JP2017129499A - Method, device, and program for evaluating residual thickness of belt conveyer - Google Patents

Method, device, and program for evaluating residual thickness of belt conveyer Download PDF

Info

Publication number
JP2017129499A
JP2017129499A JP2016010062A JP2016010062A JP2017129499A JP 2017129499 A JP2017129499 A JP 2017129499A JP 2016010062 A JP2016010062 A JP 2016010062A JP 2016010062 A JP2016010062 A JP 2016010062A JP 2017129499 A JP2017129499 A JP 2017129499A
Authority
JP
Japan
Prior art keywords
belt
thickness
remaining
running resistance
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016010062A
Other languages
Japanese (ja)
Other versions
JP6519022B2 (en
Inventor
康一郎 原田
Koichiro Harada
康一郎 原田
芳光 別府
Yoshimitsu Beppu
芳光 別府
加藤 弘之
Hiroyuki Kato
弘之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016010062A priority Critical patent/JP6519022B2/en
Publication of JP2017129499A publication Critical patent/JP2017129499A/en
Application granted granted Critical
Publication of JP6519022B2 publication Critical patent/JP6519022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Belt Conveyors (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a belt residual thickness of a belt conveyer during running to be evaluated.SOLUTION: A belt residual thickness t is evaluated by using the travelling resistance Fh of the belt conveyer by an evaluation formula of a formula (1)' as a belt residual thickness/a belt original thickness (t/t)and a running resistance/an initial running resistance (Fh/Fh). The evaluation formula is set in the consideration of two influences due to a belt abrasion such as a change of a bite amount to the thickness direction of the belt and the change of the flexure of the belt. That is, a first relational expression representing a relation between a running resistance of the belt conveyer and a belt residual thickness is obtained, and a second relational expression representing the relation between the running resistance of the belt conveyer and the belt thickness residual is obtained with respect to the flexure of the belt, and by using these first and second relation formulas, the evaluation formula is set. t/t=1.0237×(Fh/Fh)(1)'SELECTED DRAWING: Figure 1

Description

本発明は、ベルトコンベアのベルト残厚を評価するベルト残厚の評価方法、装置及びプログラムに関する。   The present invention relates to a belt remaining thickness evaluation method, apparatus, and program for evaluating a belt remaining thickness of a belt conveyor.

製鉄所をはじめとして多くの現場において、例えば鉱石や穀物等の物品を搬送するのにベルトコンベアが用いられる。
ベルトコンベアでは、使用によりベルト摩耗が進み、ベルトの厚さが薄くなる。ベルトコンベアは生産性を維持する上で重要な設備であり、日常的にベルト摩耗量、見方を替えればベルト残厚を管理することが求められる。
例えばベルトコンベアの定期検査で、ベルト残厚を検査することが考えられる。しかしながら、ベルトコンベアを停止して検査するのでは生産性低下を招くことから、稼動中のベルトコンベアのベルト残厚をオンラインで評価する技術が求められている。
In many sites, including steelworks, belt conveyors are used to transport articles such as ores and grains.
In belt conveyors, belt wear increases with use, and the thickness of the belt decreases. The belt conveyor is an important facility for maintaining productivity, and it is required to manage the remaining belt thickness on a daily basis by changing the belt wear amount and view.
For example, it is conceivable to inspect the remaining belt thickness by periodic inspection of the belt conveyor. However, stopping and inspecting the belt conveyor leads to a decrease in productivity, so a technique for online evaluation of the remaining belt thickness of the belt conveyor in operation is required.

ベルト摩耗等を評価するための技術として、例えば特許文献1には、印刷機等の駆動装置において、ベルト滑り及びベルト摩耗の検出を目的として、モータ側、ドラムプーリ側に回転計を設置し、ベルト滑りを判定する技術が開示されている。
また、特許文献2には、1つ又は複数のリブを有するサーペンタイン・ベルトについて、ベルトの画像を撮影して、リブを特徴的外観として検出することによりベルト摩耗を判定する技術が開示されている。
As a technique for evaluating belt wear or the like, for example, Patent Document 1 discloses that a tachometer is installed on the motor side and the drum pulley side in order to detect belt slip and belt wear in a driving device such as a printing press. Techniques for determining slip are disclosed.
Patent Document 2 discloses a technique for determining belt wear by taking a belt image of a serpentine belt having one or more ribs and detecting the rib as a characteristic appearance. .

特開2010−64484号公報JP 2010-64484 A 特表2014−533349号公報Special table 2014-533349 gazette

しかしながら、特許文献1の技術では、ベルト摩耗の有無を検出するだけであり、ベルト残厚を評価するものではない。
また、特許文献2の技術では、画像を判定材料とするため、ベルトがリブ等の特徴的外観を持つことが必要となり、ベルトの種別が限られてしまう。
However, the technique of Patent Document 1 merely detects the presence or absence of belt wear and does not evaluate the remaining belt thickness.
In the technique of Patent Document 2, since an image is used as a determination material, the belt needs to have a characteristic appearance such as a rib, and the types of belts are limited.

本発明は上記のような点に鑑みてなされたものであり、稼動中のベルトコンベアのベルト残厚を評価できるようにすることを目的とする。   This invention is made | formed in view of the above points, and it aims at enabling it to evaluate the belt remaining thickness of the belt conveyor in operation.

