JP2017133661A - Transmission device - Google Patents

Transmission device Download PDF

Info

Publication number
JP2017133661A
JP2017133661A JP2016015810A JP2016015810A JP2017133661A JP 2017133661 A JP2017133661 A JP 2017133661A JP 2016015810 A JP2016015810 A JP 2016015810A JP 2016015810 A JP2016015810 A JP 2016015810A JP 2017133661 A JP2017133661 A JP 2017133661A
Authority
JP
Japan
Prior art keywords
transmission
axis
transmission member
shaft
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016015810A
Other languages
Japanese (ja)
Inventor
貴明 清水
Takaaki Shimizu
貴明 清水
濱田 哲郎
Tetsuo Hamada
哲郎 濱田
右典 新庄
Sukenori Shinjo
右典 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashi Seimitsu Industry Co Ltd
Original Assignee
Musashi Seimitsu Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashi Seimitsu Industry Co Ltd filed Critical Musashi Seimitsu Industry Co Ltd
Priority to JP2016015810A priority Critical patent/JP2017133661A/en
Publication of JP2017133661A publication Critical patent/JP2017133661A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve transmission efficiency of each of transmission mechanisms without requiring specially high processing accuracy with respect to supporting portions to a casing, of first and third transmission members and a first transmission shaft, in a transmission device including a first transmission member applying a first axis as a center axis, a first transmission shaft to which an eccentric shaft portion applying a second axis eccentric from the first axis is connected and which is rotatable around the first axis, a second transmission member rotatably supported by the eccentric shaft portion, a third transmission member coaxially connected to a second transmission shaft rotated around the first axis, and opposed to the second transmission member, a first transmission mechanism between the first and second transmission members, and a second transmission mechanism between the second and third transmission members.SOLUTION: First and second transmission shafts S1, S2 are supported by a casing G through bearings B1, B2, on the other hand, a first transmission member 5 is spline-fitted SP1 to the casing C and a third transmission member 9 is spline-fitted SP2 to the second transmission shaft S2 respectively freely in a radial direction.SELECTED DRAWING: Figure 1

Description

本発明は、伝動装置、特に第1軸線を中心軸線とする第1伝動部材と、第1軸線を中心軸線とする主軸部、及び第1軸線から偏心した第2軸線を中心軸線とする偏心軸部が一体的に連結された偏心回転部材と、主軸部に同軸に連結されて偏心回転部材と共に第1軸線回りに回転する第1伝動軸と、偏心軸部に第2軸線回りに回転自在に支持されると共に第1伝動部材に対向する第2伝動部材と、第1軸線を中心軸線とし且つ第2伝動部材に対向する第3伝動部材と、その第3伝動部材に同軸に連結されて第3伝動部材と共に第1軸線回りに回転する第2伝動軸と、第1及び第2伝動部材間で変速しつつトルク伝達可能な第1変速機構と、第2及び第3伝動部材間で変速しつつトルク伝達可能な第2変速機構と、第1〜第3伝動部材を収容すると共に、第1伝動部材と相対回転不能に連結されるケーシングとを備える伝動装置に関する。   The present invention relates to a transmission device, in particular, a first transmission member having a first axis as a central axis, a main shaft portion having a first axis as a central axis, and an eccentric shaft having a second axis eccentric from the first axis as a central axis. An eccentric rotating member whose parts are integrally connected, a first transmission shaft that is coaxially connected to the main shaft portion and rotates around the first axis together with the eccentric rotating member, and an eccentric shaft portion that is rotatable about the second axis. A second transmission member supported and opposed to the first transmission member; a third transmission member having the first axis as a central axis and opposed to the second transmission member; and a third transmission member coaxially connected to the third transmission member. The second transmission shaft that rotates about the first axis together with the three transmission members, the first transmission mechanism that is capable of transmitting torque while shifting between the first and second transmission members, and the second transmission shaft and the third transmission member. The second transmission mechanism capable of transmitting torque while accommodating the first to third transmission members Both relates gearing and a casing which is non-rotatably coupled to the first transmission member relative.

上記伝動装置は、例えば特許文献1に示されるように従来公知であり、このものでは、第1変速機構が、第1伝動部材の、第2伝動部材との対向面に在り且つ第1軸線を中心とする波形環状の第1伝動溝と、第2伝動部材の、第1伝動部材との対向面に在り且つ第2軸線を中心とする波形環状で波数が第1伝動溝とは異なる第2伝動溝と、第1及び第2伝動溝の複数の交差部に介装され、それら第1及び第2伝動溝を転動しながら第1及び第2伝動部材間の変速伝動を行う複数の第1転動体とを有し、また第2変速機構が、第2伝動部材の、第3伝動部材との対向面に在り且つ第2軸線を中心とする波形環状の第3伝動溝と、第3伝動部材の、第2伝動部材との対向面に在り且つ第1軸線を中心とする波形環状で波数が第3伝動溝とは異なる第4伝動溝と、第3及び第4伝動溝の複数の交差部に介装され、それら第3及び第4伝動溝を転動しながら第2及び第3伝動部材間の変速伝動を行う複数の第2転動体とを有している。そして、このような伝動構造によれば、例えば各伝動部材を板状とすることで、伝動装置の軸方向扁平小型化を図り得る利点がある。   The transmission device is conventionally known as disclosed in, for example, Patent Document 1. In this device, the first speed change mechanism is located on a surface of the first transmission member facing the second transmission member, and the first axis is arranged. A second corrugated annular first transmission groove and a second transmission member on a surface facing the first transmission member, the second transmission member being a corrugated annular centered on the second axis and having a wave number different from the first transmission groove. A plurality of first transmission gears and a plurality of first transmission gears that are interposed at a plurality of intersecting portions of the first and second transmission grooves and perform the transmission between the first and second transmission members while rolling the first and second transmission grooves. And a second transmission mechanism is located on a surface of the second transmission member facing the third transmission member and has a wavy annular third transmission groove centered on the second axis, The transmission member is on the surface facing the second transmission member and has a wave shape centered on the first axis and has a wave number different from that of the third transmission groove. 4 transmission grooves and a plurality of intersections of the third and fourth transmission grooves, and a plurality of transmissions for performing transmission transmission between the second and third transmission members while rolling the third and fourth transmission grooves And a second rolling element. And according to such a transmission structure, there exists an advantage which can aim at the axial direction flat size reduction of a transmission device, for example by making each transmission member into plate shape.

特開2003−172419号公報JP 2003-172419 A 特許第4814351号公報Japanese Patent No. 4814351

ところで特許文献1,2に示されるような従来の伝動装置では、第1変速機構における第1及び第2伝動溝に複数の第1転動体全部が適正に係合し、且つ第2変速機構における第3及び第4伝動溝に複数の第2転動体全部が適正に係合することが、第2伝動部材のスムーズな自転(第2軸線回り)及び公転(第1軸線回り)を確保して第1及び第2変速機構の伝動効率を高める上で有効である。   By the way, in the conventional transmission apparatus as shown in Patent Documents 1 and 2, all of the plurality of first rolling elements are properly engaged with the first and second transmission grooves in the first transmission mechanism, and in the second transmission mechanism. Proper engagement of all the second rolling elements with the third and fourth transmission grooves ensures smooth rotation (around the second axis) and revolution (around the first axis) of the second transmission member. This is effective in increasing the transmission efficiency of the first and second transmission mechanisms.

そこで上記従来装置では、第1伝動部材をケーシング一側壁と一体化させる一方、第1伝動軸と第3伝動部材(第2伝動軸)とを各々軸受を介してケーシングに支持することで、第1伝動部材、第1伝動軸及び第3伝動部材の相互の同軸配置をケーシングに関連付けて確保している。   Therefore, in the above conventional device, the first transmission member is integrated with one side wall of the casing, while the first transmission shaft and the third transmission member (second transmission shaft) are supported on the casing via bearings, respectively. The coaxial arrangement of the first transmission member, the first transmission shaft, and the third transmission member is ensured in association with the casing.

しかしながら、そのような手法では、上記各部材のケーシングへの支持部に高度の加工精度が要求されて製造コストの増大を招く等の問題がある。   However, in such a method, there is a problem that a high processing accuracy is required for the support portion of each member to the casing, resulting in an increase in manufacturing cost.

本発明は、かかる事情に鑑みてなされたものであって、上記問題を解消しながら第1及び第2変速機構の伝動効率を高め得る伝動装置を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the transmission which can improve the transmission efficiency of a 1st and 2nd transmission mechanism, solving the said problem.

上記目的を達成するために、本発明は、第1軸線を中心軸線とする第1伝動部材と、第1軸線を中心軸線とする主軸部、及び第1軸線から偏心した第2軸線を中心軸線とする偏心軸部が一体的に連結された偏心回転部材と、前記主軸部に同軸に連結されて前記偏心回転部材と共に第1軸線回りに回転する第1伝動軸と、前記偏心軸部に第2軸線回りに回転自在に支持されると共に前記第1伝動部材に対向する第2伝動部材と、第1軸線を中心軸線とし且つ前記第2伝動部材に対向する第3伝動部材と、その第3伝動部材に同軸に連結されて第3伝動部材と共に第1軸線回りに回転する第2伝動軸と、前記第1及び第2伝動部材間で変速しつつトルク伝達可能な第1変速機構と、前記第2及び第3伝動部材間で変速しつつトルク伝達可能な第2変速機構と、前記第1〜第3伝動部材を収容すると共に、前記第1伝動部材と相対回転不能に連結されるケーシングとを備え、前記第1変速機構が、前記第1伝動部材の、前記第2伝動部材との対向面に在り且つ第1軸線を中心とする波形環状の第1伝動溝と、前記第2伝動部材の、前記第1伝動部材との対向面に在り且つ第2軸線を中心とする波形環状で波数が第1伝動溝とは異なる第2伝動溝と、第1及び第2伝動溝の複数の交差部に介装され、それら第1及び第2伝動溝を転動しながら前記第1及び第2伝動部材間の変速伝動を行う複数の第1転動体とを有し、前記第2変速機構は、前記第2伝動部材の、前記第3伝動部材との対向面に在り且つ第2軸線を中心とする波形環状の第3伝動溝と、前記第3伝動部材の、前記第2伝動部材との対向面に在り且つ第1軸線を中心とする波形環状で波数が第3伝動溝とは異なる第4伝動溝と、第3及び第4伝動溝の複数の交差部に介装され、それら第3及び第4伝動溝を転動しながら前記第2及び第3伝動部材間の変速伝動を行う複数の第2転動体とを有し、前記第1及び第2伝動軸間で変速伝動を行い、又は前記ケーシングから前記第1及び第2伝動軸に回転トルクを分配するようにした伝動装置であって、前記第1及び第2伝動軸を第1及び第2軸受をそれぞれ介して前記ケーシングに支持する一方、前記ケーシングとは別部品とした前記第1伝動部材を該ケーシングに径方向に遊動可能にスプライン嵌合すると共に、前記第3伝動部材を前記第2伝動軸に径方向に遊動可能にスプライン嵌合したことを第1の特徴とする。   In order to achieve the above object, the present invention provides a first transmission member having a first axis as a central axis, a main shaft portion having a first axis as a central axis, and a second axis eccentric from the first axis. An eccentric rotating member integrally connected to the eccentric shaft portion, a first transmission shaft that is coaxially connected to the main shaft portion and rotates around the first axis together with the eccentric rotating member, and a first transmission shaft connected to the eccentric shaft portion. A second transmission member that is rotatably supported about two axes and faces the first transmission member; a third transmission member having the first axis as a central axis and facing the second transmission member; and a third thereof A second transmission shaft connected coaxially to the transmission member and rotating around the first axis together with the third transmission member; a first transmission mechanism capable of transmitting torque while shifting between the first and second transmission members; A second gear that can transmit torque while shifting between the second and third transmission members. A speed mechanism, and a casing that accommodates the first to third transmission members and is relatively non-rotatably coupled to the first transmission member, wherein the first transmission mechanism includes the first transmission member, A wavy annular first transmission groove on the surface facing the second transmission member and centering on the first axis, and a second axis of the second transmission member on the surface facing the first transmission member It is interposed at a plurality of intersecting portions of the first transmission groove and the second transmission groove having a corrugated annular shape with a wave number different from that of the first transmission groove, and rolls on the first and second transmission grooves. A plurality of first rolling elements that perform transmission transmission between the first and second transmission members, and the second transmission mechanism is provided on a surface of the second transmission member facing the third transmission member. A third transmission groove having an annular shape centered around the second axis and the second transmission member of the third transmission member A fourth annular groove having a wave shape centered on the first axis and having a wave number different from that of the third transmission groove, and a plurality of intersecting portions of the third and fourth transmission grooves. A plurality of second rolling elements for performing transmission transmission between the second and third transmission members while rolling on the third and fourth transmission grooves, and performing transmission transmission between the first and second transmission shafts. Or a transmission device that distributes rotational torque from the casing to the first and second transmission shafts, wherein the first and second transmission shafts are respectively connected to the casing via first and second bearings. While being supported, the first transmission member, which is a separate part from the casing, is spline-fitted to the casing so as to be free to move in the radial direction, and the third transmission member can be freely moved in the radial direction to the second transmission shaft. The first feature is that the spline is fitted.

