JP2017135773A - Power supply switching device - Google Patents

Power supply switching device Download PDF

Info

Publication number
JP2017135773A
JP2017135773A JP2016011393A JP2016011393A JP2017135773A JP 2017135773 A JP2017135773 A JP 2017135773A JP 2016011393 A JP2016011393 A JP 2016011393A JP 2016011393 A JP2016011393 A JP 2016011393A JP 2017135773 A JP2017135773 A JP 2017135773A
Authority
JP
Japan
Prior art keywords
voltage
contact
power
power supply
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016011393A
Other languages
Japanese (ja)
Other versions
JP6671979B2 (en
Inventor
川端 豪
Takeshi Kawabata
豪 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2016011393A priority Critical patent/JP6671979B2/en
Publication of JP2017135773A publication Critical patent/JP2017135773A/en
Application granted granted Critical
Publication of JP6671979B2 publication Critical patent/JP6671979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply switching device capable of holding the switching of operation until a predetermined condition is satisfied.SOLUTION: Main contact points 22 and 30 of an electromagnetic breaker are connected to between a system power supply 6 and an inverter 16 that converts a generated direct current power. The main contact points switch and disconnect a connected system connecting the system power supply 6 and the inverter 16, to/from an autonomous operation in which the inverter 16 is disconnected from the system power supply 6. When a relay control part 32 switches the main contact points 22 and 30 in accordance with an external command, and receives the external command, the switching of main contact points 22 and 30 is held until a predetermined internal condition is satisfied.SELECTED DRAWING: Figure 2

Description

本発明は、電源切換装置に関し、例えば太陽電池のように電圧が変動しやすい電源に基づく交流電力の交流電力系統への切換装置に関する。   The present invention relates to a power supply switching device, for example, a switching device for switching AC power to an AC power system based on a power source whose voltage is likely to fluctuate, such as a solar battery.

太陽電池に基づく交流電力を交流電力系統に接続したり、切断したりする技術が、特許文献1に開示されている。特許文献1の技術によれば、太陽電池は昇圧チョッパに接続され、昇圧チョッパはインバータ等を含むパワーコンディショナーに接続されている。このパワーコンディショナーの出力側と交流電力系統との間に、系統連系用のリレースイッチが設けられ、このリレースイッチは制御回路によって制御されている。   Patent Document 1 discloses a technique for connecting or disconnecting AC power based on a solar cell to an AC power system. According to the technique of Patent Document 1, the solar cell is connected to a boost chopper, and the boost chopper is connected to a power conditioner including an inverter and the like. A relay switch for grid connection is provided between the output side of the power conditioner and the AC power system, and this relay switch is controlled by a control circuit.

特許文献1には、詳細には記載されていないが、リレースイッチとしては、省電力化の観点から図2及び図4に示すようなラッチリレーの主接点を使用することがある。図2において、パワーコンディショナー4は、電磁接触器の主接点18を有し、第1の被駆動手段である主接点22、30を備えたリレースイッチ21も有し、インバータ16の出力側がリレースイッチ21とスコットトランス24を介して出力端子29と接続されている。これら主接点22、30は、夫々リレー回路33、34によって開閉駆動される。なお、インバータ16と電力系統6との間、およびインバータ16と出力端子29との間には、夫々図示しない電磁遮断器が介在し、異常時等にパワーコンディショナー4と、電力系統6や出力端子29とを必要に応じて適宜遮断するようにされているが、ここでは説明を割愛する。   Although not described in detail in Patent Document 1, as a relay switch, a main contact of a latch relay as shown in FIGS. 2 and 4 may be used from the viewpoint of power saving. In FIG. 2, the power conditioner 4 has a main contact 18 of an electromagnetic contactor, a relay switch 21 having main contacts 22 and 30 as first driven means, and the output side of the inverter 16 is a relay switch. 21 and a Scott transformer 24 and are connected to an output terminal 29. These main contacts 22 and 30 are opened and closed by relay circuits 33 and 34, respectively. An electromagnetic circuit breaker (not shown) is interposed between the inverter 16 and the power system 6 and between the inverter 16 and the output terminal 29, and the power conditioner 4, the power system 6 and the output terminal are connected in the event of an abnormality. 29 is appropriately blocked as necessary, but the description is omitted here.

連系運転時には、電磁遮断器の主接点18と主接点22が閉じられ、主接点30が開放されており、インバータ16と電力系統6とが連系して出力端子29に出力が供給されている。このような状態において、例えば、各家庭で発電された電力が、出力端子29に接続された負荷の要求する電力よりも大きい場合、インバータ16から出力された余剰電力は、電力系統6に逆潮流される。ここで、停電等の系統異常時には、外部司令部10からインバータ16を電力系統6から切り離して自立運転を行うよう、指令信号が出力される。なお、外部司令部10は、発電電力が電力系統6の許容値を超えるような場合にも、系統保護のために、単独運転を指示することも考えられる。指令信号に応じて電磁遮断器の主接点18と主接点22が遮断される一方、自立運転用の主接点30が接続されて、インバータ16の出力が主接点30を介して出力端子29に出力されることにより、パワーコンディショナー4が電力系統6とは遮断された自立運転に切り換わる。このような切換に用いられるリレースイッチ21として、ラッチ式のリレー回路33、34が用いられることがある。   During the interconnection operation, the main contact 18 and the main contact 22 of the electromagnetic circuit breaker are closed, the main contact 30 is opened, and the inverter 16 and the power system 6 are linked to supply output to the output terminal 29. Yes. In such a state, for example, when the electric power generated in each home is larger than the electric power required by the load connected to the output terminal 29, the surplus electric power output from the inverter 16 flows backward to the electric power system 6. Is done. Here, when a system abnormality such as a power failure occurs, a command signal is output from the external command unit 10 so that the inverter 16 is disconnected from the power system 6 and the autonomous operation is performed. Note that the external command unit 10 may instruct a single operation for system protection even when the generated power exceeds the allowable value of the power system 6. In response to the command signal, the main contact 18 and the main contact 22 of the electromagnetic circuit breaker are cut off, while the main contact 30 for independent operation is connected, and the output of the inverter 16 is output to the output terminal 29 via the main contact 30. As a result, the power conditioner 4 is switched to a self-sustained operation that is disconnected from the power system 6. As the relay switch 21 used for such switching, latch-type relay circuits 33 and 34 may be used.

図4に、ラッチ式のリレー回路33の一般的な構成を示し、同一構成のリレー回路34の説明は省略する。リレー回路33は、第1の被駆動手段である主接点22と、第2の接点、例えばリレー常開接点52no及びリレー常閉接点52ncからなる第2の被駆動手段52を有している。リレー常開接点52noとリレー常閉接点52ncは連動する。主接点22は、セット側にそれぞれ第1の駆動手段の一部をなす駆動素子、例えば駆動コイル22ccと第1の接点、例えば常閉接点22nc及び整流回路22crを備え、リセット側にそれぞれ第1の駆動手段の他の部分をなす駆動コイル22ocと常開接点22no及び整流回路22orを備えている。また、リレー回路33は、第2の駆動手段であるリレー駆動コイル46と、第3の接点、例えば常開接点56を備えており、太陽電池2に基づく電源36から電力供給されている。リレー駆動コイル46は、リレー常開接点52noとリレー常閉接点52ncとを開閉制御する。   FIG. 4 shows a general configuration of the latch-type relay circuit 33, and the description of the relay circuit 34 having the same configuration is omitted. The relay circuit 33 includes a main contact 22 which is a first driven means, and a second driven means 52 including a second contact, for example, a relay normally open contact 52no and a relay normally closed contact 52nc. The relay normally open contact 52no and the relay normally closed contact 52nc are interlocked. The main contact 22 includes a drive element that forms a part of the first drive means on the set side, for example, a drive coil 22cc and a first contact, for example, a normally closed contact 22nc and a rectifier circuit 22cr. A drive coil 22oc, a normally open contact 22no, and a rectifier circuit 22or, which constitute other parts of the drive means, are provided. The relay circuit 33 includes a relay drive coil 46 as a second drive means and a third contact, for example, a normally open contact 56, and is supplied with power from a power source 36 based on the solar cell 2. The relay drive coil 46 controls opening and closing of the relay normally open contact 52no and the relay normally closed contact 52nc.