本発明は、ベルトコンベアのベルト残厚を評価するベルト残厚の評価方法であって、ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚を評価することを特徴とする。
また、本発明のベルトコンベアのベルト残厚の評価方法の他の特徴とするところは、前記評価式は、ベルト残厚/ベルト元厚と、走行抵抗/初期走行抵抗との関係として表わされる点にある。
また、本発明のベルトコンベアのベルト残厚の評価方法の他の特徴とするところは、ベルトの厚み方向への食い込みに関して、ベルトコンベアの走行抵抗とベルト残厚との関係を表わす第1の関係式を求め、ベルトの撓みに関して、ベルトコンベアの走行抵抗とベルト残厚との関係を表わす第2の関係式を求め、前記第1の関係式と前記第2の関係式とを用いて前記評価式が設定される点にある。この場合に、前記第1の関係式は、ベルト残厚とローラのベルトに対する接触角との関係、及び、ローラのベルトに対する接触角とベルトコンベアの走行抵抗との関係に基づいて求められ、前記第2の関係式は、ベルト残厚とローラのベルトに対する接触角との関係、及び、ローラのベルトに対する接触角とベルトコンベアの走行抵抗との関係に基づいて求められる。
本発明は、ベルトコンベアのベルト残厚を評価するベルト残厚の評価装置であって、ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚を評価する手段を備えたことを特徴とする。
本発明は、ベルトコンベアのベルト残厚を評価するためのプログラムであって、ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚を評価する処理をコンピュータに実行させる。
The present invention relates to a belt remaining thickness evaluation method for evaluating a belt remaining thickness of a belt conveyor, and evaluates the belt remaining thickness based on an evaluation formula for obtaining a belt remaining thickness using a running resistance of the belt conveyor as an input variable. It is characterized by.
Another feature of the belt conveyor thickness evaluation method of the belt conveyor according to the present invention is that the evaluation formula is expressed as a relationship between belt residual thickness / belt base thickness and running resistance / initial running resistance. It is in.
Another feature of the belt conveyor evaluation method for the belt conveyor according to the present invention is that the first relationship representing the relationship between the running resistance of the belt conveyor and the remaining belt thickness with respect to biting in the belt thickness direction. A second relational expression representing the relationship between the running resistance of the belt conveyor and the remaining belt thickness is obtained for the belt deflection, and the evaluation is performed using the first relational expression and the second relational expression. The point is that the formula is set. In this case, the first relational expression is obtained based on the relationship between the remaining belt thickness and the contact angle of the roller with respect to the belt, and the relationship between the contact angle of the roller with respect to the belt and the running resistance of the belt conveyor, The second relational expression is obtained based on the relationship between the remaining belt thickness and the contact angle of the roller with respect to the belt, and the relationship between the contact angle of the roller with respect to the belt and the running resistance of the belt conveyor.
The present invention relates to a belt remaining thickness evaluating device for evaluating a belt remaining thickness of a belt conveyor, and means for evaluating a belt remaining thickness based on an evaluation formula for obtaining a belt remaining thickness using a running resistance of the belt conveyor as an input variable. It is provided with.
The present invention is a program for evaluating a belt remaining thickness of a belt conveyor, and a process for evaluating the belt remaining thickness based on an evaluation formula for obtaining a belt remaining thickness using a running resistance of the belt conveyor as an input variable is performed on a computer. Let it run.

本発明によれば、ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚を評価するので、稼動中のベルトコンベアのベルト残厚を評価することができる。   According to the present invention, since the remaining belt thickness is evaluated based on the evaluation formula for determining the remaining belt thickness using the running resistance of the belt conveyor as an input variable, the remaining belt thickness of the belt conveyor in operation can be evaluated.

実施形態に係るベルト残厚の評価装置の機能構成を示す図である。It is a figure which shows the function structure of the evaluation apparatus of the belt remaining thickness which concerns on embodiment. ローラのベルトに対する接触角の概念を説明するための模式図である。It is a schematic diagram for demonstrating the concept of the contact angle with respect to the belt of a roller. ベルト残厚とベルト厚み方向への食い込みとの関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between belt remaining thickness and the biting in to a belt thickness direction. ベルト残厚/ベルト元厚と、接触角及び走行抵抗/初期走行抵抗との関係を示す特性図である。It is a characteristic view showing the relationship between the remaining belt thickness / belt original thickness and the contact angle and running resistance / initial running resistance. ベルト残厚とベルトの撓みとの関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between belt remaining thickness and the bending of a belt. ベルトの横断面を示す模式図である。It is a schematic diagram which shows the cross section of a belt. 長さlの点で荷重Pを受けたときのベルトの撓みwを示す模式図である。It is a schematic diagram which shows the bending | flexion w of a belt when the load P is received at the point of length l. ベルト残厚/ベルト元厚と、接触角及び走行抵抗/初期走行抵抗との関係を示す特性図である。It is a characteristic view showing the relationship between the remaining belt thickness / belt original thickness and the contact angle and running resistance / initial running resistance. 走行抵抗/初期走行抵抗と、ベルト残厚/ベルト元厚との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between running resistance / initial running resistance and remaining belt thickness / belt original thickness.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1に、実施形態に係るベルト残厚の評価装置100の機能構成を示す。ベルト残厚の評価装置100は、稼動中のベルトコンベアを対象として、ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚をオンラインで評価する。対象とするベルトコンベアは、複数本のローラが等間隔に配置される構造を有する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a functional configuration of a belt remaining thickness evaluation apparatus 100 according to the embodiment. The belt remaining thickness evaluation apparatus 100 evaluates the belt remaining thickness online on the basis of an evaluation formula for obtaining the belt remaining thickness with the running resistance of the belt conveyor as an input variable for the belt conveyor in operation. The target belt conveyor has a structure in which a plurality of rollers are arranged at equal intervals.

