めて微細なMg−Si系析出物が、犠牲防食効果発現の要因であることが判明した。このようなMg−Si系析出物はTEMなどの顕微鏡観察では視認するのが難しいが、175℃で5時間の増感処理を施すことにより顕微鏡観察が容易なサイズの針状のMg−Si系析出物が観察された。このことは、元々存在する極めて微細なMg−Si系析出物が増感処理により大きく成長したものと考えられる。本発明者らの更なる検討により、上記の増感処理後において、犠牲陽極材表面から5μmまでの深さの領域で観察される10〜1000nmの長さを示す針状のMg−Si系析出物の体積密度と犠牲防食効果との間に相関関係があることが判明した。なお、本発明者らの分析によれば、このような微細なMg−Si系析出物の増感処理前の元々の長さは、数nm〜50nmであるものと推定される。
1-4. Volume density of Mg-Si-based precipitates in the sacrificial anode material layer In the aluminum clad tube according to the present invention, the volume density of fine Mg-Si-based precipitates existing in a predetermined depth region from the surface of the sacrificial anode material layer. Is defined within a predetermined range. The present inventors have found that the sacrificial anode material layer of the aluminum clad tube according to the present invention exhibits a sacrificial anticorrosive effect even though it does not contain Zn. This suggests that the sacrificial anode material layer has a base phase and a product that are lower than the base material. As a result of the examination, it was found that extremely fine Mg—Si-based precipitates that are difficult to visually recognize by microscopic observation are the cause of the sacrificial anticorrosive effect. Such Mg-Si-based precipitates are difficult to visually recognize with a microscope such as TEM, but a needle-like Mg-Si-based size that can be easily observed with a microscope by performing sensitization treatment at 175 ° C for 5 hours. Precipitates were observed. This is considered that the very fine Mg-Si-based precipitate that originally existed is greatly grown by the sensitization treatment. According to further studies by the present inventors, acicular Mg-Si-based precipitation having a length of 10 to 1000 nm observed in a region having a depth of 5 μm from the surface of the sacrificial anode material after the above sensitization treatment. It was found that there is a correlation between the volume density of objects and the sacrificial anticorrosive effect. According to the analysis by the present inventors, the original length of such fine Mg—Si based precipitates before the sensitization treatment is estimated to be several nm to 50 nm.

そこで、更に検討を重ねたところ、上記増感処理後において長さ10〜1000nmの針状のMg−Si系析出物の体積密度が1000〜50000個/μmの場合に、良好な犠牲防食効果が得られることが判明した。体積密度が1000個/μm未満では、Mg−Si系析出物の析出量が少な過ぎるため犠牲防食効果が不十分であった。一方、体積密度が50000個/μmを超えると、Mg−Si系析出物の析出量が多過ぎるために腐食速度が速くなり過ぎて十分な耐食寿命が得られなかった。 Accordingly, further investigations have been made, and when the volume density of the needle-like Mg—Si-based precipitates having a length of 10 to 1000 nm after the sensitization treatment is 1000 to 50000 / μm 3 , a good sacrificial anticorrosive effect is obtained. Was found to be obtained. When the volume density was less than 1000 / μm 3 , the amount of Mg—Si-based precipitates was too small, and the sacrificial anticorrosive effect was insufficient. On the other hand, when the volume density exceeds 50000 / μm 3 , the amount of Mg—Si-based precipitates is too large, so that the corrosion rate is too high and sufficient corrosion resistance life cannot be obtained.

ここで、上記増感処理後に犠牲陽極材表面から5μmまでの深さの領域において観察されるMg−Si系析出物が10nm未満のものについては、増感処理後においても存在を明確に確認できないために対象としなかった。一方、1000nmを超えるものについては、腐食が集中して腐食速度が増大し、耐食性が悪化することが判明した。   Here, the presence of Mg—Si-based precipitates observed in the region of a depth of 5 μm from the sacrificial anode material surface after the sensitization treatment of less than 10 nm cannot be clearly confirmed even after the sensitization treatment. Was not targeted for. On the other hand, it has been found that for those exceeding 1000 nm, corrosion concentrates, the corrosion rate increases, and the corrosion resistance deteriorates.

Mg−Si系析出物の上記体積密度は、FIB(Focused Ion Beam)で作製した厚さ100〜200nm程度の試験片の100面における50万倍程度のTEM像を任意に複数箇所(5〜10箇所)撮影し、表面から5μmまでの深さの領域において100方向に沿って3方向に析出している長さ10〜1000nmの針状析出物の数を画像処理により測定し、測定体積で割ることで各測定箇所の密度を求めた。そして、複数個所の算術平均値をもって試料の密度分布とした。   The volume density of the Mg—Si-based precipitates can be obtained by arbitrarily setting a TEM image of about 500,000 times on a 100-side surface of a test piece having a thickness of about 100 to 200 nm manufactured by FIB (Focused Ion Beam) at multiple locations (5 to 10). The number of needle-like precipitates having a length of 10 to 1000 nm deposited in three directions along 100 directions in a region having a depth of 5 μm from the surface is measured by image processing and divided by the measurement volume. The density of each measurement location was determined. And the arithmetic average value of several places was made into the density distribution of the sample.