外部司令部10から連系運転の指令が与えられると、常開接点56が閉じられて、電源36から、リレー駆動コイル46に電圧が印加される。これによって、開かれていたリレー常開接点52noが閉じられ、閉じられていたリレー常閉接点52ncが開かれる。このとき、常閉接点22ncが既に閉じられているので、駆動コイル22ccに電源36から電圧が印加され、駆動コイル22ccに電流が流れて、主接点22を閉じると同時に、常閉接点22ncを開放し、かつ常閉接点22ncの開放に連動して常開接点22noを閉じる。このときリレー常閉接点52ncはリレー駆動コイル46によって開いているため、駆動コイル22ocには、電流が流れず、主接点22は、閉じたままである。このようにして主接点22が閉じられて、連系運転状態に切り換えられる。この連系運転状態での各接点の状態は、リレー常開接点52noが閉、常閉接点22ncが開、リレー常閉接点52ncが開、常開接点22noが閉のリセット待機状態であり、ラッチリレーであるので各接点はその状態を維持する。   When a command for interconnection operation is given from the external command unit 10, the normally open contact 56 is closed, and a voltage is applied from the power source 36 to the relay drive coil 46. As a result, the relay normally open contact 52no that has been opened is closed, and the relay normally closed contact 52nc that has been closed is opened. At this time, since the normally closed contact 22nc has already been closed, a voltage is applied to the drive coil 22cc from the power source 36, and a current flows through the drive coil 22cc to close the main contact 22 and simultaneously open the normally closed contact 22nc. The normally open contact 22no is closed in conjunction with the opening of the normally closed contact 22nc. At this time, since the relay normally closed contact 52nc is opened by the relay drive coil 46, no current flows through the drive coil 22oc, and the main contact 22 remains closed. In this way, the main contact 22 is closed and switched to the connected operation state. The state of each contact in this connected operation state is a reset standby state in which the relay normally open contact 52no is closed, the normally closed contact 22nc is open, the relay normally closed contact 52nc is open, and the normally open contact 22no is closed. Since it is a relay, each contact maintains its state.

外部司令部10から自立運転の指令が与えられると、常開接点56が開放され、リレー駆動コイル46への電源36からの印加電圧がなくなり、リレー常開接点52noが開放され、これに連動してリレー常閉接点52ncが閉じられる。すると常開接点22noは既に閉じられているため、リセット側の駆動コイル22ocに電流が流れて、主接点22が開放されて自立運転状態となる。主接点22が開放されるとほぼ同時に、駆動コイル22ocによってそのとき閉じられていた常開接点22noが開放され、駆動コイル22ocには僅かな時間しか電流が流れない。また、常開接点22noの開放に連動して同時に常閉接点22ncが閉じられる。但し、リレー常開接点52noが開放されているので、駆動コイル22ccには電流が流れず、主接点22は開放された状態を維持する。このようにして各接点は元の状態に復帰し、ラッチリレーであるので各接点はその状態を維持する。   When a command for independent operation is given from the external command unit 10, the normally open contact 56 is opened, the voltage applied from the power source 36 to the relay drive coil 46 is lost, and the relay normally open contact 52no is opened. Thus, the relay normally closed contact 52nc is closed. Then, since the normally open contact 22no is already closed, a current flows through the drive coil 22oc on the reset side, the main contact 22 is opened, and a self-sustaining operation state is established. Almost at the same time when the main contact 22 is opened, the normally open contact 22no closed at that time is opened by the drive coil 22oc, and a current flows through the drive coil 22oc for only a short time. Further, the normally closed contact 22nc is closed simultaneously with the opening of the normally open contact 22no. However, since the relay normally open contact 52no is open, no current flows through the drive coil 22cc, and the main contact 22 is kept open. In this way, each contact returns to its original state, and since it is a latch relay, each contact maintains its state.

特開2015−15789号公報JP 2015-15789 A

駆動コイル22ccが常閉接点22ncを開放するために駆動コイル22ccに供給される必要のある第1の動作電圧V1と、駆動コイル46がリレー常開接点52noを閉じるためにリレー駆動コイル46に供給される必要のある電圧(第2の動作電圧V2)とが異なり、リレー駆動コイル46の第2の動作電圧V2が、駆動コイル22ccの第1の動作電圧V1よりも低い(V2<V1)ことがある。このような場合、太陽電池に基づく電源36が動作を開始した直後などの電圧が低く、安定していない間に、リレー回路制御部60が常開接点56を閉じると、電源36の電圧がリレー駆動コイル46の第2の動作電圧V2を超えているが、駆動コイル22ccの第1の動作電圧V1を超えていないことがある。この場合、リレー駆動コイル46による第2の動作電圧V2が、リレー常開接点52noを閉じても、駆動コイル22ccが常閉接点22ncを開放する第1の駆動電圧V1には到達していないことから、この常閉接点22ncが開放されず、つまり駆動コイル22ccの電流が遮断されず、駆動コイル22ccに電源36からの電圧が供給されたままになることがある。駆動コイル22ccは、短時間しか電流を流さないことが前提となっており、このように電流が流れ続けると、駆動コイル22ccが焼損するおそれがあるし、太陽電池の自立運転と、太陽電池と系統電源とが接続した連系系統とを切り換える場合であれば、その切換が正常に行えない。このようなことは、リレー回路34においても発生するし、リレーに限らず、駆動手段が被駆動手段を駆動する機器を複数使用し、駆動手段の動作電圧が異なる場合にも生じる。   The first operating voltage V1 that needs to be supplied to the drive coil 22cc to open the normally closed contact 22nc, and the drive coil 46 to the relay drive coil 46 to close the relay normally open contact 52no. The second operating voltage V2 of the relay drive coil 46 is lower than the first operating voltage V1 of the drive coil 22cc (V2 <V1) unlike the voltage that needs to be applied (second operating voltage V2) There is. In such a case, if the relay circuit control unit 60 closes the normally open contact 56 while the voltage is low and not stable, such as immediately after the operation of the power source 36 based on solar cells, the voltage of the power source 36 is relayed. The second operating voltage V2 of the drive coil 46 may be exceeded, but may not exceed the first operating voltage V1 of the drive coil 22cc. In this case, the second operating voltage V2 by the relay drive coil 46 does not reach the first drive voltage V1 at which the drive coil 22cc opens the normally closed contact 22nc even when the relay normally open contact 52no is closed. Therefore, the normally closed contact 22nc is not opened, that is, the current of the drive coil 22cc is not cut off, and the voltage from the power source 36 may remain supplied to the drive coil 22cc. The drive coil 22cc is assumed to pass current only for a short time. If the current continues to flow in this manner, the drive coil 22cc may be burned out, and the solar cell can operate independently, If the system is switched to the grid system connected to the system power supply, the switching cannot be performed normally. Such a situation also occurs in the relay circuit 34 and occurs not only in the relay but also when the driving means uses a plurality of devices that drive the driven means and the operating voltages of the driving means are different.

本発明は、所定の条件が満たされるまで、運転の切換を保留することができる電源切換装置を提供することを目的とする。また、他の目的は、以下の説明で明らかになる。   An object of this invention is to provide the power supply switching device which can hold | maintain switching of driving | operation until a predetermined condition is satisfy | filled. Other objects will become apparent from the following description.

本発明の一態様の電源切換装置は、系統電源と、発電された直流電力を交流電力に変換する電力調整手段との間に接続され、前記系統電源及び前記電力調整手段が接続した連系系統と、前記系統電源から前記電力調整手段が切断された自立運転とに、切換する切換手段を有している。この切換手段を外部指令に応じて切換制御手段が切り換える。前記切換制御手段は、前記外部指令を受けたとき、予め定めた内部条件が満たされるまで前記切換手段の切換を保留する。   A power supply switching apparatus according to an aspect of the present invention is connected between a system power supply and a power adjustment unit that converts generated DC power into AC power, and is connected to the system power supply and the power adjustment unit. And switching means for switching from the system power supply to the independent operation in which the power adjustment means is disconnected. The switching control means switches this switching means in response to an external command. When receiving the external command, the switching control means suspends switching of the switching means until a predetermined internal condition is satisfied.

このように構成された電源切換装置では、外部指令が与えられても、内部条件が満たされるまで、切換制御手段は、切換手段の切換を保留するので、焼損等の事故の発生を防止することができる。   In the power supply switching device configured as described above, even if an external command is given, the switching control means holds the switching of the switching means until the internal condition is satisfied, so that an accident such as burnout can be prevented. Can do.

前記切換手段は、動作を開始する動作電圧が異なる複数の素子を有する接点駆動手段を含むものとすることができる。この場合、前記複数の素子に対して、電圧が変動する電源が設けられている。前記切換制御手段は、前記外部指令を受けても、前記電源の電圧が、前記複数の素子のうち動作電圧が高いものが動作可能な電圧になるまで前記接点駆動手段の制御を保留する。   The switching means may include contact driving means having a plurality of elements having different operating voltages for starting operation. In this case, a power supply whose voltage varies is provided for the plurality of elements. Even when the switching control means receives the external command, the switching control means suspends control of the contact driving means until the voltage of the power source becomes an operable voltage of the plurality of elements having a high operating voltage.

