JP2017128881A - Ground-water pressure measuring method in ground drilling and drill rod - Google Patents

Ground-water pressure measuring method in ground drilling and drill rod Download PDF

Info

Publication number
JP2017128881A
JP2017128881A JP2016007888A JP2016007888A JP2017128881A JP 2017128881 A JP2017128881 A JP 2017128881A JP 2016007888 A JP2016007888 A JP 2016007888A JP 2016007888 A JP2016007888 A JP 2016007888A JP 2017128881 A JP2017128881 A JP 2017128881A
Authority
JP
Japan
Prior art keywords
drilling
water
pressure
water pressure
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016007888A
Other languages
Japanese (ja)
Other versions
JP6664967B2 (en
Inventor
啓丞 栗原
Keisuke Kurihara
啓丞 栗原
圭太 岩野
Keita Iwano
圭太 岩野
淳一 川端
Junichi Kawabata
淳一 川端
一彦 升元
Kazuhiko Masumoto
一彦 升元
昭治 瀬尾
Shoji Seo
昭治 瀬尾
侑子 岡田
Yuko Okada
侑子 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2016007888A priority Critical patent/JP6664967B2/en
Publication of JP2017128881A publication Critical patent/JP2017128881A/en
Application granted granted Critical
Publication of JP6664967B2 publication Critical patent/JP6664967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Earth Drilling (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure ground-water pressure in an initial state while omitting working processes such as removal of drilling tools, insertion of a measuring device and measurement, and recovery of the measuring device.SOLUTION: A hollow cylinder-shaped drill rod 100 includes a drill bit 120 and a check valve 150, and further includes a storage chamber 145 for storing a self-regulating water-pressure gauge 140. The storage chamber 145 is partitioned from a supply passage of high-pressure water for drilling by a wall member 144, and on the other hand, is brought into communication with an outer circumference of the drill rod 100 by a communication hole 146. The self-regulating water-pressure gauge 140 measures pressure of ground water flowing into the outer circumference of the drill rod 100, if a working face is positioned in a ground water belt when the water supply of the high-pressure water for drilling is stopped. Then, sequential measurement data is read from the self-regulating water-pressure gauge 140 after recovering the drill rod 100 from a perforated hole, and the measurement data of the ground-water pressure is extracted based on the timing temporarily stopping the water supply of the high-pressure water for drilling.SELECTED DRAWING: Figure 1

Description

本発明は、地盤削孔における地下水圧計測方法及び削孔ロッドに関し、詳しくは、地盤削孔の過程で地下水圧を計測する技術に関する。   The present invention relates to a groundwater pressure measuring method and a drilling rod in a ground drilling hole, and more particularly to a technique for measuring a groundwater pressure in the process of ground drilling.

特許文献1には、湧水圧を測定する湧水圧測定部と、この湧水圧測定部と連結されるとともに湧水量を測定する湧水量測定部とからなり、パッカーによって本体パイプの外周面と孔の孔壁との隙間を塞いでから、本体パイプの流路に湧水を導き、開閉バルブによって流路を閉塞してから、この流路内の水圧を測定し、その後、鉛直に配置された鉛直パイプ内を通過する湧水の流量を測定する、湧水圧及び湧水流量の測定装置が開示されている。   Patent Document 1 includes a spring pressure measuring unit that measures the spring pressure and a spring amount measuring unit that is connected to the spring pressure measuring unit and measures the amount of spring. After closing the gap with the hole wall, guide the spring water to the flow path of the main pipe, close the flow path with the opening and closing valve, measure the water pressure in this flow path, and then vertically install the vertical An apparatus for measuring spring water pressure and spring water flow rate for measuring the flow rate of spring water passing through a pipe is disclosed.

特許文献2には、トンネル切羽の前方地盤の所定深さまで水平ボーリング孔を削孔し、水平ボーリング孔内に、管延長の所定位置に管内外を閉塞可能な管内パッカーと外周パッカーとからなるパッカーとパッカーの近傍に間隙水圧計とを有する水圧測定スクリーン管を挿入し、口元キャップで水平ボーリング孔の口元を閉塞するとともに、パッカーを膨張させてスクリーン管内及びスクリーン管外周とボーリング孔の孔壁との間を閉塞して、ボーリング孔内のパッカーで区画された区間内を横切る透水層から流入する地下水で満たし、各間隙水圧計位置での水圧測定を行うようにした、多点水圧測定方法が開示されている。   In Patent Document 2, a horizontal boring hole is drilled to a predetermined depth of the ground in front of a tunnel face, and a packer comprising an in-tube packer and an outer periphery packer capable of closing the inside and outside of the tube at a predetermined position of the tube extension in the horizontal boring hole. And a water pressure measuring screen tube having a pore water pressure meter in the vicinity of the packer, the mouth of the horizontal boring hole is closed with a mouth cap, and the packer is expanded to expand the screen tube and the outer periphery of the screen tube and the hole wall of the boring hole. Is a multipoint water pressure measurement method that fills with groundwater flowing from a permeable layer crossing the section defined by the packer in the borehole and measures the water pressure at each pore water pressure gauge position. It is disclosed.

特開2010−024787号公報JP 2010-024787 A 特開2002−276277号公報JP 2002-276277 A

例えばトンネル掘削中の地下水探査において、ボーリング削孔後に削孔ツールスを全て撤去した後に、ボーリング孔に地下水圧の測定に用いる装置を挿入して水圧を測定する場合、以下のような問題があった。
上記のような水圧測定方法では、地下水圧の測定のために、ボーリング削孔、削孔ツールス撤去、水圧測定装置の挿入、水圧測定、水圧測定装置の回収などの多くの作業工程を必要とするため、削孔長が長くなるほど作業手間、作業時間が増え、また、挿入・回収時に水圧測定装置などが破損する可能性があった。
For example, in groundwater exploration during tunnel excavation, when all the drilling tools are removed after drilling and then the water pressure is measured by inserting a device used to measure the groundwater pressure into the borehole, there are the following problems: .
In the water pressure measurement method as described above, many work processes such as boring drilling, drilling tool removal, insertion of a water pressure measuring device, water pressure measurement, recovery of the water pressure measuring device are required to measure the ground water pressure. For this reason, the longer the drilling length, the greater the labor and time, and there is a possibility that the water pressure measuring device or the like may be damaged during insertion / recovery.

また、地下水探査においてはケーシング無しの裸孔である必要があるため、孔荒れや孔崩れがあると、水圧測定装置をボーリング削孔内に挿入できずに水圧測定が不能になったり、或いは、孔内に挿入した水圧測定装置を回収できなくなるなどのトラブルが発生する可能性があった。
また、地下水が大量である場合、水圧測定装置をボーリング削孔内に挿入できずに水圧測定が不能になる場合がある。
In addition, since it is necessary to have a bare hole without a casing in groundwater exploration, if there is rough or broken holes, the water pressure measurement device cannot be inserted into the borehole and water pressure measurement becomes impossible, or There was a possibility that troubles such as the water pressure measuring device inserted in the hole could not be recovered.
In addition, when there is a large amount of groundwater, the water pressure measurement device may not be inserted into the borehole and water pressure measurement may become impossible.

更に、複数の深度で水圧測定を行う場合、削孔深度が所期の深度に到達する毎に水圧測定を行えば初期状態での地下水圧を測定できるが、所期の深度に到達する毎に、削孔ツールス撤去、水圧測定装置の挿入、水圧測定、水圧測定装置の回収などの作業工程を繰り返す必要が生じる。
一方、全長削孔後に水圧測定装置をボーリング削孔内に挿入し、圧力計測を行う所期深度まで水圧測定装置を移動させて水圧測定を行えば、水圧測定装置の挿入・回収などの一連の作業工程を繰り返す手間を省けるが、削孔後に時間が経過してから水圧を測定することになるため、初期状態(削孔深度が地下水帯に到達した時点)での地下水圧を測定できない。
Furthermore, when water pressure is measured at multiple depths, the groundwater pressure in the initial state can be measured by measuring the water pressure every time the drilling depth reaches the desired depth, but every time the desired depth is reached. Therefore, it is necessary to repeat work steps such as removing the drilling tools, inserting the water pressure measuring device, measuring the water pressure, and collecting the water pressure measuring device.
On the other hand, if a water pressure measuring device is inserted into the borehole after full length drilling and the water pressure measuring device is moved to the desired depth for pressure measurement and water pressure measurement is performed, a series of operations such as insertion and recovery of the water pressure measuring device are performed. Although the labor of repeating the work process can be saved, since the water pressure is measured after a lapse of time after drilling, the groundwater pressure in the initial state (when the drilling depth reaches the groundwater zone) cannot be measured.

そこで、本願発明は、削孔ツールス撤去、測定装置の挿入、測定、測定装置の回収などの作業工程を省略しつつ、初期状態での地下水圧を測定することが可能である、地盤削孔における地下水圧計測方法及び削孔ロッドを提供することを目的とする。   Therefore, the present invention is capable of measuring the groundwater pressure in the initial state while omitting work steps such as drilling tool removal, measurement device insertion, measurement, and recovery of the measurement device. An object is to provide a groundwater pressure measurement method and a drilling rod.

そのため、本発明に係る地盤削孔における地下水圧計測方法は、その一態様として、削孔ビットを先端に備えた中空筒状の削孔ロッドの内部に、前記削孔ロッドの外周の水圧を受圧する水圧計を配置し、地盤の削孔過程で前記削孔ロッドの外周が地下水領域と連通するときに、前記水圧計により計測を行い、地下水圧の計測データを取得するようにした。
前記地盤削孔における地下水圧計測方法の好ましい態様において、前記削孔過程において削孔を停止して前記水圧計により計測を行い、地下水圧の計測データを取得するようにした。
Therefore, the groundwater pressure measuring method for ground drilling according to the present invention, as one aspect thereof, receives the water pressure on the outer periphery of the drilling rod inside the hollow cylindrical drilling rod having a drilling bit at the tip. When the outer circumference of the drilling rod communicates with the groundwater region during the drilling process of the ground, the water pressure gauge is used to measure the water pressure to obtain groundwater pressure measurement data.
In a preferred aspect of the groundwater pressure measuring method in the ground drilling hole, the drilling process is stopped in the drilling process, and measurement is performed by the water pressure gauge to acquire measurement data of the groundwater pressure.

さらに別の好ましい態様では、前記削孔過程において削孔を停止させたときに口元プリベンターバルブを閉じるようにした。
さらに別の好ましい態様では、前記水圧計は自記式水圧計である。
さらに別の好ましい態様では、前記削孔ビットは、前記削孔ロッドの内部を通じて流れて外部に流れ出る高圧水を駆動源として削孔動作するものであって、前記削孔ロッドの内部に前記削孔ビット側から口元側への水の流れを阻止する逆止弁が配置されている。
さらに別の好ましい態様では、前記水圧計は、前記削孔ロッド内部の区画された収納室に設置され、前記収納室と前記削孔ロッドの外周とが連通孔によって連通されるようにした。
In yet another preferred embodiment, the mouth preventor valve is closed when the drilling is stopped in the drilling process.
In still another preferred embodiment, the water pressure gauge is a self-recording water pressure gauge.
In still another preferred embodiment, the drill bit operates a drilling operation using high-pressure water flowing through the inside of the drill rod and flowing to the outside as a drive source, and the drill bit is inserted into the drill rod. A check valve is arranged to block the flow of water from the bit side to the mouth side.
In still another preferred aspect, the water pressure gauge is installed in a compartmented compartment inside the drilling rod, and the housing chamber and the outer periphery of the drilling rod are communicated with each other through a communication hole.