2.アルミニウム製クラッド管の製造方法
次に、本発明に係るアルミニウム製クラッド管の製造方法について説明する。この製造方法では、犠性陽極材層用のアルミニウム合金を半連続鋳造する半連続鋳造工程と;犠性陽極材層用の鋳塊をアルミニウム管の心材の内面及び外面の少なくとも一方に組み合わせてビレットとする組み合わせ工程と;ビレットを押出成形する押出成形工程と;を備え、半連続鋳造工程における鋳塊表面の冷却速度を1℃/秒以上とすることを特徴とする。そして、押出成形工程前にビレットを450〜570℃に加熱する加熱工程と;押出成形工程後にクラッド押出管を0.1〜1000℃/秒の速度で冷却する冷却工程と;を更に備えることが好ましい。また、この冷却工程後に、クラッド押出管を100〜300℃で5〜600分間熱処理する熱処理工程を更に備えるのが更に好ましい。
2. Next, a method for manufacturing an aluminum clad tube according to the present invention will be described. In this manufacturing method, a semi-continuous casting process in which an aluminum alloy for a sacrificial anode material layer is semi-continuously cast; and an ingot for the sacrificial anode material layer is combined with at least one of an inner surface and an outer surface of a core material of an aluminum tube to form a billet And an extrusion molding step of extruding a billet; and a cooling rate of the ingot surface in the semi-continuous casting step is 1 ° C./second or more. And a heating step of heating the billet to 450 to 570 ° C. before the extrusion molding step; and a cooling step of cooling the clad extruded tube at a rate of 0.1 to 1000 ° C./second after the extrusion molding step. preferable. Further, it is more preferable to further include a heat treatment step of heat treating the clad extruded tube at 100 to 300 ° C. for 5 to 600 minutes after the cooling step.

2−1.犠牲陽極材層用鋳塊の半連続鋳造工程における鋳塊表面の冷却速度
犠牲陽極材層用鋳塊は、半連続鋳造工程により製造される。この半連続鋳造工程において、犠性陽極材層用のアルミニウム合金の鋳塊表面の冷却速度を1℃/秒以上とする。冷却速度が1℃/秒未満の場合は、犠牲陽極材中に粗大なMg−Si系晶出物が生成し、Mg−Si系晶出物の適切分布が得られない。冷却速度は鋳塊組織を観察し、デンドライトアームスペーシングから算出することができる(軽金属学会研委員会著 「アルミニウムとデンドライトアームスペーシングと冷却速度の測定法」)。ここで鋳塊表面とは、最表面から30mmまでの範囲を言うものとする。
2-1. Ingot surface cooling rate in the semi-continuous casting process of the sacrificial anode material layer ingot The sacrificial anode material layer ingot is manufactured by the semi-continuous casting process. In this semi-continuous casting process, the cooling rate of the ingot surface of the aluminum alloy for the sacrificial anode material layer is set to 1 ° C./second or more. When the cooling rate is less than 1 ° C./second, coarse Mg—Si based crystals are generated in the sacrificial anode material, and appropriate distribution of Mg—Si based crystals cannot be obtained. The cooling rate can be calculated from the dendrite arm spacing by observing the ingot structure ("Method of measuring aluminum and dendrite arm spacing and cooling rate" by the Institute of Light Metals, Japan). Here, the ingot surface refers to a range from the outermost surface to 30 mm.

2−2.心材
アルミニウム材の心材は、常法に従ってDC鋳造法等によって鋳造される。心材の鋳塊は、必要に応じて均質化処理と面削を施してその所定の板厚とするか、或いは、熱間圧延や冷間圧延を更に施して所定の板厚とする。
2-2. Core Material The aluminum core material is cast by a DC casting method or the like according to a conventional method. The ingot of the core material is subjected to homogenization treatment and chamfering as necessary to obtain a predetermined plate thickness, or is further subjected to hot rolling or cold rolling to a predetermined plate thickness.

2−3.ろう材層
ろう材は、常法に従って連続鋳造法等によって鋳造される。ろう材の鋳塊は、必要に応じて面削、熱間圧延、冷間圧延を施して所定の板厚の圧延板とする。
2-3. Brazing material layer The brazing material is cast by a continuous casting method or the like according to a conventional method. The ingot of the brazing material is subjected to chamfering, hot rolling, and cold rolling as necessary to obtain a rolled plate having a predetermined thickness.

2−4.組み合わせ工程
2層クラッド管の場合には心材鋳塊の内面又は外面の一方に犠牲陽極材用鋳塊を配し、3層クラッド管の場合は他方に犠牲陽極材用鋳塊又はろう材用鋳塊を更に配して組み合わせてビレットとする。
2-4. Combining process In the case of a two-layer clad tube, a sacrificial anode material ingot is disposed on one of the inner surface or the outer surface of the core material ingot, and in the case of a three-layer clad tube, the other is a sacrificial anode material ingot or brazing material casting. A lump is further arranged and combined to form a billet.