このように構成すると、接点駆動手段の複数の素子のうち、動作電圧が高いものの動作電圧以上の電圧に電源の電圧がなるまで接点駆動手段の制御が保留されるので、接点駆動手段の複数の素子のうち動作電圧が高いものも低いものも動作せず、動作電圧が高い素子に、その動作電圧よりも低い電圧が連続して供給されることはない。従って、動作電圧が高い素子が破壊されることがない。   If comprised in this way, since control of a contact drive means will be suspended until the voltage of a power supply becomes a voltage more than the operating voltage among the several elements of a contact drive means although it has a high operating voltage, a plurality of contact drive means Among the elements, those with a high operating voltage and those with a low operating voltage do not operate, and a voltage lower than the operating voltage is not continuously supplied to an element with a high operating voltage. Therefore, an element having a high operating voltage is not destroyed.

接点駆動手段としては、ラッチリレーを使用することができる。この場合、ラッチリレーの駆動コイルが焼損することを防止できる。   A latch relay can be used as the contact driving means. In this case, it is possible to prevent the drive coil of the latch relay from burning out.

なお、電源は自然エネルギー発電に基づくもの、例えば太陽電池とすることができる。さらに、切換制御手段は、内部基準を有し、前記切換制御手段は、前記電源の出力電圧が前記内部基準以上になるまで前記接点駆動手段の制御を保留するものとすることもできる。   The power source may be based on natural energy power generation, for example, a solar cell. Furthermore, the switching control means may have an internal reference, and the switching control means may suspend control of the contact driving means until the output voltage of the power source becomes equal to or higher than the internal reference.

本発明の別の態様の電源切換装置は、動作させられると、その動作状態を維持する第1の被駆動手段を有している。第1の駆動手段は、第1の動作電圧以上の電圧が供給されたとき、前記第1の被駆動手段を動作させると共に、自己への電圧供給を保留させる。本別の態様の電源切換装置は、動作させられたとき、前記第1の駆動手段へ電圧供給可能に第1の駆動手段と接続された第2の被駆動手段も、有している。前記第2の被駆動手段は、第2の駆動手段に前記第1の動作電圧よりも低い第2の動作電圧以上の電圧が供給されたとき、動作する。第1及び第2の駆動手段には、前記第2の動作電圧よりも低い電圧から前記第2の動作電圧を経て前記第1の動作電圧に向かって変化する電源からの電圧が、動作電圧として供給されている。前記電源の電圧が第1の動作電圧以上になるまで、前記第2の駆動手段への前記電源からの電圧供給を保留させる保留手段が設けられている。   The power supply switching device according to another aspect of the present invention includes first driven means for maintaining the operating state when operated. When a voltage equal to or higher than the first operating voltage is supplied, the first driving means operates the first driven means and holds the voltage supply to itself. The power supply switching device according to another aspect also includes second driven means connected to the first driving means so as to supply voltage to the first driving means when operated. The second driven means operates when a voltage equal to or higher than a second operating voltage lower than the first operating voltage is supplied to the second driving means. In the first and second driving means, a voltage from a power source that changes from a voltage lower than the second operating voltage to the first operating voltage through the second operating voltage is used as the operating voltage. Have been supplied. A holding unit is provided to hold the voltage supply from the power source to the second driving unit until the voltage of the power source becomes equal to or higher than the first operating voltage.

このように構成した電源切換装置では、保留手段を設けていないと、電源電圧が第2の動作電圧となると、第2の駆動手段が第2の被駆動手段を動作させて、第1の駆動手段に電圧が供給されるが、第1の動作電圧まで上昇した電圧でないので、第1の駆動手段は動作せず、第1の駆動手段に電圧が供給されたままとなり、第1の駆動手段の破壊が生じる可能性があるが、保留手段を設けているので、電源電圧が第2の動作電圧に等しい電圧になっても、第2の駆動手段は動作せず、第1の動作電圧まで電源の電圧が上昇すると、第2の駆動手段が動作し、第1の駆動手段が動作するので、第1の駆動手段に継続的に低い電圧が供給されることが無く、第1の駆動手段に破壊が生じることはない。   In the power supply switching device configured as described above, if no holding means is provided, when the power supply voltage becomes the second operating voltage, the second driving means operates the second driven means to perform the first driving. The voltage is supplied to the means, but the voltage is not increased up to the first operating voltage, so the first driving means does not operate and the voltage remains supplied to the first driving means. However, since the holding means is provided, even if the power supply voltage becomes equal to the second operating voltage, the second driving means does not operate and the first operating voltage is reached. When the voltage of the power supply rises, the second driving unit operates and the first driving unit operates, so that a low voltage is not continuously supplied to the first driving unit, and the first driving unit There will be no destruction.

前記第1の駆動手段は、前記第1の動作電圧が供給されたとき前記第1の被駆動手段を動作させる駆動素子と、この駆動素子と直列に接続された第1接点とを有し、前記第1の動作電圧が供給されたとき、閉じられている前記第1接点が開放されるものとすることができる。この場合、前記第2の被駆動手段は、前記第1の駆動手段の前記第1接点と直列に接続された第2接点を有し、前記駆動素子と前記第1接点と前記第2接点とが直列に前記電源間に接続されている。前記第2の駆動手段は、第2の動作電圧以上の電圧が供給されたとき、開放されている前記第2接点を閉じる駆動素子を有している。前記保留手段は、前記第2の駆動手段の駆動素子と直列に前記電源間に接続された第3接点を有し、前記保留手段の前記第3接点は、前記電源の電圧が第2の動作電圧以上になるまで開放されている。   The first driving means has a driving element for operating the first driven means when the first operating voltage is supplied, and a first contact connected in series with the driving element, When the first operating voltage is supplied, the closed first contact may be opened. In this case, the second driven means has a second contact connected in series with the first contact of the first driving means, and the driving element, the first contact, and the second contact Are connected in series between the power supplies. The second driving means includes a driving element that closes the opened second contact when a voltage equal to or higher than the second operating voltage is supplied. The holding means has a third contact connected between the power supplies in series with the driving element of the second driving means, and the third contact of the holding means is configured such that the voltage of the power supply is a second operation. Open until the voltage is exceeded.

本別の態様において、前記電源が、自然エネルギー発電に基づく電源、例えば太陽電池とすることもできる。さらに、前記保留手段が、前記電源の出力電圧が前記内部基準以上になるまで前記第2駆動手段の制御を保留するものとすることもできる。   In another aspect, the power source may be a power source based on natural energy power generation, such as a solar cell. Further, the holding unit may hold the control of the second driving unit until the output voltage of the power source becomes equal to or higher than the internal reference.

以上のように、本発明の一態様による電源切換装置によれば、所定の条件が満たされるまで電圧供給を保留させることができ、連系系統と自立運転との切換のミスを防止することができる。また、本発明の別の態様による電源切換装置によれば、電圧が変化する電源によって動作する動作電圧の異なる2つの駆動手段を使用している場合でも、動作電圧の高い駆動手段に連続的に電圧が供給された状態が発生することを阻止して、駆動手段が破壊することを防止できる。   As described above, according to the power supply switching device according to one aspect of the present invention, it is possible to hold the voltage supply until a predetermined condition is satisfied, and to prevent a mistake in switching between the grid system and the independent operation. it can. In addition, according to the power supply switching device according to another aspect of the present invention, even when two driving means having different operating voltages that are operated by a power source whose voltage changes are used, the driving means having a high operating voltage is continuously connected. It is possible to prevent the drive means from being destroyed by preventing the occurrence of a state where a voltage is supplied.

本発明の1実施形態の電源切換装置を実施した電源装置のブロック図である。It is a block diagram of the power supply device which implemented the power supply switching device of one embodiment of the present invention. 図1に示すパワーコンディショナーのブロック図である。It is a block diagram of the power conditioner shown in FIG. 図2に示すリレー制御部のブロック図である。It is a block diagram of the relay control part shown in FIG. 図3に示すリレー回路の詳細なブロック図である。FIG. 4 is a detailed block diagram of the relay circuit shown in FIG. 3.