一方、本発明に係る削孔ロッドは、その一態様として、削孔ビットを先端に備えた中空筒状の削孔ロッドであって、前記削孔ビットは、前記削孔ロッドの内部を通って供給される高圧水を駆動源として削孔動作し、前記削孔ロッドは、内部に区画された収納室を有し、前記収納室は、前記削孔ロッドの外周と連通孔によって連通され、前記収納室に自記式水圧計を備えるようにした。
前記削孔ロッドの好ましい態様において、前記削孔ロッドの内部に前記削孔ビット側から口元側への水の流れを阻止する逆止弁を備えるようにした。
On the other hand, the drilling rod according to the present invention is a hollow cylindrical drilling rod having a drilling bit at its tip as one aspect thereof, and the drilling bit passes through the inside of the drilling rod. Drilling operation using the supplied high-pressure water as a drive source, the drilling rod has a storage chamber partitioned therein, and the storage chamber is communicated with the outer periphery of the drilling rod by a communication hole, A self-recording type water pressure gauge was provided in the storage room.
In a preferred aspect of the drilling rod, a check valve for preventing the flow of water from the drilling bit side to the mouth side is provided inside the drilling rod.

本発明によると、削孔ロッドに設けた水圧計が地盤の削孔過程で地下水圧の計測を行うため、削孔途中で削孔ロッドを撤去し計測器を挿入するなどの作業工程を不要にでき、また、孔荒れや孔崩れなどによって測定不能になったり計測器が回収不能になったりすることを抑制でき、また、初期状態での地下水圧を計測することが可能になる。
更に、水圧計は、削孔ロッドの外周の水圧を受圧するから、削孔ロッドの内部が何らかの異常によって高圧になっても、係る高圧によって水圧計が壊れることを抑制できる。
例えば、削孔ビットが、削孔ロッド内を通って供給される高圧水によって削孔動作する構成において、高圧水の排出経路のつまりなどによって削孔ロッド内の水圧が異常に高くなっても、水圧計の受圧部が係る高圧に晒されることが抑止され、水圧計を保護することができる。
According to the present invention, since the water pressure gauge provided in the drilling rod measures the groundwater pressure during the drilling process of the ground, it is unnecessary to remove the drilling rod in the middle of drilling and insert a measuring instrument. In addition, it is possible to prevent the measurement from becoming impossible due to rough holes, collapsed holes, or the like, and the measuring instrument from being uncollectable, and the groundwater pressure in the initial state can be measured.
Furthermore, since the water pressure gauge receives the water pressure on the outer periphery of the drilling rod, even if the inside of the drilling rod becomes high pressure due to some abnormality, it is possible to prevent the water pressure gauge from being broken by such high pressure.
For example, in a configuration in which a drilling bit performs a drilling operation with high-pressure water supplied through the drilling rod, even if the water pressure in the drilling rod becomes abnormally high due to clogging of the discharge path of high-pressure water, The pressure receiving part of the water pressure gauge is prevented from being exposed to the high pressure, and the water pressure gauge can be protected.

本発明の実施形態における水圧式ロータリ削孔システムを構成する削孔ロッドの構造及び削孔中の水の流れを示す断面図である。It is sectional drawing which shows the structure of the drilling rod which comprises the hydraulic rotary drilling system in embodiment of this invention, and the flow of the water in drilling. 本発明の実施形態における自記式水圧計の収納室及び収納室における自記式水圧計の支持構造を示す断面図(図1のII−II断面図)である。It is sectional drawing (II-II sectional drawing of FIG. 1) which shows the supporting structure of the storage chamber of the self-recording type hydrometer in the embodiment of this invention and the self-recording type hydrometer in the storage chamber. 本発明の実施形態における水圧式ロータリ削孔システムを示す図である。It is a figure showing a hydraulic rotary drilling system in an embodiment of the present invention. 本発明の実施形態におけるトンネル掘削中の地下水探査の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the groundwater exploration during tunnel excavation in embodiment of this invention. 本発明の実施形態における地下水探査のための削孔工程を説明するための図である。It is a figure for demonstrating the drilling process for groundwater exploration in embodiment of this invention. 本発明の実施形態における水圧式ロータリ削孔システムを構成する削孔ロッドの構造及び削孔停止中の水の流れを示す断面図である。It is sectional drawing which shows the structure of the drilling rod which comprises the hydraulic rotary drilling system in embodiment of this invention, and the flow of water in the case of drilling stop. 本発明の実施形態における自記式水圧計の計測データ及び地下水圧の抽出処理を説明するためのタイムチャートである。It is a time chart for demonstrating the extraction process of the measurement data of a self-recording type water pressure gauge and groundwater pressure in embodiment of this invention. 本発明の実施形態において自記式水圧計の収納室の別の形態を例示する断面図である。It is sectional drawing which illustrates another form of the storage chamber of a self-recording-type water pressure gauge in embodiment of this invention. 本発明の実施形態において図8の収納ケースの支持構造を例示する断面図である。FIG. 9 is a cross-sectional view illustrating the support structure of the storage case of FIG. 8 in the embodiment of the invention. 本発明の実施形態における口元側で地下水流量を計測する構成を示す断面図である。It is sectional drawing which shows the structure which measures a groundwater flow rate by the mouth side in embodiment of this invention.

以下では、図面を参照して、本発明に係る地盤削孔における地下水圧計測方法及び削孔ロッドの実施形態を説明する。
図1は、本発明に係る削孔ロッド(ドリルロッド、ボーリングロッド、ケーシングロッド)の一態様を示す断面図であり、図2は、図1のII−II断面図である。
Below, with reference to drawings, the embodiment of the groundwater pressure measuring method and drilling rod in the ground drilling concerning the present invention is described.
FIG. 1 is a sectional view showing an embodiment of a drilling rod (drilling rod, boring rod, casing rod) according to the present invention, and FIG. 2 is a sectional view taken along the line II-II in FIG.

図1、図2に示した削孔ロッド100は、高圧水を駆動源として削孔ビットを回転駆動して削孔する水圧式ロータリ削孔システム(ダウンホールモータによる削孔システム)を構成するツールである。
なお、高圧水を駆動源とする削孔システムは、水圧式ロータリパーカッション削孔システム(ダウンザホールハンマによる削孔システム)であってもよく、削孔ロッド100は、高圧水を駆動源として削孔ビットを回転及び/又は打撃動作させる削孔システムに適用されるツールである。
The drilling rod 100 shown in FIG. 1 and FIG. 2 is a tool that constitutes a hydraulic rotary drilling system (a drilling system using a downhole motor) that drills by rotating a drilling bit using high-pressure water as a drive source. It is.
The drilling system using high-pressure water as a driving source may be a hydraulic rotary percussion drilling system (a drilling system using a down-the-hole hammer), and the drilling rod 100 uses a high-pressure water as a driving source. Is a tool applied to a drilling system for rotating and / or striking a wheel.

削孔ロッド100は、中空筒状の本体部110と、本体部110の先端に本体部110の軸回りに回転可能に支持される削孔ビット120と、本体部110内に配置され削孔ビット120を回転駆動するダウンホールモータ130と、本体部110内に配置され水圧を計測する自記式水圧計140と、本体部110内における水の逆流(削孔用高圧水の流れ方向と逆方向の流れ)を阻止する逆止弁150とを有して構成される。
削孔システムが、水圧式ロータリパーカッション削孔システム(ダウンザホールハンマによる削孔システム)の場合、上記のダウンホールモータ130は、ダウンザホールハンマに置き換えられ、ダウンザホールハンマは、削孔ビット120を回転及び打撃動作させる駆動力を付与する。
The drilling rod 100 includes a hollow cylindrical main body 110, a drilling bit 120 supported at the tip of the main body 110 so as to be rotatable about the axis of the main body 110, and a drilling bit disposed in the main body 110. A downhole motor 130 that rotates and drives 120, a self-recording water pressure gauge 140 that is disposed in the main body 110 and measures water pressure, and a reverse flow of water in the main body 110 (in a direction opposite to the flow direction of the high-pressure water for drilling). And a check valve 150 for preventing flow).
When the drilling system is a hydraulic rotary percussion drilling system (a drilling system using a down-the-hole hammer), the downhole motor 130 is replaced with a down-the-hole hammer, and the down-the-hole hammer rotates and hits the drilling bit 120. A driving force is applied.

本体部110の内部には、先端側(削孔ビット120側)から順に、ダウンホールモータ130、自記式水圧計140、逆止弁150が配置される。
逆止弁150は、前後差圧に応じて動作し、口元側からダウンホールモータ130(削孔ビット120)に向かう水の流れを許容しダウンホールモータ130(削孔ビット120)から口元に向かう水の流れ(逆流)を阻止する。
Inside the main body 110, a downhole motor 130, a self-recording water pressure gauge 140, and a check valve 150 are arranged in this order from the distal end side (the drill bit 120 side).
The check valve 150 operates in accordance with the front-rear differential pressure, allows water to flow from the mouth side toward the downhole motor 130 (hole drilling bit 120), and travels from the downhole motor 130 (hole drilling bit 120) to the mouth. Block water flow (backflow).

自記式水圧計140は、電源(バッテリー)142及びフラッシュROMなどのメモリ143を棒状本体に内蔵し、メモリ143に水圧の計測結果を時系列に記録する機能を有する計測器であり、任意に変更可能な時間ピッチ毎にそのときの計測データをメモリ143に自動的に記録する。
自記式水圧計140は、メモリ143に記録されている計測データを読み出すためのケーブル端子(図示省略)を備え、パーソナルコンピュータなどとケーブルで接続することで、計測データの読み出しが行える。
The self-recording water pressure gauge 140 is a measuring instrument that has a power supply (battery) 142 and a memory 143 such as a flash ROM built in the rod-shaped main body and has a function of recording water pressure measurement results in time series in the memory 143. The measurement data at that time is automatically recorded in the memory 143 at every possible time pitch.
The self-recording water pressure gauge 140 includes a cable terminal (not shown) for reading measurement data recorded in the memory 143, and can read the measurement data by connecting it to a personal computer or the like with a cable.

本体部110内部のダウンホールモータ130と逆止弁150との間には、収納室145が区画形成され、この収納室145に自記式水圧計140が設置される。
収納室145は、箱状の壁部材144を、本体部110の内周壁に開口縁が密着するように固定することで、箱状の壁部材144と本体部110の内周壁とで囲まれる空間として形成される。削孔ビット120の駆動源としての高圧水は、収納室145の外側を通ってダウンホールモータ130に向けて送水される。
A storage chamber 145 is defined between the downhole motor 130 inside the main body 110 and the check valve 150, and a self-recording water pressure gauge 140 is installed in the storage chamber 145.
The storage chamber 145 is a space surrounded by the box-shaped wall member 144 and the inner peripheral wall of the main body 110 by fixing the box-shaped wall member 144 so that the opening edge is in close contact with the inner peripheral wall of the main body 110. Formed as. High-pressure water as a drive source for the drill bit 120 is fed toward the downhole motor 130 through the outside of the storage chamber 145.