2−6.押出成形工程前の加熱工程
次いで、上記ビレットを、押出成形工程前に450〜570℃に加熱される加熱工程にかけるのが好ましい。この加熱工程により、金属組織を均一にする均質化効果が得られるとともに、粗大なMg−Si系晶出物を再固溶させる。この効果を得るためには、熱処理温度が450℃とするのが好ましい。一方、熱処理温度が570℃を超えると、犠牲陽極材層が溶融するおそれがある。上記効果を得るためには、熱処理工程の保持時間は5分間以上とするのが好ましい。5分間未満では、十分な金属組織均一効果と粗大Mg−Si系晶出物の再固溶効果が得られない場合がある。生産性や経済性の観点から、この保持時間は20時間以下とするのが好ましい。
2-6. Heating step before the extrusion step Next, the billet is preferably subjected to a heating step heated to 450 to 570 ° C before the extrusion step. By this heating step, a homogenizing effect for making the metal structure uniform is obtained, and a coarse Mg-Si-based crystallized product is dissolved again. In order to obtain this effect, the heat treatment temperature is preferably 450 ° C. On the other hand, if the heat treatment temperature exceeds 570 ° C., the sacrificial anode material layer may be melted. In order to acquire the said effect, it is preferable that the holding time of a heat treatment process shall be 5 minutes or more. If it is less than 5 minutes, a sufficient metal structure uniform effect and a re-solution effect of coarse Mg-Si based crystals may not be obtained. From the viewpoint of productivity and economy, the holding time is preferably 20 hours or less.

2−7.押出成形工程
次いで、間接押出機によってビレットを押出してクラッド押出管を得る。押出成形には、通常の間接押出機を使用した押出成形法を用いることができる。
2-7. Next, the billet is extruded by an indirect extruder to obtain a clad extruded tube. For extrusion molding, an extrusion molding method using a normal indirect extruder can be used.

2−8.押出成形工程後の冷却工程
押出成形されたクラッド押出管を、0.1〜1000℃/秒の速度で冷却する冷却工程にかけるのが好ましい。Mg−Si系析出物は冷却中や室温において析出するが、冷却速度が0.1℃/秒未満ではこの析出物が粗大化する場合があり、1000℃/秒を超えると析出が微細になり過ぎる場合がある。なお、この冷却速度は、1〜100℃/秒が更に好ましい。
2-8. Cooling step after extrusion molding It is preferable to subject the extruded clad extruded tube to a cooling step of cooling at a rate of 0.1 to 1000 ° C / second. Mg-Si-based precipitates are deposited during cooling or at room temperature, but when the cooling rate is less than 0.1 ° C / second, this precipitate may become coarse, and when it exceeds 1000 ° C / second, the precipitate becomes fine. It may be too much. The cooling rate is more preferably 1 to 100 ° C./second.

2−9.冷却工程後の熱処理工程
上記冷却工程後に、クラッド押出管を100〜300℃で5分間以上熱処理する熱処理工程を更に備えるのが好ましい。この熱処理工程により、Mg−Si系析出物の析出を促進させることができる。熱処理温度が100℃未満の場合や熱処理時間が5分未満の場合には、Mg−Si系析出物の析出促進効果が不十分となる場合がある。一方、熱処理温度が300℃を超える場合には、Mg−Si系析出物が再固溶してしまう場合がある。熱処理時間が600分を超えることは、経済的な観点などから好ましくない。150〜250℃で10分間以上熱処理するのが更に好ましい。
2-9. Heat treatment step after cooling step It is preferable to further comprise a heat treatment step of heat treating the clad extruded tube at 100 to 300 ° C for 5 minutes or more after the cooling step. By this heat treatment step, precipitation of Mg—Si based precipitates can be promoted. When the heat treatment temperature is less than 100 ° C. or when the heat treatment time is less than 5 minutes, the effect of promoting the precipitation of Mg—Si based precipitates may be insufficient. On the other hand, when the heat treatment temperature exceeds 300 ° C., the Mg—Si based precipitate may be re-dissolved. It is not preferable that the heat treatment time exceeds 600 minutes from the economical viewpoint. More preferably, heat treatment is performed at 150 to 250 ° C. for 10 minutes or more.

2−10.抽伸加工工程
以上のようにして得られるクラッド押出管を、所定の外径と肉厚になるように抽伸加工にかけるのが好ましい。この抽伸加工には、生産性の高いドローブロック式連続抽伸機を使用するのが望ましい。
2-10. Drawing process It is preferable to subject the clad extruded tube obtained as described above to a drawing process so as to have a predetermined outer diameter and thickness. For this drawing process, it is desirable to use a draw block type continuous drawing machine with high productivity.

次に、本発明を実施例に基づいてさらに詳細に説明する。なお、これらの実施例は、本発明を説明するための例示に過ぎず、本発明の技術的範囲を限定するものでない。   Next, the present invention will be described in more detail based on examples. In addition, these Examples are only the illustrations for demonstrating this invention, and do not limit the technical scope of this invention.