入力部101は、稼動中のベルトコンベアの走行抵抗Fhを入力する。ベルトコンベアでは、ローラの乗り越え抵抗力を主要因とする走行抵抗が発生する。走行抵抗Fhは、プーリの駆動トルク等を検出することにより取得することができる。或いは、走行抵抗Fhは、水平荷重とみなすことができ、既存の歪ゲージを使用して取得することもできる。   The input unit 101 inputs the running resistance Fh of the belt conveyor in operation. In the belt conveyor, a running resistance mainly due to the resistance force over the roller is generated. The running resistance Fh can be obtained by detecting the driving torque of the pulley. Alternatively, the running resistance Fh can be regarded as a horizontal load, and can be obtained using an existing strain gauge.

評価部102は、入力部101で入力した走行抵抗Fhを用いて、ベルト残厚/ベルト元厚(t/t0)、走行抵抗/初期走行抵抗(Fh/Fh0)として、式(1)の評価式によりベルト残厚tを評価する。ベルト元厚t0及び初期走行抵抗Fh0は、対象とするベルトコンベアのベルトの使用開始時(新品時)に取得された値が保持されている。また、a及びbは定数である。評価式は、後述するように、ベルトの厚み方向への食い込み量の変化、及びベルトの撓みの変化という、ベルト摩耗による2つの影響を考慮して設定されている。
t/t0=a×(Fh/Fh0b・・・(1)
The evaluation unit 102 uses the running resistance Fh input from the input unit 101 as the remaining belt thickness / belt original thickness (t / t 0 ) and running resistance / initial running resistance (Fh / Fh 0 ). The remaining belt thickness t is evaluated by the following evaluation formula. The belt original thickness t 0 and the initial running resistance Fh 0 hold values acquired at the start of use of the belt of the target belt conveyor (when new). A and b are constants. As will be described later, the evaluation formula is set in consideration of two influences due to belt wear, ie, change in the amount of biting in the belt thickness direction and change in belt deflection.
t / t 0 = a × (Fh / Fh 0 ) b (1)

出力部103は、評価部102でのベルト残厚の評価結果、例えばベルト残厚/ベルト元厚(t/t0)の計算値を出力する。 The output unit 103 outputs the evaluation result of the remaining belt thickness in the evaluation unit 102, for example, a calculated value of the remaining belt thickness / belt original thickness (t / t 0 ).

ここで、式(1)の評価式の詳細について説明する。式(1)の評価式は、以下に詳述するように、ベルトの厚み方向への食い込み量の変化、及びベルトの撓みの変化という、ベルト摩耗による2つの影響を考慮して設定される。   Here, the detail of the evaluation formula of Formula (1) is demonstrated. As will be described in detail below, the evaluation formula of Formula (1) is set in consideration of two influences due to belt wear, that is, a change in the amount of biting in the thickness direction of the belt and a change in the deflection of the belt.

(ベルトの厚み方向への食い込み)
ベルトの厚み方向への食い込みに関して、走行抵抗とベルト残厚との関係を表わす第1の関係式を求める。第1の関係式は、以下に述べるように、ベルト残厚とローラのベルトに対する接触角(以下、単に接触角と呼ぶ)との関係、及び、接触角と走行抵抗との関係に基づいて求められる。
接触角とは、図2に示すように、ローラ201がベルト202に接触する範囲がなす角度であり(図2では2θ1)、巻き付き角とも呼ばれる。接触角が大きければ走行抵抗は増加し、接触角が小さければ走行抵抗は減少する傾向となる。
(Biting in the thickness direction of the belt)
With respect to the biting in the belt thickness direction, a first relational expression representing the relationship between the running resistance and the remaining belt thickness is obtained. As described below, the first relational expression is obtained based on the relationship between the remaining belt thickness and the contact angle of the roller with the belt (hereinafter simply referred to as the contact angle) and the relationship between the contact angle and the running resistance. It is done.
As shown in FIG. 2, the contact angle is an angle formed by a range in which the roller 201 contacts the belt 202 (2θ 1 in FIG. 2), and is also called a winding angle. If the contact angle is large, the running resistance increases, and if the contact angle is small, the running resistance tends to decrease.

図3に示すように、ベルト残厚が小さくなると、ベルト202の変形領域が小さくなるので、厚み方向の剛性が高くなる。これにより、図3に点線で示すように、ローラ201の食い込み量が減少して、接触角が小さくなり、走行抵抗は減少する傾向となる。   As shown in FIG. 3, when the remaining belt thickness is reduced, the deformation region of the belt 202 is reduced, so that the rigidity in the thickness direction is increased. As a result, as shown by the dotted line in FIG. 3, the amount of biting of the roller 201 decreases, the contact angle decreases, and the running resistance tends to decrease.