また本発明は、第1の特徴に加えて、前記第3伝動部材と前記第2伝動軸との相対向面の何れか一方に設けられ第1軸線と直交する平面状の第1当接面と、その相対向面の何れか他方に設けられ第1軸線上に中心を有する球面状の第2当接面とを含むスラスト受け機構を備えることを第2の特徴とする。   In addition to the first feature, the present invention provides a planar first contact surface that is provided on any one of the opposing surfaces of the third transmission member and the second transmission shaft and that is orthogonal to the first axis. And a spherical second contact surface that is provided on either one of the opposing surfaces and that has a center on the first axis, and has a second feature.

また本発明は、前記第2の特徴に加えて、前記第3伝動部材と前記第2伝動軸とが、球面スプラインを介してスプライン嵌合されることを第3の特徴とする。   In addition to the second feature, the third feature of the present invention is that the third transmission member and the second transmission shaft are spline-fitted through a spherical spline.

本発明において、「径方向に遊動可能にスプライン嵌合」とは、第1及び第2伝動軸のケーシングへの支持部の加工誤差等に起因して、第1及び第2伝動軸相互の同軸精度に多少の狂い(例えば軸線相互に僅かなオフセットや傾き等)が生じた場合でも、その狂いを吸収可能とする(即ち上記狂いが生じても、各変速機構の対をなす伝動溝相互が適正な対向位置関係を維持可能とする)程度の、径方向の遊びが付与された状態でスプライン嵌合されることをいう。   In the present invention, “spline fitting so as to be freely movable in the radial direction” means that the first and second transmission shafts are coaxial with each other due to a processing error of the support portion of the first and second transmission shafts to the casing. Even if there is a slight deviation in accuracy (for example, a slight offset or inclination between the axes), the deviation can be absorbed (that is, even if the deviation occurs, the transmission grooves forming a pair of each speed change mechanism are This means that spline fitting is performed in a state where play in the radial direction is applied to such an extent that an appropriate opposing positional relationship can be maintained.

本発明の第1の特徴によれば、第1及び第2伝動軸を第1及び第2軸受をそれぞれ介してケーシングに支持するのに対して、ケーシングとは別部品とした第1伝動部材をケーシングに径方向に遊動可能にスプライン嵌合すると共に、第3伝動部材を第2伝動軸に径方向に遊動可能にスプライン嵌合するので、第1及び第2伝動軸のケーシングへの支持部の加工誤差等に起因して、第1及び第2伝動軸相互の同軸精度に多少の狂い(例えば軸線相互に僅かなオフセットや傾き等)が生じても、その狂いは、上記した径方向遊動可能なスプライン嵌合部で吸収可能となり、第1〜第3伝動部材間の伝動経路(即ち第1及び第2変速機構)に影響を及ぼすことを回避可能となる。即ち、第1〜第3伝動部材は、第1及び第2伝動軸相互の同軸精度の多少の狂いによっても、上記スプライン嵌合部での径方向遊動により、各変速機構の対をなす伝動溝相互が適正な対向位置関係を維持することができて、その対をなす伝動溝に、対応する転動体全部が適正に係合可能となるから、第2伝動部材のスムーズな自転及び公転を確保することができる。これにより、第1,第3伝動部材及び各伝動軸の、ケーシングへの支持部に特別高度な加工精度を必要とせずに、第1及び第2変速機構の伝動効率を高めることができるため、装置の製造コスト低減に寄与することができる。   According to the first feature of the present invention, the first and second transmission shafts are supported by the casing via the first and second bearings, respectively, whereas the first transmission member which is a separate component from the casing is provided. Since the third transmission member is spline-fitted to the casing in a radial direction so as to be freely movable in the radial direction, the third transmission member is spline-fitted in the radial direction so that the support portion of the first and second transmission shafts to the casing can be provided. Even if there is a slight deviation in the coaxial accuracy between the first and second transmission shafts due to machining errors etc. (for example, a slight offset or inclination between the axes), the deviation can be moved in the radial direction as described above. Therefore, it is possible to avoid the influence on the transmission path between the first to third transmission members (that is, the first and second transmission mechanisms). That is, the first to third transmission members are coupled to each transmission mechanism by radial play at the spline fitting portion even if there is a slight deviation in the coaxial accuracy between the first and second transmission shafts. Since the mutual opposing positional relationship can be maintained and all the corresponding rolling elements can be properly engaged with the paired transmission grooves, the second transmission member can be smoothly rotated and revolved. can do. Thereby, the transmission efficiency of the first and second transmission mechanisms can be increased without requiring special high processing accuracy for the support portion to the casing of the first and third transmission members and each transmission shaft. This can contribute to a reduction in the manufacturing cost of the device.

また本発明の第2の特徴によれば、第3伝動部材と第2伝動軸との相対向面の何れか一方に設けられ第1軸線と直交する平面状の第1当接面と、その相対向面の何れか他方に設けられ第1軸線上に中心を有する球面状の第2当接面とを含むスラスト受け機構を備えるので、第3伝動部材と第2伝動軸とは、上記スラスト受け機構により、スムーズに相対傾動しながら相互間でのスラスト荷重の伝達がなされ、即ち、第1及び第2伝動軸相互の傾きをスラスト受け機構で無理なく吸収して、その傾きが第1〜第3伝動部材間の伝動に影響するのを効果的に回避できる。   Further, according to the second feature of the present invention, a planar first contact surface that is provided on any one of the opposing surfaces of the third transmission member and the second transmission shaft and that is orthogonal to the first axis, and The third transmission member and the second transmission shaft include the thrust receiving mechanism that includes a spherical second contact surface that is provided on either one of the opposing surfaces and that has a center on the first axis. The receiving mechanism transmits the thrust load between the two while smoothly tilting relative to each other. That is, the thrust receiving mechanism absorbs the inclination between the first and second transmission shafts with ease, and the inclination is first to first. It is possible to effectively avoid affecting the transmission between the third transmission members.

また本発明の第3の特徴によれば、第3伝動部材と第2伝動軸とが、球面スプラインを介してスプライン嵌合されるので、第1及び第2伝動軸相互の傾きがスラスト受け機構で吸収されるときに、球面スプラインの嵌合部においても上記傾きをスムーズに吸収しながら、第3伝動部材と第2伝動軸間で効率よくトルク伝達を行わせることができる。   According to the third feature of the present invention, since the third transmission member and the second transmission shaft are spline-fitted via the spherical spline, the inclination between the first and second transmission shafts is a thrust receiving mechanism. Thus, torque can be efficiently transmitted between the third transmission member and the second transmission shaft while smoothly absorbing the inclination even at the fitting portion of the spherical spline.

本発明の第1実施形態に係る伝動装置(減速機)を含む自動二輪車用パワーユニットの一例を示す要部縦断図1 is a longitudinal sectional view of an essential part showing an example of a power unit for a motorcycle including a transmission (reduction gear) according to a first embodiment of the present invention. 第1実施形態の要部拡大断面図(図1の2矢視部拡大図)The principal part expanded sectional view of 1st Embodiment (the 2 arrow part enlarged view of FIG. 1) 図2の3−3矢視断面図3-3 arrow sectional view of FIG. 図2の4−4矢視断面図4-4 cross-sectional view of FIG. 第2実施形態に係る伝動装置(減速機)の要部断面図(図2対応図)Sectional drawing (corresponding figure of FIG. 2) of the principal part of the transmission device (reduction gear) which concerns on 2nd Embodiment. 第3実施形態に係る伝動装置(減速機)の要部断面図(図2対応図)Sectional drawing (corresponding figure of FIG. 2) of the principal part of the transmission device (reduction gear) which concerns on 3rd Embodiment. 第4実施形態に係る伝動装置(差動装置)の全体縦断面図Whole longitudinal cross-sectional view of the transmission device (differential device) which concerns on 4th Embodiment 第5実施形態に係る伝動装置(差動装置)の全体縦断面図(図7対応図)Whole longitudinal cross-sectional view (FIG. 7 corresponding figure) of the transmission (differential device) which concerns on 5th Embodiment

本発明の実施形態を添付図面に基づいて以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、図1〜図4に示す本発明の第1実施形態を説明する。図1において、自動二輪車のパワーユニットPは、駆動源としての電動モータMと、これの駆動力を減速して車輪(後輪W)に伝達する、伝動装置としての減速機Rとを備える。そして、このパワーユニットPは、自動二輪車の車体に上下揺動可能に軸支されるスイングアーム(図示せず)の後端部に、そのスイングアームと共に揺動し得るように装着される。   First, a first embodiment of the present invention shown in FIGS. 1 to 4 will be described. In FIG. 1, a power unit P of a motorcycle includes an electric motor M as a drive source and a speed reducer R as a transmission device that decelerates the driving force and transmits it to the wheels (rear wheels W). The power unit P is mounted on the rear end of a swing arm (not shown) that is pivotally supported on the motorcycle body so as to swing up and down so that it can swing together with the swing arm.

パワーユニットPにおいて、減速機Rは、電動モータMの出力軸を兼ねる第1伝動軸S1の回転を第1,第2変速機構T1,T2を介して減速して第2伝動軸S2に伝達するものであって、その第2伝動軸S2には後輪Wが一体に回転するように結合される。また、第1,第2伝動軸S1,S2は、パワーユニットPのユニットケースPcに各一対の第1,第2軸受B1,B1′;B2,B2′を介して各々第1軸線X1回りに回転可能に支持される。   In the power unit P, the speed reducer R decelerates the rotation of the first transmission shaft S1 that also serves as the output shaft of the electric motor M via the first and second transmission mechanisms T1 and T2 and transmits the reduced speed to the second transmission shaft S2. In this case, the rear wheel W is coupled to the second transmission shaft S2 so as to rotate integrally. The first and second transmission shafts S1 and S2 rotate around the first axis X1 through the pair of first and second bearings B1, B1 '; B2, B2' in the unit case Pc of the power unit P, respectively. Supported as possible.

電動モータMは、モータケース1と、このケース1の外周壁内面に固着されるステータ2と、このステータ2の内方に在って第1伝動軸S1に固着されるロータ3とを備える。モータケース1は、例えば、有底円筒状のケース本体及びその開放端を閉じる蓋体で二つ割りに構成される。   The electric motor M includes a motor case 1, a stator 2 fixed to the inner surface of the outer peripheral wall of the case 1, and a rotor 3 located inside the stator 2 and fixed to the first transmission shaft S <b> 1. The motor case 1 is divided into two parts, for example, a bottomed cylindrical case body and a lid that closes its open end.

減速機Rは、上記モータケース1と協働してパワーユニットPのユニットケースPcを構成する中空のケーシングCと、そのケーシングC内に軸方向に直列状態で収容される第1,第2,第3伝動部材5,8,9と、ケーシングC内に収容されて環状の第1,第2伝動部材5,8に囲繞される偏心回転部材6と、第1及び第2伝動部材5,8間で変速しつつトルク伝達可能な第1変速機構T1と、第2及び第3伝動部材8,9間で変速しつつトルク伝達可能な第2変速機構T2とを主要な構成要素とする。   The speed reducer R cooperates with the motor case 1 to form a hollow casing C that constitutes a unit case Pc of the power unit P, and first, second, and second housings that are accommodated in the casing C in an axial state in series. 3 between the transmission members 5, 8, 9, the eccentric rotation member 6 housed in the casing C and surrounded by the annular first and second transmission members 5, 8, and the first and second transmission members 5, 8. The first transmission mechanism T1 capable of transmitting torque while shifting and the second transmission mechanism T2 capable of transmitting torque while shifting between the second and third transmission members 8 and 9 are main components.

特に本実施形態では、減速機Rに電動モータMが同一軸線(第1軸線X1)上で結合一体化されており、その結合一体化のために、減速機RのケーシングCとモータケース1との隣接端部相互が複数のボルト10で締結される。この締結状態でモータケース1の一側壁1aは、減速機Rと電動モータMの内部空間相互を仕切るものであって、減速機RのケーシングCの一側壁Caとしても機能する。そして、このケーシングCの一側壁Caと、モータケース1の他側壁1bとにそれぞれ第1軸受B1,B1′(例えばボール軸受)を介して第1伝動軸S1が回転自在に支持される。   In particular, in the present embodiment, the electric motor M is coupled to the speed reducer R on the same axis (first axis X1), and the casing C and the motor case 1 of the speed reducer R are combined and integrated. The adjacent end portions of each other are fastened by a plurality of bolts 10. In this fastened state, one side wall 1a of the motor case 1 separates the internal spaces of the speed reducer R and the electric motor M, and also functions as one side wall Ca of the casing C of the speed reducer R. The first transmission shaft S1 is rotatably supported on one side wall Ca of the casing C and the other side wall 1b of the motor case 1 via first bearings B1 and B1 ′ (for example, ball bearings).