本発明例1〜36、41〜47及び比較例1〜13、37〜40
犠牲陽極材層には、表1に示す組成の合金を用いた。これらの合金を表1に示す鋳塊表面冷却速度で半連続鋳造法により鋳造し面削を施した。心材には、表2に示す組成の合金を用いた。これら心材用合金を半連続鋳造法により鋳造した。心材用鋳塊は、520℃で6時間の均質化処理を行い、所定の厚さに面削した。なお、犠牲陽極材層用鋳塊の板厚及び面削後の心材用鋳塊の厚さは、犠牲陽極材層の片面クラッド率が10%となるように調整した。
Invention Examples 1-36, 41-47 and Comparative Examples 1-13 , 37-40
An alloy having the composition shown in Table 1 was used for the sacrificial anode material layer. These alloys were cast by the semi-continuous casting method at the ingot surface cooling rate shown in Table 1 and faced. As the core material, an alloy having the composition shown in Table 2 was used. These core alloys were cast by a semi-continuous casting method. The ingot for the core material was homogenized at 520 ° C. for 6 hours and chamfered to a predetermined thickness. The plate thickness of the sacrificial anode material layer ingot and the thickness of the core material ingot after chamfering were adjusted so that the single-sided cladding ratio of the sacrificial anode material layer was 10%.

Figure 2017137581
Figure 2017137581

Figure 2017137581
Figure 2017137581

次に、心材用鋳塊の片面に犠牲陽極材層用鋳塊を重ねて表3、4に示すように組み合わせてビレットを作製した。表3、4に示す条件で、これらのビレットを押出成形工程前の加熱工程にかけた。次いで、加熱処理したビレットを用いて、間接押出機によって外径47mm、肉厚3.5mmのクラッド押出管を成形した。得られたクラッド押出管を、表3、4に示す条件で押出成形工程後の冷却工程にかけた。更に、冷却したクラッド押出管を表3、4に示す冷却工程後の熱処理工程にかけた。最後に、クラッド押出管をドローブロック式連続抽伸機により抽伸加工を施し、外径10mm、肉厚0.8mm、クラッド率10%の2層クラッド押出管試料を作製した。   Next, a billet was prepared by overlapping the ingot for sacrificial anode material layer on one side of the ingot for core material and combining them as shown in Tables 3 and 4. Under the conditions shown in Tables 3 and 4, these billets were subjected to a heating step before the extrusion molding step. Next, a clad extrusion tube having an outer diameter of 47 mm and a wall thickness of 3.5 mm was formed by an indirect extruder using the heat-treated billet. The obtained clad extruded tube was subjected to a cooling process after the extrusion molding process under the conditions shown in Tables 3 and 4. Further, the cooled clad extruded tube was subjected to a heat treatment step after the cooling step shown in Tables 3 and 4. Finally, the clad extruded tube was drawn by a draw block type continuous drawing machine to prepare a double-layer clad extruded tube sample having an outer diameter of 10 mm, a wall thickness of 0.8 mm, and a clad rate of 10%.

Figure 2017137581
Figure 2017137581

Figure 2017137581
Figure 2017137581

以上のようにして作製した2層クラッド押出管試料の特性を、以下のようにして評価した。   The characteristics of the two-layer clad extruded tube sample produced as described above were evaluated as follows.

(a)犠牲陽極材層中のMg−Si系晶出物の面密度
2層クラッド板試料の犠牲陽極材層からミクロ組織観察用試験片を切出し、厚さ方向の断面におけるMg−Si系の晶出物分布を測定した。SEM(Scanning Electron Microscope)を用い、2500倍の組成像を観察し、5視野選択し、黒く観察されるMg−Si系の晶出物を画像処理により抽出して円相当直径1.0〜10μmの面密度を測定し、5視野の算術平均値を求めた。
(A) Surface density of Mg—Si based crystallized material in sacrificial anode material layer A specimen for microstructural observation was cut out from the sacrificial anode material layer of the two-layer clad plate sample, and the Mg—Si based cross section in the thickness direction was cut. The crystallized product distribution was measured. Using SEM (Scanning Electron Microscope), observe 2500 times composition image, select 5 fields of view, extract Mg-Si-based crystallized material observed in black by image processing, and equivalent circle diameter of 1.0-10 μm The surface density was measured, and the arithmetic average value of 5 fields of view was obtained.