ベルト202の厚み方向の弾性係数Ktは、式(2)のように、ベルト残厚tに依存するものとする。K0は、ベルト元厚t0での厚み方向の弾性係数である。
t=K0/t・・・(2)
Modulus K t in the thickness direction of the belt 202, as shown in equation (2), shall depend on the belt residual thickness t. K 0 is the elastic modulus in the thickness direction at the belt original thickness t 0 .
K t = K 0 / t (2)

図2に示すように、半径rのローラ201を垂直力Fv(θ1)で押し付けたときの接触角を2θ1とすると、角度θ(0〜θ1)におけるベルト202の垂直方向押しつぶし量dt(θ)は、式(3)で近似される。
t(θ)=r−r・cos(θ1−θ)=r(1−cos(θ1−θ))・・・(3)
As shown in FIG. 2, when the contact angle when the roller 201 with the radius r is pressed with the vertical force F v1 ) is 2θ 1 , the vertical crushing amount of the belt 202 at the angle θ (0 to θ 1 ). d t (θ) is approximated by equation (3).
d t (θ) = r−r · cos (θ 1 −θ) = r (1−cos (θ 1 −θ)) (3)

したがって、式(4)が成立する。   Therefore, Formula (4) is materialized.

Figure 2017129499
Figure 2017129499

ベルトコンベアでの搬送物の重量は略一定に保たれるとの前提でFv(θ1)=const.であることより、Fv(θ1)=Fvcとすると、式(2)を用いて、式(5)が成立する。すなわち、ベルト残厚tの増加により角度θ1は増加する。 Since F v1 ) = const. On the premise that the weight of the conveyed product on the belt conveyor is kept substantially constant, if F v1 ) = F vc , Using Equation (5). That is, the angle θ 1 increases as the belt remaining thickness t increases.

Figure 2017129499
Figure 2017129499

図4に、ベルト残厚/ベルト元厚(t/t0)と、接触角及び走行抵抗/初期走行抵抗(Fh/Fh0)との関係を示す。横軸がベルト残厚/ベルト元厚(t/t0)、縦軸が接触角及び走行抵抗/初期走行抵抗(Fh/Fh0)である。
式(5)に基づいて、ベルト残厚/ベルト元厚(t/t0)と、接触角θ1との関係を表わすと、図4の特性線401が得られる。この場合に、ベルト元厚t0を用いて無次元化することにより、垂直力Fvc、弾性係数K0、半径rを考慮しなくてもよくなる。
FIG. 4 shows the relationship between the remaining belt thickness / belt original thickness (t / t 0 ) and the contact angle and running resistance / initial running resistance (Fh / Fh 0 ). The horizontal axis represents the remaining belt thickness / belt original thickness (t / t 0 ), and the vertical axis represents the contact angle and running resistance / initial running resistance (Fh / Fh 0 ).
When the relationship between the remaining belt thickness / belt original thickness (t / t 0 ) and the contact angle θ 1 is expressed based on the equation (5), a characteristic line 401 shown in FIG. 4 is obtained. In this case, it is not necessary to consider the normal force F vc , the elastic coefficient K 0 , and the radius r by making dimensionless using the belt original thickness t 0 .

次に、角度θにおける水平方向押しつぶし量をdh(θ)とすると、式(6)が成立する。 Next, when the horizontal crushing amount at the angle θ is d h (θ), the equation (6) is established.

Figure 2017129499
Figure 2017129499

水平方向の弾性係数をKh、水平方向力(静止状態ではつり合い)をFh(θ1)とすると、式(7)が成立する。水平方向力Fh(θ1)は走行抵抗とみなすことができ、角度θ1の増加関数、この場合はベルト残厚tの増加により漸増する。 When the horizontal elastic coefficient is K h and the horizontal force (balanced in a stationary state) is F h1 ), Expression (7) is established. The horizontal force F h1 ) can be regarded as a running resistance, and gradually increases with an increasing function of the angle θ 1 , in this case, an increase in the remaining belt thickness t.

Figure 2017129499
Figure 2017129499

式(5)、式(7)に基づいて、複数点をプロットして、ベルト残厚/ベルト元厚(t/t0)と、走行抵抗/初期走行抵抗(Fh/Fh0)との関係を表わすと、図4の特性線402のようになる。この場合に、初期走行抵抗Fh0を用いて無次元化することにより、弾性係数Kh、半径rを考慮しなくてもよくなる。 Based on the equations (5) and (7), a plurality of points are plotted, and the relationship between the remaining belt thickness / belt original thickness (t / t 0 ) and running resistance / initial running resistance (Fh / Fh 0 ). Is represented as a characteristic line 402 in FIG. In this case, by making the dimensionless using the initial running resistance Fh 0 , it is not necessary to consider the elastic coefficient K h and the radius r.