本発明の1実施形態の電源切換装置を実施した電源装置は、図1に示すように、発電装置、例えば太陽電池2によって発電した直流電力を、電力調整手段、例えばパワーコンディショナー4と系統電源6とを接続した連系運転して出力端子29に交流電力を供給したり、パワーコンディショナー4の余剰電力を系統電源6に逆潮流したり、或いは系統電源6からパワーコンディショナー4を切断して、パワーコンディショナー4が自立運転して出力端子29に交流電力を供給したり、充放電手段、例えば蓄電池8にパワーコンディショナー4から充電したり、蓄電池8からの直流電力を自然エネルギー発電に基づく電源、例えば太陽電池2からの直流電力とともに、或いは蓄電池8からの直流電力のみを交流電力に変換して、出力端子29に供給したりするものである。これら連系運転、自立運転、充放電は、外部指令部10からの外部指令が通信線12を介してパワーコンディショナー4に与えられることによって行われる。蓄電池8から外部指令部10への通信線12は、蓄電池8における電圧等を外部指令部10に供給するためのものである。なお、図1に符号14で示すのは、太陽電池2とパワーコンディショナー4との間、パワーコンディショナー4と蓄電池8との間、パワーコンディショナー4と系統電源6との間及びパワーコンディショナー4と出力端子との間の電力線である。   As shown in FIG. 1, a power supply apparatus that implements a power supply switching apparatus according to an embodiment of the present invention converts DC power generated by a power generation apparatus, such as a solar cell 2, into power adjustment means, such as a power conditioner 4 and a system power supply 6. Connected to the output terminal 29 to supply AC power to the output terminal 29, or the surplus power of the power conditioner 4 is reversely flowed to the system power supply 6, or the power conditioner 4 is disconnected from the system power supply 6 The conditioner 4 operates autonomously to supply AC power to the output terminal 29, charges / discharges, for example, charges the storage battery 8 from the power conditioner 4, or supplies the DC power from the storage battery 8 based on natural energy generation, such as solar power The DC power from the battery 2 or only the DC power from the storage battery 8 is converted into AC power and supplied to the output terminal 29. Or to pay. These interconnection operation, independent operation, and charging / discharging are performed when an external command from the external command unit 10 is given to the power conditioner 4 via the communication line 12. A communication line 12 from the storage battery 8 to the external command unit 10 is for supplying a voltage or the like in the storage battery 8 to the external command unit 10. In FIG. 1, reference numeral 14 indicates between the solar battery 2 and the power conditioner 4, between the power conditioner 4 and the storage battery 8, between the power conditioner 4 and the system power supply 6, and between the power conditioner 4 and the output terminal. It is a power line between.

パワーコンディショナー4は、背景技術の説明でも引用した図2に示すように、パワーコンディショナー4の主要部をなすインバータ16を有し、これが太陽電池2からの直流電力を交流電力に変換する。このインバータ16の出力側は、パワーコンディショナー4内の電磁接触器の主接点18を介して系統電源6に接続され、さらにインバータ16の出力側は、主接点18、リレースイッチ21の主接点22及びスコットトランス24を介して、パワーコンディショナー4の出力側、例えば出力端子29に接続されている。また、インバータ16の出力側は、リレースイッチ21の主接点30及びスコットトランス24を介して出力端子29に接続されている。リレースイッチ21はラッチ式のものである。なお、インバータ16と電力系統6との間、およびインバータ16と出力端子29との間には、背景技術の項で説明したように、夫々図示しない電磁遮断器が介在し、異常時等にパワーコンディショナー4と、電力系統6や出力端子29とを必要に応じて適宜遮断するようにされているが、ここでは説明を割愛する。   As shown in FIG. 2 quoted in the description of the background art, the power conditioner 4 includes an inverter 16 that forms a main part of the power conditioner 4, and this converts DC power from the solar cell 2 into AC power. The output side of the inverter 16 is connected to the system power supply 6 via the main contact 18 of the electromagnetic contactor in the power conditioner 4, and the output side of the inverter 16 is connected to the main contact 18, the main contact 22 of the relay switch 21, and An output side of the power conditioner 4, for example, an output terminal 29 is connected via the Scott transformer 24. The output side of the inverter 16 is connected to the output terminal 29 via the main contact 30 of the relay switch 21 and the Scott transformer 24. The relay switch 21 is a latch type. As described in the background art section, electromagnetic circuit breakers (not shown) are interposed between the inverter 16 and the power system 6 and between the inverter 16 and the output terminal 29, respectively. Although the conditioner 4 and the power system 6 and the output terminal 29 are appropriately cut off as necessary, the description is omitted here.

系統電源6からの交流電力のみを出力端子29に供給するときには、主接点18が開かれ、主接点22が閉じられる。系統電源6からの交流電力とインバータ16からの交流電力とを出力端子29に供給する連係運転の場合には、主接点18を閉じ、主接点22を閉じる。このとき、主接点30は開放されている。一方、インバータ16からの交流電力のみを出力端子29に供給する自立運転の時には、主接点30が閉じられ、主接点18、22は開放される。このような主接点18、22、30の制御は、外部指令部10からの指示に従ってリレー制御部32が行う。   When only AC power from the system power supply 6 is supplied to the output terminal 29, the main contact 18 is opened and the main contact 22 is closed. In the linked operation in which AC power from the system power supply 6 and AC power from the inverter 16 are supplied to the output terminal 29, the main contact 18 is closed and the main contact 22 is closed. At this time, the main contact 30 is open. On the other hand, during the self-sustaining operation in which only AC power from the inverter 16 is supplied to the output terminal 29, the main contact 30 is closed and the main contacts 18 and 22 are opened. Such control of the main contacts 18, 22, 30 is performed by the relay control unit 32 in accordance with an instruction from the external command unit 10.

リレースイッチ21の主接点22は、図3に示すリレー回路33によって駆動され、リレースイッチ21の主接点30は、リレー回路34によって駆動される。図示していないが、主接点18に対するリレー回路も設けられているが、主接点18は、図示しない駆動コイルに電圧が供給されている間、閉じられるものであり、その制御は本発明の要旨には無関係であるので、その説明は省略する。   The main contact 22 of the relay switch 21 is driven by a relay circuit 33 shown in FIG. 3, and the main contact 30 of the relay switch 21 is driven by a relay circuit 34. Although not shown, a relay circuit for the main contact 18 is also provided, but the main contact 18 is closed while a voltage is supplied to a drive coil (not shown), and its control is the gist of the present invention. Since it is irrelevant to the description, its description is omitted.

リレー回路33、34には、太陽電池2からの直流電力を基に電源36が生成する直流電力が供給される。リレー回路33、34は、背景技術の項で述べたように、いずれも同一の構成であり、背景技術の項で参照した図4にその一方、例えばリレー回路33の詳細を示す。   The relay circuits 33 and 34 are supplied with DC power generated by the power source 36 based on DC power from the solar cell 2. As described in the background art section, the relay circuits 33 and 34 have the same configuration, and FIG. 4 referred to in the background art section shows details of the relay circuit 33, for example.

リレー回路33は、主接点22を閉じる(セットする)ための駆動コイル22ccと、主接点22を開く(リセットする)ための駆動コイル22ocとを有している。駆動コイル22ccは、整流回路22crの出力側に接続され、整流回路22crの入力側は、常閉接点22ncと直列に接続されている。この常閉接点22ncは、駆動コイル22ccに所定の動作電圧が印加されたときに、開放されるものである。整流回路22crと常閉接点22ncとは、リレー常開接点52noと直列に電源36間に接続されている。   The relay circuit 33 includes a drive coil 22 cc for closing (setting) the main contact 22 and a drive coil 22 oc for opening (resetting) the main contact 22. The drive coil 22cc is connected to the output side of the rectifier circuit 22cr, and the input side of the rectifier circuit 22cr is connected in series with the normally closed contact 22nc. The normally closed contact 22nc is opened when a predetermined operating voltage is applied to the drive coil 22cc. The rectifier circuit 22cr and the normally closed contact 22nc are connected between the power supply 36 in series with the relay normally open contact 52no.

同様に、駆動コイル22ocは、整流回路22orの出力側に接続され、整流回路22orの入力側は常開接点22noと直列に接続され、常開接点22noは、閉じられていた状態で駆動コイル22ocに所定の電圧が印加されたとき、開放される。この整流回路22orと常開接点22noとは、リレー常閉接点52ncと直列に電源36間に接続されている。なお、常開接点22noと上述した常閉接点22ncとは連動するように構成され、常閉接点22ncが開放されたとき、常開接点22noが閉じられ、閉じられていた常開接点22noが開放されたとき、開かれている常閉接点22ncが閉じられる。同様に、リレー常開接点52no、リレー常閉接点52ncも連動して切り換えられるように構成され、リレー常開接点52noが閉じられたとき、リレー常閉接点52ncは開かれる。開かれているリレー常閉接点52ncが閉じられたとき、閉じられていたリレー常開接点52noは開かれる。   Similarly, the drive coil 22oc is connected to the output side of the rectifier circuit 22or, the input side of the rectifier circuit 22or is connected in series with the normally open contact 22no, and the normally open contact 22no is closed while the drive coil 22oc is closed. When a predetermined voltage is applied to, it is opened. The rectifier circuit 22or and the normally open contact 22no are connected between the power supply 36 in series with the relay normally closed contact 52nc. The normally open contact 22no and the above-described normally closed contact 22nc are configured to be interlocked. When the normally closed contact 22nc is opened, the normally open contact 22no is closed and the normally opened contact 22no is opened. When this is done, the normally closed contact 22nc that is open is closed. Similarly, the relay normally open contact 52no and the relay normally closed contact 52nc are configured to be switched in conjunction with each other. When the relay normally open contact 52no is closed, the relay normally closed contact 52nc is opened. When the open relay normally closed contact 52nc is closed, the closed relay normally open contact 52no is opened.

リレー常開接点52noは、リレー駆動コイル46に所定の動作電圧が印加されたとき、閉じられる。これが閉じられたことにより、駆動コイル22ccに常閉接点22nc、リレー常開接点52no、整流回路22crを介して電圧が印加され、主接点22が閉じられ(セットされ)ると伴に、駆動コイル22ccの作用により常閉接点22ncが開かれ、駆動コイル22ccへの電圧供給が保留される。主接点22を持つリレースイッチ21はラッチ式のものであるので、駆動コイル22ccへの電圧供給が保留されても、主接点22は閉じられた状態を維持する。また、常閉接点22ncが開かれたことによって常開接点22noが閉じられ、また、常閉接点22ncが開かれたことに連動して常開接点22noが閉じられ、その状態が維持される。   The relay normally open contact 52no is closed when a predetermined operating voltage is applied to the relay drive coil 46. When this is closed, a voltage is applied to the drive coil 22cc via the normally closed contact 22nc, the relay normally open contact 52no, and the rectifier circuit 22cr, and the main contact 22 is closed (set). The normally closed contact 22nc is opened by the action of 22cc, and the voltage supply to the drive coil 22cc is suspended. Since the relay switch 21 having the main contact 22 is of a latch type, the main contact 22 remains closed even when voltage supply to the drive coil 22cc is suspended. Further, the normally open contact 22nc is closed by opening the normally closed contact 22nc, and the normally open contact 22no is closed in conjunction with the opening of the normally closed contact 22nc, and the state is maintained.

リレー常開接点52noを開閉するリレー駆動コイル46は、常開接点56と直列に電源36間に接続され、常開接点56は、図3に示すリレー回路制御部60からの指令に基づいて開閉される。   The relay drive coil 46 that opens and closes the relay normally open contact 52no is connected between the power source 36 in series with the normally open contact 56, and the normally open contact 56 opens and closes based on a command from the relay circuit control unit 60 shown in FIG. Is done.

連系運転する場合、外部指令部10は、常開接点56を閉じる指令を常開接点56に与える。これによって、常開接点56が閉じられると、リレー駆動コイル46に電源36から電圧が印加され、リレー常開接点52noが閉じられ、リレー常閉接点52ncが開かれる。リレー常開接点52noが閉じられたことにより、既に常閉接点22ncが閉じられているので、駆動コイル22ccに電圧が印加され、駆動コイル22ccは主接点22を閉じると共に、常閉接点22ncを開放し、常閉接点22ncの開放に連動して常開接点22noを閉じる。従って、駆動コイル22ccには僅かな時間しか電流が流れず、消費電力を削減した状態で主接点22を閉じることができる。一方、連系運転状態では常開接点22noは閉じられているが、リレー常閉接点52ncが開放されているので、駆動コイル22ocには電流が流れず、主接点22は閉じられたままとなる。このようにして、主接点22は閉じられ、常閉接点22ncが開放され、リレー常開接点52noが閉じられ、常開接点22noが閉じられ、リレー常閉接点52ncが開かれている。   In the interconnected operation, the external command unit 10 gives a command to close the normally open contact 56 to the normally open contact 56. Thus, when the normally open contact 56 is closed, a voltage is applied to the relay drive coil 46 from the power source 36, the relay normally open contact 52no is closed, and the relay normally closed contact 52nc is opened. Since the normally closed contact 52nc is already closed because the relay normally open contact 52no is closed, a voltage is applied to the drive coil 22cc, and the drive coil 22cc closes the main contact 22 and opens the normally closed contact 22nc. Then, the normally open contact 22no is closed in conjunction with the opening of the normally closed contact 22nc. Accordingly, current flows through the drive coil 22cc for only a short time, and the main contact 22 can be closed with reduced power consumption. On the other hand, in the connected operation state, the normally open contact 22no is closed, but since the relay normally closed contact 52nc is open, no current flows through the drive coil 22oc, and the main contact 22 remains closed. . In this way, the main contact 22 is closed, the normally closed contact 22nc is opened, the relay normally open contact 52no is closed, the normally open contact 22no is closed, and the relay normally closed contact 52nc is opened.

この状態において、主接点22を開放して、自立運転とする場合、外部指令部10は、常開接点56に指示を与えて、これを開放する。これによって、リレー駆動コイル46への電圧の供給が中止され、開かれていたリレー常閉接点52ncが閉じられ、リレー常開接点52noが開かれる。リレー常閉接点52ncが閉じられたとき、常開接点22noが閉じられているので、駆動コイル22ocに電流が流れ、主接点22が開かれる(リセットされる)と共に、駆動コイル22ocの作用により閉じられていた常開接点22noが開かれ、これに連動して常閉接点22ncが閉じられる。このときリレー常開接点52noは開かれているので、駆動コイル22ccに電流が流れることはない。この連系運転から自立運転への切り換えの場合も、主接点22を開くために駆動コイル22ocには短時間しか電流が流れないので消費される電力を削減できる。   In this state, when the main contact 22 is opened and the self-sustained operation is performed, the external command unit 10 gives an instruction to the normally open contact 56 and opens it. As a result, the supply of voltage to the relay drive coil 46 is stopped, the opened relay normally closed contact 52nc is closed, and the relay normally open contact 52no is opened. When the relay normally closed contact 52nc is closed, since the normally open contact 22no is closed, a current flows through the drive coil 22oc, the main contact 22 is opened (reset), and closed by the action of the drive coil 22oc. The normally opened contact 22no that has been opened is opened, and the normally closed contact 22nc is closed in conjunction with this. At this time, since the relay normally open contact 52no is open, no current flows through the drive coil 22cc. Also in the case of switching from the grid operation to the self-sustained operation, since the current flows through the drive coil 22oc only for a short time in order to open the main contact 22, the power consumed can be reduced.

ところで、リレー駆動コイル46がリレー常開接点52noを閉じるために、リレー駆動コイル46に供給される必要のある動作電圧、例えば第2の動作電圧V2と、駆動コイル22ccが主接点22を閉じ、かつ常閉接点22ncを開くために、駆動コイル22ccに供給される必要のある動作電圧、例えば第1の動作電圧V1を比較すると、リレー駆動コイル46の動作電圧V2が低く、駆動コイル22ccの動作電圧V1が高い(V2<V1)。また、これらに対する電源36は、太陽電池2の電力に基づいて動作しているので、電源36の電圧は、例えば天候の影響を受けて不安定であり、朝方などには、太陽電池2の電圧がまだ所定値まで上昇しておらず、リレー駆動コイル46および駆動コイル22cc両方が正常に動作するために必要な第1の電圧V1以上の電圧に上昇していないことがある。このようなときに、外部指令部10から主接点22を閉じるように指示があると、電源36の電圧は第2の電圧V2以上であればリレー駆動コイル46が動作して、リレー常開接点52noが閉じられて、駆動コイル22ccに電圧が供給され、電流が流れるが、電源36の電圧が第1の電圧V1には達していないため主接点22が閉じられず、常閉接点22ncも閉じられたままになることがある。この場合、駆動コイル22ccに電流が供給されたままになり、駆動コイル22ccが焼損するおそれがある。同様なことが、主接点30を駆動するリレー回路34の内部におけるリレー駆動コイル46と駆動コイル22ccにそれぞれ対応するものにおいて、起こる可能性がある。   By the way, in order for the relay drive coil 46 to close the relay normally open contact 52no, the operating voltage that needs to be supplied to the relay drive coil 46, for example, the second operating voltage V2, and the drive coil 22cc close the main contact 22, When comparing the operating voltage that needs to be supplied to the drive coil 22cc, for example, the first operating voltage V1, to open the normally closed contact 22nc, the operating voltage V2 of the relay drive coil 46 is low, and the operation of the drive coil 22cc The voltage V1 is high (V2 <V1). Further, since the power source 36 for these operates based on the power of the solar cell 2, the voltage of the power source 36 is unstable due to, for example, the influence of the weather. Has not yet risen to a predetermined value, and has not risen to a voltage equal to or higher than the first voltage V1 necessary for normal operation of both the relay drive coil 46 and the drive coil 22cc. In such a case, if the external command unit 10 instructs to close the main contact 22, the relay drive coil 46 operates if the voltage of the power source 36 is equal to or higher than the second voltage V2, and the relay normally open contact 52no is closed, a voltage is supplied to the drive coil 22cc, and a current flows. However, since the voltage of the power source 36 does not reach the first voltage V1, the main contact 22 is not closed, and the normally closed contact 22nc is also closed. May remain. In this case, the current is still supplied to the drive coil 22cc, and the drive coil 22cc may be burned out. The same thing may occur in the relay circuit 34 that drives the main contact 30 corresponding to the relay drive coil 46 and the drive coil 22cc, respectively.

そこで、図3に示すように、電源36には、動作開始電圧設定部62が設けられており、動作開始電圧Vaを設定している。この動作開始電圧Vaは、電源36を駆動開始するのに必要な、太陽電池2の出力電圧値である。このように動作開始電圧Vaを設定することで、太陽電池2の発電量が少なく、出力電圧が低い間は、不必要に電源36を駆動することはない。また、後述するように、太陽電池2の出力電圧はリレー制御部32でも監視されており、電源36からの供給される電圧が、リレー回路33、34が夫々備えているリレー駆動コイルと駆動コイル、リレー回路33でいえば、リレー駆動コイル46と駆動コイル22ccとの両方が正常に動作し、リレー駆動コイル46と駆動コイル22ccとの両方が正常に動作するための電圧になるまで、電源36からリレー回路33、34に電圧を供給しないようにすることができる。夜間には、主接点18、30が開いて主接点22が閉じた状態になっており、系統電源6から出力端子29に交流電力を供給しているが、朝方の運転開始時などで、太陽電池2から電源36に供給される電圧が低かったり、太陽電池2からの出力電圧が動作開始電圧Va付近で上下動する不安定な状態の間に、外部司令部10からリレースイッチ21の主接点22を閉じて連系運転するように外部指令に応じて、主接点22を閉じてしまうと、上述したような焼損事故が起こる可能性がある。したがって、これを回避するために、動作開始電圧設定部62により、太陽電池2の出力電圧を監視し、これが動作開始電圧Vaに達するまでは、外部司令部10からの指令を保留するようにしている。電源36が始動してリレー回路33、34に供給を開始する、太陽電池2から供給される動作開始電圧Vaは、動作開始電圧設定部62に設けられた調整手段、例えば可変抵抗64によって調整することができる。なお、本例では夜間にはインバータ16が動作しない例を示したが、電池を備えて夜間でも主接点18を閉じて、インバータを駆動することも可能である。   Therefore, as shown in FIG. 3, the power supply 36 is provided with an operation start voltage setting unit 62, which sets the operation start voltage Va. The operation start voltage Va is an output voltage value of the solar cell 2 that is necessary to start driving the power source 36. By setting the operation start voltage Va in this way, the power source 36 is not unnecessarily driven while the power generation amount of the solar cell 2 is small and the output voltage is low. As will be described later, the output voltage of the solar cell 2 is also monitored by the relay control unit 32, and the voltage supplied from the power source 36 is the relay drive coil and drive coil provided in the relay circuits 33 and 34, respectively. In the relay circuit 33, the power source 36 is operated until both the relay drive coil 46 and the drive coil 22cc operate normally, and the voltage is such that both the relay drive coil 46 and the drive coil 22cc operate normally. Thus, no voltage can be supplied to the relay circuits 33 and 34. At night, the main contacts 18 and 30 are opened and the main contact 22 is closed, and AC power is supplied from the system power supply 6 to the output terminal 29. While the voltage supplied from the battery 2 to the power source 36 is low or the output voltage from the solar battery 2 moves up and down around the operation start voltage Va, the main contact point of the relay switch 21 from the external command unit 10 If the main contact 22 is closed in response to an external command so as to close and operate in an interconnected manner, a burnout accident as described above may occur. Therefore, in order to avoid this, the output voltage of the solar cell 2 is monitored by the operation start voltage setting unit 62, and the command from the external command unit 10 is suspended until it reaches the operation start voltage Va. Yes. The operation start voltage Va supplied from the solar cell 2 that starts the power supply 36 and starts supplying to the relay circuits 33 and 34 is adjusted by an adjustment means provided in the operation start voltage setting unit 62, for example, a variable resistor 64. be able to. In this example, the inverter 16 does not operate at night. However, it is also possible to drive the inverter by providing a battery and closing the main contact 18 even at night.

また、図2に示す主接点22を閉じた状態から開いた状態とし、主接点30を開いた状態から閉じた状態として、連系運転から自立運転に切換るように、外部指令部10からリレー制御部32に指示が与えられる場合や、夜間の主接点18、30が開いた状態から、系統電源6の停電等の異常に基づき、自立運転に切換るように外部司令部10からリレー制御部32に指示が与えられる場合、電源36がリレー回路33、34に夫々備えられているリレー駆動コイルと駆動コイル、リレー回路33でいえばリレー駆動コイル46、駆動コイル22ccの両方が正常に動作するのに必要な電圧、即ちリレー回路33、34が正常に動作できる電圧よりも低い場合、上述したようなことが生じる可能性がある。そこで、太陽電池2の出力電圧が、電源36からリレー回路33、34を動作させることができる電圧を供給可能なだけ上昇しているかを判断するために、リレー制御部32の内部基準である基準電圧Vrefを太陽電池2が発生しているという条件を満たした後でなければ、リレー制御部32がリレー回路33、34を動作制御せず、主接点22を閉じた状態から開いた状態とし、主接点30を開いた状態から閉じた状態に切換しないように構成されている。なお、この基準電圧Vrefは、電源36が駆動開始される駆動開始電圧Vaより高く、電源36がリレー回路33、34を確実に正常に動作させるのに必要な電圧よりも高く設定されている。これは、朝方などは太陽電池2の出力電圧が変動しているので、電源36からの出力電圧が、短時間だけは十分上昇するが、すぐにこれを下回ってしまうような不安定な期間があり、この間はリレー回路33、34を駆動しないようにして、太陽電池2の出力電圧が十分高くなり、電源36の出力電圧がリレー回路33、34を確実に駆動できる状態になってから主接点22、30を切換るためである。本例では、リレー制御部32の基準電圧Vrefを、電源36が始動されるの動作開始電圧Vaよりも高く(Va<Vref)設定しているが、動作開始電圧Vaが十分に高ければ、基準電圧Vrefと動作開始電圧Vaと同じ電圧値にすることも可能である。これによって、主接点22、30の切換は正常に行うことができるし、かつインバータ16の出力は、自立運転するのに適したものとなっている。   Further, the external command unit 10 relays the main contact 22 shown in FIG. 2 from the closed state to the open state, and the main contact 30 is changed from the open state to the closed state so as to switch from the interconnection operation to the independent operation. When an instruction is given to the control unit 32 or when the main contacts 18 and 30 are open at night, the external control unit 10 switches to the relay control unit so as to switch to the independent operation based on an abnormality such as a power failure of the system power supply 6. When an instruction is given to the relay circuit 33, the relay drive coil and the drive coil provided with the power source 36 in the relay circuits 33 and 34, respectively. In the relay circuit 33, both the relay drive coil 46 and the drive coil 22cc operate normally. If the voltage is lower than the voltage necessary for the operation, that is, the voltage at which the relay circuits 33 and 34 can operate normally, the above-described problem may occur. Therefore, in order to determine whether or not the output voltage of the solar cell 2 is increased to a level that can supply the voltage that can operate the relay circuits 33 and 34 from the power source 36, a reference that is an internal reference of the relay control unit 32. Unless the voltage Vref is after the condition that the solar cell 2 is generated, the relay control unit 32 does not control the operation of the relay circuits 33 and 34, and the main contact 22 is changed from the closed state to the open state. The main contact 30 is configured not to be switched from an open state to a closed state. The reference voltage Vref is set higher than the drive start voltage Va at which the power supply 36 starts to be driven, and is set higher than a voltage necessary for the power supply 36 to operate the relay circuits 33 and 34 normally. This is because the output voltage of the solar cell 2 fluctuates in the morning, etc., so that the output voltage from the power source 36 rises sufficiently only for a short time, but there is an unstable period in which it immediately falls below this. During this time, the relay circuits 33 and 34 are not driven so that the output voltage of the solar cell 2 becomes sufficiently high and the output voltage of the power source 36 is in a state where the relay circuits 33 and 34 can be driven reliably. This is for switching between 22 and 30. In this example, the reference voltage Vref of the relay control unit 32 is set to be higher (Va <Vref) than the operation start voltage Va when the power source 36 is started. However, if the operation start voltage Va is sufficiently high, It is also possible to make the voltage value the same as the voltage Vref and the operation start voltage Va. As a result, the main contacts 22 and 30 can be switched normally, and the output of the inverter 16 is suitable for independent operation.