(b)犠牲陽極材層中のMg−Si系析出物の体積密度
2層クラッド板試料を、175℃で5時間熱処理した。次いで、犠牲陽極材表面からFIB(Focused Ion Beam)で厚さ100〜200nm程度の試験片を作製した。試料片の表面から5μmまでの深さの領域において、アルミニウムマトリックスの100面に沿って3方向に析出する針状の析出物を、50万倍の倍率で透過型電子顕微鏡(TEM)を用いて任意に5箇所観察した。各箇所の画像中において、長さ10〜1000nmを有する針状のMg−Si系析出物数を計測した。更に、この針状析出物と直行する点状析出物(針状のものを正面から観察するので点状に見える)のうち100nm以下のものの数も計測し、これらを針状析出物の数と合計したものを、測定体積で割って各観察箇所におけるMg−Si系析出物の体積密度とした。最後に、各観察箇所における体積密度の算術平均値を算出して、試料におけるMg−Si系析出物の体積密度とした。ここで、点状析出物(針状のものを正面から観察するので点状に見える)の数も合計している理由は以下である。すなわち、針状のMg−Si系析出物はアルミニウムマトリックス中の100面に沿って3方向に同様に析出しており、点状に見える析出物も直角方向から見れば長さ10〜1000nmを満たす可能性がある。長さ10nm未満のMg−Si系析出物は透過型電子顕微鏡(TEM)では観察が難しく正面から見ても明確には点として認識・計測できない。長さが1000nmを超える針状のMg−Si系析出物は正面から見た場合、太さが100nmを超えるのでそれは計測から除外した。また、Mg−Si系晶出物が点として見える場合にも直径が200nm以上なのでそれも計測から除外した。
(B) Volume density of Mg—Si based precipitate in sacrificial anode material layer A two-layer clad plate sample was heat-treated at 175 ° C. for 5 hours. Next, a test piece having a thickness of about 100 to 200 nm was produced from the surface of the sacrificial anode material by FIB (Focused Ion Beam). Using a transmission electron microscope (TEM) at a magnification of 500,000 times, needle-like precipitates precipitated in three directions along the 100 plane of the aluminum matrix in a region having a depth of 5 μm from the surface of the sample piece. Five points were observed arbitrarily. In the image of each location, the number of acicular Mg-Si based precipitates having a length of 10 to 1000 nm was measured. Furthermore, the number of the needle-like precipitates perpendicular to the needle-like precipitates (which look like dots because the needle-like ones are observed from the front) was also counted, and these were totaled with the number of needle-like precipitates. This was divided by the measurement volume to obtain the volume density of the Mg—Si based precipitates at each observation location. Finally, the arithmetic average value of the volume density at each observation location was calculated and used as the volume density of the Mg—Si based precipitate in the sample. Here, the reason why the number of point-like precipitates (which look point-like as the needle-like object is observed from the front) is also summed up is as follows. That is, acicular Mg-Si-based precipitates are similarly deposited in three directions along the 100 plane in the aluminum matrix, and the precipitates that appear to be dot-like satisfy a length of 10 to 1000 nm when viewed from a right angle direction. there is a possibility. An Mg—Si-based precipitate having a length of less than 10 nm is difficult to observe with a transmission electron microscope (TEM) and cannot be clearly recognized and measured as a point even when viewed from the front. When the needle-like Mg-Si based precipitate having a length exceeding 1000 nm was viewed from the front, the thickness exceeded 100 nm, and thus it was excluded from the measurement. Further, even when the Mg-Si-based crystallized substance was seen as a point, the diameter was 200 nm or more, and it was excluded from the measurement.

(c)SWAAT試験
2層クラッド板試料を用いて、大気曝露環境を模擬したASTM G85に準じたSWAATを1500時間行った。SWAAT試験後において、試験片の表面の腐食生成物を除去し腐食深さを測定した。測定箇所は10箇所とし、それらの最大値をもって腐食深さとした。腐蝕深さが80μm未満の場合を優良とし、80μm以上の場合と貫通の場合を不良とした。
(C) SWAAT test Using a two-layer clad plate sample, SWAAT according to ASTM G85 simulating atmospheric exposure environment was performed for 1500 hours. After the SWAAT test, the corrosion product on the surface of the test piece was removed and the corrosion depth was measured. The number of measurement points was 10, and the maximum value was taken as the corrosion depth. The case where the corrosion depth was less than 80 μm was determined to be excellent, and the case where the corrosion depth was 80 μm or more and the case of penetration were determined to be poor.

(d)循環サイクル試験
更なる耐食性の評価として、水系冷媒環境を模擬した循環サイクル試験を行った。Cl:195ppm、SO 2−:60ppm、Cu2+:1ppm、Fe2+:30ppmを含有し温度88℃の水溶液を、上記熱処理した試料片の試験面に対して比液量6mL/cm、流速2m/秒で8時間流通し、その後、試料片を16時間放置した。このような加熱流通と放置からなるサイクルを3ヶ月間行った。循環サイクル試験後において、試験片の表面の腐食生成物を除去し腐食深さを測定した。測定箇所は10箇所とし、それらの最大値をもって腐食深さとした。腐蝕深さが78μm未満の場合を優良とし、78μm以上の場合と貫通の場合を不良とした。なお、心材表面にはマスキングを施し、試験水溶液に触れないようにした。
(D) Circulation cycle test As a further evaluation of corrosion resistance, a circulation cycle test simulating an aqueous refrigerant environment was conducted. An aqueous solution containing Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 ppm, Fe 2+ : 30 ppm and having a temperature of 88 ° C. was measured at a specific liquid amount of 6 mL / cm 2 with respect to the test surface of the heat-treated sample piece. The sample was allowed to flow for 8 hours at a flow rate of 2 m / second, and then the sample piece was left for 16 hours. Such a cycle consisting of heating and leaving was performed for 3 months. After the circulation cycle test, corrosion products on the surface of the test piece were removed and the corrosion depth was measured. The number of measurement points was 10, and the maximum value was taken as the corrosion depth. The case where the corrosion depth was less than 78 μm was determined to be excellent, and the case where the corrosion depth was 78 μm or more and the case of penetration were determined to be poor. The core material surface was masked to avoid contact with the test aqueous solution.