減速機R寄りの第1軸受B1は、それのインナーレースがカラー40を挟んで電動モータMのロータ3に隣接しており、それら第1軸受B1、カラー40及びロータ3が、第1伝動軸S1の中間段部と、該軸S1の外端部に螺合したナット4との間で挟持、締結される。そして、ケーシングCの一側壁Caとカラー40の外周との間には環状シール部材11が介装される。尚、カラー40の内周と第1伝動軸S1との間にも環状シール部材41が介装される。   The first bearing B1 near the speed reducer R has its inner race adjacent to the rotor 3 of the electric motor M with the collar 40 in between, and the first bearing B1, the collar 40 and the rotor 3 are connected to the first transmission shaft. It is clamped and fastened between the intermediate step portion of S1 and the nut 4 screwed to the outer end portion of the shaft S1. An annular seal member 11 is interposed between one side wall Ca of the casing C and the outer periphery of the collar 40. An annular seal member 41 is also interposed between the inner periphery of the collar 40 and the first transmission shaft S1.

第1伝動部材5は、第1軸線X1を中心軸線としてケーシングCの一側壁Caの内面に隣接配置され、その第1伝動部材5の外周部は、ケーシングCの外周壁の内周面に径方向に遊動可能にスプライン嵌合SP1される。尚、このスプライン嵌合SP1部位においては、上記径方向のスムーズな遊動を許容するために、トルク伝動に支障のない範囲で周方向(即ち回転方向)にも多少の遊びが設定される。またケーシングCの一側壁Ca内面と第1伝動部材5の外側面との相対向面間には、間隔調整用のシム12が介装される。尚、このシム12に代えて、皿バネ等の弾性部材を介装してもよい。   The first transmission member 5 is disposed adjacent to the inner surface of the one side wall Ca of the casing C with the first axis X1 as the central axis, and the outer peripheral portion of the first transmission member 5 has a diameter on the inner peripheral surface of the outer peripheral wall of the casing C. The spline fitting SP1 is movably movable in the direction. In addition, in this spline fitting SP1 part, in order to allow the said smooth movement in the radial direction, some play is also set in the circumferential direction (that is, the rotation direction) within a range that does not hinder torque transmission. Further, a gap adjusting shim 12 is interposed between the opposing surfaces of the inner surface Ca of the casing C and the outer surface of the first transmission member 5. Instead of the shim 12, an elastic member such as a disc spring may be interposed.

偏心回転部材6は、第1軸線X1を中心軸線とする主軸部6jと、第1軸線X1から所定偏心量eだけ偏心した第2軸線X2を中心軸線とする偏心軸部6eとを一体に有するものであり、主軸部6jには、第1伝動軸S1が同軸に連結(本実施形態では一体に結合)される。そして、この偏心軸部6eには、円環状をなす第2伝動部材8の内周部が、第3軸受B3(例えばボール軸受)を介して第2軸線X2回りに回転自在に支持され、その第2伝動部材8の一側面は第1伝動部材5の内側面に対向する。尚、偏心回転部材6と第1伝動軸S1とを別々に形成して、その両者を一体回転するよう連結(例えばスプライン嵌合)してもよい。   The eccentric rotating member 6 integrally includes a main shaft portion 6j having the first axis line X1 as a central axis, and an eccentric shaft portion 6e having a second axis line X2 eccentric from the first axis line X1 by a predetermined eccentric amount e as a central axis line. The first transmission shaft S1 is coaxially connected to the main shaft portion 6j (coupled integrally in the present embodiment). The eccentric shaft portion 6e supports the inner peripheral portion of the annular second transmission member 8 via a third bearing B3 (for example, a ball bearing) so as to be rotatable around the second axis X2. One side surface of the second transmission member 8 faces the inner side surface of the first transmission member 5. Note that the eccentric rotating member 6 and the first transmission shaft S1 may be formed separately and connected so as to rotate together (for example, spline fitting).

第3伝動部材9は、第1軸線X1回りに回転する第2伝動軸S2に同軸上で連結される。またその第3伝動部材9の内側面は、第2伝動部材8の他側面に対向する。   The third transmission member 9 is coaxially connected to the second transmission shaft S2 that rotates about the first axis X1. The inner side surface of the third transmission member 9 faces the other side surface of the second transmission member 8.

而して、第2伝動部材8は、偏心回転部材6(第1伝動軸S1)の第1軸線X1回りの回転に伴い、偏心軸部6eに対し第2軸線X2回りに自転しつつ、第1伝動軸S1に対し第1軸線X1回りに公転する。   Thus, the second transmission member 8 rotates about the second axis X2 with respect to the eccentric shaft portion 6e as the eccentric rotation member 6 (first transmission shaft S1) rotates about the first axis X1, while rotating about the second axis X2. Revolve around the first axis X1 with respect to one transmission shaft S1.

ところで本実施形態では、偏心回転部材6の偏心軸部6eと第2伝動部材8の総合重心の位置が、第1軸線X1から第2軸線X2の方向に離間した位置に偏在する。そのため、第2伝動部材8が上記の如く自転しつつ公転するときに、その偏心回転系の遠心力が第1軸線X1に関して特定方向(第2軸線X2のオフセット側)に偏って作用することから、その偏心回転系の回転がアンバランスな状態となるが、そのアンバランス状態を解消又は軽減するために、前記総合重心とは逆位相で且つその総合重心の回転半径よりも大なる回転半径を有するバランスウェイト7が、偏心回転部材6の主軸部6jに一体的に連結される。尚、バランスウェイト7は、その少なくとも一部が第1伝動部材5の内方空間に配置される。   By the way, in this embodiment, the position of the total gravity center of the eccentric shaft part 6e of the eccentric rotation member 6 and the 2nd transmission member 8 is unevenly distributed in the position spaced apart from the 1st axis line X1 to the 2nd axis line X2. Therefore, when the second transmission member 8 revolves while rotating as described above, the centrifugal force of the eccentric rotation system acts in a specific direction (on the offset side of the second axis X2) with respect to the first axis X1. The rotation of the eccentric rotation system is in an unbalanced state, but in order to eliminate or reduce the unbalanced state, a rotation radius that is opposite in phase to the total center of gravity and larger than the rotation radius of the total center of gravity is used. The balance weight 7 is integrally connected to the main shaft portion 6j of the eccentric rotating member 6. Note that at least a part of the balance weight 7 is disposed in the inner space of the first transmission member 5.

また第2伝動軸S2は、本実施形態では車軸を兼ねる長い軸本体13と、その軸本体13の内端部外周に固着(本実施形態では圧入)された筒軸14とを備える。軸本体13の外端部13oは、外周にスプライン溝を有する車輪取付部とされており、そこにナットn等の締結手段を以て後輪WのホイールハブWhが着脱可能に且つ相対回転不能に結合されている。   The second transmission shaft S2 includes a long shaft main body 13 that also serves as an axle in the present embodiment, and a cylindrical shaft 14 that is fixed (press-fitted in the present embodiment) to the outer periphery of the inner end portion of the shaft main body 13. The outer end portion 13o of the shaft body 13 is a wheel mounting portion having a spline groove on the outer periphery, and a wheel hub Wh of the rear wheel W is detachably coupled to the wheel body Wh by fastening means such as a nut n and the like so as not to be relatively rotatable. Has been.

そして、第2伝動軸S2は、軸本体13の中間部と筒軸14とにおいて、ケーシングCの内壁に一対の第2軸受B2,B2′(例えばボール軸受、ローラ軸受)を介して第1軸線X1回りに回転自在に支持される。尚、その両第2軸受B2,B2′間でケーシングC内周と軸本体13外周との間には環状シール部材15が介装される。   The second transmission shaft S2 has a first axis line through a pair of second bearings B2 and B2 '(for example, a ball bearing and a roller bearing) on the inner wall of the casing C in the intermediate portion of the shaft body 13 and the cylindrical shaft 14. It is supported rotatably around X1. An annular seal member 15 is interposed between the inner periphery of the casing C and the outer periphery of the shaft body 13 between the second bearings B2 and B2 ′.

また上記筒軸14の内端部外周は、第3伝動部材9の外側面に円筒状に突設した連結筒部9aの内周面に径方向に遊動可能にスプライン嵌合SP2される。尚、このスプライン嵌合SP2部位においては、上記径方向のスムーズな遊動を許容するために、トルク伝動に支障のない範囲で周方向(即ち回転方向)にも多少の遊びが設定される。   Further, the outer periphery of the inner end portion of the cylindrical shaft 14 is spline-fitted SP2 so as to be freely movable in the radial direction on the inner peripheral surface of the connecting cylindrical portion 9a projecting cylindrically on the outer surface of the third transmission member 9. In addition, in this spline fitting SP2 part, in order to permit the said smooth movement in the radial direction, some play is also set in the circumferential direction (that is, the rotational direction) within a range that does not hinder torque transmission.

上記連結筒部9aの径方向内方側で第3伝動部材9の外側面は、第1軸線X1と直交する平面よりなる第1当接面t1とされる。またその第1当接面t1に対向、接触する軸本体13の内端面は、第1軸線X1上に中心を有する球面よりなる第2当接面t2とされる。そして、それら第1,第2当接面t1,t2により、第3伝動部材9と第2伝動軸S2間でのスラスト受け渡しを行うスラスト受け機構17が構成される。尚、上記とは逆に、平坦な第1当接面t1を軸本体13の内端面に、また球面状の第2当接面t2を第3伝動部材9の外側面にそれぞれ設けてスラスト受け機構17を構成するようにしてもよい。   The outer surface of the third transmission member 9 on the radially inner side of the connecting tube portion 9a is a first contact surface t1 formed of a plane orthogonal to the first axis X1. The inner end surface of the shaft body 13 that faces and contacts the first contact surface t1 is a second contact surface t2 that is a spherical surface having a center on the first axis X1. The first and second contact surfaces t1 and t2 constitute a thrust receiving mechanism 17 that performs a thrust transfer between the third transmission member 9 and the second transmission shaft S2. Contrary to the above, the flat first contact surface t1 is provided on the inner end surface of the shaft body 13, and the spherical second contact surface t2 is provided on the outer surface of the third transmission member 9, respectively. The mechanism 17 may be configured.

次に第1,第2変速機構T1,T2について、順に説明する。   Next, the first and second transmission mechanisms T1 and T2 will be described in order.

第1伝動部材5の、第2伝動部材8に対向する内側面には、第1軸線X1を中心とした波形環状の第1伝動溝21が形成され、この第1伝動溝21は、図示例では第1軸線X1を中心とする仮想円を基礎円としたハイポトロコイド曲線に沿って周方向に延びている。一方、第2伝動部材8の、第1伝動部材5に対向する一側面には、第2軸線X2を中心とした波形環状の第2伝動溝22が形成される。この第2伝動溝22は、図示例では第2軸線X2を中心とする仮想円を基礎円としたエピトロコイド曲線に沿って周方向に延びており、第1伝動溝21の波数Z1とは異なる(例えば少ない)波数Z2を有して第1伝動溝21と複数箇所で交差する。第1伝動溝21及び第2伝動溝22の交差部(即ち重なり部)には、第1転動体としての複数の第1ボール23…が介装され、各々の第1ボール23は、第1及び第2伝動溝21,22の内側面を転動自在である。   On the inner surface of the first transmission member 5 facing the second transmission member 8, a wavy annular first transmission groove 21 centering on the first axis X <b> 1 is formed, and the first transmission groove 21 is illustrated in the illustrated example. Then, it extends in the circumferential direction along a hypotrochoid curve having a virtual circle centered on the first axis X1 as a base circle. On the other hand, a corrugated annular second transmission groove 22 centering on the second axis X2 is formed on one side surface of the second transmission member 8 facing the first transmission member 5. In the illustrated example, the second transmission groove 22 extends in the circumferential direction along an epitrochoid curve having a virtual circle centered on the second axis X2 as a base circle, and is different from the wave number Z1 of the first transmission groove 21. Crosses the first transmission groove 21 at a plurality of locations with a wave number Z2 (for example, small). A plurality of first balls 23 as first rolling elements are interposed at intersections (that is, overlapping portions) of the first transmission groove 21 and the second transmission groove 22, and each of the first balls 23 is a first one. And the inner surface of the 2nd transmission grooves 21 and 22 can roll freely.