具体的には、図3に示すように、リレー制御部32内に、太陽電池2の電圧を検出する電圧検出部66を設け、この電圧検出部66からの検出出力を比較部68において基準電圧源70からの基準電圧Vrefと比較し、リレー回路制御部60が、電圧検出部66からの検出出力が基準電圧Vrefをこえていると判断したとき、リレー回路制御部60がリレー回路33、34の動作を可能に制御する。リレー回路制御部60は、電圧検出部66からの検出出力が基準電圧Vrefを超えたと判断するまでは、外部指令部10から、例えば連系運転から自立運転への切換指示が与えられていても、その指示を保留または停止して、リレー回路33、34を動作制御せず、電圧検出部66からの検出出力が基準電圧Vrefをこえていることを表す比較部68の出力があって初めて、連系運転から自立運転への切換をリレー回路33、34に指示する。   Specifically, as shown in FIG. 3, a voltage detection unit 66 that detects the voltage of the solar cell 2 is provided in the relay control unit 32, and a detection output from the voltage detection unit 66 is used as a reference voltage in the comparison unit 68. When the relay circuit control unit 60 determines that the detection output from the voltage detection unit 66 exceeds the reference voltage Vref as compared with the reference voltage Vref from the source 70, the relay circuit control unit 60 determines that the relay circuits 33 and 34 To control the operation. Until the relay circuit control unit 60 determines that the detection output from the voltage detection unit 66 has exceeded the reference voltage Vref, the external command unit 10 is instructed to switch, for example, from the grid operation to the independent operation. The instruction is suspended or stopped, and the operation of the relay circuits 33 and 34 is not controlled. Only when the output of the comparison unit 68 indicates that the detection output from the voltage detection unit 66 exceeds the reference voltage Vref. The relay circuits 33 and 34 are instructed to switch from the grid operation to the independent operation.

以上のように、この実施形態の電源装置では、朝方などの電源投入時の太陽電池2の電圧が低い、または変動している不安定なときに、系統電源6を出力端子29に接続するために電磁接触器の主接点22を閉じるように外部指令部10から指令があっても、太陽電池2の出力電圧が、電源36を駆動開始させる動作開始電圧Vaに達していない間はリレー回路33、34に電圧が供給されないようにでき、リレー回路33、34が正常に動作する電圧である基準電圧Vref以上あるいは超えて初めて主接点22を閉じることができる。また、電磁接触器の主接点18、22が閉じられ、主接点30が開かれて、連系運転が行われている状態から、主接点18、22を開いて、主接点30を閉じて、自立運転に切り換える指示が外部指令部10から与えられても、電源36の出力電圧が基準電圧Vrefに達したときに、リレー回路制御部60がリレー回路33、34を動作制御し、主接点22、30を切換えるので、リレー33、34が確実に切換られて駆動コイル22ccが焼損等せず、リレー回路33、34の事故が発生することがない。そして電源装置の連系運転や自立運転を、確実に正常に切換ることができる。   As described above, in the power supply device of this embodiment, the system power supply 6 is connected to the output terminal 29 when the voltage of the solar cell 2 when the power is turned on in the morning or the like is low or fluctuating and unstable. Even if a command is issued from the external command unit 10 to close the main contact 22 of the electromagnetic contactor, the relay circuit 33 is in a state where the output voltage of the solar cell 2 does not reach the operation start voltage Va that starts driving the power source 36. , 34 can be prevented from being supplied with voltage, and the main contact 22 can be closed only after the reference voltage Vref, which is a voltage at which the relay circuits 33 and 34 operate normally, is exceeded or exceeded. From the state where the main contacts 18 and 22 of the electromagnetic contactor are closed and the main contact 30 is opened and the interconnection operation is performed, the main contacts 18 and 22 are opened and the main contact 30 is closed. Even when an instruction to switch to the independent operation is given from the external command unit 10, when the output voltage of the power source 36 reaches the reference voltage Vref, the relay circuit control unit 60 controls the operation of the relay circuits 33 and 34, and the main contact 22. , 30 are switched, the relays 33, 34 are switched reliably, the drive coil 22cc is not burned out, and the accident of the relay circuits 33, 34 does not occur. Then, the interconnection operation and the independent operation of the power supply device can be reliably switched normally.

なお、インバータ16が請求項1で言う電力調整手段の一例であり、主接点22、30は、請求項1で言う切換手段であり、リレー制御部32及びリレー回路33、34が、請求項1で言う切換制御手段である。また、駆動コイル22cc、リレー駆動コイル46が、請求項2で言う動作電圧が異なる複数の素子の一例であり、リレー回路33、34が請求項2で言う接点駆動手段の一例である。主接点22は請求項4で言う第1の被駆動手段の一例である。リレー制御部32は、請求項1で言う切換制御手段の一例である。リレー回路33、34が、請求項2で言う接点駆動手段の一例である。また、主接点22、30が請求項4で言う第1の被駆動手段の一例であり、駆動コイル22cc及び常閉接点22ncが第1の駆動手段の一例であり、リレー常開接点52noが第2の被駆動手段の一例であり、リレー駆動コイル46が第2の駆動手段の一例であり、常開接点56及びリレー制御部32が保留手段の一例である。また、駆動コイル22ccが請求項5で言う第1の被駆動手段を動作させる駆動素子の一例であり、常閉接点22ncが請求項5で言う第1接点の一例であり、リレー常開接点52noが請求項5で言う第2接点の一例であり、リレー駆動コイル46が請求項5で言う第2接点を閉じる駆動素子の一例であり、常開接点56が請求項5で言う第3接点の一例である。   The inverter 16 is an example of the power adjusting means referred to in claim 1, the main contacts 22, 30 are switching means referred to in claim 1, and the relay control unit 32 and the relay circuits 33, 34 are defined in claim 1. Switching control means. Further, the drive coil 22cc and the relay drive coil 46 are examples of a plurality of elements having different operating voltages as defined in claim 2, and the relay circuits 33 and 34 are examples of contact drive means as defined in claim 2. The main contact 22 is an example of the first driven means referred to in claim 4. The relay control unit 32 is an example of the switching control means referred to in claim 1. The relay circuits 33 and 34 are an example of contact driving means referred to in claim 2. The main contacts 22 and 30 are examples of the first driven means referred to in claim 4, the drive coil 22cc and the normally closed contact 22nc are examples of the first drive means, and the relay normally open contact 52no is the first. 2 is an example of the second driven means, the relay drive coil 46 is an example of the second drive means, and the normally open contact 56 and the relay control unit 32 are examples of the holding means. Further, the drive coil 22cc is an example of a drive element for operating the first driven means referred to in claim 5, the normally closed contact 22nc is an example of the first contact referred to in claim 5, and the relay normally open contact 52no. Is an example of the second contact as defined in claim 5, the relay drive coil 46 is an example of a drive element for closing the second contact as defined in claim 5, and the normally open contact 56 is a third contact of the third contact as defined in claim 5. It is an example.

上記の実施形態では、太陽電池2を使用したが、これに限ったものではなく、出力電圧が変動するような電源を使用することもできる。上記の実施形態では、内部基準として第1の動作電圧(リレー回路33,34が正常に動作する電圧Vref)以上の電圧である基準電圧Vrefを使用したが、太陽電池2の出力電圧が電源36を始動させる駆動開始電圧Vaを、第1の動作電圧V1以上にしておけば、第1の動作電圧V1として動作開始電圧Vaを内部基準に使用することもできる。   In the above embodiment, the solar cell 2 is used. However, the present invention is not limited to this, and a power source whose output voltage fluctuates can also be used. In the above embodiment, the reference voltage Vref which is a voltage equal to or higher than the first operating voltage (voltage Vref at which the relay circuits 33 and 34 operate normally) is used as the internal reference. However, the output voltage of the solar cell 2 is the power supply 36. If the drive start voltage Va for starting is set to be equal to or higher than the first operation voltage V1, the operation start voltage Va can be used as the internal reference as the first operation voltage V1.

6 系統電源
16 インバータ(電力調整手段)
22 30 電磁接触器の主接点(切換手段)
32 リレー制御部(切換制御手段)
6 System power supply 16 Inverter (Power adjustment means)
22 30 Main contact (switching means) of magnetic contactor
32 Relay control unit (switching control means)

Claims (9)

系統電源と発電された直流電力を交流電力に変換する電力調整手段との間に接続され、前記系統電源及び前記電力調整手段を接続した連系系統と、前記系統電源から前記電力調整手段を切断した自立運転とに、切換する切換手段と、
前記切換手段を外部指令に応じて切り換える切換制御手段とを、
有し、前記切換制御手段は、前記外部指令を受けたとき、予め定めた内部条件が満たされるまで前記切換手段の切換を保留する
電源切換装置。
Connected between a system power supply and power adjustment means for converting generated DC power to AC power, and connected to the grid system connecting the system power supply and the power adjustment means, and disconnecting the power adjustment means from the system power supply Switching means for switching to independent operation,
Switching control means for switching the switching means according to an external command,
And the switching control means holds the switching of the switching means until a predetermined internal condition is satisfied when the external command is received.
請求項1記載の電源切換装置において、前記切換制御手段は、動作を開始する動作電圧が異なる複数の素子を有する接点駆動手段を含み、前記複数の素子に対して電圧が変動する電源が設けられ、前記切換制御手段は、前記外部指令を受けても、前記電源の電圧が、前記複数の素子のうち動作電圧が高いものが動作可能な電圧になるまで前記接点駆動手段の制御を保留する電源切換装置。   2. The power supply switching device according to claim 1, wherein the switching control means includes contact driving means having a plurality of elements having different operating voltages for starting operation, and a power source whose voltage varies with respect to the plurality of elements is provided. The switching control means is a power supply that suspends control of the contact driving means until the voltage of the power supply becomes an operable voltage even when the external command is received, even if a high operating voltage of the plurality of elements becomes an operable voltage. Switching device. 請求項2記載の電源切換装置において、前記接点駆動手段は、ラッチリレーである電源切換装置。   3. The power switching device according to claim 2, wherein the contact driving means is a latch relay. 動作させられると、その動作状態を維持する第1の被駆動手段と、
第1の動作電圧以上の電圧が供給されたとき、前記第1の被駆動手段を動作させると共に、自己への電圧供給を保留させる第1の駆動手段と、
動作させられたとき、前記第1の駆動手段へ電圧供給可能に第1の駆動素子と接続された第2の被駆動手段と、
前記第1の動作電圧よりも低い第2の動作電圧以上の電圧が供給されたとき、前記第2の被駆動手段を動作させる第2の駆動手段とを、
有し、
第1及び第2の駆動手段には、前記第2の動作電圧よりも低い電圧から前記第2の動作電圧を経て前記第1の動作電圧に向かって変化する電源からの電圧が、動作電圧として供給され、
前記電源の電圧が第1の動作電圧以上になるまで、前記第2の駆動手段への前記電源からの電圧供給を保留させる保留手段が設けられている
電源切換装置。
A first driven means for maintaining the operating state when operated,
A first driving means for operating the first driven means when a voltage equal to or higher than the first operating voltage is supplied, and suspending the voltage supply to itself;
A second driven means connected to the first driving element so as to supply a voltage to the first driving means when operated;
A second driving means for operating the second driven means when a voltage equal to or higher than a second operating voltage lower than the first operating voltage is supplied;
Have
In the first and second driving means, a voltage from a power source that changes from a voltage lower than the second operating voltage to the first operating voltage through the second operating voltage is used as the operating voltage. Supplied,
A power supply switching device provided with a holding means for holding the voltage supply from the power supply to the second driving means until the voltage of the power supply becomes equal to or higher than a first operating voltage.
請求項4記載の電源切換装置において、前記第1の駆動手段は、前記第1の動作電圧が供給されたとき前記第1の被駆動手段を動作させる駆動素子と、この駆動素子と直列に接続された閉じられている第1接点とを有し、前記第1の動作電圧が供給されたとき、前記第1接点が開放され、
前記第2の被駆動手段は、前記第1の駆動手段の前記第1接点と直列に接続された開放されている第2接点を有し、前記駆動素子と前記第2接点と前記第1の接点とが直列に前記電源間に接続され、
前記第2の駆動手段は、第2の動作電圧以上の電圧が供給されたとき、前記第2接点を閉じる駆動素子を有し、
前記保留手段は、前記第2の駆動手段の駆動素子と直列に前記電源間に接続された第3接点を有し、前記保留手段の前記第3接点は、前記電源の電圧が第1の動作電圧以上になるまで開放されている電源切換装置。
5. The power supply switching device according to claim 4, wherein the first driving means is connected in series with a driving element for operating the first driven means when the first operating voltage is supplied. Closed first contact, and when the first operating voltage is supplied, the first contact is opened,
The second driven means has an open second contact connected in series with the first contact of the first drive means, and the drive element, the second contact, and the first contact A contact is connected in series between the power sources,
The second driving means includes a driving element that closes the second contact when a voltage equal to or higher than a second operating voltage is supplied;
The holding means has a third contact connected between the power supplies in series with the driving element of the second driving means, and the third contact of the holding means is configured such that the voltage of the power supply is the first operation. A power switching device that is open until the voltage is exceeded.
請求項2乃至請求項5いずれか記載の電源切換装置において、前記電源が、自然エネルギー発電に基づく電源である電源切換装置。   6. The power switching device according to claim 2, wherein the power source is a power source based on natural energy power generation. 請求項2または3記載の電源切換装置において、前記電源が、自然エネルギー発電に基づく電源であり、前記切換制御手段が内部基準を有し、前記切換制御手段は、前記電源の出力電圧が前記内部基準以上になるまで前記接点駆動手段の制御を保留する電源切換装置。   4. The power source switching device according to claim 2, wherein the power source is a power source based on natural energy power generation, the switching control means has an internal reference, and the switching control means has an output voltage of the power source as the internal power source. A power supply switching device that suspends control of the contact driving means until it exceeds a reference. 請求項4または5記載の電源装置において、前記電源が、自然エネルギー発電に基づく電源であり、前記保留手段が、前記電源の出力電圧が前記内部基準以上になるまで前記第2駆動手段の制御を保留する電源切換装置。   6. The power supply device according to claim 4, wherein the power source is a power source based on natural energy power generation, and the holding unit controls the second driving unit until an output voltage of the power source becomes equal to or higher than the internal reference. Power supply switching device to hold. 請求項2、7または8記載の電源切換装置において、前記電源が太陽電池である電源切換装置。
9. The power switching device according to claim 2, 7 or 8, wherein the power source is a solar battery.
JP2016011393A 2016-01-25 2016-01-25 Power supply switching device Active JP6671979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011393A JP6671979B2 (en) 2016-01-25 2016-01-25 Power supply switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011393A JP6671979B2 (en) 2016-01-25 2016-01-25 Power supply switching device

Publications (2)

Publication Number Publication Date
JP2017135773A true JP2017135773A (en) 2017-08-03
JP6671979B2 JP6671979B2 (en) 2020-03-25

Family

ID=59503069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011393A Active JP6671979B2 (en) 2016-01-25 2016-01-25 Power supply switching device

Country Status (1)

Country Link
JP (1) JP6671979B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019198203A (en) * 2018-05-11 2019-11-14 ニチコン株式会社 Full load type distribution board and power storage system compatible with the same
JP2021010249A (en) * 2019-07-02 2021-01-28 ニチコン株式会社 Ac power conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131423A (en) * 2012-12-28 2014-07-10 Panasonic Corp Power feeding system, and switching device
JP2014183716A (en) * 2013-03-21 2014-09-29 Denso Corp Cooperation system using photovoltaic power generation and storage battery
JP2015220791A (en) * 2014-05-14 2015-12-07 三菱電機株式会社 Power supply control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131423A (en) * 2012-12-28 2014-07-10 Panasonic Corp Power feeding system, and switching device
JP2014183716A (en) * 2013-03-21 2014-09-29 Denso Corp Cooperation system using photovoltaic power generation and storage battery
JP2015220791A (en) * 2014-05-14 2015-12-07 三菱電機株式会社 Power supply control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019198203A (en) * 2018-05-11 2019-11-14 ニチコン株式会社 Full load type distribution board and power storage system compatible with the same
JP2021010249A (en) * 2019-07-02 2021-01-28 ニチコン株式会社 Ac power conversion device
JP7184708B2 (en) 2019-07-02 2022-12-06 ニチコン株式会社 AC power converter

Also Published As

Publication number Publication date
JP6671979B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
US10886737B2 (en) Energization control for establishing microgrids
US11031807B2 (en) Power supply device and power supply system
JP2001224142A (en) Photovoltaic generation apparatus
JP5878393B2 (en) Power supply system
JPH1023671A (en) Power conditioner and dispersed power supplying system
JP5207060B2 (en) Self-sustaining operation system using power storage / emergency power generator
JP2009011082A (en) Power supply system
JP2019198203A (en) Full load type distribution board and power storage system compatible with the same
JP2015220791A (en) Power supply control device
JP2019205309A (en) Power supply system
JP6671979B2 (en) Power supply switching device
JP5959952B2 (en) Power storage system
JPH08331776A (en) Dc power source system
JP2007288932A (en) Charge control device of photovoltaic power generation facility
WO2015040655A1 (en) Switching device and storage battery system
JP2014236568A (en) System interconnection system
JP6095550B2 (en) Switchgear and power control system
JP5338831B2 (en) Power control apparatus and power control method
US11277007B2 (en) Power conversion device, power system and method of suppressing reactive power in power system
CN103078354A (en) Backup battery protection system
JP6372452B2 (en) Uninterruptible power supply and control method thereof
CN114915007A (en) Power supply system, control method of power supply system, and readable storage medium
JP2009171724A (en) Bidirectional converter
CN114207984A (en) Power supply system and uninterruptible power supply including the same
JP6808009B2 (en) Power conditioner and distributed generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200304

R150 Certificate of patent or registration of utility model

Ref document number: 6671979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250