以上の(a)〜(d)の各評価結果を、表5、6に示す。   Tables 5 and 6 show the evaluation results of the above (a) to (d).

Figure 2017137581
Figure 2017137581

Figure 2017137581
Figure 2017137581

表5に示すように、本発明例1〜36では、Mg−Si系晶出物の面密度及びMg−Si系析出物の体積密度が規定範囲内であり、SWAAAT後及び循環サイクル試験による腐食深さが80μm未満で、犠牲陽極材層を貫通するものではなかった。   As shown in Table 5, in Examples 1-36 of the present invention, the surface density of the Mg—Si based crystallized material and the volume density of the Mg—Si based precipitate are within the specified ranges, and corrosion after SWAAAT and by the cyclic cycle test The depth was less than 80 μm and did not penetrate the sacrificial anode material layer.

比較例37〜40では、Mg−Si系晶出物の面密度は規定範囲内であるが、Mg−Si系析出物の体積密度が規定範囲外であるため、SWAAAT後及び循環サイクル試験による腐食深さが80μm程度となって、耐食性が不良であった。   In Comparative Examples 37 to 40, the surface density of the Mg—Si based crystallized material is within the specified range, but the volume density of the Mg—Si based precipitate is outside the specified range, and therefore, corrosion after SWAAAT and cyclic cycle test. The depth was about 80 μm and the corrosion resistance was poor.

本発明例41〜46では、押出成形後の冷却工程を経たクラッド押出管を熱処理することにより、Si系析出物の体積密度が増大しており、SWAAAT後及び循環サイクル試験による耐食性に更に優れていた。   In Invention Examples 41 to 46, the volume density of the Si-based precipitates is increased by heat-treating the clad extrusion tube that has undergone the cooling step after extrusion, and is further excellent in corrosion resistance after SWAAAT and by the cyclic cycle test. It was.

本発明例47では、熱処理時間が短いために、Si系析出物の体積密度の増大効果が低く、SWAAAT後及び循環サイクル試験による耐食性は未熱処理品と同等であった。   In Invention Example 47, since the heat treatment time was short, the effect of increasing the volume density of the Si-based precipitates was low, and the corrosion resistance after SWAAAT and the cyclic cycle test was equivalent to that of the unheated product.

これに対して、表6に示すように比較例1では、犠牲陽極材層用鋳塊の半連続鋳造工程において鋳塊表面の冷却速度が遅かったため、Mg−Si系晶出物の面密度が多かった。その結果、SWAAAT後及び循環サイクル試験による腐食深さが80μmを大きく超え、犠牲陽極材層を貫通して心材の一部まで腐食した。   On the other hand, as shown in Table 6, in Comparative Example 1, the cooling rate of the ingot surface was slow in the semi-continuous casting process of the sacrificial anode material layer ingot, so the surface density of the Mg—Si-based crystallized product was low. There were many. As a result, the corrosion depth after SWAAAT and the cyclic cycle test greatly exceeded 80 μm, and the sacrificial anode material layer was penetrated to part of the core material.

比較例2では、犠牲陽極材層のSi含有量が少なかったため、犠牲陽極材層の強度が不足し、クラッド管製造時に犠牲陽極材層の不均一な伸びが発生し、犠牲陽極材層のクラッド率が不均一となり、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 2, since the Si content of the sacrificial anode material layer was small, the strength of the sacrificial anode material layer was insufficient, and the sacrificial anode material layer was unevenly stretched during the manufacture of the clad tube. The rate was not uniform, and each of the evaluations (a) to (d) could not be performed.

比較例3では、犠牲陽極材層のSi含有量が多かったため、押出成形工程後に犠牲陽極材層が溶融した。その結果、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 3, the sacrificial anode material layer melted after the extrusion molding process because the sacrificial anode material layer had a high Si content. As a result, each of the evaluations (a) to (d) could not be performed.

比較例4では、犠牲陽極材層のMg含有量が少なかったため、犠牲陽極材層の強度が不足し、クラッド管製造時に犠牲陽極材層の不均一な伸びが発生し、犠牲陽極材層のクラッド率が不均一となり、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 4, since the Mg content of the sacrificial anode material layer was small, the strength of the sacrificial anode material layer was insufficient, and the sacrificial anode material layer was unevenly stretched during the production of the clad tube. The rate was not uniform, and each of the evaluations (a) to (d) could not be performed.

比較例5では、犠牲陽極材層のMg含有量が多かったため、押出成形工程において犠牲陽極材層と心材が一部接合されなかった。その結果、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 5, since the Mg content in the sacrificial anode material layer was large, the sacrificial anode material layer and the core material were not partly joined in the extrusion process. As a result, each of the evaluations (a) to (d) could not be performed.

比較例6では、犠牲陽極材層のFe含有量が多かった。その結果、腐食速度が増大し、SWAAAT後及び循環サイクル試験による腐食深さが80μmを大きく超え、犠牲陽極材層を貫通して心材の一部まで腐食した。   In Comparative Example 6, the sacrificial anode material layer had a high Fe content. As a result, the corrosion rate increased, the corrosion depth after SWAAAT and by the cyclic cycle test greatly exceeded 80 μm, and the sacrificial anode material layer was penetrated to part of the core material.