第1伝動部材5及び第2伝動部材8の相対向面間には、円環状の扁平な第1保持部材H1が介装される。この第1保持部材H1は、複数の第1ボール23の、第1、第2伝動溝21,22相互の交差部での両伝動溝21,22への係合状態を維持し得るように、複数の第1ボール23をそれらの相互間隔を一定に規制しつつ回転自在に保持する複数の円形の保持孔31を有している。この第1保持部材H1により、各第1ボール23は、第1、第2伝動溝21,22の各々の曲率急変部を通過する際にも溝内での暴れが効果的に抑制される。   Between the opposing surfaces of the first transmission member 5 and the second transmission member 8, an annular flat first holding member H1 is interposed. The first holding member H1 can maintain the engaged state of the plurality of first balls 23 in both the transmission grooves 21 and 22 at the intersections of the first and second transmission grooves 21 and 22. A plurality of circular holding holes 31 are provided to hold the plurality of first balls 23 in a freely rotating manner while keeping their mutual intervals constant. The first holding member H1 effectively suppresses the ramps in the grooves when the first balls 23 pass through the respective suddenly changing curvature portions of the first and second transmission grooves 21 and 22.

また、第2伝動部材8の、第3伝動部材9と対向する他側面には、第2軸線X2を中心とした波形環状の第3伝動溝24が形成され、この第3伝動溝24は、図示例では第2軸線X2を中心とする仮想円を基礎円としたハイポトロコイド曲線に沿って周方向に延びている。一方、第3伝動部材9の、第2伝動部材8と対向する内側面には、第1軸線X1を中心とした波形環状の第4伝動溝25が形成される。この第4伝動溝25は、図示例では第1軸線X1を中心とする仮想円を基礎円としたエピトロコイド曲線に沿って周方向に延びており、第3伝動溝24の波数Z3とは異なる(例えば少ない)波数Z4を有して第3伝動溝24と複数箇所で交差する。第3伝動溝24及び第4伝動溝25の交差部(重なり部)には、第2転動体としての複数の第2ボール26…が介装され、各第2ボール26は、第3及び第4伝動溝24,25の内側面を転動自在である。   Further, on the other side surface of the second transmission member 8 facing the third transmission member 9, a wavy annular third transmission groove 24 centering on the second axis X2 is formed, and the third transmission groove 24 is In the illustrated example, it extends in the circumferential direction along a hypotrochoidal curve having a virtual circle centered on the second axis X2 as a base circle. On the other hand, on the inner surface of the third transmission member 9 facing the second transmission member 8, a wavy annular fourth transmission groove 25 centering on the first axis X <b> 1 is formed. In the illustrated example, the fourth transmission groove 25 extends in the circumferential direction along an epitrochoidal curve having a virtual circle centered on the first axis X1 as a base circle, and is different from the wave number Z3 of the third transmission groove 24. It intersects with the third transmission groove 24 at a plurality of locations with a wave number Z4 (for example, less). A plurality of second balls 26 as second rolling elements are interposed at the intersecting portion (overlapping portion) of the third transmission groove 24 and the fourth transmission groove 25, and each second ball 26 has a third and a third one. 4 The inner surfaces of the transmission grooves 24 and 25 can roll freely.

第3伝動部材9及び第2伝動部材8の相対向面間には、円環状の扁平な第2保持部材H2が介装される。この第2保持部材H2は、複数の第2ボール26…の、第3、第4伝動溝24,25相互の交差部での両伝動溝24,25への係合状態を維持し得るように、複数の第2ボール26…をそれらの相互間隔を一定に規制しつつ回転自在に保持する複数の円形の保持孔32を有している。この第2保持部材H2により、各第2ボール26は、第3、第4伝動溝24,25の各々の曲率急変部を通過する際にも溝内での暴れが効果的に抑制される。   Between the opposing surfaces of the third transmission member 9 and the second transmission member 8, an annular flat second holding member H2 is interposed. The second holding member H2 can maintain the engagement state of the plurality of second balls 26 to the transmission grooves 24 and 25 at the intersections of the third and fourth transmission grooves 24 and 25. The plurality of second balls 26 are provided with a plurality of circular holding holes 32 for holding the second balls 26... Due to the second holding member H2, even when each second ball 26 passes through the sudden curvature change portions of the third and fourth transmission grooves 24 and 25, the rampage in the grooves is effectively suppressed.

而して、第1伝動溝21、第2伝動溝22及び第1ボール23は、互いに協働して第1段階の変速(減速)を行う第1変速機構T1を構成し、また第3伝動溝24、第4伝動溝25及び第2ボール26は、互いに協働して第2段階の変速(減速)を行う第2変速機構T2を構成する。   Thus, the first transmission groove 21, the second transmission groove 22, and the first ball 23 constitute a first transmission mechanism T1 that cooperates with each other to perform a first-stage speed change (deceleration), and a third transmission. The groove 24, the fourth transmission groove 25, and the second ball 26 constitute a second transmission mechanism T2 that cooperates with each other to perform a second-stage speed change (deceleration).

次に、第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

車両走行時には、車載の電子制御ユニットが運転者のアクセル操作に基づいて電動モータMへの通電(従って同モータMの回転)を制御する。そして、この電動モータMにより第1伝動軸S1が回転駆動されると、これと一体の偏心回転部材6の偏心軸部6eが第1軸線X1回りに公転し、これに伴い、偏心軸部6e上の第2伝動部材8も第1軸線X1回りに公転する。この公転によれば、ケーシングCにスプライン嵌合SP1されて回転規制される第1伝動部材5の第1伝動溝21と、第2伝動部材8の第2伝動溝22との相互間にその両溝21,22の交差部で係合する各第1ボール23が、その両溝21,22上を転動することによって、第2伝動部材8が偏心軸部6e上で第2軸線X2回りに自転する。   When the vehicle travels, an on-vehicle electronic control unit controls energization to the electric motor M (and hence rotation of the motor M) based on the accelerator operation of the driver. When the first transmission shaft S1 is rotationally driven by the electric motor M, the eccentric shaft portion 6e of the eccentric rotation member 6 integral with the first transmission shaft S1 revolves around the first axis X1, and accordingly, the eccentric shaft portion 6e. The upper second transmission member 8 also revolves around the first axis X1. According to this revolution, both the first transmission groove 21 of the first transmission member 5 and the second transmission groove 22 of the second transmission member 8, both of which are spline-fitted into the casing C and are restricted in rotation, are connected to each other. The first balls 23 engaged at the intersections of the grooves 21 and 22 roll on the grooves 21 and 22, so that the second transmission member 8 is rotated about the second axis X2 on the eccentric shaft portion 6 e. Rotate.

斯かる第2伝動部材8の自転及び公転によれば、第2,第3伝動部材8,9上の第3,第4伝動溝24,25の相互間にその両溝24,25の交差部で係合する各第2ボール26が両溝24,25上を転動することによって、第3伝動部材9が第1軸線X1回りに自転駆動される。そして、その自転駆動力は、第3伝動部材9にスプライン嵌合SP2される第2伝動軸S2に伝達される。   According to the rotation and revolution of the second transmission member 8, the intersection of the grooves 24 and 25 between the third and fourth transmission grooves 24 and 25 on the second and third transmission members 8 and 9. As the second balls 26 that engage with each other roll on the grooves 24 and 25, the third transmission member 9 is driven to rotate about the first axis X1. The rotation driving force is transmitted to the second transmission shaft S2 that is spline-fitted SP2 to the third transmission member 9.

かくして、電動モータMで駆動される第1伝動軸S1の回転が第1,第2変速機構T1,T2を順次経て第2伝動軸S2に減速して伝達され、第2伝動軸S2、従って後輪Wを電動モータMで減速駆動することができる。   Thus, the rotation of the first transmission shaft S1 driven by the electric motor M is transmitted to the second transmission shaft S2 by decelerating to the second transmission shaft S2 through the first and second transmission mechanisms T1 and T2 in sequence, and thus the second transmission shaft S2. The wheel W can be driven to decelerate by the electric motor M.

そして、本実施形態のような転動ボール式の減速機Rにおいて、第1伝動溝21の波数をZ1、第2伝動溝22の波数をZ2、第3伝動溝24の波数をZ3、第4伝動溝25の波数をZ4としたとき、第1伝動軸S1(入力軸)と第2伝動軸S2(出力軸)間の減速比εは、
ε=1−{(Z1×Z3)/(Z2×Z4)}
として表される。
In the rolling ball type speed reducer R as in this embodiment, the wave number of the first transmission groove 21 is Z1, the wave number of the second transmission groove 22 is Z2, the wave number of the third transmission groove 24 is Z3, When the wave number of the transmission groove 25 is Z4, the reduction ratio ε between the first transmission shaft S1 (input shaft) and the second transmission shaft S2 (output shaft) is
ε = 1 − {(Z1 × Z3) / (Z2 × Z4)}
Represented as:

本実施形態のような転動ボール式減速機Rでは、第1伝動部材5と第2伝動部材8間のトルク伝達は、第1伝動溝21、複数の第1ボール23…及び第2伝動溝22を介して行われ、また第2伝動部材8と第3伝動部材9間のトルク伝達は、第3伝動溝24、複数の第2ボール26…及び第4伝動溝25を介して行われる。これにより、第1伝動部材5と第2伝動部材8、並びに第2伝動部材8と第3伝動部材9の各間では、トルク伝達が第1及び第2ボール23,26が存在する複数箇所に分散して行われることになるため、第1〜第3伝動部材5,8,9及び第1、第2ボール23,26等の各伝動要素の強度増及び軽量化が図られる。しかも本実施形態の伝動構造によれば、第1〜第3伝動部材5,8,9を各々板状として軸方向に並べることにより軸方向に扁平小型化が容易な変速装置(減速機R)が提供可能となる。   In the rolling ball type reduction gear R as in the present embodiment, torque transmission between the first transmission member 5 and the second transmission member 8 is performed by the first transmission groove 21, the plurality of first balls 23, and the second transmission groove. 22, and torque transmission between the second transmission member 8 and the third transmission member 9 is performed via the third transmission groove 24, the plurality of second balls 26, and the fourth transmission groove 25. Thereby, between each of the 1st transmission member 5 and the 2nd transmission member 8, and the 2nd transmission member 8 and the 3rd transmission member 9, torque transmission is carried out to a plurality of places where the 1st and 2nd balls 23 and 26 exist. Since it is performed in a distributed manner, the strength and weight of each transmission element such as the first to third transmission members 5, 8, 9 and the first and second balls 23, 26 can be increased. Moreover, according to the transmission structure of the present embodiment, the first to third transmission members 5, 8, and 9 are each formed in a plate shape and arranged in the axial direction so that the transmission can be easily flattened in the axial direction (reduction gear R). Can be provided.

また本実施形態では、第1及び第2伝動軸S1,S2を第1及び第2軸受B1,B1′;B2,B2′をそれぞれ介してパワーユニットPのユニットケースPc(減速機RのケーシングCを含む)に支持させるのに対し、そのケーシングCとは別部品とした第1伝動部材5をケーシングCに径方向に遊動可能にスプライン嵌合SP1し、且つ第3伝動部材9を第2伝動軸S2に径方向に遊動可能にスプライン嵌合SP2している。そのため、例えば、第1及び第2伝動軸S1,S2のケーシングCへの支持部(例えば第1,第2軸受B1,B2,B2′の取付部)の加工誤差やケーシングCの歪み等に起因して、第1及び第2伝動軸S1,S2相互の同軸精度に多少の狂い(例えば軸線相互に僅かなオフセットや傾き等)が生じたような場合でも、その狂いは、上記した径方向遊動可能なスプライン嵌合部SP1,SP2で吸収可能となって、第1〜第3伝動部材5,8,9の相互間の伝動経路(即ち第1及び第2変速機構T1,T2)への影響が抑えられる。   In the present embodiment, the first and second transmission shafts S1, S2 are connected to the unit case Pc of the power unit P (the casing C of the reduction gear R through the first and second bearings B1, B1 ′; B2, B2 ′, respectively). The first transmission member 5 which is a separate component from the casing C is spline-fitted SP1 so as to be freely movable in the radial direction, and the third transmission member 9 is the second transmission shaft. The spline fitting SP2 is slidable in the radial direction in S2. Therefore, for example, due to a processing error of a support portion (for example, a mounting portion of the first and second bearings B1, B2, B2 ′) of the first and second transmission shafts S1, S2 to the casing C, distortion of the casing C, or the like. Even if there is a slight deviation in the coaxial accuracy between the first and second transmission shafts S1 and S2 (for example, a slight offset or inclination between the axes), the deviation is caused by the above-described radial play. Possible to be absorbed by the possible spline fitting portions SP1 and SP2, and the influence on the transmission path between the first to third transmission members 5, 8, and 9 (that is, the first and second transmission mechanisms T1 and T2). Is suppressed.

即ち、第1〜第3伝動部材5,8,9は、第1及び第2伝動軸S1,S2相互の同軸精度の多少の狂いによっても、上記スプライン嵌合部SP1,SP2での径方向遊動により、各変速機構T1,T2の対をなす伝動溝21,22;24,25相互が適正な対向位置関係を維持できるため、その対をなす伝動溝21,22;24,25に、対応する複数のボール23…,26…全部が適正に係合可能となるから、第2伝動部材8のスムーズな自転及び公転を確保することができる。これにより、第1,第3伝動部材5,9ならびに各伝動軸S1,S2の、ケーシングCへの支持部に特別高度な加工精度を必要とせずに、第1及び第2変速機構T1,T2の伝動効率を高めることができるため、装置の製造コストの低減が図られる。   That is, the first to third transmission members 5, 8, and 9 are moved in the radial direction at the spline fitting portions SP1 and SP2 even if the coaxial accuracy between the first and second transmission shafts S1 and S2 is slightly out of alignment. Accordingly, the transmission grooves 21, 22; 24, 25 forming a pair of the respective transmission mechanisms T1, T2 can maintain an appropriate opposing positional relationship, and thus correspond to the pair of transmission grooves 21, 22; 24, 25. Since the plurality of balls 23, 26, all can be properly engaged, smooth rotation and revolution of the second transmission member 8 can be ensured. As a result, the first and second transmission mechanisms T1, T2 are not required for the first and third transmission members 5, 9 and the transmission shafts S1, S2 at the support portions to the casing C without requiring a particularly high machining accuracy. Therefore, the manufacturing cost of the apparatus can be reduced.

更に本実施形態では、第3伝動部材9と第2伝動軸S2との相対向面の一方に設けられて第1軸線X1と直交する平坦な第1当接面t1と、その他方に設けられて第1軸線X1上に中心を有する球面状の第2当接面t2とで構成されるスラスト受け機構17を備えている。このため、第3伝動部材9と第2伝動軸S2とは、スラスト受け機構17により、相互にスムーズに相対傾動しながらスラスト荷重を受け渡し可能である。これにより、第1及び第2伝動軸S1,S2相互の傾きをスラスト受け機構17で無理なく吸収可能となり、第1〜第3伝動部材5,8,9に影響が及ぶのを効果的に回避できる。   Furthermore, in the present embodiment, the flat first contact surface t1 provided on one of the opposing surfaces of the third transmission member 9 and the second transmission shaft S2 and orthogonal to the first axis X1 is provided on the other side. And a thrust receiving mechanism 17 composed of a spherical second contact surface t2 having a center on the first axis X1. For this reason, the third transmission member 9 and the second transmission shaft S2 can pass the thrust load while being relatively smoothly tilted relative to each other by the thrust receiving mechanism 17. As a result, the inclination between the first and second transmission shafts S1 and S2 can be absorbed by the thrust receiving mechanism 17 without difficulty, and the first to third transmission members 5, 8, and 9 are effectively avoided from being affected. it can.

次に第2実施形態を、図5を参照して説明する。この第2実施形態では、第3伝動部材9と第2伝動軸S2間の連動連結構造のみが第1実施形態と相違する。即ち、第2伝動軸S2は、車軸を兼ねる軸本体13の内端部に円筒状の取付筒部13aが連設されており、その取付筒部13aの外周が第2軸受B2′を介してケーシングCの内壁に回転自在に支持される。また取付筒部13aの内周には筒軸14′の外周が固着(本実施形態では圧入)される。   Next, a second embodiment will be described with reference to FIG. In the second embodiment, only the interlocking connection structure between the third transmission member 9 and the second transmission shaft S2 is different from the first embodiment. That is, the second transmission shaft S2 is provided with a cylindrical mounting tube portion 13a connected to the inner end portion of the shaft body 13 which also serves as an axle, and the outer periphery of the mounting tube portion 13a is interposed via the second bearing B2 '. It is rotatably supported on the inner wall of the casing C. Further, the outer periphery of the cylinder shaft 14 'is fixed (in the present embodiment, press-fitted) to the inner periphery of the mounting cylinder portion 13a.

そして、筒軸14′の内周部は、第3伝動部材9の外側面に突設した連結軸部9bの外周面に径方向に遊動可能にスプライン嵌合SP2される。そのスプライン嵌合面の何れか一方(例えば連結軸部9bの外周面)は、第1軸線X1を含む縦断面で見て円弧状の球面スプライン18に形成される。また軸本体13の内端面は、平面状の第1当接面t1とされ、また連結軸部9bの外端面は、第1軸線X1上に中心を有する球面状に形成されて第1当接面t1に対向、接触する第2当接面t2とされる。それら第1,第2当接面t1,t2により、スラスト受け機構17が構成される。   The inner peripheral portion of the cylindrical shaft 14 'is spline-fitted SP2 so as to be freely movable in the radial direction on the outer peripheral surface of the connecting shaft portion 9b protruding from the outer surface of the third transmission member 9. Either one of the spline fitting surfaces (for example, the outer peripheral surface of the connecting shaft portion 9b) is formed into an arcuate spherical spline 18 when viewed in a longitudinal section including the first axis X1. Further, the inner end surface of the shaft body 13 is a flat first contact surface t1, and the outer end surface of the connecting shaft portion 9b is formed in a spherical shape having a center on the first axis X1 to be a first contact. A second contact surface t2 that faces and contacts the surface t1 is used. A thrust receiving mechanism 17 is configured by the first and second contact surfaces t1 and t2.

尚、上記とは逆に、平坦な第1当接面t1を連結軸部9bの外端面に、また球面状の第2当接面t2を軸本体13の内端面にそれぞれ設けてスラスト受け機構17を構成するようにしてもよい。また、そのスプライン嵌合SP2部位においては、上記径方向のスムーズな遊動を許容するために、トルク伝動に支障のない範囲で周方向(即ち回転方向)にも多少の遊びが設定される。   Contrary to the above, a thrust receiving mechanism is provided by providing a flat first contact surface t1 on the outer end surface of the connecting shaft portion 9b and a spherical second contact surface t2 on the inner end surface of the shaft body 13. 17 may be configured. Further, in the spline fitting SP2 portion, in order to allow the smooth radial movement, a certain amount of play is also set in the circumferential direction (that is, the rotational direction) within a range that does not hinder torque transmission.

その他の構成要素については、第1実施形態と同様であるので、第1実施形態と同様の参照符号を付すに留め、これ以上の説明は省略する。   Since other components are the same as those in the first embodiment, the same reference numerals as those in the first embodiment are used, and further description is omitted.

従って、第2実施形態においても、第1実施形態の前記作用効果と同等の作用効果を達成可能である。その上、第2実施形態では、第3伝動部材9と第2伝動軸S2とが、球面スプライン18を介して径方向遊動可能にスプライン嵌合SP2されるので、第1及び第2伝動軸S1,S2相互の傾きが上述のようにスラスト受け機構17で吸収されるときに、球面スプライン18を含むスプライン嵌合部SP2においても上記傾きを無理なく吸収しながら、第3伝動部材9と第2伝動軸S2間で効率よくトルク伝達を行わせることができる。   Therefore, also in 2nd Embodiment, the effect equivalent to the said effect of 1st Embodiment can be achieved. In addition, in the second embodiment, the third transmission member 9 and the second transmission shaft S2 are spline-fitted SP2 so as to be radially movable via the spherical spline 18, and therefore the first and second transmission shafts S1. , S2 when the thrust receiving mechanism 17 absorbs the mutual inclination, the spline fitting portion SP2 including the spherical spline 18 absorbs the inclination without difficulty while the third transmission member 9 and the second transmission member 9 Torque can be efficiently transmitted between the transmission shafts S2.

更に第3実施形態を、図6を参照して説明する。この第3実施形態では、第3伝動部材9と第2伝動軸S2間の連動連結構造、特にスラスト受け構造17を省略した点のみが第1実施形態と相違する。即ち、筒軸14の外周部は、第1実施形態と同様に、第3伝動部材9の外側面に突設した連結筒部9aの内周面に径方向に遊動可能にスプライン嵌合SP2されるが、その連結筒部9aの径方向内方側で第3伝動部材9の外側面と、軸本体13の内端面とは何れも平面状に形成されていて、相互に間隙をおいて相対向している。そして、その相対向面間には、その間を離反させる方向に弾発する弾性部材19(例えば皿ばね)が縮設される。   Further, a third embodiment will be described with reference to FIG. The third embodiment is different from the first embodiment only in that the interlocking connection structure between the third transmission member 9 and the second transmission shaft S2, particularly the thrust receiving structure 17 is omitted. That is, the outer peripheral portion of the cylindrical shaft 14 is spline-fitted SP2 so as to be freely movable in the radial direction on the inner peripheral surface of the connecting cylindrical portion 9a protruding from the outer surface of the third transmission member 9, as in the first embodiment. However, the outer surface of the third transmission member 9 and the inner end surface of the shaft body 13 are both formed on the radially inner side of the connecting tube portion 9a and are relatively spaced apart from each other. It is suitable. And between the opposing surfaces, an elastic member 19 (for example, a disc spring) that repels in a direction to separate the space is contracted.

その他の構成要素については、第1実施形態と同様であるので、第1実施形態と同様の参照符号を付すに留め、これ以上の説明は省略する。   Since other components are the same as those in the first embodiment, the same reference numerals as those in the first embodiment are used, and further description is omitted.

従って、第3実施形態においても、第1実施形態の前記作用効果と同等の作用効果を達成可能である。その上、第3実施形態では、スラスト受け機構17(特に第2当接面t2の球面加工等)を省略できるため、加工コストの節減が図られる。   Therefore, also in 3rd Embodiment, the effect equivalent to the said effect of 1st Embodiment can be achieved. In addition, in the third embodiment, the thrust receiving mechanism 17 (particularly the spherical processing of the second contact surface t2 and the like) can be omitted, so that the processing cost can be reduced.

更に第4実施形態を、図7を参照して説明する。先の実施形態では、伝動装置として転動ボール式の減速機Rを例示したが、この第4実施形態の伝動装置は転動ボール式の差動装置Dとして例示される。   Further, a fourth embodiment will be described with reference to FIG. In the previous embodiment, the rolling ball type reduction gear R was exemplified as the transmission device, but the transmission device of the fourth embodiment is exemplified as the rolling ball type differential device D.

この差動装置Dは、図示しない変速機と共にミッションケース100内に収容され、エンジン等の動力源に変速機を介して連動するリングギヤCgの回転を、第1軸線X1上に並ぶ一対の駆動車軸S1,S2(即ち第1,第2伝動軸)に対して、両駆動車軸S1,S2相互の差動回転を許容しつつ分配する。尚、各々の駆動車軸S1,S2とミッションケース100との間は、シール部材101でシールされる。   The differential device D is housed in a transmission case 100 together with a transmission (not shown), and a pair of drive axles arranged on the first axis X1 to rotate the ring gear Cg linked to a power source such as an engine via the transmission. Distribution is performed while allowing differential rotation between the drive axles S1 and S2 with respect to S1 and S2 (that is, the first and second transmission shafts). The drive axles S1, S2 and the transmission case 100 are sealed with a seal member 101.

差動装置Dは、ミッションケース100に第1軸線X1回りに回転可能に支持されるケーシングCと、そのケーシングC内に収容される後述の差動機構Dmとで構成される。ケーシングCは、デフケースとして機能するものであって、ヘリカルギヤよりなるリングギヤCgを外周部に有する円筒状のケーシング本体Cmと、そのケーシング本体Cmの軸方向両端部に外周端部がそれぞれ一体的に接合される左右一対の第1,第2側壁Ca,Cbとを備える。   The differential device D includes a casing C that is rotatably supported by the mission case 100 around the first axis X1, and a differential mechanism Dm described later that is housed in the casing C. The casing C functions as a differential case, and a cylindrical casing main body Cm having a ring gear Cg made of a helical gear on the outer peripheral portion and an outer peripheral end portion integrally joined to both axial end portions of the casing main body Cm. And a pair of left and right first and second side walls Ca and Cb.

その両側壁Ca,Cbは、各々の内周端部において軸方向外方に延びる円筒ボス状の第1,第2軸受B1,B2を一体に有している。その第1,第2軸受B1,B2の外周部は、ミッションケース100に外軸受102(例えばボール軸受)を介して第1軸線X1回りに回転自在に支持される。また第1,第2軸受B1,B2の内周面(即ち軸受面)には、第1,第2駆動車軸S1,S2がそれぞれ回転自在に嵌合、支持される。尚、第1,第2軸受B1,B2の内周面には、駆動車軸S1,S2との相対回転に伴いミッションケース100内の潤滑油をケーシングC内に圧送、誘導するための螺旋溝121,122が凹設される。   Both side walls Ca and Cb integrally have cylindrical boss-like first and second bearings B1 and B2 extending outward in the axial direction at the respective inner peripheral ends. The outer peripheral portions of the first and second bearings B1 and B2 are supported by the transmission case 100 so as to be rotatable around the first axis X1 via an outer bearing 102 (for example, a ball bearing). The first and second drive axles S1 and S2 are rotatably fitted and supported on the inner peripheral surfaces (that is, bearing surfaces) of the first and second bearings B1 and B2, respectively. A spiral groove 121 is provided on the inner peripheral surfaces of the first and second bearings B1 and B2 for pressure-feeding and guiding the lubricating oil in the transmission case 100 into the casing C with relative rotation with the drive axles S1 and S2. , 122 are recessed.

次に差動機構Dmの構造を説明する。差動機構Dmは、ケーシングC内に軸方向に直列状態で収容される第1,第2,第3伝動部材5,8,9と、ケーシングC内に収容されて環状の第1,第2伝動部材5,8に囲繞される偏心回転部材6と、第1及び第2伝動部材5,8間で変速しつつトルク伝達可能な第1変速機構T1と、第2及び第3伝動部材8,9間で変速しつつトルク伝達可能な第2変速機構T2とを主要な構成要素とする。   Next, the structure of the differential mechanism Dm will be described. The differential mechanism Dm includes first, second, and third transmission members 5, 8, and 9 that are accommodated in the axial direction in the casing C, and an annular first and second that are accommodated in the casing C. The eccentric rotating member 6 surrounded by the transmission members 5, 8, the first transmission mechanism T 1 capable of transmitting torque while shifting between the first and second transmission members 5, 8, the second and third transmission members 8, The second transmission mechanism T2 capable of transmitting torque while shifting between the nine gears is a main component.

第1伝動部材5は、第1軸線X1を中心軸線としてケーシングCの一側壁Caの内面に隣接配置され、その第1伝動部材5の外周部は、ケーシングCの一側壁Ca内面の環状凹部の内周面に径方向に遊動可能にスプライン嵌合SP1される。尚、このスプライン嵌合SP1部位においては、上記径方向のスムーズな遊動を許容するために、トルク伝動に支障のない範囲で周方向(即ち回転方向)にも多少の遊びが設定される。またケーシングCの一側壁Ca内面と第1伝動部材5の外側面との相対向面間には間隔調整用のシム12が介装される。尚、このシム12に代えて、皿バネ等の弾性部材を介装してもよい。   The first transmission member 5 is disposed adjacent to the inner surface of the one side wall Ca of the casing C with the first axis X1 as the central axis, and the outer periphery of the first transmission member 5 is an annular recess of the inner surface of the one side wall Ca of the casing C. The spline fitting SP1 is movably movable in the radial direction on the inner peripheral surface. In addition, in this spline fitting SP1 part, in order to allow the said smooth movement in the radial direction, some play is also set in the circumferential direction (that is, the rotation direction) within a range that does not hinder torque transmission. Further, a gap adjusting shim 12 is interposed between opposing surfaces of the inner surface Ca of the casing C and the outer surface of the first transmission member 5. Instead of the shim 12, an elastic member such as a disc spring may be interposed.

偏心回転部材6は、第1軸線X1を中心軸線とする主軸部6jと、第1軸線X1から所定偏心量eだけ偏心した第2軸線X2を中心軸線とする偏心軸部6eとを一体に有するものであり、主軸部6jには、第1伝動軸としての第1駆動車軸S1の内端部が同軸に連結(本実施形態では径方向に遊びがゼロ又は僅少の状態でスプライン嵌合111)される。そして、この偏心軸部6eには第2伝動部材8が第3軸受B3(例えばボール軸受)を介して第2軸線X2回りに回転自在に支持され、その第2伝動部材8の一側面は第1伝動部材5の内側面に対向する。   The eccentric rotating member 6 integrally includes a main shaft portion 6j having the first axis line X1 as a central axis, and an eccentric shaft portion 6e having a second axis line X2 eccentric from the first axis line X1 by a predetermined eccentric amount e as a central axis line. The inner end portion of the first drive axle S1 as the first transmission shaft is coaxially connected to the main shaft portion 6j (in this embodiment, the spline fitting 111 with zero or little play in the radial direction). Is done. A second transmission member 8 is supported on the eccentric shaft portion 6e via a third bearing B3 (for example, a ball bearing) so as to be rotatable about the second axis X2, and one side surface of the second transmission member 8 is 1 It faces the inner surface of the transmission member 5.

第3伝動部材9は、第1軸線X1回りに回転する第2駆動車軸S2に筒軸114を介して同軸上で連結されていて、第2駆動車軸S2と共に第1軸線X1回りに回転する。また第3伝動部材9の内側面は、第2伝動部材8の他側面に対向する。   The third transmission member 9 is coaxially connected to the second drive axle S2 that rotates about the first axis X1 via the cylindrical shaft 114, and rotates about the first axis X1 together with the second drive axle S2. Further, the inner side surface of the third transmission member 9 faces the other side surface of the second transmission member 8.

上記筒軸114は、内端側が閉塞された有底円筒状に形成されており、その閉塞壁114bが第3伝動部材9の外側面に対向する。また上記筒軸114の内端部外周は、第3伝動部材9の外側面に突設した連結筒部9aの内周面に径方向に遊動可能にスプライン嵌合SP2される。尚、このスプライン嵌合SP2部位においては、上記径方向のスムーズな遊動を許容するために、トルク伝動に支障のない範囲で周方向(即ち回転方向)にも多少の遊びが設定される。   The cylindrical shaft 114 is formed in a bottomed cylindrical shape whose inner end is closed, and the closed wall 114 b faces the outer surface of the third transmission member 9. Further, the outer periphery of the inner end portion of the cylindrical shaft 114 is spline-fitted SP2 so as to be freely movable in the radial direction on the inner peripheral surface of the connecting cylindrical portion 9a protruding from the outer surface of the third transmission member 9. In addition, in this spline fitting SP2 part, in order to permit the said smooth movement in the radial direction, some play is also set in the circumferential direction (that is, the rotational direction) within a range that does not hinder torque transmission.

また、筒軸114の筒状部114aの内周面は、第2駆動車軸S2の内端部が同軸に連結(本実施形態では径方向に遊びがゼロ又は僅少の状態でスプライン嵌合112)されている。   Further, the inner peripheral surface of the cylindrical portion 114a of the cylindrical shaft 114 is coaxially connected to the inner end portion of the second drive axle S2 (in this embodiment, the spline fitting 112 with zero or little play in the radial direction). Has been.

上記連結筒部9aの径方向内方側で第3伝動部材9の外側面は、平面状の第1当接面t1とされる。またその第1当接面t1に対向、接触する筒軸114の閉塞壁114bの外側面は、第1軸線X1上に中心を有する球面状に形成した第2当接面t2とされる。そして、それら第1,第2当接面t1,t2により、スラスト受け機構17が構成される。尚、上記とは逆に、平坦な第1当接面t1を筒軸114の閉塞壁114bに、また球面状の第2当接面t2を第3伝動部材9の外側面にそれぞれ設けてスラスト受け機構17を構成するようにしてもよい。   The outer surface of the third transmission member 9 on the radially inner side of the connecting tube portion 9a is a flat first contact surface t1. The outer surface of the blocking wall 114b of the cylindrical shaft 114 that faces and contacts the first contact surface t1 is a second contact surface t2 formed in a spherical shape having a center on the first axis X1. And the thrust receiving mechanism 17 is comprised by these 1st, 2nd contact surfaces t1, t2. Contrary to the above, the flat first contact surface t1 is provided on the blocking wall 114b of the cylindrical shaft 114, and the spherical second contact surface t2 is provided on the outer surface of the third transmission member 9, respectively. The receiving mechanism 17 may be configured.

また、偏心回転部材6(主軸部6j)の外側面とケーシングC(第1側壁Ca)との対向面間、並びに筒軸114の外側面とケーシングC(第2側壁Cb)との対向面間には、必要に応じてスラストワッシャが介装される。   Further, between the outer surface of the eccentric rotating member 6 (main shaft portion 6j) and the facing surface of the casing C (first side wall Ca), and between the outer surface of the cylindrical shaft 114 and the facing surface of the casing C (second side wall Cb). A thrust washer is interposed as necessary.

而して、第4実施形態においても、第2伝動部材8は、偏心回転部材6(第1駆動車軸S1)の第1軸線X1回りの回転に伴い、偏心軸部6eに対し第2軸線X2回りに自転しつつ、第1駆動車軸S1に対し第1軸線X1回りに公転する。   Thus, also in the fourth embodiment, the second transmission member 8 has the second axis X2 with respect to the eccentric shaft portion 6e as the eccentric rotation member 6 (first drive axle S1) rotates about the first axis X1. Revolving around the first axis X1 relative to the first drive axle S1 while rotating around.

また第4実施形態の第1,第2変速機構T1,T2の構造は、第1〜第3実施形態の第1,第2変速機構T1,T2の構造と基本的に同様であるので、各構成要素に同様の参照符号を付すに留め、機構の説明は省略する。但し、第4実施形態では、第1,第2変速機構T1,T2が、偏心回転部材6(第1駆動車軸S1)を固定した状態でケーシングCを回転させたときに、第1伝動部材5から第3伝動部材9を2倍の増速比を以て駆動するように構成される。   The first and second transmission mechanisms T1 and T2 of the fourth embodiment are basically the same as the first and second transmission mechanisms T1 and T2 of the first to third embodiments. The same reference numerals are assigned to the components, and the description of the mechanism is omitted. However, in the fourth embodiment, when the first and second speed change mechanisms T1 and T2 rotate the casing C with the eccentric rotation member 6 (first drive axle S1) fixed, the first transmission member 5 is used. The third transmission member 9 is configured to be driven with a double speed increasing ratio.

そのために、第4実施形態においては、第1伝動溝21の波数をZ1、第2伝動溝22の波数をZ2、第3伝動溝24の波数をZ3、第4伝動溝25の波数をZ4としたとき、下記式が成立するように、第1〜第4伝動溝21,22,24,25は形成される。   Therefore, in the fourth embodiment, the wave number of the first transmission groove 21 is Z1, the wave number of the second transmission groove 22 is Z2, the wave number of the third transmission groove 24 is Z3, and the wave number of the fourth transmission groove 25 is Z4. Then, the first to fourth transmission grooves 21, 22, 24, and 25 are formed so that the following formula is established.

(Z1/Z2)×(Z3/Z4)=2
望ましくは、例えばZ1=8、Z2=6、Z3=6、Z4=4とするか、又はZ1=6、Z2=4、Z3=8、Z4=6とするとよい。
(Z1 / Z2) × (Z3 / Z4) = 2
Desirably, for example, Z1 = 8, Z2 = 6, Z3 = 6, Z4 = 4, or Z1 = 6, Z2 = 4, Z3 = 8, and Z4 = 6.

例えば、前者の場合には、8波の第1伝動溝21と6波の第2伝動溝22とが7箇所で交差し、この7箇所の交差部(重なり部)に7個の第1ボール23が介装され、また6波の第3伝動溝24と4波の第4伝動溝25とが5箇所で交差し、この5箇所の交差部(重なり部)に5個の第2ボール26が介装される。   For example, in the former case, the eight-wave first transmission groove 21 and the six-wave second transmission groove 22 intersect at seven locations, and seven first balls are formed at the seven intersection portions (overlapping portions). 23, and the six-wave third transmission groove 24 and the four-wave fourth transmission groove 25 intersect at five locations, and five second balls 26 are formed at the five intersections (overlapping portions). Is installed.

この前者の場合において、例えば第1駆動車軸S1を固定することで偏心回転部材6(従って偏心軸部6e)を固定した状態において、エンジンからの動力でリングギヤCgが駆動され、ケーシングC(従って第1伝動部材5)を第1軸線X1回りに回転させると、第1伝動部材5の8波の第1伝動溝21が第2伝動部材8の6波の第2伝動溝22を第1ボール23を介して駆動するので、第1伝動部材5が8/6の増速比を以て第2伝動部材8を駆動することになる。そして、この第2伝動部材8の回転によれば、第2伝動部材8の6波の第3伝動溝24が第3伝動部材9の4波の第4伝動溝25を第2ボール26を介して駆動するので、第2伝動部材8が6/4の増速比を以て第3伝動部材9を駆動することになる。   In the former case, for example, in a state where the eccentric rotation member 6 (and hence the eccentric shaft portion 6e) is fixed by fixing the first drive axle S1, the ring gear Cg is driven by the power from the engine, and the casing C (and therefore the first shaft). When the first transmission member 5) is rotated about the first axis X1, the first transmission groove 21 of the first transmission member 5 and the second transmission groove 22 of the second transmission member 8 are replaced by the first ball 23. Therefore, the first transmission member 5 drives the second transmission member 8 with a speed increasing ratio of 8/6. Then, according to the rotation of the second transmission member 8, the six-wave third transmission groove 24 of the second transmission member 8 passes the four-wave fourth transmission groove 25 of the third transmission member 9 via the second ball 26. Therefore, the second transmission member 8 drives the third transmission member 9 with a speed increasing ratio of 6/4.

結局、第1伝動部材5は、
(Z1/Z2)×(Z3/Z4)=(8/6)×(6/4)=2
の増速比を以て第3伝動部材9を駆動することになる。
After all, the first transmission member 5 is
(Z1 / Z2) × (Z3 / Z4) = (8/6) × (6/4) = 2
The third transmission member 9 is driven with the speed increasing ratio.

一方、第2駆動車軸S2を固定することで第3伝動部材9を固定した状態において、デフケース(従って第1伝動部材5)を回転させると、第1伝動部材5の回転駆動力と、第2伝動部材8の、不動の第3伝動部材9に対する駆動反力とにより、第2伝動部材8は、偏心回転部材6の偏心軸部6e(第2軸線X2)に対し自転しながら第1軸線X1回りに公転して、偏心軸部6eを第1軸線X1回りに駆動する。その結果、第1伝動部材5は、2倍の増速比を以て偏心回転部材6を駆動することになる。   On the other hand, when the differential case (and hence the first transmission member 5) is rotated in a state where the third transmission member 9 is fixed by fixing the second drive axle S2, the rotational drive force of the first transmission member 5 and the second The second transmission member 8 rotates with respect to the eccentric shaft portion 6e (second axis X2) of the eccentric rotating member 6 by the driving reaction force of the transmission member 8 against the stationary third transmission member 9, and the first axis X1. Revolving around, the eccentric shaft portion 6e is driven around the first axis X1. As a result, the first transmission member 5 drives the eccentric rotating member 6 with a double speed increasing ratio.

而して、偏心回転部材6及び第3伝動部材9の負荷が相互にバランスしたり、相互に変化したりすると、第2伝動部材8の自転量及び公転量が無段階に変化し、偏心回転部材6及び第3伝動部材9の回転数の平均値が第1伝動部材5の回転数と等しくなる。こうして、第1伝動部材5の回転は、偏心回転部材6及び第3伝動部材9に分配され、したがってリングギヤCgからデフケースCに伝達された回転力を左右の駆動車軸S1,S2に分配することができる。   Thus, when the loads of the eccentric rotating member 6 and the third transmission member 9 are balanced with each other or change with each other, the amount of rotation and the amount of revolution of the second transmission member 8 change steplessly, and the eccentric rotation The average value of the rotational speeds of the member 6 and the third transmission member 9 is equal to the rotational speed of the first transmission member 5. Thus, the rotation of the first transmission member 5 is distributed to the eccentric rotation member 6 and the third transmission member 9, so that the rotational force transmitted from the ring gear Cg to the differential case C can be distributed to the left and right drive axles S1, S2. it can.

かくして、第4実施形態の伝動構造によれば、第1〜第3伝動部材5,8,9を各々板状として軸方向に並べることにより軸方向に扁平小型化が容易な差動装置Dが提供可能となる。   Thus, according to the transmission structure of the fourth embodiment, the first to third transmission members 5, 8, 9 are each formed in a plate shape and arranged in the axial direction, whereby the differential device D that can be easily flattened in the axial direction is provided. It can be provided.

そして、この第4実施形態においても、ケーシングC内における第1,第2変速機構T1,T2や第1〜第3伝動部材5,8,9及び偏心回転部材6の配置構成が、第1〜第3実施形態のそれと同様であるので、その配置構成(特に径方向に遊動可能なスプライン嵌合SP1,SP2やスラスト受け機構17の構成)に関連して、第1〜第3実施形態と同等の作用効果を併せて達成可能である。   In the fourth embodiment, the arrangement configuration of the first and second transmission mechanisms T1, T2, the first to third transmission members 5, 8, 9 and the eccentric rotating member 6 in the casing C is the first to the second. Since it is the same as that of 3rd Embodiment, it is equivalent to 1st-3rd Embodiment regarding the arrangement configuration (especially the structure of spline fitting SP1, SP2 and the thrust receiving mechanism 17 which can be loosely moved to radial direction). The effects of the above can be achieved together.

更に第5実施形態を、図8を参照して説明する。この第5実施形態では、偏心回転部材6と第1駆動車軸S1(第1伝動軸)との間の連動連結構造においてのみが第4実施形態と相違する。即ち、第4実施形態では、偏心回転部材6の主軸部6jに第1駆動車軸S1の内端部が直接、スプライン嵌合111されていたが、第5実施形態では、主軸部6jに第2筒軸114′を介して第1駆動車軸S1が同軸に連結される。   Further, a fifth embodiment will be described with reference to FIG. The fifth embodiment is different from the fourth embodiment only in the interlocking connection structure between the eccentric rotating member 6 and the first drive axle S1 (first transmission shaft). That is, in the fourth embodiment, the inner end portion of the first drive axle S1 is directly spline-fitted 111 to the main shaft portion 6j of the eccentric rotating member 6, but in the fifth embodiment, the second main shaft portion 6j is connected to the second end portion. The first drive axle S1 is coaxially connected via the cylinder shaft 114 '.

偏心回転部材6は、円筒状をなす主軸部6jと、その主軸部6jの内端部を閉塞する円板状の偏心軸部6eとを一体に有する。第2筒軸114′は、内端側が閉塞された有底円筒状に形成されており、その閉塞壁114b′が偏心軸部6eの外側面に対向する。また第2筒軸114′の筒状部114a′の内周面には第1駆動車軸S1の内端部外周が、径方向に遊びがゼロ又は僅少の状態でスプライン嵌合111′される。   The eccentric rotating member 6 integrally includes a cylindrical main shaft portion 6j and a disc-shaped eccentric shaft portion 6e that closes the inner end portion of the main shaft portion 6j. The second cylindrical shaft 114 'is formed in a bottomed cylindrical shape whose inner end is closed, and its closed wall 114b' faces the outer surface of the eccentric shaft portion 6e. Further, the outer peripheral surface of the inner end portion of the first drive axle S1 is spline-fitted 111 'on the inner peripheral surface of the cylindrical portion 114a' of the second cylindrical shaft 114 'with zero or little play in the radial direction.

また第2筒軸114′の内端部外周は、主軸部6jの内周面に径方向に遊動可能にスプライン嵌合SP1′される。その主軸部6jの径方向内方側で偏心軸部6eの外側面は、平面状の第1当接面t1′とされる。またその第1当接面t1′に対向、接触する第2筒軸114′の閉塞壁114b′の外側面は、第1軸線X1上に中心を有する球面状に形成した第2当接面t2′とされる。そして、それら第1,第2当接面t1′,t2′により、スラスト受け機構17′が構成される。尚、上記とは逆に、平坦な第1当接面t1′を第2筒軸114′の閉塞壁114b′に、また球面状の第2当接面t2′を偏心軸部6eの外側面にそれぞれ設けてスラスト受け機構17′を構成するようにしてもよい。   Further, the outer periphery of the inner end portion of the second cylindrical shaft 114 'is spline-fitted SP1' so as to be freely movable in the radial direction on the inner peripheral surface of the main shaft portion 6j. The outer surface of the eccentric shaft portion 6e on the radially inner side of the main shaft portion 6j is a flat first contact surface t1 '. The outer surface of the blocking wall 114b 'of the second cylindrical shaft 114' facing and contacting the first contact surface t1 'is a second contact surface t2 formed in a spherical shape having a center on the first axis X1. '. The first and second contact surfaces t1 'and t2' constitute a thrust receiving mechanism 17 '. Contrary to the above, the flat first contact surface t1 'is the closed wall 114b' of the second cylindrical shaft 114 ', and the spherical second contact surface t2' is the outer surface of the eccentric shaft portion 6e. The thrust receiving mechanism 17 ′ may be provided respectively.

従って、この第5実施形態においても、第4実施形態と同等の作用効果を達成可能である。   Therefore, also in the fifth embodiment, it is possible to achieve the same operation effect as the fourth embodiment.

以上、本発明の実施形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   As mentioned above, although embodiment of this invention was described, this invention can perform a various design change in the range which does not deviate from the summary.

例えば、第1〜第3実施形態では、伝動装置として、自動二輪車の車輪(後輪W)を電動モータMで減速駆動するための車両用減速機Rに実施したものを例示したが、本発明の伝動装置は、自動二輪車以外の車両、例えば四輪自動車の車輪駆動に用いてもよいし、或いは車両以外の種々の機械装置のための減速機として使用してもよい。尚、何れの場合でも、駆動源は、電動モータの他、エンジンや油圧モータを用いてもよく、また、駆動源のケースと伝動装置のケーシングとは、本実施形態のように結合一体化してもよいし、別体に構成してもよい。また、自動二輪車の後輪駆動に用いる場合には、例えば、第1〜第3実施形態のように駆動源(電動モータ)を伝動装置(減速機R)に直結しないで、後輪より前方に離間配置した駆動源を、チェーン伝動機構等の無端伝動機構やドライブシャフト機構等を介して伝動装置(減速機R)に連動連結するようにしてもよい。   For example, in the first to third embodiments, as the transmission device, the one implemented in the vehicle speed reducer R for decelerating and driving the wheel (rear wheel W) of the motorcycle with the electric motor M is exemplified. This transmission device may be used for driving wheels of vehicles other than motorcycles, for example, four-wheeled vehicles, or may be used as a speed reducer for various mechanical devices other than vehicles. In any case, the drive source may be an electric motor, an engine or a hydraulic motor, and the case of the drive source and the casing of the transmission are combined and integrated as in this embodiment. Alternatively, it may be configured separately. Further, when used for rear wheel driving of a motorcycle, for example, as in the first to third embodiments, the drive source (electric motor) is not directly connected to the transmission device (reduction gear R), but forward of the rear wheels. The separately disposed drive sources may be interlocked and connected to the transmission device (reduction gear R) via an endless transmission mechanism such as a chain transmission mechanism or a drive shaft mechanism.

また第1〜第3実施形態では、第1伝動軸S1を入力軸とし、第2伝動軸S2を出力軸とした減速機Rを伝動装置として示したが、この伝動装置を例えば、第1伝動軸S1を出力軸とし、第2伝動軸S2を入力軸とすることで増速機として使用してもよい。   In the first to third embodiments, the reduction gear R having the first transmission shaft S1 as the input shaft and the second transmission shaft S2 as the output shaft is shown as the transmission device. For example, the transmission device may be the first transmission shaft. The shaft S1 may be used as a speed increaser by using the output shaft and the second transmission shaft S2 as an input shaft.

また第4,第5実施形態では、伝動装置としての差動装置Dを自動車のミッションケース1内に収容しているが、差動装置Dは自動車用の差動装置に限定されるものではなく、種々の機械装置用の差動装置として実施可能である。   In the fourth and fifth embodiments, the differential device D as a transmission device is accommodated in the transmission case 1 of the automobile. However, the differential device D is not limited to the differential apparatus for an automobile. It can be implemented as a differential device for various mechanical devices.

また、第4,第5実施形態では、差動装置Dを、左・右輪伝動系に適用して、左右の駆動車軸S1,S2に対し差動回転を許容しつつ動力を分配するものを示したが、本発明では、差動装置を、前・後輪駆動車両における前・後輪伝動系に適用して、前後の駆動車輪に対し差動回転を許容しつつ動力を分配するようにしてもよい。   In the fourth and fifth embodiments, the differential device D is applied to the left / right wheel transmission system, and distributes power while allowing differential rotation to the left and right drive axles S1, S2. In the present invention, the differential device is applied to the front / rear wheel transmission system in the front / rear wheel drive vehicle to distribute the power while allowing the differential rotation to the front / rear drive wheels. May be.

また、第4,第5実施形態では、第1,第2軸受B1,B2を円筒ボス状としてケーシングCと一体化したものを例示したが、第1〜第3実施形態のようにケーシングCと別部品化した第1,第2軸受B1,B2を介してケーシングCに第1,第2駆動車軸S1,S2(第1,第2伝動軸)を回転自在に支持させるようにしてもよい。   In the fourth and fifth embodiments, the first and second bearings B1 and B2 are formed as cylindrical bosses and integrated with the casing C. However, as in the first to third embodiments, The first and second drive axles S1 and S2 (first and second transmission shafts) may be rotatably supported on the casing C via the first and second bearings B1 and B2 which are separate parts.

また、前記実施形態では、第1,第2変速機構T1,T2の各伝動溝21,22;24,25をトロコイド曲線に沿った波形環状の波溝としているが、これら伝動溝は、実施形態に限定されるものでなく、例えばサイクロイド曲線に沿った波形環状の波溝としてもよい。   Moreover, in the said embodiment, although each transmission groove 21,22; 24,25 of 1st, 2nd transmission mechanism T1, T2 is made into the corrugated cyclic | annular wave groove along a trochoid curve, these transmission grooves are embodiment. For example, it may be a wave-shaped wave groove along a cycloid curve.

また、前記実施形態では、第1,第2変速機構T1,T2の第1及び第2伝動溝21,22間、並びに第3及び第4伝動溝24,25間にボール状の第1及び第2転動体23,26を介装したものを示したが、その転動体をローラ状又はピン状としてもよく、この場合に、第1及び第2伝動溝21,22、並びに第3及び第4伝動溝24,25は、ローラ状又はピン状の転動体が転動し得るような内側面形状に形成される。   In the above-described embodiment, the first and second ball-shaped first and second transmission grooves 21 and 22 and the third and fourth transmission grooves 24 and 25 of the first and second transmission mechanisms T1 and T2 are provided. Although two rolling elements 23 and 26 are interposed, the rolling elements may be in the form of a roller or a pin. In this case, the first and second transmission grooves 21 and 22, and the third and fourth The transmission grooves 24 and 25 are formed in an inner surface shape so that a roller-like or pin-like rolling element can roll.

また前記実施形態では、第1,第2保持部材H1,H2を、内・外周面が各々真円の円環状リングより構成したものを示したが、第1,第2保持部材の形状は、前記実施形態に限定されず、少なくとも複数の第1,第2ボール23,26を各々一定間隔で保持し得る環状体であればよく、例えば楕円状の環状体、或いは波形に湾曲した環状体であってもよい。なお、第1,第2保持部材H1,H2無しでも第1,第2ボール23,26が円滑に転動可能である場合には、第1,第2保持部材H1,H2を省略してもよい。   In the above embodiment, the first and second holding members H1 and H2 are configured by an annular ring having inner and outer peripheral surfaces each having a perfect circle, but the shape of the first and second holding members is as follows. The present invention is not limited to the above embodiment, and any annular body that can hold at least a plurality of first and second balls 23 and 26 at regular intervals may be used. For example, an elliptical annular body or an annular body curved in a waveform There may be. If the first and second balls 23 and 26 can smoothly roll without the first and second holding members H1 and H2, the first and second holding members H1 and H2 may be omitted. Good.

B1・・・・・・第1軸受
B2,B2′・・第2軸受
C・・・・・・ケーシング
D・・・・・・差動装置(伝動装置)
R・・・・・・減速機(伝動装置)
S1,S2・・第1,第2伝動軸
SP1,SP2・・スプライン嵌合
T1,T2・・第1,第2変速機構
X1,X2・・第1,第2軸線
t1,t2・・・第1,第2当接面
5,8,9・・第1,第2,第3伝動部材
6・・・・・・偏心回転部材
6e・・・・・偏心軸部
6j・・・・・主軸部
17・・・・・スラスト受け機構
18・・・・・球面スプライン
21,22・・第1,第2伝動溝
23,26・・第1,第2ボール(第1,第2転動体)
24,25・・第3,第4伝動溝
B1 ········ First bearing B2, B2 '······ Second bearing C ··· Casing D ··· Differential gear (transmission device)
R ... Reducer (transmission device)
S1, S2 ··· First and second transmission shafts SP1, SP2 ··· Spline fitting T1, T2 ··· First and second transmission mechanisms X1, X2 ··· First and second axes t1, t2 ··· 1, 2nd contact surface 5, 8, 9 .. 1st, 2nd, 3rd transmission member 6... Eccentric rotation member 6e. Portion 17 ... Thrust receiving mechanism 18 ... Spherical splines 21, 22 ··· First and second transmission grooves 23, 26 ··· First and second balls (first and second rolling elements)
24, 25 ... 3rd and 4th transmission groove

Claims (3)

第1軸線(X1)を中心軸線とする第1伝動部材(5)と、
第1軸線(X1)を中心軸線とする主軸部(6j)、及び第1軸線(X1)から偏心した第2軸線(X2)を中心軸線とする偏心軸部(6e)が一体的に連結された偏心回転部材(6)と、
前記主軸部(6j)に同軸に連結されて前記偏心回転部材(6)と共に第1軸線(X1)回りに回転する第1伝動軸(S1)と、
前記偏心軸部(6e)に第2軸線(X2)回りに回転自在に支持されると共に前記第1伝動部材(5)に対向する第2伝動部材(8)と、
第1軸線(X1)を中心軸線とし且つ前記第2伝動部材(8)に対向する第3伝動部材(9)と、
その第3伝動部材(9)に同軸に連結されて第3伝動部材(9)と共に第1軸線(X1)回りに回転する第2伝動軸(S2)と、
前記第1及び第2伝動部材(5,8)間で変速しつつトルク伝達可能な第1変速機構(T1)と、
前記第2及び第3伝動部材(8,9)間で変速しつつトルク伝達可能な第2変速機構(T2)と、
前記第1〜第3伝動部材(5,8,9)を収容すると共に、前記第1伝動部材(5)と相対回転不能に連結されるケーシング(C)とを備え、
前記第1変速機構(T1)が、前記第1伝動部材(5)の、前記第2伝動部材(8)との対向面に在り且つ第1軸線(X1)を中心とする波形環状の第1伝動溝(21)と、前記第2伝動部材(8)の、前記第1伝動部材(5)との対向面に在り且つ第2軸線(X2)を中心とする波形環状で波数が第1伝動溝(21)とは異なる第2伝動溝(22)と、第1及び第2伝動溝(21,22)の複数の交差部に介装され、それら第1及び第2伝動溝(21,22)を転動しながら第1及び第2伝動部材(5,8)間の変速伝動を行う複数の第1転動体(23)とを有し、
前記第2変速機構(T2)が、前記第2伝動部材(8)の、前記第3伝動部材(9)との対向面に在り且つ第2軸線(X2)を中心とする波形環状の第3伝動溝(24)と、前記第3伝動部材(9)の、前記第2伝動部材(8)との対向面に在り且つ第1軸線(X1)を中心とする波形環状で波数が第3伝動溝(24)とは異なる第4伝動溝(25)と、第3及び第4伝動溝(24,25)の複数の交差部に介装され、それら第3及び第4伝動溝(24,25)を転動しながら第2及び第3伝動部材(8,9)間の変速伝動を行う複数の第2転動体(26)とを有し、
前記第1及び第2伝動軸(S1,S2)間で変速伝動を行い、又は前記ケーシング(C)から前記第1及び第2伝動軸(S1,S2)に回転トルクを分配するようにした伝動装置であって、
前記第1及び第2伝動軸(S1,S2)を第1及び第2軸受(B1,B2,B2′)をそれぞれ介して前記ケーシング(C)に支持する一方、
前記ケーシング(C)とは別部品とした前記第1伝動部材(5)を該ケーシング(C)に径方向に遊動可能にスプライン嵌合(SP1)すると共に、前記第3伝動部材(9)を前記第2伝動軸(S2)に径方向に遊動可能にスプライン嵌合(SP2)したことを特徴とする伝動装置。
A first transmission member (5) having a first axis (X1) as a central axis;
The main shaft portion (6j) having the first axis line (X1) as the central axis line and the eccentric shaft portion (6e) having the second axis line (X2) eccentric from the first axis (X1) as the central axis line are integrally connected. An eccentric rotating member (6),
A first transmission shaft (S1) that is coaxially connected to the main shaft portion (6j) and rotates around the first axis (X1) together with the eccentric rotation member (6);
A second transmission member (8) supported by the eccentric shaft portion (6e) so as to be rotatable about a second axis (X2) and facing the first transmission member (5);
A third transmission member (9) having a first axis (X1) as a central axis and facing the second transmission member (8);
A second transmission shaft (S2) that is coaxially connected to the third transmission member (9) and rotates around the first axis (X1) together with the third transmission member (9);
A first transmission mechanism (T1) capable of transmitting torque while shifting between the first and second transmission members (5, 8);
A second transmission mechanism (T2) capable of transmitting torque while shifting between the second and third transmission members (8, 9);
A casing (C) that houses the first to third transmission members (5, 8, 9) and is connected to the first transmission member (5) so as not to be relatively rotatable,
The first transmission mechanism (T1) is located on a surface of the first transmission member (5) facing the second transmission member (8) and has a wave-shaped first shape centered on the first axis (X1). A first wave number is transmitted in a wave shape centered on the second axis (X2) on the surface of the transmission groove (21) and the second transmission member (8) facing the first transmission member (5). A second transmission groove (22) different from the groove (21) and a plurality of intersecting portions of the first and second transmission grooves (21, 22) are interposed between the first and second transmission grooves (21, 22). And a plurality of first rolling elements (23) that perform transmission transmission between the first and second transmission members (5, 8) while rolling
The second transmission mechanism (T2) is located on a surface of the second transmission member (8) facing the third transmission member (9) and has a waveform-shaped third centered on the second axis (X2). The wave number of the third transmission is a wave-shaped ring centered on the first axis (X1) on the surface of the transmission groove (24) and the third transmission member (9) facing the second transmission member (8). A fourth transmission groove (25) different from the groove (24) and a plurality of intersecting portions of the third and fourth transmission grooves (24, 25) are interposed between the third and fourth transmission grooves (24, 25). A plurality of second rolling elements (26) that perform transmission transmission between the second and third transmission members (8, 9) while rolling)
Transmission that performs transmission transmission between the first and second transmission shafts (S1, S2) or distributes rotational torque from the casing (C) to the first and second transmission shafts (S1, S2). A device,
The first and second transmission shafts (S1, S2) are supported on the casing (C) through first and second bearings (B1, B2, B2 ′), respectively.
The first transmission member (5), which is a separate part from the casing (C), is spline-fitted (SP1) to the casing (C) so as to be freely movable in the radial direction, and the third transmission member (9) is A transmission device characterized in that the second transmission shaft (S2) is spline-fitted (SP2) so as to be freely movable in the radial direction.
前記第3伝動部材(9)と前記第2伝動軸(S2)との相対向面の何れか一方に設けられ第1軸線(X1)と直交する平面状の第1当接面(t1)と、その相対向面の何れか他方に設けられ第1軸線(X1)上に中心を有する球面状の第2当接面(t2)とを含むスラスト受け機構(17)を備えることを特徴とする、請求項1に記載の伝動装置。   A planar first contact surface (t1) that is provided on any one of the opposing surfaces of the third transmission member (9) and the second transmission shaft (S2) and is orthogonal to the first axis (X1). And a thrust receiving mechanism (17) including a spherical second contact surface (t2) having a center on the first axis (X1) provided on either one of the opposing surfaces. The transmission device according to claim 1. 前記第3伝動部材(9)と前記第2伝動軸(S2)とが、球面スプライン(18)を介してスプライン嵌合(SP2)されることを特徴とする、請求項2に記載の伝動装置。   The transmission device according to claim 2, wherein the third transmission member (9) and the second transmission shaft (S2) are spline-fitted (SP2) via a spherical spline (18). .
JP2016015810A 2016-01-29 2016-01-29 Transmission device Pending JP2017133661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015810A JP2017133661A (en) 2016-01-29 2016-01-29 Transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015810A JP2017133661A (en) 2016-01-29 2016-01-29 Transmission device

Publications (1)

Publication Number Publication Date
JP2017133661A true JP2017133661A (en) 2017-08-03

Family

ID=59502473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015810A Pending JP2017133661A (en) 2016-01-29 2016-01-29 Transmission device

Country Status (1)

Country Link
JP (1) JP2017133661A (en)

Similar Documents

Publication Publication Date Title
US10190666B2 (en) Differential device
WO2017094796A1 (en) Transmission device and differential device
US20190211903A1 (en) Cycloidal differential
US10378613B1 (en) Electric powertrain with cycloidal mechanism
JP2017190782A (en) Differential apparatus
JP6407678B2 (en) Power transmission device
WO2017170588A1 (en) Gearing
WO2017131141A1 (en) Transmission device
JP2017141910A (en) Transmission device
JP2017133661A (en) Transmission device
JP2017172774A (en) Transmission device
JP2017141929A (en) Transmission device
US10359098B1 (en) Hypo-cycloidal differential
US20180291993A1 (en) Transmission device
WO2017170587A1 (en) Gearing
JP2017053378A (en) Transmission device and differential device
CN217271680U (en) Duplex gear transmission mechanism
WO2017154898A1 (en) Power transmitting device
JP2017110730A (en) Differential gear
WO2018179788A1 (en) Planetary transmission device and differential device
US20180306296A1 (en) Power transmitting device
US10563729B2 (en) Hyper-cycloidal differential
WO2017086344A1 (en) Differential device
WO2017104764A1 (en) Transmission device
WO2017170589A1 (en) Transmission device