収納室145を囲む本体部110の周壁には、複数の連通孔146を貫通形成してあり、収納室145内の空間(自記式水圧計140の収納空間)と本体部110の外周(削孔ロッド100の外周面と削孔された孔290との間隙空間)とは、連通孔146によって連通する。
一方、収納室145を囲む壁部材144は、収納室145内と本体部110内とを隔て、収納室145内と本体部110内との間では水が移動せず、本体部110内の圧力変化が収納室145内に直接的に伝わることがないように構成されている。
係る構成により、自記式水圧計140は、削孔ロッド100の外周の水圧を受圧し、削孔ロッド100の外周、換言すれば、削孔ロッド100の外周と削孔された孔290との間隙における水圧を計測する。
A plurality of communication holes 146 are formed through the peripheral wall of the main body 110 surrounding the storage chamber 145, and the space in the storage chamber 145 (the storage space of the self-recording water pressure gauge 140) and the outer periphery (hole drilling). The outer peripheral surface of the rod 100 and the gap space between the drilled hole 290) communicate with each other through the communication hole 146.
On the other hand, the wall member 144 surrounding the storage chamber 145 separates the storage chamber 145 and the main body 110, and water does not move between the storage chamber 145 and the main body 110. The change is not directly transmitted into the storage chamber 145.
With such a configuration, the self-recording water pressure gauge 140 receives the water pressure on the outer periphery of the drilling rod 100, and in other words, the gap between the outer periphery of the drilling rod 100, in other words, the outer periphery of the drilling rod 100 and the drilled hole 290. Measure the water pressure at.

自記式水圧計140は、収納室145内の中央付近に、自記式水圧計140の軸が本体部110の軸と略平行になるように複数のステー141によって固定される。
図2に示した支持構造の一態様では、一端が壁部材144又は収納室145を囲む本体部110の内周壁に固定され他端が自記式水圧計140に固定されるステー141を、自記式水圧計140の軸方向の前後二カ所において自記式水圧計140から放射状に3方に延設して、自記式水圧計140を収納室145内の中央付近に固定している。
The self-recording water pressure gauge 140 is fixed by a plurality of stays 141 near the center of the storage chamber 145 so that the shaft of the self-recording water pressure gauge 140 is substantially parallel to the shaft of the main body 110.
In one embodiment of the support structure shown in FIG. 2, a stay 141 having one end fixed to the inner peripheral wall of the main body 110 surrounding the wall member 144 or the storage chamber 145 and the other end fixed to the self-recording water pressure gauge 140 is self-recording. The self-recording water pressure gauge 140 is radially extended from the self-recording water pressure gauge 140 in two directions before and after the water pressure gauge 140 in the axial direction, and the self-recording water pressure gauge 140 is fixed near the center of the storage chamber 145.

ダウンホールモータ130は、螺旋状のステーター及びローターで構成されるタービン部、ローターの偏心運動を同心回転運動に変換して削孔ビット120に伝達する動力伝達装置などで構成される。
本体部110の内部を通じて口元側から削孔ビット120に向けて供給される高圧水は、ダウンホールモータ130のローターを回転させて削孔ビット120に回転力を付与し、その後、本体部110先端から外部に流出し、削孔ロッド100の外周と削孔された孔290との間隙に流れ出て口元側に戻る。
The downhole motor 130 includes a turbine section including a helical stator and a rotor, and a power transmission device that converts the eccentric motion of the rotor into a concentric rotational motion and transmits the concentric rotational motion to the drill bit 120.
The high-pressure water supplied from the mouth side toward the drilling bit 120 through the inside of the main body 110 rotates the rotor of the downhole motor 130 to apply a rotational force to the drilling bit 120, and then the tip of the main body 110. Out to the outside, and flows out into the gap between the outer periphery of the drilling rod 100 and the drilled hole 290 and returns to the mouth side.

図3は、上記の削孔ロッド100を含む水圧式ロータリ削孔システム(ダウンホールモータによる削孔システム)の全体構成の一態様を示す。
削孔ロッド100の基端側(削孔ビット120の反対側)には、図示省略したカップリングを介して中空筒状の延長用削孔ロッド220が継ぎ足され、削孔深度が深くなるにしたがって継ぎ足す延長用削孔ロッド220の数が増やされる。
FIG. 3 shows an aspect of the overall configuration of a hydraulic rotary drilling system (a drilling system using a downhole motor) including the drilling rod 100 described above.
A hollow cylindrical extending drilling rod 220 is added to the base end side (opposite side of the drilling bit 120) of the drilling rod 100 via a coupling (not shown), and as the drilling depth increases. The number of extension drilling rods 220 to be added is increased.

複数連結される延長用削孔ロッド220のうちの最基端の延長用削孔ロッド220にはスイベル230が連結される。
スイベル230は、送水パイプ270を介してポンプ240の吐出口に接続されていて、ポンプ240は水槽260に貯留された水を吸い込んでスイベル230に向けて高圧水を供給する。
A swivel 230 is connected to the extension drilling rod 220 at the most proximal end among the plurality of extension drilling rods 220 to be connected.
The swivel 230 is connected to the discharge port of the pump 240 via a water supply pipe 270, and the pump 240 sucks water stored in the water tank 260 and supplies high-pressure water toward the swivel 230.

送水パイプ270の途中にはフィルターボックス250を設けてあり、ポンプ240から吐出された高圧水は、フィルターボックス250でろ過された後にスイベル230に供給される。
スイベル230に供給された高圧水は、延長用削孔ロッド220の内部を通って削孔ロッド100に供給され、高圧水がダウンホールモータ130に流れ込むことで、ダウンホールモータ130のローターが高圧水の流れによって回転駆動され、ローターの回転が削孔ビット120に伝達されて削孔ビット120が回転し、削孔ビット120の回転により地盤を削孔する。
A filter box 250 is provided in the middle of the water supply pipe 270, and high-pressure water discharged from the pump 240 is supplied to the swivel 230 after being filtered by the filter box 250.
The high-pressure water supplied to the swivel 230 is supplied to the drilling rod 100 through the extension drilling rod 220, and the high-pressure water flows into the downhole motor 130, so that the rotor of the downhole motor 130 becomes high-pressure water. The rotation of the rotor is transmitted to the drill bit 120 and the drill bit 120 rotates, and the ground is drilled by the rotation of the drill bit 120.

また、穿孔された孔290の口元付近には、孔崩れを防止するための筒状の口元保護管(ケーシング)310が嵌入され、この口元保護管310の内側に削孔ロッド100、220が挿通され、口元保護管310が設けられる口元部分で2重管を形成する。
また、口元保護管310の内周面と延長用削孔ロッド220の外周面との間の環状隙間を開閉するバルブである口元プリベンターバルブ(Preventer Valve)320を設けてある。
In addition, a cylindrical mouth protective tube (casing) 310 for preventing the collapse of the hole is inserted in the vicinity of the mouth of the perforated hole 290, and the drilling rods 100 and 220 are inserted inside the mouth protective tube 310. A double tube is formed at the mouth portion where the mouth protection tube 310 is provided.
Further, a mouth preventer valve 320 is provided which is a valve for opening and closing an annular gap between the inner peripheral surface of the mouth protecting tube 310 and the outer peripheral surface of the extension drilling rod 220.

上記構成の水圧式ロータリ削孔システムは、例えば、トンネル掘削中の地下水探査のための削孔に用いられる。
図4は、トンネル掘削中の地下水探査のための削孔の概念図である。
トンネル掘削中の地下水探査のための削孔としては、例えば、地盤(地山)における高圧水帯の存在・位置を把握するための超長尺削孔、トンネル掘削,水抜孔増設に伴う水圧観測モニタリングのための長尺削孔、切羽近傍の水圧観測のための短尺削孔などがある。
上記の削孔ロッド100を含む水圧式ロータリ削孔システムは、地盤(地山)における高圧水帯の存在・位置を把握するための超長尺削孔に好適に用いることができる。
The hydraulic rotary drilling system configured as described above is used for drilling for exploring groundwater during tunnel excavation, for example.
FIG. 4 is a conceptual diagram of drilling for exploring groundwater during tunnel excavation.
Drilling holes for exploring groundwater during tunnel excavation include, for example, ultra-long drilling holes for understanding the existence and location of high-pressure water zones in the ground (natural ground), water pressure observations associated with tunnel excavation and additional drainage holes There are long holes for monitoring and short holes for water pressure observation near the face.
The hydraulic rotary drilling system including the drilling rod 100 described above can be suitably used for an ultra-long drilling hole for grasping the existence / position of a high-pressure water zone in the ground (natural ground).

次に、削孔ロッド100を含む水圧式ロータリ削孔システムによる、トンネル掘削中の地下水探査のための削孔の工程を、図5にしたがって説明する。
削孔を開始する前に、自記式水圧計140をオン状態にセットし、また、水圧の計測データをメモリ143に記憶させる時間間隔である時間ピッチの設定を行う(第1工程)。
Next, a drilling process for groundwater exploration during tunnel excavation by a hydraulic rotary drilling system including the drilling rod 100 will be described with reference to FIG.
Before the drilling is started, the self-recording water pressure gauge 140 is set to the ON state, and a time pitch that is a time interval for storing the water pressure measurement data in the memory 143 is set (first step).

次いで、自記式水圧計140を備えた削孔ロッド100を含んで構成される削孔システムを削孔状態にセットし、削孔(高圧水の供給)を開始する(第2工程)。
図1に示すように、口元側から削孔ロッド100に向けて送水される高圧水(ポンプ送水)は、延長用削孔ロッド220の内部を通過して削孔ロッド100の内部に至り、逆止弁150を通過して削孔ロッド100のダウンホールモータ130に流れて削孔ビット120を削孔動作させ、その後、削孔ビット120側から外部に流出し、削孔ロッド100,220の外周面と孔290の壁面とで形成される横断面が環状の空間を通って口元側に戻される。
Next, a drilling system including the drilling rod 100 provided with the self-recording water pressure gauge 140 is set in a drilling state, and drilling (supply of high-pressure water) is started (second step).
As shown in FIG. 1, high-pressure water (pump water) fed from the mouth side toward the drilling rod 100 passes through the extension drilling rod 220 and reaches the interior of the drilling rod 100, and vice versa. After passing through the stop valve 150 and flowing to the downhole motor 130 of the drilling rod 100, the drilling bit 120 is drilled, and then flows out from the drilling bit 120 side to the outer periphery of the drilling rods 100 and 220. The cross section formed by the surface and the wall surface of the hole 290 is returned to the mouth side through the annular space.

削孔を開始した後は削孔深度を監視し(第3工程)、削孔が所定深度まで進んだとき、例えば、延長用削孔ロッド220の継ぎ足しが必要な深度に達した時点で削孔(高圧水の供給、ポンプ送水)を一時的に停止し(第4工程)、継ぎ足しが必要な深度になって削孔を停止した場合には、延長用削孔ロッド220の継ぎ足し作業を行う(第5工程)。
削孔過程で高圧水の供給を停止したときに、削孔ビット120(切羽)が地下水帯300に位置している場合、図6に示すように、削孔ロッド100内に地下水が浸入して逆止弁150が閉じる一方、削孔ロッド100の外周と孔290との間の隙間に地下水が流れ込んで口元に向けて流れる。
After the drilling is started, the drilling depth is monitored (third step). When the drilling advances to a predetermined depth, for example, when the extension drilling rod 220 reaches the required depth, the drilling is performed. (Supplying high-pressure water, pumping water) is temporarily stopped (fourth step), and when the drilling is stopped at a depth that requires addition, the extension drilling rod 220 is added ( (5th process).
When the supply of high-pressure water is stopped during the drilling process, when the drill bit 120 (face) is located in the groundwater zone 300, the groundwater enters the drill rod 100 as shown in FIG. While the check valve 150 is closed, groundwater flows into the gap between the outer periphery of the drilling rod 100 and the hole 290 and flows toward the mouth.

ここで、削孔ロッド100の外周には、収納室145に連通する連通孔146が開口しているから、削孔ロッド100の外周と孔290との間の隙間を流れる地下水の圧力と収納室145内の圧力とが同じになり、自記式水圧計140は地下水圧を計測してメモリ143に記憶することになる。
一方、削孔ビット120の駆動源である高圧水(削孔用作動流体)がポンプで送水される削孔中は、この高圧水が削孔ビット120側から削孔ロッド100の外部に流出し、その後、削孔ロッド100の外周と孔290との間の隙間を流れる。
Here, since the communication hole 146 communicating with the storage chamber 145 is opened on the outer periphery of the drilling rod 100, the pressure of the groundwater flowing through the gap between the outer periphery of the drilling rod 100 and the hole 290 and the storage chamber. The pressure in 145 becomes the same, and the self-recording water pressure gauge 140 measures the groundwater pressure and stores it in the memory 143.
On the other hand, during the drilling of high pressure water (working fluid for drilling), which is the driving source of the drill bit 120, by the pump, this high pressure water flows out of the drill rod 100 from the drill bit 120 side. Then, it flows through the gap between the outer periphery of the drilling rod 100 and the hole 290.

このため、削孔中で、削孔ビット120(切羽)が地下水帯300に位置していない場合、自記式水圧計140は、駆動源として供給された高圧水が口元に向けて戻るときの圧力を計測する。また、削孔中で、削孔ビット120(切羽)が地下水帯300に位置している場合、自記式水圧計140は、駆動源として供給された高圧水と地下水とで形成される圧力を計測することになる。したがって、削孔中における自記式水圧計140の計測圧力値は、地下水圧を示す値にはならない。   For this reason, when the drilling bit 120 (face) is not located in the underground water zone 300 in the drilling, the self-recording type water pressure gauge 140 is the pressure when the high-pressure water supplied as a drive source returns toward the mouth. Measure. In addition, when the drill bit 120 (face) is located in the groundwater zone 300 in the borehole, the self-recording water pressure gauge 140 measures the pressure formed by the high-pressure water and the groundwater supplied as a drive source. Will do. Therefore, the measured pressure value of the self-recording water pressure gauge 140 in the hole is not a value indicating the groundwater pressure.

係る削孔状態から高圧水の供給を遮断して削孔を停止すると、逆止弁150の上流側の圧力が下がって逆止弁150が閉じる。
そして、削孔を停止したときに削孔ビット120(切羽)が地下水帯300に位置していると、図6に示すように、地下水は削孔ロッド100の外周と孔290との間の隙間に流れ込み、削孔ロッド100の外周と孔290との間の圧力は地下水で形成されることになり、削孔ロッド100の外周と連通孔146で連通する収納室145に収納される自記式水圧計140の計測値は地下水圧を示すことになる。
When the supply of high-pressure water is cut off from the state of drilling and the drilling is stopped, the pressure on the upstream side of the check valve 150 is reduced and the check valve 150 is closed.
When the drilling bit 120 (face) is located in the groundwater zone 300 when the drilling is stopped, the groundwater has a gap between the outer periphery of the drilling rod 100 and the hole 290 as shown in FIG. The pressure between the outer periphery of the drilling rod 100 and the hole 290 is formed by groundwater, and is a self-recording water pressure stored in the storage chamber 145 that communicates with the outer periphery of the drilling rod 100 through the communication hole 146. The measured value of the total 140 indicates the groundwater pressure.

換言すれば、削孔過程で駆動源である高圧水の供給を停止することは、自記式水圧計140によって地下水圧を計測できる状態に設定することになり、高圧水の供給を停止する毎(延長用削孔ロッド220の継ぎ足しを行う毎)、つまり、異なる複数の深度毎に、自記式水圧計140は地下水圧を計測してメモリ143に記憶することになる。
このように、削孔用高圧水の供給を停止して延長用削孔ロッド220を継ぎ足す第4工程、第5工程では、並行して自記式水圧計140による地下水圧の計測が行われることになるが、自記式水圧計140は削孔用高圧水が供給されているか否かとは無関係に一定の時間ピッチでそのときの計測データをメモリ143に自動的に記憶するから、作業者は、地下水圧を測定するための作業を削孔過程で行う必要はない。
In other words, stopping the supply of high-pressure water that is a driving source in the drilling process sets a state in which groundwater pressure can be measured by the self-recording water pressure gauge 140, and every time the supply of high-pressure water is stopped ( The self-recording water pressure gauge 140 measures the ground water pressure and stores it in the memory 143 for each of a plurality of different depths.
As described above, in the fourth and fifth steps in which the supply of the drilling high-pressure water is stopped and the extension drilling rod 220 is added, the groundwater pressure is measured by the self-recording water pressure gauge 140 in parallel. However, the self-recording water pressure gauge 140 automatically stores the measurement data at that time in the memory 143 at a constant time pitch regardless of whether or not the high-pressure water for drilling is supplied. There is no need to measure the groundwater pressure during the drilling process.

自記式水圧計140がメモリ143に記憶する計測データは時系列データであり、削孔ビット120による削孔(削孔用高圧水の供給)を停止した時刻及び削孔の再開時刻から、削孔中の計測データと削孔停止中の計測データとに区別できる。
そこで、後述する削孔完了後の計測データ解析のために、削孔過程において、削孔ビット120による削孔(削孔用高圧水の供給)を停止した時刻(削孔停止期間)及び削孔の再開時刻(削孔中期間)を記録しておく。削孔停止時刻、削孔再開時刻の記録は自動的に行われるよう構成でき、また、作業者が記録作業を行う構成とすることができる。
The measurement data stored in the memory 143 by the self-recording water pressure gauge 140 is time-series data. From the time when the drilling by the drilling bit 120 (supply of high-pressure water for drilling) is stopped and the drilling restart time, The measurement data can be distinguished from the measurement data while drilling is stopped.
Therefore, in order to analyze the measurement data after completion of drilling, which will be described later, the time (drilling stop period) when the drilling (supply of high-pressure water for drilling) by the drilling bit 120 was stopped and the drilling in the drilling process The restart time (during the drilling period) is recorded. The recording of the drilling stop time and the drilling restart time can be automatically performed, and the operator can perform the recording work.

以上のようにして地盤削孔を行い、目標深度に達したか否かを監視し(第6工程)、目標深度に達するまでは、削孔用高圧水の供給停止、延長用削孔ロッド220の継ぎ足し、削孔用高圧水の供給再開を周期的に繰り返す。
そして、削孔が目標深度に達すると、削孔用高圧水の供給停止し(第7工程)、削孔ロッド100及び延長用削孔ロッド220を含む削孔ツールスを、穿孔された孔290から回収する(第8工程)。
Ground drilling is performed as described above, and it is monitored whether or not the target depth has been reached (sixth step). Until the target depth is reached, the supply of high-pressure water for drilling is stopped, and the extension drilling rod 220 is used. The supply of high-pressure water for drilling is restarted periodically.
When the drilling reaches the target depth, the supply of the drilling high-pressure water is stopped (seventh step), and the drilling tools including the drilling rod 100 and the extension drilling rod 220 are removed from the drilled hole 290. Collect (8th step).

穿孔された孔290から削孔ロッド100を回収すると、削孔ロッド100の内部に配置された自記式水圧計140のメモリ143から、削孔過程で一定時間毎に計測され記憶されている水圧計測データを読み出す(第9工程)。
水圧データのメモリ143から読み出しは、例えば、自記式水圧計140とパーソナルコンピュータ410とをケーブル420で接続し、パーソナルコンピュータ410に計測データを転送させることで行われる。
When the drilling rod 100 is recovered from the drilled hole 290, the water pressure measurement is measured and stored at regular intervals during the drilling process from the memory 143 of the self-recording hydrometer 140 disposed inside the drilling rod 100. Data is read (9th step).
Reading the water pressure data from the memory 143 is performed, for example, by connecting the self-recording water pressure gauge 140 and the personal computer 410 with the cable 420 and transferring the measurement data to the personal computer 410.

自記式水圧計140とパーソナルコンピュータ410とをケーブル420で接続するための構造の一態様として、自記式水圧計140が内蔵される部分を本体部110から分離できるように、本体部110を、逆止弁150を備える第1ユニットと、自記式水圧計140を備える第2ユニットと、ダウンホールモータ130を備える第3ユニットとの少なくとも3ユニットが着脱可能に連結される構造とし、更に、自記式水圧計140を収納室145から取り出すために、壁部材144に開閉可能な取り出し蓋を設けるなどの構成とすることができる。   As one aspect of the structure for connecting the self-recording water pressure gauge 140 and the personal computer 410 with the cable 420, the main body 110 is reversed so that the portion in which the self-recording water pressure gauge 140 is built can be separated from the main body 110. At least three units of a first unit including a stop valve 150, a second unit including a self-recording water pressure gauge 140, and a third unit including a downhole motor 130 are detachably connected. In order to take out the water pressure gauge 140 from the storage chamber 145, the wall member 144 may be provided with a take-off lid that can be opened and closed.

そして、削孔時には上記の各ユニットを連結して用い、削孔後に自記式水圧計140のメモリ143から計測データを取り出すときには各ユニットの間の連結を外して、自記式水圧計140を備える第2ユニットを分離し、壁部材144などに設けた取り出し蓋を開けて自記式水圧計140を収納室145から取り出し、取り出した自記式水圧計140にケーブル420を接続する。   The above units are connected and used at the time of drilling. When the measurement data is taken out from the memory 143 of the self-recording water pressure gauge 140 after drilling, the units are disconnected and the self-recording water pressure gauge 140 is provided. The two units are separated, the take-out lid provided on the wall member 144 or the like is opened, the self-recording water pressure gauge 140 is taken out from the storage chamber 145, and the cable 420 is connected to the taken-out self-writing water pressure gauge 140.

また、本体部110(又は第2ユニット)に取り付けられた状態のまま自記式水圧計140にケーブル420を接続できるよう構成することができる。
例えば、収納室145を構成する削孔ロッド100の周壁に開閉可能な開口部を設け、削孔時には開口部を閉塞し、自記式水圧計140のメモリ143から計測データを読み出すときに開口部を開け、収納室145内の自記式水圧計140にケーブル420を接続することができるよう構成することができる。
Further, the cable 420 can be connected to the self-recording water pressure gauge 140 while being attached to the main body 110 (or the second unit).
For example, an opening that can be opened and closed is provided in the peripheral wall of the drilling rod 100 constituting the storage chamber 145, the opening is closed during drilling, and the opening is opened when reading measurement data from the memory 143 of the self-recording water pressure gauge 140. The cable 420 can be configured to be opened and connected to the self-recording water pressure gauge 140 in the storage chamber 145.

また、保護蓋付の外部コネクタを本体部110の周壁に外部からケーブル接続できるように固定し、外部コネクタと内部の自記式水圧計140のコネクタとを内部ケーブルで接続し、削孔中は保護蓋で外部コネクタを保護し、削孔後に削孔ロッド100を回収すると、保護蓋を開けて外部コネクタにアクセスできるようにし、一端がパーソナルコンピュータ410に接続されるケーブルを本体部110の周壁に固定された外部コネクタに接続する構成とすることができる。   In addition, an external connector with a protective lid is fixed to the peripheral wall of the main body 110 so that the cable can be connected from the outside, and the external connector is connected to the connector of the internal self-recording water pressure gauge 140 with an internal cable to protect during drilling. When the external connector is protected by the lid and the drilling rod 100 is recovered after drilling, the protective lid is opened to allow access to the external connector, and a cable having one end connected to the personal computer 410 is fixed to the peripheral wall of the main body 110 It can be set as the structure connected to the made external connector.

また、自記式水圧計140のメモリ143をメモリカードなどの着脱可能な記憶媒体とし、削孔後に削孔ロッド100を回収したときに自記式水圧計140からメモリ143を取り外して、パーソナルコンピュータ410などのデータ読み取り装置にセットし、水圧計測データの読み出しを行わせることができる。
上記のようにして、削孔ロッド100(自記式水圧計140)を孔290から回収した後に、メモリ143から削孔過程での時系列の計測データを読み出すと、次いで、読み出した計測データを解析して地下水圧の計測データを抽出する(第10工程)。
Further, the memory 143 of the self-recording water pressure gauge 140 is used as a removable storage medium such as a memory card, and when the drilling rod 100 is recovered after drilling, the memory 143 is detached from the self-recording water pressure gauge 140 and the personal computer 410 or the like. The water pressure measurement data can be read out by setting the data reading device.
As described above, after collecting the drilling rod 100 (self-recording water pressure gauge 140) from the hole 290, when reading time-series measurement data in the drilling process from the memory 143, the read measurement data is then analyzed. Then, groundwater pressure measurement data is extracted (tenth step).

自記式水圧計140から読み出される計測データは、削孔開始から削孔完了までの期間(削孔開始から削孔ロッド100が回収されるまでの期間)で一定時間ピッチ毎に計測された水圧データである。
一方、延長用削孔ロッド220の継ぎ足しのために削孔用高圧水の供給と供給停止とを繰り返して削孔が行われるから、自記式水圧計140から読み出される計測データは、削孔用高圧水が供給されている状態(削孔中)での計測データ(送水圧データ)と、削孔用高圧水の供給が停止されている状態(削孔停止中)での計測データとが含まれる。
The measurement data read from the self-recording type water pressure gauge 140 is the water pressure data measured at regular intervals during the period from the start of drilling to the completion of drilling (the period from the start of drilling to the recovery of the drilling rod 100). It is.
On the other hand, since the drilling is performed by repeatedly supplying and stopping the high-pressure water for drilling in order to add the extension drilling rod 220, the measurement data read from the self-recording water pressure gauge 140 is the high-pressure for drilling. Includes measurement data (water supply pressure data) when water is supplied (during drilling) and measurement data when supply of high-pressure water for drilling is stopped (drilling is stopped) .

ここで、削孔過程において削孔用高圧水の供給を停止したタイミング(削孔停止タイミング)及び削孔用高圧水の供給を再開したタイミング(削孔再開タイミング)、つまり、削孔実施期間及び削孔一時停止期間は既知である。
したがって、自記式水圧計140から読み出した複数の圧力計測データの中から、削孔過程において削孔用高圧水の供給を一時的に停止していた削孔一時停止期間における圧力計測データ群を抽出することができ、更に、抽出した削孔一時停止期間での圧力計測データ群を解析することで地下水圧を求めることができる。
Here, the timing of stopping the supply of high-pressure water for drilling in the drilling process (drilling stop timing) and the timing of restarting the supply of high-pressure water for drilling (drilling restart timing), that is, the drilling execution period and The drilling pause period is known.
Therefore, from the plurality of pressure measurement data read out from the self-recording water pressure gauge 140, a pressure measurement data group in the drilling suspension period in which the supply of the high-pressure water for drilling was temporarily stopped in the drilling process is extracted. Further, the groundwater pressure can be obtained by analyzing the pressure measurement data group in the extracted drilling temporary stop period.

削孔過程において削孔用高圧水の供給を一時的に停止している期間が長くなると、そのときに切羽が位置している地下水帯以外の影響を圧力計測データが受け易くなり、係る外乱の影響を受けた圧力計測データを地下水圧の計測データに含めると、地下水圧の計測精度が低下する。
そこで、例えば、図7に示すように、削孔用高圧水の供給を一時的に停止した後の圧力計測データが安定したときの計測データを地下水圧の計測データとして抽出し、その後の圧力計測データの変化を外乱による変化と見做して地下水圧の計測データから除外することができる。
また、削孔用高圧水の供給を一時的に停止したタイミングから一定時間内の圧力計測データを地下水圧の計測データとして抽出することができる。
If the period during which the supply of high-pressure water for drilling is temporarily stopped during the drilling process becomes longer, the pressure measurement data becomes more susceptible to influences other than the groundwater zone where the face is located at that time. If the pressure measurement data affected is included in the measurement data of the groundwater pressure, the measurement accuracy of the groundwater pressure decreases.
Therefore, for example, as shown in FIG. 7, the measurement data when the pressure measurement data after the supply of high-pressure water for drilling is temporarily stopped is extracted as the measurement data of the groundwater pressure, and then the pressure measurement is performed. Data changes can be regarded as changes due to disturbances and excluded from groundwater pressure measurement data.
In addition, pressure measurement data within a predetermined time from the timing at which the supply of high-pressure water for drilling is temporarily stopped can be extracted as measurement data for groundwater pressure.

上記のように自記式水圧計140から読み出した計測データを解析して地下水圧のデータを求める工程は、自記式水圧計140から読み出された計測データをパーソナルコンピュータの画面に表示させる工程と、この画面表示に基づき作業者が解析を行って地下水圧のデータなどを求める工程とで構成することができる。
また、パーソナルコンピュータに送水履歴のデータ(削孔用高圧水の供給を停止したタイミング及び供給を再開したタイミングのデータ)を格納させておくことで、自記式水圧計140から読み出した計測データを解析して地下水圧のデータを求める処理をパーソナルコンピュータがプログラム処理し、最終的な解析結果である地下水圧データを画面に表示して作業者に提供する構成とすることができる。
As described above, the step of analyzing the measurement data read from the self-recording water pressure gauge 140 and obtaining the data of the groundwater pressure displays the measurement data read from the self-recording water pressure gauge 140 on the screen of the personal computer, A process in which an operator analyzes based on this screen display to obtain groundwater pressure data and the like can be configured.
In addition, by storing water supply history data (timing when supply of drilling high-pressure water is stopped and data when supply is resumed) in a personal computer, the measurement data read from the self-recording water pressure gauge 140 is analyzed. Then, the processing for obtaining the groundwater pressure data can be programmed by the personal computer, and the groundwater pressure data as the final analysis result can be displayed on the screen and provided to the operator.

上述の削孔ロッド100を用いて地下水圧を計測する方法によると、削孔過程において地下水圧を測定しない場合と同じ作業を行うことで、同時並行で地下水圧の計測データの収集が自動的に行われるから、削孔作業と地下水圧の測定作業とを個別に行う場合に比べて作業手間を削減できるとともに作業時間を短縮することができ、しかも、削孔長が長くなっても地下水圧を測定するための手間及び時間が増えない。   According to the method of measuring the groundwater pressure using the above-described drilling rod 100, by performing the same operation as when the groundwater pressure is not measured in the drilling process, the measurement data of the groundwater pressure is automatically collected in parallel. As a result, it is possible to reduce labor and time compared to the case where drilling work and groundwater pressure measurement work are performed separately, and groundwater pressure can be reduced even if the drilling length is increased. The labor and time for measurement do not increase.

更に、削孔ロッド100の内部に自記式水圧計140を配置した構成では、自記式水圧計140が直接孔壁などに触れることがないため破損の可能性が低く、また、孔荒れ、孔崩れがあったり地下水が大量の場合でも、地下水圧を計測しかつ計測後に自記式水圧計140を回収することができる。
更に、削孔深度が地下水帯に到達した時点で地下水圧を計測するから、初期状態での地下水圧(湧水圧)を計測することができる。
また、削孔用高圧水の供給を一時的に停止したタイミングで(延長用削孔ロッド220が継ぎ足される毎に)地下水圧が測定されるので、削孔過程で複数の深度毎に初期状態での地下水圧を検出できる。
Furthermore, in the configuration in which the self-recording water pressure gauge 140 is disposed inside the drilling rod 100, the self-recording water pressure gauge 140 does not directly touch the hole wall and the like, so the possibility of breakage is low. Even if there is a large amount of groundwater, the groundwater pressure can be measured and the self-recording water pressure gauge 140 can be recovered after the measurement.
Furthermore, since the groundwater pressure is measured when the drilling depth reaches the groundwater zone, the groundwater pressure (spring water pressure) in the initial state can be measured.
In addition, since the groundwater pressure is measured at the timing when the supply of the high-pressure water for drilling is temporarily stopped (every time the extended drilling rod 220 is added), in the initial state at a plurality of depths during the drilling process. Can detect the groundwater pressure.

なお、延長用削孔ロッド220の継ぎ足しタイミング間の任意のタイミングで、地下水測定のために削孔用高圧水の供給(削孔)を一時的に停止し、自記式水圧計140が地下水圧を計測する状態にすることができる。この場合、延長用削孔ロッド220の継ぎ足しタイミング毎(継ぎ足しが行われる一定深度毎)に地下水圧が計測され、更に、任意の深度で地下水圧の計測を行わせることができる。
また、削孔用高圧水の供給を一時的に停止し、自記式水圧計140が地下水圧を計測する状態にするときに、口元プリベンターバルブ(遮水パッカー)320を閉じ口元保護管310の内周面と延長用削孔ロッド220の外周面との間の環状隙間を介して地下水が口元から漏れ出すことを抑制することができる。
In addition, the supply of high-pressure water for drilling (drilling) is temporarily stopped for groundwater measurement at any timing between the addition timings of the extension drilling rod 220, and the self-recording water pressure gauge 140 controls the groundwater pressure. It can be in a state to measure. In this case, the groundwater pressure is measured at each addition timing of the extension drilling rod 220 (at a certain depth at which the addition is performed), and the groundwater pressure can be measured at an arbitrary depth.
Moreover, when the supply of the high-pressure water for drilling is temporarily stopped and the self-recording water pressure gauge 140 enters a state in which the groundwater pressure is measured, the mouth pre-venter valve (water shielding packer) 320 is closed and the inside of the mouth protection pipe 310 is closed. It is possible to suppress leakage of groundwater from the mouth through an annular gap between the peripheral surface and the outer peripheral surface of the extension drilling rod 220.

削孔用高圧水の供給を一時的に停止するときに口元プリベンターバルブ320を閉じれば、削孔ロッド100の外周面と孔壁との隙間を介して口元に向けて流れた地下水が口元から漏れ出すことが抑制され、一方で、逆止弁150により削孔ロッド100内部が閉塞されるから、穿孔された孔290を介した地下水圧の漏れ出しが防がれ、地下水圧の計測精度を向上させることができる場合がある。   If the mouth preventive valve 320 is closed when the supply of the high-pressure water for drilling is temporarily stopped, groundwater that flows toward the mouth through the gap between the outer peripheral surface of the hole-drilling rod 100 and the hole wall leaks from the mouth. On the other hand, since the inside of the drilling rod 100 is blocked by the check valve 150, leakage of groundwater pressure through the drilled hole 290 is prevented, and measurement accuracy of the groundwater pressure is improved. There is a case that can be made.

但し、孔290が複数の地下水帯を相互に連通させるように穿孔された場合、削孔用高圧水の供給(削孔)を一時的に停止したときに口元プリベンターバルブ320を開けておけば、口元に近い側の地下水帯の圧力を口元側から逃がして自記式水圧計140に作用することを抑制し、切羽に近い地下水帯の水圧を自記式水圧計140によって計測させることができる場合がある。   However, if the hole 290 is drilled so that a plurality of groundwater zones communicate with each other, if the mouth pre-venter valve 320 is opened when the supply of the high-pressure water for drilling (drilling) is temporarily stopped, In some cases, it is possible to suppress the pressure in the groundwater zone near the mouth from acting on the self-recording water pressure gauge 140 by escaping from the mouth side, and the water pressure in the groundwater belt near the face can be measured by the self-recording water pressure gauge 140. .

また、自記式水圧計140は、削孔ロッド100内で削孔用高圧水の供給経路から隔てられている収納室145内に設置されるから、削孔ロッド100からの削孔用高圧水の排出経路が削孔クズなどによって詰まって削孔ロッド100内の圧力が高くなっても、係る高圧が自記式水圧計140(の受圧部)に加わることが抑止され、自記式水圧計140が高圧によって壊れることを回避できる。   In addition, the self-recording water pressure gauge 140 is installed in the storage chamber 145 that is separated from the drilling high-pressure water supply path in the drilling rod 100, so that the high-pressure water for drilling from the drilling rod 100 is used. Even if the discharge path is clogged with drilling debris or the like and the pressure in the drilling rod 100 is increased, the high pressure is suppressed from being applied to the self-recording water pressure gauge 140 (the pressure receiving portion thereof). Can avoid breaking.

なお、自記式水圧計140を収納する収納室145と削孔ロッド100の外周とを連通させる連通孔146が削孔クズなどによって詰まると、地下水圧の計測精度が低下するので、連通孔146の詰まりを抑制するために、スポンジなどのろ過材料で連通孔146を塞ぐ構成とすることができる。
係る構成とすれば、連通孔146が削孔クズなどによって詰まることを抑止でき、以って、地下水圧を安定して高精度に計測できる。
If the communication hole 146 that connects the storage chamber 145 for storing the self-recording type water pressure gauge 140 and the outer periphery of the drilling rod 100 is clogged with drilling debris or the like, the measurement accuracy of the groundwater pressure decreases. In order to suppress clogging, the communication hole 146 can be closed with a filtering material such as sponge.
With such a configuration, it is possible to prevent the communication hole 146 from being clogged with swarf or the like, so that the groundwater pressure can be stably measured with high accuracy.

図1に示した自記式水圧計140の収納室145は、箱状の壁部材144と本体部110の内周壁とで囲まれる空間であって、本体部110の中空部の中心軸から径方向外側に偏った位置に設けられるが、図8及び図9に示すような支持構造によって、本体部110の中空部の中心軸付近に収納室145を配置することができる。
図8及び図9において、金属製の筒状の収納ケース161が本体部110の中空部に設置され、この収納ケース161内の区画された収納室145に自記式水圧計140が収納される。
The storage chamber 145 of the self-recording water pressure gauge 140 shown in FIG. 1 is a space surrounded by the box-shaped wall member 144 and the inner peripheral wall of the main body 110, and is radial from the central axis of the hollow portion of the main body 110. The storage chamber 145 can be disposed near the central axis of the hollow portion of the main body 110 by the support structure shown in FIGS.
8 and 9, a metal cylindrical storage case 161 is installed in the hollow portion of the main body 110, and the self-recording water pressure gauge 140 is stored in a storage chamber 145 defined in the storage case 161.

自記式水圧計140は、収納ケース161内の収納室145に、自記式水圧計140の中心軸が収納ケース161の軸心に略一致するように、スポンジ、ゴム、バネなどの弾性支持部材165によって両端が弾性的に支持されて収納される。
収納ケース161は、有底筒状の本体161aと、本体161aの一方端の開放部を閉塞する脱着可能な蓋部材161bとから構成される。自記式水圧計140は、本体161aの底部に設けた弾性支持部材165と、蓋部材161bの裏側に設けた弾性支持部材165とで挟み込まれるようにして、収納ケース161内に弾性的に支持される。そして、蓋部材161bを本体161aから取り外すことで、本体161aの開放部から自記式水圧計140を外部に取り出せるよう構成されている。
The self-recording water pressure gauge 140 is placed in a storage chamber 145 in the storage case 161 and an elastic support member 165 such as a sponge, rubber, or spring so that the central axis of the self-recording water pressure gauge 140 substantially coincides with the axis of the storage case 161. Thus, both ends are elastically supported and stored.
The storage case 161 includes a bottomed cylindrical main body 161a and a detachable lid member 161b that closes an open portion at one end of the main body 161a. The self-recording water pressure gauge 140 is elastically supported in the storage case 161 so as to be sandwiched between an elastic support member 165 provided at the bottom of the main body 161a and an elastic support member 165 provided on the back side of the lid member 161b. The And it is comprised so that the self-recording type water pressure gauge 140 can be taken out from the open part of the main body 161a by removing the cover member 161b from the main body 161a.

収納ケース161は、前側(削孔ビット120側)と後側(口元側)との2か所で、削孔ロッド100の内周壁と本体161aの外周壁とを連結する複数のステー162によって削孔ロッド100内部に支持される。
ステー162は、収納ケース161の本体161aの外周壁から放射状に3方に向けて延設されて削孔ロッド100の内周壁と本体161aの外周壁との間に架設され、収納ケース161の軸心が本体部110の中空部の中心軸に略一致するように、収納ケース161を本体161aの中空部内に支持する。
The storage case 161 is cut by a plurality of stays 162 that connect the inner peripheral wall of the drilling rod 100 and the outer peripheral wall of the main body 161a at two locations, the front side (hole drilling bit 120 side) and the rear side (mouth side). It is supported inside the hole rod 100.
The stay 162 extends radially in three directions from the outer peripheral wall of the main body 161a of the storage case 161 and is installed between the inner peripheral wall of the drilling rod 100 and the outer peripheral wall of the main body 161a. The storage case 161 is supported in the hollow portion of the main body 161 a so that the center substantially coincides with the central axis of the hollow portion of the main body portion 110.

ステー162には、延設方向に沿って連通孔162aが貫通形成され、ステー162が連結される削孔ロッド100の周壁には、連通孔162aに連通するように連通孔110aを貫通してあり、更に、ステー162が連結される収納ケース161の周壁には、連通孔162aに連通するように連通孔161cを貫通形成してある。
そして、連通孔161c、162a、110aによって、収納ケース161内の収納室145と削孔ロッド100の外周とが連通されて、削孔ロッド100の外周の水圧を自記式水圧計140が受圧するよう構成されている。
A communication hole 162a is formed through the stay 162 in the extending direction. A peripheral wall of the drill rod 100 to which the stay 162 is connected penetrates the communication hole 110a so as to communicate with the communication hole 162a. Further, a communication hole 161c is formed through the peripheral wall of the storage case 161 to which the stay 162 is connected so as to communicate with the communication hole 162a.
The communication chambers 161c, 162a, and 110a allow the storage chamber 145 in the storage case 161 to communicate with the outer periphery of the drilling rod 100 so that the self-recording water pressure gauge 140 receives the water pressure on the outer periphery of the drilling rod 100. It is configured.

係る構成において、削孔用の高圧水が送水される削孔中は、削孔ロッド100の内周壁と収納ケース161の外周壁とで挟まれる環状空間を通過して、削孔用の高圧水がダウンホールモータ130に供給され、削孔ビット120側から外部に排出された高圧水は、削孔ロッド100の内周壁と削孔された孔290との間隙に流れ出て口元側に戻る。
一方、削孔用の高圧水が送水される削孔停止中であって、削孔ビット120(切羽)が地下水帯300に位置している場合、地下水は削孔ロッド100の内周壁と削孔された孔290との間隙に流れ込んで削孔ロッド100の外周は地下水圧になり、係る地下水圧が連通孔161c、162a、110aを介して収納ケース161内の自記式水圧計140に受圧され、自記式水圧計140は地下水圧を計測することになる。
In such a configuration, during drilling in which high-pressure water for drilling is fed, the high-pressure water for drilling passes through an annular space sandwiched between the inner peripheral wall of the drilling rod 100 and the outer peripheral wall of the storage case 161. Is supplied to the downhole motor 130, and the high-pressure water discharged to the outside from the drill bit 120 flows out into the gap between the inner peripheral wall of the drill rod 100 and the drilled hole 290 and returns to the mouth side.
On the other hand, when the high-pressure water for drilling is being stopped and the drill bit 120 (face) is located in the groundwater zone 300, the groundwater is in contact with the inner peripheral wall of the drilling rod 100 and the hole. The outer periphery of the drilling rod 100 becomes a groundwater pressure by flowing into the gap between the hole 290 and the groundwater pressure is received by the self-recording water pressure gauge 140 in the storage case 161 through the communication holes 161c, 162a, and 110a. The self-recording type water pressure gauge 140 measures the groundwater pressure.

図8及び図9に示した自記式水圧計140の設置構造では、削孔ロッド100の軸心付近に収納室145が区画形成され、この収納室145内と削孔ロッド100の外周とが放射状に複数個所で連通されるため、削孔ロッド100の外周の広範囲の圧力を自記式水圧計140が受圧でき、また、削孔用高圧水の流れが削孔ロッド100内で偏ることを抑制できる。
また、本体部110を、逆止弁150を備える第1ユニットと、収納ケース161が設けられる第2ユニットと、ダウンホールモータ130を備える第3ユニットとの少なくとも3ユニットが着脱可能に連結される構造とすれば、削孔完了後にこれらのユニットを分離した後に、収納ケース161の着脱可能な蓋部材161bを取り外すことで、自記式水圧計140を容易に取り出すことができ、自記式水圧計140からの計測データの読み出しを簡便に行える。
8 and 9, the storage chamber 145 is defined in the vicinity of the axial center of the drilling rod 100, and the inside of the storage chamber 145 and the outer periphery of the drilling rod 100 are radially formed. Therefore, the self-recording water pressure gauge 140 can receive a wide range of pressure around the outer periphery of the drilling rod 100, and the flow of high-pressure water for drilling can be prevented from being biased in the drilling rod 100. .
In addition, the main body 110 is detachably connected to at least three units of a first unit including the check valve 150, a second unit provided with the storage case 161, and a third unit including the downhole motor 130. If the structure is used, the self-recording water pressure gauge 140 can be easily taken out by removing the detachable lid member 161b of the storage case 161 after separating these units after completion of drilling. Reading of measurement data from can be performed easily.

以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば種々の変形態様を採り得ることは自明である。
図1に示した削孔ロッド100は、高圧水の供給によって削孔ビット120を回転駆動する水圧式ロータリードリルであるが、高圧水によって削孔ビットを打撃動作させる水圧式パーカッションドリルにおいても、自記式水圧計140及び逆止弁150を図1と同様に配置することで、地下水圧の計測を行わせることができる。
つまり、図1のダウンホールモータ130を打撃発生機構に置き換えることで、水圧式パーカッションドリルとしての削孔ロッドを構成でき、係る水圧式パーカッションドリルにおいても、水圧式ロータリードリルである削孔ロッド100と同様に地下水圧の計測を行え、同様の効果を得ることができる。
Although the contents of the present invention have been specifically described above with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. is there.
The drilling rod 100 shown in FIG. 1 is a hydraulic rotary drill that rotationally drives the drill bit 120 by supplying high-pressure water, but also in a hydraulic percussion drill that strikes the drill bit with high-pressure water. By arranging the water pressure gauge 140 and the check valve 150 in the same manner as in FIG. 1, the groundwater pressure can be measured.
In other words, by replacing the downhole motor 130 of FIG. 1 with an impact generating mechanism, a drilling rod as a hydraulic percussion drill can be configured. In such a hydraulic percussion drill, the drilling rod 100 that is a hydraulic rotary drill and Similarly, the groundwater pressure can be measured and the same effect can be obtained.

また、図1に示す削孔ロッド100は、高圧水の送水によって削孔ビットを削孔動作させる構成であるが、油圧によるトップハンマ式の削孔ロッドにおいても、削孔ロッドの外周の水圧を受圧するように自記式水圧計を削孔ロッド内に配置して、削孔過程で逐次水圧の計測を行わせ、削孔完了後に計測データを読み出す構成とすることができる。
また、図1に示した高圧水の送水によって削孔ビットを削孔動作させる削孔ロッド100において、逆止弁150を省くことができる。更に、油圧によるトップハンマ式の削孔ロッドであって、削孔ロッド外周の水圧を受圧する自記式水圧計を内部に配置した削孔ロッドにおいて、削孔ビット側から口元側への水の流れを阻止する逆止弁を削孔ロッド内に備えた構成とすることができ、また、前記逆止弁を省いた構成とすることができる。
また、削孔ロッド外周の水圧を受圧する自記式水圧計及び逆止弁を内部に備える削孔ロッドにおいて、自記式水圧計は、削孔ビットと逆止弁との間に配置される構成に限定されず、例えば、自記式水圧計と逆止弁とを並列に配置したり、削孔ビットと自記式水圧計との間に逆止弁を配置したりすることができる。
In addition, the drilling rod 100 shown in FIG. 1 has a configuration in which a drilling bit is drilled by feeding high-pressure water. However, even in a top hammer type drilling rod by hydraulic pressure, the water pressure on the outer periphery of the drilling rod is reduced. A self-recording water pressure gauge is arranged in the drilling rod so as to receive pressure, and the water pressure is sequentially measured in the drilling process, and the measurement data is read after the drilling is completed.
Further, the check valve 150 can be omitted in the drilling rod 100 that drills the drilling bit by feeding the high-pressure water shown in FIG. Furthermore, in a drill rod that is a top hammer type drill rod by hydraulic pressure and has a self-recording type hydrometer that receives the water pressure around the bore rod, the flow of water from the drill bit side to the mouth side It is possible to adopt a configuration in which a check valve for preventing the above is provided in the drilling rod, and a configuration in which the check valve is omitted.
Further, in a drilling rod having a self-recording hydrometer and a check valve for receiving the water pressure on the outer periphery of the drilling rod, the self-recording hydrometer is arranged between the drilling bit and the check valve. For example, the self-recording water pressure gauge and the check valve can be arranged in parallel, or the check valve can be arranged between the drilling bit and the self-working water pressure gauge.

また、自記式水圧計140に内蔵されるマイクロコンピュータが、計測の時間間隔(サンプリング間隔)を自動調整する機能を有することができ、例えば、計測結果の変動が少ないときに計測間隔を延ばし、計測結果の変動が大きくなると計測の時間間隔を短縮することができる。
また、計測開始、計測停止を制御するタイマー機能を自記式水圧計が備えるようにし、削孔作業を中断させる夜間などにおいて水圧計測を自動的に停止させることができる。
In addition, the microcomputer built in the self-recording type water pressure gauge 140 can have a function of automatically adjusting the measurement time interval (sampling interval). For example, the measurement interval is extended when there is little variation in the measurement result. When the fluctuation of the result becomes large, the time interval of measurement can be shortened.
In addition, the self-recording water pressure gauge is provided with a timer function for controlling measurement start and measurement stop, so that water pressure measurement can be automatically stopped at night when the drilling operation is interrupted.

また、削孔長さが無線通信可能な距離の場合、自記式水圧計140に代えて、計測データを無線で送信できる機能を有した水圧計を収納室145に収納させ、水圧計測データを定期的に地上のパソコンなどに無線伝送させる構成とすることができる。この場合、水圧計は、圧力センサ、無線発信器、無線伝送装置、バッテリーなどを含んで構成される。
つまり、水圧計140は自記式に限定されず、無線伝送式の水圧計を用いることができる。
In addition, when the drilling length is a distance capable of wireless communication, a water pressure gauge having a function capable of transmitting measurement data wirelessly is stored in the storage chamber 145 instead of the self-recording water pressure gauge 140, and the water pressure measurement data is periodically transmitted. In other words, it can be configured to wirelessly transmit to a personal computer on the ground. In this case, the water pressure gauge includes a pressure sensor, a wireless transmitter, a wireless transmission device, a battery, and the like.
That is, the water pressure gauge 140 is not limited to the self-recording type, and a wireless transmission type water pressure gauge can be used.

また、図10に示すように、口元プリベンターバルブ320よりも上流側で、口元保護管310の内周面と延長用削孔ロッド220の外周面との間の環状空間と流量計810の入口とを連通させる分岐路820を設ける構成とすることができる。
係る構成によると、削孔中は、ポンプ送水流量と流量計810の計測流量の差から地下水の流量を計測し、また、削孔停止中(ポンプ送水停止により逆止弁150が閉じ、かつ、口元プリベンターバルブ320を閉じている場合)は、流量計810の計測結果を地下水流量として検出することができる。
Also, as shown in FIG. 10, on the upstream side of the mouth preventer valve 320, an annular space between the inner peripheral surface of the mouth protection tube 310 and the outer peripheral surface of the extension drilling rod 220, the inlet of the flow meter 810, It is possible to adopt a configuration in which a branch path 820 that communicates with each other is provided.
According to such a configuration, during drilling, the flow rate of groundwater is measured from the difference between the pump water flow rate and the measured flow rate of the flow meter 810, and the drilling is stopped (the check valve 150 is closed by the pump water supply stop, and When the mouth preventer valve 320 is closed), the measurement result of the flow meter 810 can be detected as the groundwater flow rate.

そして、図10に示す流量計測システムと、自記式水圧計140を備えた削孔ロッド100とを組み合わせることで、地下水圧と地下水流量との双方を計測できることになる。
なお、図10の構成において、分岐路820にはバルブ850を設けてあり、このバルブ850を開くと水が流量計810に流れ込むように構成されている。
Then, by combining the flow rate measurement system shown in FIG. 10 and the drilling rod 100 provided with the self-recording water pressure gauge 140, both the groundwater pressure and the groundwater flow rate can be measured.
In the configuration of FIG. 10, a valve 850 is provided in the branch path 820, and water is configured to flow into the flow meter 810 when the valve 850 is opened.

また、図10に示すように、口元保護管310の内周面と延長用削孔ロッド220の外周面との間の環状空間と水圧計830の入口とを連通させる分岐路840を設ければ、削孔停止中(ポンプ送水停止により逆止弁150が閉じ、かつ、口元プリベンターバルブ320を閉じている場合)に、水圧計830は地下水圧を計測することになる。
但し、水圧計830は口元での水圧を計測するため、削孔深度が100mを超えるような場合は、切羽付近での地下水圧に対して口元で計測される水圧は圧力損失が大きくなり、計測精度が低下する。
これに対し、前述の実施形態のように、削孔ロッド100に自記式水圧計140を設ける場合には、圧力損失が十分に小さくなり地下水圧を高精度に計測できる。
In addition, as shown in FIG. 10, if a branch path 840 is provided that connects the annular space between the inner peripheral surface of the mouth protecting tube 310 and the outer peripheral surface of the extension drilling rod 220 and the inlet of the water pressure gauge 830. When the drilling is stopped (when the check valve 150 is closed by stopping pump water supply and the mouth preventive valve 320 is closed), the water pressure gauge 830 measures the groundwater pressure.
However, since the water pressure gauge 830 measures the water pressure at the mouth, if the depth of drilling exceeds 100 m, the water pressure measured at the mouth will increase the pressure loss compared to the groundwater pressure near the face. Accuracy is reduced.
On the other hand, when the self-recording water pressure gauge 140 is provided in the drilling rod 100 as in the above-described embodiment, the pressure loss is sufficiently small, and the groundwater pressure can be measured with high accuracy.

100…削孔ロッド、110…本体部、120…削孔ビット、130…ダウンホールモータ、140…自記式水圧計、141…ステー、142…電源(バッテリー)、143…メモリ、144…壁部材、145…収納室、146…連通孔、150…逆止弁、320…口元プリベンターバルブ、161…収納ケース、162…ステー、162a…連通孔   DESCRIPTION OF SYMBOLS 100 ... Drilling rod, 110 ... Main part, 120 ... Drilling bit, 130 ... Downhole motor, 140 ... Self-recording water pressure gauge, 141 ... Stay, 142 ... Power supply (battery), 143 ... Memory, 144 ... Wall member, 145 ... Storage chamber, 146 ... Communication hole, 150 ... Check valve, 320 ... Mouth preventer valve, 161 ... Storage case, 162 ... Stay, 162a ... Communication hole

Claims (8)

削孔ビットを先端に備えた中空筒状の削孔ロッドの内部に、前記削孔ロッドの外周の水圧を受圧する水圧計を配置し、
地盤の削孔過程で前記削孔ロッドの外周が地下水領域と連通するときに、前記水圧計により計測を行い、
地下水圧の計測データを取得する、
地盤削孔における地下水圧計測方法。
A water pressure gauge for receiving the water pressure on the outer periphery of the drilling rod is disposed inside a hollow cylindrical drilling rod having a drilling bit at the tip,
When the outer periphery of the drilling rod communicates with the groundwater region during the drilling process of the ground, the measurement is performed by the hydrometer,
Get groundwater pressure measurement data,
Groundwater pressure measurement method for ground drilling.
前記削孔過程において削孔を停止して前記水圧計により計測を行い、
地下水圧の計測データを取得する、
請求項1に記載の地盤削孔における地下水圧計測方法。
Stop drilling in the drilling process and measure with the water pressure gauge,
Get groundwater pressure measurement data,
The groundwater pressure measuring method in the ground drilling hole according to claim 1.
前記削孔過程において削孔を停止させたときに口元プリベンターバルブを閉じる、
請求項2に記載の地盤削孔における地下水圧計測方法。
Closing the mouth preventor valve when the drilling is stopped in the drilling process,
The groundwater pressure measuring method in the ground drilling hole according to claim 2.
前記水圧計は自記式水圧計である、
請求項1から請求項3のいずれか1つに記載の地盤削孔における地下水圧計測方法。
The water pressure gauge is a self-recording water pressure gauge,
The groundwater pressure measuring method in the ground drilling hole according to any one of claims 1 to 3.
前記削孔ビットは、前記削孔ロッドの内部を通じて流れて外部に流れ出る高圧水を駆動源として削孔動作するものであって、
前記削孔ロッドの内部に前記削孔ビット側から口元側への水の流れを阻止する逆止弁が配置されている、
請求項1から請求項4のいずれか1つに記載の地盤削孔における地下水圧計測方法。
The drilling bit performs drilling operation using high-pressure water flowing through the inside of the drilling rod and flowing out as a driving source,
A check valve for preventing the flow of water from the drilling bit side to the mouth side is disposed inside the drilling rod,
The groundwater pressure measuring method in the ground drilling hole according to any one of claims 1 to 4.
前記水圧計は、前記削孔ロッド内部の区画された収納室に設置され、
前記収納室と前記削孔ロッドの外周とが連通孔によって連通される、
請求項1から請求項5のいずれか1つに記載の地盤削孔における地下水圧計測方法。
The water pressure gauge is installed in a compartmented compartment inside the drill rod,
The storage chamber and the outer periphery of the drilling rod communicate with each other through a communication hole.
The groundwater pressure measuring method in the ground drilling hole according to any one of claims 1 to 5.
削孔ビットを先端に備えた中空筒状の削孔ロッドであって、
前記削孔ビットは、前記削孔ロッドの内部を通って供給される高圧水を駆動源として削孔動作し、
前記削孔ロッドは、内部に区画された収納室を有し、
前記収納室は、前記削孔ロッドの外周と連通孔によって連通され、
前記収納室に自記式水圧計を備えた、
削孔ロッド。
A hollow cylindrical rod with a drill bit at the tip,
The drilling bit performs a drilling operation using high-pressure water supplied through the inside of the drilling rod as a drive source,
The drilling rod has a storage chamber partitioned therein,
The storage chamber is communicated with the outer periphery of the drill rod by a communication hole,
The storage room is equipped with a self-recording water pressure gauge,
Drilling rod.
前記削孔ロッドの内部に前記削孔ビット側から口元側への水の流れを阻止する逆止弁を備えた、
請求項7記載の削孔ロッド。
A check valve for blocking the flow of water from the drill bit side to the mouth side inside the drill rod was provided,
The drilling rod according to claim 7.
JP2016007888A 2016-01-19 2016-01-19 Groundwater pressure measurement method and drilling rod in ground drilling Active JP6664967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016007888A JP6664967B2 (en) 2016-01-19 2016-01-19 Groundwater pressure measurement method and drilling rod in ground drilling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007888A JP6664967B2 (en) 2016-01-19 2016-01-19 Groundwater pressure measurement method and drilling rod in ground drilling

Publications (2)

Publication Number Publication Date
JP2017128881A true JP2017128881A (en) 2017-07-27
JP6664967B2 JP6664967B2 (en) 2020-03-13

Family

ID=59395554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007888A Active JP6664967B2 (en) 2016-01-19 2016-01-19 Groundwater pressure measurement method and drilling rod in ground drilling

Country Status (1)

Country Link
JP (1) JP6664967B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060099A (en) * 2017-09-26 2019-04-18 大成建設株式会社 Measurement method of groundwater state and structure of mouth portion of borehole drilled by advanced boring
CN109898993A (en) * 2019-03-29 2019-06-18 长江勘测规划设计研究有限责任公司 The measurement device of groundwater velocity and direction in vertical drilling
CN111219183A (en) * 2020-01-21 2020-06-02 中国铁建重工集团股份有限公司 Water yield and water pressure detection device
JP2020143548A (en) * 2019-03-08 2020-09-10 株式会社大林組 Drilling rod
JP2020144067A (en) * 2019-03-08 2020-09-10 株式会社大林組 Tunnel working face forward survey system and survey method of tunnel working face forward natural ground
JP2020143547A (en) * 2019-03-08 2020-09-10 株式会社大林組 Vibration sensor mechanism
CN114215492A (en) * 2021-12-16 2022-03-22 山东省煤田地质局第三勘探队 Water stopping device for layered water pumping of hydrogeology drilling
CN114964603A (en) * 2022-07-29 2022-08-30 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Underground water data monitoring method and system
JP7404147B2 (en) 2020-04-28 2023-12-25 株式会社大林組 Swivel joint and tunnel face forward exploration system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417303A (en) * 1977-07-09 1979-02-08 Yutaka Mochida Apparatus for preventing water exudation during drilling
JPH06212872A (en) * 1993-01-13 1994-08-02 Toyo Kikaku Kk Excavation bit
JPH07158368A (en) * 1993-12-10 1995-06-20 Yoshida Tekkosho:Kk Excavation drill
JPH1143928A (en) * 1997-07-29 1999-02-16 Raito Kogyo Co Ltd Hole boring member for water permeability test, and water permeability test method using same
JP2002276277A (en) * 2001-03-13 2002-09-25 Shimizu Corp Multipoint water pressure measurement method in tunnel horizontal boring
JP2007155506A (en) * 2005-12-05 2007-06-21 Central Res Inst Of Electric Power Ind Device and method for measuring tension in liquid
JP2009097155A (en) * 2007-10-12 2009-05-07 Raito Kogyo Co Ltd Opening cut-off device, elastic body for the opening cut-off device, and manufacturing method for the elastic body for the opening cut-off device
JP2011043465A (en) * 2009-08-24 2011-03-03 Central Res Inst Of Electric Power Ind Hydraulic testing apparatus with packer integrated therein
KR101424690B1 (en) * 2013-02-06 2014-08-01 주식회사 에이플러스인스트루먼트 Manufacturing Method of Vibrating wire piezometer and accroding the method of Vibrating wire piezometer
US20150039230A1 (en) * 2012-02-20 2015-02-05 Halliburton Energy Services, Inc. Downhole formation testing with automation and optimization
JP2017066646A (en) * 2015-09-29 2017-04-06 鹿島建設株式会社 Underground water measurement method in ground-drilled hole and hole drilling rod

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417303A (en) * 1977-07-09 1979-02-08 Yutaka Mochida Apparatus for preventing water exudation during drilling
JPH06212872A (en) * 1993-01-13 1994-08-02 Toyo Kikaku Kk Excavation bit
JPH07158368A (en) * 1993-12-10 1995-06-20 Yoshida Tekkosho:Kk Excavation drill
JPH1143928A (en) * 1997-07-29 1999-02-16 Raito Kogyo Co Ltd Hole boring member for water permeability test, and water permeability test method using same
JP2002276277A (en) * 2001-03-13 2002-09-25 Shimizu Corp Multipoint water pressure measurement method in tunnel horizontal boring
JP2007155506A (en) * 2005-12-05 2007-06-21 Central Res Inst Of Electric Power Ind Device and method for measuring tension in liquid
JP2009097155A (en) * 2007-10-12 2009-05-07 Raito Kogyo Co Ltd Opening cut-off device, elastic body for the opening cut-off device, and manufacturing method for the elastic body for the opening cut-off device
JP2011043465A (en) * 2009-08-24 2011-03-03 Central Res Inst Of Electric Power Ind Hydraulic testing apparatus with packer integrated therein
US20150039230A1 (en) * 2012-02-20 2015-02-05 Halliburton Energy Services, Inc. Downhole formation testing with automation and optimization
KR101424690B1 (en) * 2013-02-06 2014-08-01 주식회사 에이플러스인스트루먼트 Manufacturing Method of Vibrating wire piezometer and accroding the method of Vibrating wire piezometer
JP2017066646A (en) * 2015-09-29 2017-04-06 鹿島建設株式会社 Underground water measurement method in ground-drilled hole and hole drilling rod

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060099A (en) * 2017-09-26 2019-04-18 大成建設株式会社 Measurement method of groundwater state and structure of mouth portion of borehole drilled by advanced boring
JP7200013B2 (en) 2019-03-08 2023-01-06 株式会社大林組 Tunnel Face Forward Exploration System and Tunnel Face Forward Exploration Method
JP2020143548A (en) * 2019-03-08 2020-09-10 株式会社大林組 Drilling rod
JP2020144067A (en) * 2019-03-08 2020-09-10 株式会社大林組 Tunnel working face forward survey system and survey method of tunnel working face forward natural ground
JP2020143547A (en) * 2019-03-08 2020-09-10 株式会社大林組 Vibration sensor mechanism
JP7237663B2 (en) 2019-03-08 2023-03-13 株式会社大林組 Vibration sensor mechanism
JP7237664B2 (en) 2019-03-08 2023-03-13 株式会社大林組 drilling rod
CN109898993A (en) * 2019-03-29 2019-06-18 长江勘测规划设计研究有限责任公司 The measurement device of groundwater velocity and direction in vertical drilling
CN109898993B (en) * 2019-03-29 2024-04-12 长江勘测规划设计研究有限责任公司 Device for measuring flow velocity and direction of underground water in vertical drilling
CN111219183B (en) * 2020-01-21 2023-07-04 中国铁建重工集团股份有限公司 Water volume and water pressure detection device
CN111219183A (en) * 2020-01-21 2020-06-02 中国铁建重工集团股份有限公司 Water yield and water pressure detection device
JP7404147B2 (en) 2020-04-28 2023-12-25 株式会社大林組 Swivel joint and tunnel face forward exploration system
CN114215492A (en) * 2021-12-16 2022-03-22 山东省煤田地质局第三勘探队 Water stopping device for layered water pumping of hydrogeology drilling
CN114215492B (en) * 2021-12-16 2023-11-17 山东省煤田地质局第三勘探队 Water stopping device for hydrogeology drilling layered water pumping
CN114964603B (en) * 2022-07-29 2022-12-20 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Underground water data monitoring system and monitoring method applying same
CN114964603A (en) * 2022-07-29 2022-08-30 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) Underground water data monitoring method and system

Also Published As

Publication number Publication date
JP6664967B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP6664967B2 (en) Groundwater pressure measurement method and drilling rod in ground drilling
JP6542087B2 (en) Ground water measurement method and drilling rod in underground drilling
RU2556583C2 (en) Directed sampling of formation fluids
US8770286B2 (en) Downhole fluid filter
US20060248949A1 (en) Multi-purpose downhole tool
NO20111664A1 (en) Methods and apparatus for painting the condition of a drill bit
BRPI0915074B1 (en) flare control equipment and real-time drilling operation and control method
CN101018926A (en) Downhole measurements during non-drilling operations
MX2012004587A (en) Instrumented disconnecting tubular joint.
US20230243258A1 (en) Downhole tool with filtration device
CN107567532A (en) Lifted by nitrogen, production logging and recovery test extend the method for carrying out well testing operation with single coiled tubing
US20140224511A1 (en) Pump Drain Arrangements For Packer Systems And Methods For Sampling Underground Formations Using Same
JP6663324B2 (en) Groundwater intake method and intake system
US9347295B2 (en) Filtration system and method for a packer
JPH10220160A (en) Hydraulic crusher stress measurement method and device thereof
NO20110498A1 (en) Method and apparatus for formation evaluation after drilling.
CA2839920C (en) Expandable filtering system for single packer systems
CN110431284A (en) Sensor configuration
JP2020094433A (en) Groundwater information acquisition method
RU2323335C2 (en) Device to measure thermobaric liquid parameters in tubing string and annular space of well
Ursic Case Studies at Several Environmental Sites Using a Multi-Parameter Borehole Water Quality Investigation Tool
GB1591431A (en) Method of and apparatus for telemetering information from a point in a well bore hole to the earth's surface
CN105408579A (en) Prevention of wireline damage at downhole window

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200219

R150 Certificate of patent or registration of utility model

Ref document number: 6664967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250