比較例7では、犠牲陽極材層のCu含有量が多かった。その結果、腐食速度が増大し、SWAAAT後及び循環サイクル試験による腐食深さが80μmを大きく超え、犠牲陽極材層を貫通して心材の一部まで腐食した。   In Comparative Example 7, the content of Cu in the sacrificial anode material layer was large. As a result, the corrosion rate increased, the corrosion depth after SWAAAT and by the cyclic cycle test greatly exceeded 80 μm, and the sacrificial anode material layer was penetrated to part of the core material.

比較例8では、犠牲陽極材層のMn含有量が多かったため、鋳造時に割れが発生した。その結果、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 8, since the Mn content of the sacrificial anode material layer was large, cracks occurred during casting. As a result, each of the evaluations (a) to (d) could not be performed.

比較例9では、犠牲陽極材層のTi含有量が多かったため、鋳造時に割れが発生した。その結果、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 9, cracks occurred during casting because the Ti content of the sacrificial anode material layer was large. As a result, each of the evaluations (a) to (d) could not be performed.

比較例10では、犠牲陽極材層のZr含有量が多かったため、鋳造時に割れが発生した。その結果、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 10, since the Zr content of the sacrificial anode material layer was large, cracks occurred during casting. As a result, each of the evaluations (a) to (d) could not be performed.

比較例11では、犠牲陽極材層のCr含有量が多かったため、鋳造時に割れが発生した。その結果、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 11, cracks occurred during casting because the Cr content of the sacrificial anode material layer was large. As a result, each of the evaluations (a) to (d) could not be performed.

比較例12では、犠牲陽極材層のNi含有量が多かった。その結果、腐食速度が増大し、SWAAAT後及び循環サイクル試験による腐食深さが80μmを大きく超え、犠牲陽極材層を貫通して心材の一部まで腐食した。   In Comparative Example 12, the Ni content of the sacrificial anode material layer was large. As a result, the corrosion rate increased, the corrosion depth after SWAAAT and by the cyclic cycle test greatly exceeded 80 μm, and the sacrificial anode material layer was penetrated to part of the core material.

比較例13では、犠牲陽極材層のV含有量が多かったため、鋳造時に割れが発生した。その結果、(a)〜(d)の各評価を行なうことができなかった。   In Comparative Example 13, cracks occurred during casting because the V content of the sacrificial anode material layer was large. As a result, each of the evaluations (a) to (d) could not be performed.

本発明により、ルームエアコンの配管、自動車用熱交換器の配管、自動車及び各種産業用機器の配管として、大気環境、塩害環境、海水環境、酸性やアルカリ性の特殊環境等においても良好な耐食性を発揮するアルミニウム製クラッド管が提供される。   According to the present invention, as a piping for room air conditioners, piping for heat exchangers for automobiles, piping for automobiles and various industrial equipment, it exhibits good corrosion resistance even in atmospheric environments, salt damage environments, seawater environments, acidic and alkaline special environments, etc. An aluminum clad tube is provided.

Claims (3)

アルミニウム管の心材と、当該心材の内面及び外面の少なくとも一方にクラッドされた犠性陽極材層を備えるアルミニウム製クラッド管において、前記犠性陽極材層が、Si:0.10〜1.50mass%、Mg:0.10〜2.00mass%を含有し、Zn:0.05mass%以下に規制され、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠性陽極材層に存在する円相当直径1.0〜10μmのMg−Si系晶出物が30000個/mm以下であり、175℃で5時間の増感処理後に、前記犠牲陽極材層表面から5μmまでの深さの領域において観察され、当該犠牲陽極材のマトリックスより電位が卑な長さ10〜1000nmのMg−Si系析出物が1000〜50000個/μmであることを特徴とするアルミニウム製クラッド管。 In an aluminum clad tube comprising a core material of an aluminum tube and a sacrificial anode material layer clad on at least one of an inner surface and an outer surface of the core material, the sacrificial anode material layer is made of Si: 0.10 to 1.50 mass%. Mg: 0.10 to 2.00 mass%, Zn: 0.05 mass% or less, consisting of an aluminum alloy composed of the balance Al and unavoidable impurities, equivalent to a circle present in the sacrificial anode material layer In a region having a depth of up to 5 μm from the surface of the sacrificial anode material layer after sensitizing treatment at 175 ° C. for 5 hours, the Mg—Si based crystals having a diameter of 1.0 to 10 μm are 30000 pieces / mm 2 or less. observed, wherein the Mg-Si based precipitate of potential than the matrix of the sacrificial anode material less noble length 10~1000nm is 1,000 to 50,000 pieces / [mu] m 3 Aluminum cladding tube. 前記犠牲陽極材層のアルミニウム合金が、Fe:0.05〜1.00mass%、Ni:0.05〜1.00mass%、Cu:0.05〜1.00mass%、Mn:0.05〜1.50mass%、Ti:0.05〜0.30mass%、Zr:0.05〜0.30mass%、Cr:0.05〜0.30mass%及びV:0.05〜0.30mass%から選択される1種以上を更に含有する、請求項1に記載のアルミニウム製クラッド管。   The aluminum alloy of the sacrificial anode material layer is Fe: 0.05-1.00 mass%, Ni: 0.05-1.00 mass%, Cu: 0.05-1.00 mass%, Mn: 0.05-1 .50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass% The aluminum clad tube according to claim 1, further comprising at least one selected from the group consisting of: 前記アルミニウム管の心材の内面及び外面の一方に犠性陽極材層がクラッドされており、他方にろう材層がクラッドされている、請求項1又は2に記載のアルミニウム製クラッド管。   The aluminum clad tube according to claim 1 or 2, wherein a sacrificial anode material layer is clad on one of an inner surface and an outer surface of a core material of the aluminum tube, and a brazing material layer is clad on the other.
JP2017071093A 2017-03-31 2017-03-31 Aluminum clad tube and manufacturing method thereof Expired - Fee Related JP6345296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071093A JP6345296B2 (en) 2017-03-31 2017-03-31 Aluminum clad tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071093A JP6345296B2 (en) 2017-03-31 2017-03-31 Aluminum clad tube and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012202118A Division JP6166856B2 (en) 2012-09-13 2012-09-13 Aluminum clad tube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017137581A true JP2017137581A (en) 2017-08-10
JP6345296B2 JP6345296B2 (en) 2018-06-20