そして、特性線402に基づいて、ベルト残厚/ベルト元厚(t/t0)と、走行抵抗/初期走行抵抗(Fh/Fh0)との関係の近似式を求めると、式(8)が得られる。この式(8)が、第1の関係式に相当するものである。
Fh/Fh0=−0.6404×(t/t02+1.558×(t/t0)+0.0429・・・(8)
Based on the characteristic line 402, an approximate expression of the relationship between the remaining belt thickness / belt original thickness (t / t 0 ) and the running resistance / initial running resistance (Fh / Fh 0 ) is obtained. Is obtained. This expression (8) corresponds to the first relational expression.
Fh / Fh 0 = −0.6404 × (t / t 0 ) 2 + 1.558 × (t / t 0 ) +0.0429 (8)

(ベルトの撓み)
ベルトの撓みに関して、走行抵抗とベルト残厚との関係を表わす第2の関係式を求める。第2の関係式は、以下に述べるように、ベルト残厚と接触角との関係、及び、接触角と走行抵抗との関係に基づいて求められる。
(Belt deflection)
Regarding the belt deflection, a second relational expression representing the relation between the running resistance and the remaining belt thickness is obtained. As described below, the second relational expression is obtained based on the relationship between the remaining belt thickness and the contact angle and the relationship between the contact angle and the running resistance.

図5に示すように、ベルト残厚が小さくなると、ベルト202の長手方向の剛性が低くなり、図5に点線で示すように、ベルト202の撓みが増加する。これにより、接触角が大きくなり、走行抵抗は増加する傾向となる。   As shown in FIG. 5, when the remaining belt thickness decreases, the rigidity in the longitudinal direction of the belt 202 decreases, and the deflection of the belt 202 increases as indicated by the dotted line in FIG. As a result, the contact angle increases and the running resistance tends to increase.

ベルト202の撓みを考慮する上で、梁の曲げ理論を応用する。
図6に示すように、ベルト202の横断面においてベルト幅b、ベルトの厚さtとすると、断面二次モーメントIはbt3/12と表わされる。
また、図7に示すように、長さlの点で荷重Pを受けたときのベルト202の撓みwは、ヤング率をEとして、Pl3/3EIで表わされる。
また、傾きをw´とすると、tanw´はw/lで表わされる。図2に点線で示すように、接触範囲の端点でベルト202がローラ201に対して接線方向に延出すると考えると、傾きw´はθ1とみなすことができる。この場合に、実情に合わせるには指数関数として表現するのが良いことから、式(9)のように指数xを導入して、ベルトの厚さtは、式(10)で表わされるものとする。すなわち、ベルト残厚tの増加により角度θ1は減少する。指数xは、実績とのフィッティングにより定める。本実施形態ではx=0.25とした。
In considering the bending of the belt 202, the beam bending theory is applied.
As shown in FIG. 6, when the cross section of the belt 202 belt width b, or the thickness t of the belt, moment of inertia of area I is expressed as bt 3/12.
Further, as shown in FIG. 7, the deflection w of the belt 202 when the load P is received at the point of the length l is expressed by Pl 3 / 3EI, where E is the Young's modulus.
Further, when the inclination is w ′, tanw ′ is represented by w / l. As shown by a dotted line in FIG. 2, when it is considered that the belt 202 extends in the tangential direction with respect to the roller 201 at the end point of the contact range, the inclination w ′ can be regarded as θ 1 . In this case, since it is better to express it as an exponential function in order to match the actual situation, the index x is introduced as in equation (9), and the belt thickness t is expressed by equation (10). To do. That is, the angle θ 1 decreases as the belt remaining thickness t increases. The index x is determined by fitting with results. In this embodiment, x = 0.25.

Figure 2017129499
Figure 2017129499

図8に、ベルト残厚/ベルト元厚(t/t0)と、接触角及び走行抵抗/初期走行抵抗(Fh/Fh0)との関係を示す。横軸がベルト残厚/ベルト元厚(t/t0)、縦軸が接触角及び走行抵抗/初期走行抵抗(Fh/Fh0)である。
式(9)に基づいて、ベルト残厚/ベルト元厚(t/t0)と、接触角θ1との関係を表わすと、図8の特性線801が得られる。この場合に、ベルト元厚t0を用いて無次元化することにより、荷重P、長さl、ヤング率E、ベルト幅bを考慮しなくてもよくなる。
FIG. 8 shows the relationship between the remaining belt thickness / belt original thickness (t / t 0 ) and the contact angle and running resistance / initial running resistance (Fh / Fh 0 ). The horizontal axis represents the remaining belt thickness / belt original thickness (t / t 0 ), and the vertical axis represents the contact angle and running resistance / initial running resistance (Fh / Fh 0 ).
If the relationship between the remaining belt thickness / belt original thickness (t / t 0 ) and the contact angle θ 1 is expressed based on the equation (9), a characteristic line 801 in FIG. 8 is obtained. In this case, it is not necessary to consider the load P, the length l, the Young's modulus E, and the belt width b by making dimensionless using the belt original thickness t 0 .

次に、既述したように、水平方向力(静止状態ではつり合い)をFh(θ1)とすると、式(7)が成立する。水平方向力Fh(θ1)は走行抵抗とみなすことができ、角度θ1の増加関数、この場合はベルト残厚tの減少により漸増することがわかる。 Next, as described above, when the horizontal force (balanced in a stationary state) is F h1 ), Expression (7) is established. It can be seen that the horizontal force F h1 ) can be regarded as running resistance, and gradually increases with an increasing function of the angle θ 1 , in this case, a decrease in the remaining belt thickness t.

式(7)、式(10)に基づいて、複数点をプロットして、ベルト残厚/ベルト元厚(t/t0)と、走行抵抗/初期走行抵抗(Fh/Fh0)との関係を表わすと、図8の特性線802のようになる。この場合に、初期走行抵抗Fh0を用いて無次元化することにより、弾性係数Kh、半径rを考慮しなくてもよくなる。 A plurality of points are plotted based on the equations (7) and (10), and the relationship between the remaining belt thickness / belt original thickness (t / t 0 ) and the running resistance / initial running resistance (Fh / Fh 0 ). Is represented as a characteristic line 802 in FIG. In this case, by making the dimensionless using the initial running resistance Fh 0 , it is not necessary to consider the elastic coefficient K h and the radius r.

そして、特性線802に基づいて、ベルト残厚/ベルト元厚(t/t0)と、走行抵抗/初期走行抵抗(Fh/Fh0)との関係の近似式を求めると、式(11)が得られる。この式(11)が、第2の関係式に相当するものである。
Fh/Fh0=1.0326×(t/t0-1.484・・・(11)
Based on the characteristic line 802, an approximate expression of a relationship between the remaining belt thickness / belt original thickness (t / t 0 ) and the running resistance / initial running resistance (Fh / Fh 0 ) is obtained. Is obtained. This expression (11) corresponds to the second relational expression.
Fh / Fh 0 = 1.0326 × (t / t 0 ) −1.484 (11)

(評価式の設定)
以上のように、ベルトの厚み方向への食い込み量が与える影響を考慮して、式(8)の第1の関係式が得られる(ここでは第1の関係式を[Fh/Fh01と記す)。
また、ベルトの撓みが与える影響を考慮して、式(11)の第2の関係式が得られる(ここでは第2の関係式を[Fh/Fh02と記す)。
第1の関係式[Fh/Fh01と第2の関係式[Fh/Fh02とは独立しているとして、式(12)のように、これらを乗算したものを評価式とする。
Fh/Fh0=[Fh/Fh01×[Fh/Fh02・・・(12)
図9に、式(12)で得られる、走行抵抗/初期走行抵抗(Fh/Fh0)と、ベルト残厚/ベルト元厚(t/t0)との関係を表わす特性線を示す。横軸が走行抵抗/初期走行抵抗(Fh/Fh0)、縦軸がベルト残厚/ベルト元厚(t/t0)である。
図9の特性線に基づいて、出力変数をベルト残厚/ベルト元厚(t/t0)、入力変数を走行抵抗/初期走行抵抗(Fh/Fh0)とする近似式を求めると、式(1)´が得られ、これを評価式として設定する。
t/t0=1.0237×(Fh/Fh0-1.235・・・(1)´
(Evaluation formula setting)
As described above, in consideration of the influence of the amount of biting in the thickness direction of the belt, the first relational expression (8) is obtained (here, the first relational expression is [Fh / Fh 0 ] 1. ).
Further, the second relational expression of Expression (11) is obtained in consideration of the influence of the belt deflection (herein, the second relational expression is written as [Fh / Fh 0 ] 2 ).
Assuming that the first relational expression [Fh / Fh 0 ] 1 and the second relational expression [Fh / Fh 0 ] 2 are independent of each other, an expression obtained by multiplying them as shown in Expression (12) To do.
Fh / Fh 0 = [Fh / Fh 0 ] 1 × [Fh / Fh 0 ] 2 (12)
FIG. 9 shows a characteristic line representing the relationship between running resistance / initial running resistance (Fh / Fh 0 ) and remaining belt thickness / belt original thickness (t / t 0 ), which is obtained by Expression (12). The horizontal axis represents running resistance / initial running resistance (Fh / Fh 0 ), and the vertical axis represents remaining belt thickness / belt original thickness (t / t 0 ).
Based on the characteristic line of FIG. 9, an approximate expression with the output variable as the remaining belt thickness / belt original thickness (t / t 0 ) and the input variable as the running resistance / initial running resistance (Fh / Fh 0 ) is obtained. (1) ′ is obtained and set as an evaluation formula.
t / t 0 = 1.0237 × (Fh / Fh 0 ) −1.235 (1) ′

(実施例)
式(1)´の評価式を用いたベルト残厚の評価精度を確認した。
対象とするベルトコンベアについて、ベルト元厚t0が15.7mm、初期走行抵抗Fh0が12.7Nと得られている。
走行Fhが20.9Nであったので、式(1)´の評価式より、ベルト残厚/ベルト元厚(t/t0)は0.57となる。
一方、評価時における実際のベルト残厚が9.4mmであったので、ベルト残厚/ベルト元厚の実績値は0.59となる。
このように実績値に対して十分な精度を持つ評価を行えるという結果が得られた。
(Example)
The evaluation accuracy of the remaining belt thickness using the evaluation formula of Formula (1) ′ was confirmed.
Regarding the target belt conveyor, the belt original thickness t 0 is 15.7 mm, and the initial running resistance Fh 0 is 12.7 N.
Since the running Fh was 20.9 N, the remaining belt thickness / belt original thickness (t / t 0 ) is 0.57 from the evaluation formula of Formula (1) ′.
On the other hand, since the actual remaining belt thickness at the time of evaluation was 9.4 mm, the actual value of the remaining belt thickness / the original belt thickness is 0.59.
Thus, the result that evaluation with sufficient accuracy with respect to a past record value can be performed was obtained.

以上のように、ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚を評価するので、稼動中のベルトコンベアのベルト残厚を評価することができる。このときに、ベルト残厚を求める評価式を利用するので、ベルト摩耗の有無だけでなく、ベルト残厚がどれだけあるのかを評価することができる。   As described above, since the remaining belt thickness is evaluated based on the evaluation formula for obtaining the remaining belt thickness using the running resistance of the belt conveyor as an input variable, the remaining belt thickness of the belt conveyor in operation can be evaluated. At this time, since an evaluation formula for obtaining the remaining belt thickness is used, it is possible to evaluate not only the presence / absence of belt wear but also the remaining belt thickness.

以上、本発明を実施形態と共に説明したが、上記実施形態は本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
本発明を適用したベルト残厚の評価装置は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現される。なお、図1では評価装置100を一台の装置として図示したが、例えば複数台の装置により構成される形態でもかまわない。
また、本発明は、本発明の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
Although the present invention has been described together with the embodiments, the above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention is interpreted in a limited manner by these. It must not be. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
The belt remaining thickness evaluation apparatus to which the present invention is applied is realized by a computer apparatus including, for example, a CPU, a ROM, a RAM, and the like. In FIG. 1, the evaluation device 100 is illustrated as a single device, but may be configured by a plurality of devices, for example.
The present invention also provides software (program) that implements the functions of the present invention to a system or apparatus via a network or various storage media, and the system or apparatus computer reads out and executes the program. It is feasible.

100:ベルト残厚の評価装置
101:入力部
102:評価部
103:出力部
201:ローラ
202:ベルト
DESCRIPTION OF SYMBOLS 100: Belt remaining thickness evaluation apparatus 101: Input part 102: Evaluation part 103: Output part 201: Roller 202: Belt

Claims (6)

ベルトコンベアのベルト残厚を評価するベルト残厚の評価方法であって、
ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚を評価することを特徴とするベルトコンベアのベルト残厚の評価方法。
A belt remaining thickness evaluation method for evaluating a belt remaining thickness of a belt conveyor,
A belt remaining thickness evaluation method for a belt conveyor, wherein the remaining belt thickness is evaluated based on an evaluation formula for determining a remaining belt thickness using a running resistance of the belt conveyor as an input variable.
前記評価式は、ベルト残厚/ベルト元厚と、走行抵抗/初期走行抵抗との関係として表わされることを特徴とする請求項1に記載のベルトコンベアのベルト残厚の評価方法。   2. The evaluation method of the remaining belt thickness of the belt conveyor according to claim 1, wherein the evaluation formula is expressed as a relationship of remaining belt thickness / belt original thickness and running resistance / initial running resistance. ベルトの厚み方向への食い込みに関して、ベルトコンベアの走行抵抗とベルト残厚との関係を表わす第1の関係式を求め、
ベルトの撓みに関して、ベルトコンベアの走行抵抗とベルト残厚との関係を表わす第2の関係式を求め、
前記第1の関係式と前記第2の関係式とを用いて前記評価式が設定されることを特徴とする請求項1又は2に記載のベルトコンベアのベルト残厚の評価方法。
Regarding the biting in the thickness direction of the belt, a first relational expression representing the relationship between the running resistance of the belt conveyor and the remaining belt thickness is obtained,
Regarding the belt deflection, a second relational expression representing the relation between the running resistance of the belt conveyor and the remaining belt thickness is obtained,
The evaluation method of the remaining belt thickness of the belt conveyor according to claim 1 or 2, wherein the evaluation formula is set using the first relational expression and the second relational expression.
前記第1の関係式は、ベルト残厚とローラのベルトに対する接触角との関係、及び、ローラのベルトに対する接触角とベルトコンベアの走行抵抗との関係に基づいて求められ、
前記第2の関係式は、ベルト残厚とローラのベルトに対する接触角との関係、及び、ローラのベルトに対する接触角とベルトコンベアの走行抵抗との関係に基づいて求められることを特徴とする請求項3に記載のベルトコンベアのベルト残厚の評価方法。
The first relational expression is obtained based on the relationship between the remaining belt thickness and the contact angle of the roller with respect to the belt, and the relationship between the contact angle of the roller with respect to the belt and the running resistance of the belt conveyor,
The second relational expression is obtained based on a relationship between a remaining belt thickness and a contact angle of the roller with respect to the belt, and a relationship between a contact angle of the roller with respect to the belt and a running resistance of the belt conveyor. The evaluation method of the belt remaining thickness of the belt conveyor of claim | item 3.
ベルトコンベアのベルト残厚を評価するベルト残厚の評価装置であって、
ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚を評価する手段を備えたことを特徴とするベルトコンベアのベルト残厚の評価装置。
A belt remaining thickness evaluation device for evaluating a belt remaining thickness of a belt conveyor,
An apparatus for evaluating the remaining belt thickness of the belt conveyor, comprising means for evaluating the remaining belt thickness based on an evaluation formula for obtaining the remaining belt thickness using the running resistance of the belt conveyor as an input variable.
ベルトコンベアのベルト残厚を評価するためのプログラムであって、
ベルトコンベアの走行抵抗を入力変数としてベルト残厚を求める評価式に基づいて、ベルト残厚を評価する処理をコンピュータに実行させるためのプログラム。
A program for evaluating the remaining belt thickness of a belt conveyor,
A program for causing a computer to execute a process of evaluating the remaining belt thickness based on an evaluation formula for obtaining the remaining belt thickness using the running resistance of the belt conveyor as an input variable.
JP2016010062A 2016-01-21 2016-01-21 Method, apparatus and program for evaluating residual belt thickness of belt conveyor Active JP6519022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010062A JP6519022B2 (en) 2016-01-21 2016-01-21 Method, apparatus and program for evaluating residual belt thickness of belt conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010062A JP6519022B2 (en) 2016-01-21 2016-01-21 Method, apparatus and program for evaluating residual belt thickness of belt conveyor

Publications (2)

Publication Number Publication Date
JP2017129499A true JP2017129499A (en) 2017-07-27
JP6519022B2 JP6519022B2 (en) 2019-05-29

Family

ID=59395545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010062A Active JP6519022B2 (en) 2016-01-21 2016-01-21 Method, apparatus and program for evaluating residual belt thickness of belt conveyor

Country Status (1)

Country Link
JP (1) JP6519022B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733116A (en) * 1980-08-01 1982-02-23 Nippon Steel Corp Deficit detecting method in conveyor belt
JPH0648528A (en) * 1992-07-30 1994-02-22 Nippon Steel Corp Belt for belt conveyor and method of application thereof
JP2011162276A (en) * 2010-02-04 2011-08-25 Bridgestone Corp Conveyor belt and conveyor belt abrasion detecting system
US20120031187A1 (en) * 2010-02-10 2012-02-09 Siemens Aktiengesellschaft Machine with evaluation of the oscillation spectrum of a belt of the machine
WO2013053013A1 (en) * 2011-10-13 2013-04-18 Vitech Asia-Pacific Pty Ltd Conveyor belt monitoring system and apparatus
JP2015081857A (en) * 2013-10-23 2015-04-27 新日本非破壊検査株式会社 Belt inspection method of belt conveyer
JP2015202933A (en) * 2014-04-14 2015-11-16 横浜ゴム株式会社 Abrasion loss measurement device for conveyor belt
JP2016210523A (en) * 2015-04-30 2016-12-15 横浜ゴム株式会社 Abrasion monitoring system for conveyor belt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733116A (en) * 1980-08-01 1982-02-23 Nippon Steel Corp Deficit detecting method in conveyor belt
JPH0648528A (en) * 1992-07-30 1994-02-22 Nippon Steel Corp Belt for belt conveyor and method of application thereof
JP2011162276A (en) * 2010-02-04 2011-08-25 Bridgestone Corp Conveyor belt and conveyor belt abrasion detecting system
US20120031187A1 (en) * 2010-02-10 2012-02-09 Siemens Aktiengesellschaft Machine with evaluation of the oscillation spectrum of a belt of the machine
WO2013053013A1 (en) * 2011-10-13 2013-04-18 Vitech Asia-Pacific Pty Ltd Conveyor belt monitoring system and apparatus
JP2015081857A (en) * 2013-10-23 2015-04-27 新日本非破壊検査株式会社 Belt inspection method of belt conveyer
JP2015202933A (en) * 2014-04-14 2015-11-16 横浜ゴム株式会社 Abrasion loss measurement device for conveyor belt
JP2016210523A (en) * 2015-04-30 2016-12-15 横浜ゴム株式会社 Abrasion monitoring system for conveyor belt

Also Published As

Publication number Publication date
JP6519022B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
CN100570290C (en) Determine the method for correction factor of belt balance real object simulating detection device
CN111164030B (en) Monitoring system of conveyer belt
WO2016174941A1 (en) Conveyor belt wear monitoring system
CN104334479B (en) Belt conveying machine
WO2017051566A1 (en) Method for recognizing wear state of conveyor belt
JP6519022B2 (en) Method, apparatus and program for evaluating residual belt thickness of belt conveyor
JPH11325829A (en) Wear elongation amount measuring method of link chain and its measuring equipment
KR101109875B1 (en) Device for measuring flatness of strip
CN110799827B (en) Method for predicting life of conveyor belt
KR101466637B1 (en) Apparatus for the on-line belt thickness measuring system on the belt conveyor
JP6314642B2 (en) Device and method for measuring running resistance of conveyor belt
CN105283395B (en) For the joint monitoring system of the conveyer belt in mining industry
JP6331675B2 (en) Device and method for measuring running resistance of conveyor belt
JP6236869B2 (en) Prediction method of driving power consumption of belt conveyor line
CN107709962B (en) Method for evaluating wear resistance of conveyor belt
KR101798728B1 (en) Apparatus and method for correcting sheet material
JP2016134074A (en) Device and method for counting number of round bar
JP6369121B2 (en) Conveyor belt running resistance measurement method
JP2019214470A (en) Conveyer device
JP6326952B2 (en) Device and method for measuring running resistance of conveyor belt
JP2015202931A (en) rubber belt
CN207810528U (en) Bridge detects conveyer
JPS6236211A (en) Method for detecting distortion in conveying belt in pipe conveyor
JP6446226B2 (en) Surface shape measuring device for sheet-like rubber material
JP2019156550A (en) Conveyance device and conveyance method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6519022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151