Family

ID=59566289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071093A Expired - Fee Related JP6345296B2 (en) 2017-03-31 2017-03-31 Aluminum clad tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6345296B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228694A (en) * 1993-02-04 1994-08-16 Furukawa Alum Co Ltd High strength and high corrosion resistant aluminum alloy composite for heat exchanger
JPH1180871A (en) * 1997-09-08 1999-03-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance
US20050095447A1 (en) * 2003-10-29 2005-05-05 Stephen Baumann High-strength aluminum alloy composite and resultant product
JP2008266738A (en) * 2007-04-20 2008-11-06 Furukawa Sky Kk Three-layer clad aluminum tube, and method for manufacturing internally grooved tube made of aluminum
JP2010095758A (en) * 2008-10-16 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for automotive heat exchanger for brazed tube making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228694A (en) * 1993-02-04 1994-08-16 Furukawa Alum Co Ltd High strength and high corrosion resistant aluminum alloy composite for heat exchanger
JPH1180871A (en) * 1997-09-08 1999-03-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance
US20050095447A1 (en) * 2003-10-29 2005-05-05 Stephen Baumann High-strength aluminum alloy composite and resultant product
JP2008266738A (en) * 2007-04-20 2008-11-06 Furukawa Sky Kk Three-layer clad aluminum tube, and method for manufacturing internally grooved tube made of aluminum
JP2010095758A (en) * 2008-10-16 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for automotive heat exchanger for brazed tube making

Also Published As

Publication number Publication date
JP6345296B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
US11408690B2 (en) Method for producing aluminum alloy clad material
US9976200B2 (en) Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor
US9976201B2 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
WO2015162911A1 (en) Aluminum cladding material, production method therefor, aluminum cladding material for heat exchangers, production method therefor, aluminum heat exchanger using said aluminum cladding material for heat exchangers, and production method therefor
US10378088B2 (en) Aluminum alloy fin material and heat exchanger
JPWO2015107982A1 (en) Aluminum alloy material and manufacturing method thereof, and aluminum alloy clad material and manufacturing method thereof
US10688601B2 (en) Aluminum alloy cladding material and manufacturing method therefor
WO2017175762A1 (en) Aluminum alloy material and production method therefor, and aluminum alloy cladding material using aluminum alloy material
EP3915719A1 (en) Aluminum brazing sheet for flux-free brazing
CN106133162B (en) Aluminum-alloy clad sheet
JP6166856B2 (en) Aluminum clad tube and manufacturing method thereof
JP2012067385A (en) Brazing sheet and method for producing the same
JP6351924B2 (en) Aluminum clad plate for heat exchanger and method for producing the same, aluminum heat exchanger using the clad plate and method for producing the same
US10183362B2 (en) Clad aluminum alloy material with excellent corrosion resistance and brazeability and method for producing the same
JP5841719B2 (en) Aluminum alloy clad material
JP6345296B2 (en) Aluminum clad tube and manufacturing method thereof
JP6178483B1 (en) Aluminum alloy brazing sheet
JP5792696B2 (en) High strength copper alloy tube
JP6526434B2 (en) Aluminum alloy fin material
JP2014031588A (en) Aluminum alloy clad material for a heat exchanger
JP2012148344A (en) Aluminum alloy composite material and heat exchanger
JP2020509229A (en) Aluminum alloys, extruded tubes formed from aluminum alloys, and heat exchangers
JP2018178170A (en) Thin wall fin material excellent in erosion resistance, manufacturing method of thin wall fin material excellent in erosion resistance, and manufacturing method of heat exchanger
JPS60138083A (en) Composite al alloy material for fin of heat exchanger having superior strength at high temperature and significant sacrificial anode effect

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180522

R150 Certificate of patent or registration of utility model

Ref document number: 6345296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees