JP2017125700A - Drive device, transport apparatus, and control method - Google Patents

Drive device, transport apparatus, and control method Download PDF

Info

Publication number
JP2017125700A
JP2017125700A JP2016003524A JP2016003524A JP2017125700A JP 2017125700 A JP2017125700 A JP 2017125700A JP 2016003524 A JP2016003524 A JP 2016003524A JP 2016003524 A JP2016003524 A JP 2016003524A JP 2017125700 A JP2017125700 A JP 2017125700A
Authority
JP
Japan
Prior art keywords
current
capacitor
detection
charging
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016003524A
Other languages
Japanese (ja)
Other versions
JP6713284B2 (en
Inventor
雅之 川村
Masayuki Kawamura
雅之 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016003524A priority Critical patent/JP6713284B2/en
Publication of JP2017125700A publication Critical patent/JP2017125700A/en
Application granted granted Critical
Publication of JP6713284B2 publication Critical patent/JP6713284B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drive device with which it is possible to accurately determine the state of a detection unit that detects a current.SOLUTION: The drive device comprises: a first capacitor; a first detection unit for detecting the first current of the first capacitor; a second capacitor; a second detection unit for detecting the second current of the second capacitor; a drive unit that drives by a power supplied from at least one of the first capacitor and the second capacitor; a third detection unit for detecting the third current of the drive unit; a charge/discharge circuit having a first path between the first capacitor and the second capacitor, a second path between the first capacitor and the drive unit, and a third path between the second capacitor and the drive unit; and a control unit for controlling the charging/discharging. The control unit determines the state of at least one of the first to third detection units on the basis of the result obtained by operation to compare the first current and the second current in charging/discharging via the first path, operation to compare the first current and the third current in charging/discharging via the second path, and operation to compare the second current and the third current in charging/discharging via the third path.SELECTED DRAWING: Figure 3

Description

本発明は、2つの蓄電器を備えた駆動装置、輸送機器及び制御方法に関する。   The present invention relates to a driving device including two capacitors, a transport device, and a control method.

特許文献1には、過電流の発生の有無及び電流センサの異常の有無を迅速に判定可能な電流異常識別方法を用いる車両用電力システムの動作制御方法が記載されている。当該電流異常識別方法では、電流センサが、正常動作時に所定範囲の出力信号を生成し、電源線又はグラウンド線の断線又は短絡が発生した電流センサの異常動作時に前記所定範囲を外れた出力信号を生成し、この出力信号に基づいて断線又は短絡の発生を確定するまでの時間を、測定対象線路における過電流の発生を確定するまでの時間よりも短く設定する。このため、断線又は短絡の発生と過電流の発生とを区別して判定することができるとともに、両者の判定を迅速に行うことができる。また、第1電力装置と、第2電力装置と、第1電力装置と第2電力装置との間で電圧変換を行うDC/DCコンバータとを備えた車両用電力システムの動作制御方法では、電流センサの検出値が過電流判定閾値を超えたとき、断線又は短絡の発生を確定するまでの時間及び過電流の発生を確定するまでの時間の経過前にDC/DCコンバータによる電圧変換を停止する。   Patent Document 1 describes an operation control method for a vehicle power system that uses a current abnormality identification method that can quickly determine whether an overcurrent has occurred and whether a current sensor has an abnormality. In the current abnormality identification method, the current sensor generates an output signal in a predetermined range during normal operation, and outputs an output signal out of the predetermined range during an abnormal operation of the current sensor in which a power supply line or ground line is disconnected or short-circuited. The time until the occurrence of the disconnection or the short circuit is determined based on the output signal is set shorter than the time until the occurrence of the overcurrent in the measurement target line is determined. For this reason, it is possible to distinguish between occurrence of disconnection or short circuit and occurrence of overcurrent, and it is possible to quickly make a determination of both. Further, in the operation control method of the vehicle power system including the first power device, the second power device, and the DC / DC converter that performs voltage conversion between the first power device and the second power device, When the detection value of the sensor exceeds the overcurrent determination threshold, the voltage conversion by the DC / DC converter is stopped before the time until the occurrence of disconnection or short-circuit and the time until the occurrence of overcurrent are confirmed. .

特開2009−213219号公報JP 2009-213219 A

特許文献1に記載の方法は、測定対象線路に設けられた電流センサの出力信号に基づいて、当該測定対象線路における過電流の発生の有無及び当該電流センサの異常の有無を判定するため、電流センサの出力信号の精度が当該方法の精度に直接影響する。しかし、電流センサには不可避的な製品誤差が存在し、電流センサ毎に異なる製品誤差が出力信号に含まれるため、電流センサの異常の有無を精度良く判定するには、当該電流センサの状態を高精度に識別し、必要に応じて較正しなければならない。   The method described in Patent Document 1 is based on the output signal of the current sensor provided in the measurement target line, and determines whether or not an overcurrent has occurred in the measurement target line and whether or not there is an abnormality in the current sensor. The accuracy of the sensor output signal directly affects the accuracy of the method. However, there are inevitable product errors in current sensors, and product errors that differ for each current sensor are included in the output signal.To accurately determine whether there is an abnormality in the current sensor, the state of the current sensor is It must be identified with high accuracy and calibrated as necessary.

本発明の目的は、電流を検出する検出部の状態を精度良く判定可能な駆動装置、輸送機器及び制御方法を提供することである。   An object of the present invention is to provide a drive device, a transport device, and a control method that can accurately determine the state of a detection unit that detects current.

上記の目的を達成するために、請求項1に記載の発明は、
第1蓄電器(例えば、後述の実施形態での高容量型バッテリES−E)、及び該第1蓄電器の入出力電流である第1電流(例えば、後述の実施形態での電流Ie)を検出する第1検出部(例えば、後述の実施形態での電流センサ107e)を有する第1蓄電モジュール(例えば、後述の実施形態での蓄電モジュール113e)と、
第2蓄電器(例えば、後述の実施形態での高出力型バッテリES−P)、及び該第2蓄電器の入出力電流である第2電流(例えば、後述の実施形態での電流Ip)を検出する第2検出部(例えば、後述の実施形態での電流センサ107p)を有する第2蓄電モジュール(例えば、後述の実施形態での蓄電モジュール113p)と、
前記第1蓄電器及び前記第2蓄電器の少なくとも一方から供給される電力により駆動する駆動部(例えば、後述の実施形態でのPDU105,モータジェネレータ101)、並びに該駆動部の入出力電流である第3電流(例えば、後述の実施形態での電流I)を検出する第3検出部(例えば、後述の実施形態での電流センサ107)を有する駆動モジュール(例えば、後述の実施形態での駆動モジュール113)と、
前記第1蓄電器と前記第2蓄電器の間の充放電を担う第1経路(例えば、後述の実施形態での第1充放電ルート)と、前記第1蓄電器と前記駆動部の間の充放電を担う第2経路(例えば、後述の実施形態での第2充放電ルート)と、前記第2蓄電器と前記駆動部の間の充放電を担う第3経路(例えば、後述の実施形態での第3充放電ルート)と、を有する充放電回路(例えば、後述の実施形態でのVCU103を含む電気回路)と、
前記充放電を制御する制御部(例えば、後述の実施形態でのECU111)と、を備えた駆動装置であって、
前記制御部は、
前記第1経路を介した前記第1蓄電器と前記第2蓄電器の間の充放電における前記第1電流及び前記第2電流を比較する第1動作、前記第2経路を介した前記第1蓄電器と前記駆動部の間の充放電における前記第1電流及び前記第3電流を比較する第2動作、及び前記第3経路を介した前記第2蓄電器と前記駆動部の間の充放電における前記第2電流及び前記第3電流を比較する第3動作のうち少なくとも2つの動作より得た比較結果に基づき、前記第1〜第3検出部のうち少なくとも1つの検出部の状態を判定する、駆動装置である。
In order to achieve the above object, the invention described in claim 1
A first capacitor (for example, a high-capacity battery ES-E in an embodiment described later) and a first current (for example, a current Ie in an embodiment described later) that is an input / output current of the first capacitor are detected. A first power storage module (for example, a power storage module 113e in a later-described embodiment) having a first detection unit (for example, a current sensor 107e in a later-described embodiment);
A second battery (for example, a high-power battery ES-P in an embodiment described later) and a second current (for example, an electric current Ip in an embodiment described later) that is an input / output current of the second battery are detected. A second power storage module (for example, a power storage module 113p in a later-described embodiment) having a second detection unit (for example, a current sensor 107p in a later-described embodiment);
A drive unit (for example, a PDU 105 and a motor generator 101 in an embodiment described later) driven by electric power supplied from at least one of the first capacitor and the second capacitor, and a third input / output current of the drive unit A drive module (for example, a drive module 113 in an embodiment described later) having a third detector (for example, a current sensor 107 in an embodiment described later) for detecting a current (for example, an electric current I in an embodiment described later) When,
A first path (for example, a first charging / discharging route in an embodiment described later) responsible for charging / discharging between the first capacitor and the second capacitor, and charging / discharging between the first capacitor and the driving unit. A second path (for example, a second charge / discharge route in an embodiment described later) and a third path (for example, a third charge in an embodiment described later) responsible for charge / discharge between the second battery and the drive unit. A charge / discharge circuit (e.g., an electric circuit including the VCU 103 in an embodiment described later),
A drive unit including a control unit (for example, ECU 111 in an embodiment described later) that controls the charge and discharge,
The controller is
A first operation for comparing the first current and the second current in charging / discharging between the first capacitor and the second capacitor via the first path; and the first capacitor via the second path; A second operation for comparing the first current and the third current in charging / discharging between the driving units, and the second in charging / discharging between the second capacitor and the driving unit via the third path. A drive device that determines a state of at least one of the first to third detection units based on a comparison result obtained from at least two of the third operations for comparing the current and the third current. is there.

請求項2に記載の発明は、請求項1に記載の発明において、
前記制御部は、前記第1〜第3動作の全てより得た比較結果に基づき、前記第1〜第3検出部のうち少なくとも1つの検出部の状態を判定する。
The invention according to claim 2 is the invention according to claim 1,
The control unit determines a state of at least one of the first to third detection units based on a comparison result obtained from all of the first to third operations.

請求項3に記載の発明は、請求項2に記載の発明において、
前記制御部は、前記第1〜第3動作の全てより得た比較結果に基づき、前記第1〜第3検出部のうち2つの検出部の状態を判定する。
The invention according to claim 3 is the invention according to claim 2,
The control unit determines a state of two detection units among the first to third detection units based on a comparison result obtained from all of the first to third operations.

請求項4に記載の発明は、請求項1から3のいずれか1項に記載の発明において、
前記比較結果は、比較する2つの検出部の検出値が略同一か又は所定の相関を有するか否かを前記制御部が判別した結果である。
The invention according to claim 4 is the invention according to any one of claims 1 to 3,
The comparison result is a result of the control unit determining whether or not the detection values of the two detection units to be compared are substantially the same or have a predetermined correlation.

請求項5に記載の発明は、請求項4に記載の発明において、
前記相関は、前記比較する2つの検出部の間の前記充放電回路における電圧変換率に基づく。
The invention according to claim 5 is the invention according to claim 4,
The correlation is based on a voltage conversion rate in the charge / discharge circuit between the two detection units to be compared.

請求項6に記載の発明では、請求項4又は5に記載の発明において、
前記制御部は、前記第1〜第3動作のうち少なくとも2つの動作より得た比較結果に、検出値が略同一又は前記相関を有する結果と、検出値が略同一でもなく前記相関も有さない結果とが含まれる場合、前記第1〜第3検出部のうちいずれか1つが故障と判定する。
In the invention according to claim 6, in the invention according to claim 4 or 5,
The control unit has a comparison result obtained from at least two of the first to third operations, a detection value substantially the same or a result having the correlation, and the detection value is not substantially the same and has the correlation. If any result is not included, any one of the first to third detection units determines that there is a failure.

請求項7に記載の発明は、請求項4から6のいずれか1項に記載の発明において、
前記制御部は、前記第1〜第3動作のうち少なくとも2つの動作より得た比較結果に、検出値が略同一又は前記相関を有する結果が2つ含まれる場合、前記第1〜第3検出部が正常と判定する。
The invention according to claim 7 is the invention according to any one of claims 4 to 6,
When the comparison result obtained from at least two of the first to third operations includes two results having substantially the same detection value or the correlation, the control unit performs the first to third detections. Is determined to be normal.

請求項8に記載の発明は、請求項4から7のいずれか1項に記載の発明において、
前記制御部は、前記第1〜第3動作の全てより得た比較結果に、検出値が略同一又は前記相関を有する2つの結果と、検出値が略同一でもなく前記相関も有さない1つの結果が含まれる場合、前記第1〜第3検出部のうち2つが故障と判定する。
The invention according to claim 8 is the invention according to any one of claims 4 to 7,
The control unit has two comparison results obtained from all of the first to third operations, the detection value is substantially the same or two results having the correlation, and the detection value is not substantially the same and has no correlation 1 When two results are included, two of the first to third detection units determine that a failure has occurred.

請求項9に記載の発明は、請求項1から8のいずれか1項に記載の発明において、
前記制御部は、前記第1〜第3検出部のうち少なくとも1つの検出部の状態の判定に基づき、前記第1〜第3検出部のうち少なくとも1つの検出部の正常判定又は故障確定若しくは較正を行う。
The invention according to claim 9 is the invention according to any one of claims 1 to 8,
Based on the determination of the state of at least one of the first to third detection units, the control unit determines whether the at least one detection unit of the first to third detection units is normal or has a failure confirmed or calibrated. I do.

請求項10に記載の発明は、請求項1から9のいずれか1項に記載の発明において、
前記第2蓄電器は、前記第1蓄電器に比べて、出力重量密度が優れ、かつ、エネルギー重量密度が劣る。
The invention according to claim 10 is the invention according to any one of claims 1 to 9,
The second capacitor is superior in output weight density and inferior in energy weight density compared to the first capacitor.

請求項11に記載の発明は、請求項1から10のいずれか1項に記載の駆動装置を有する、輸送機器である。   An invention according to an eleventh aspect is a transportation device having the drive device according to any one of the first to tenth aspects.

請求項12に記載の発明は、
第1蓄電器(例えば、後述の実施形態での高容量型バッテリES−E)、及び該第1蓄電器の入出力電流である第1電流(例えば、後述の実施形態での電流Ie)を検出する第1検出部(例えば、後述の実施形態での電流センサ107e)を有する第1蓄電モジュール(例えば、後述の実施形態での蓄電モジュール113e)と、
第2蓄電器(例えば、後述の実施形態での高出力型バッテリES−P)、及び該第2蓄電器の入出力電流である第2電流(例えば、後述の実施形態での電流Ip)を検出する第2検出部(例えば、後述の実施形態での電流センサ107p)を有する第2蓄電モジュール(例えば、後述の実施形態での蓄電モジュール113p)と、
前記第1蓄電器及び前記第2蓄電器の少なくとも一方から供給される電力により駆動する駆動部(例えば、後述の実施形態でのPDU105,モータジェネレータ101)、並びに該駆動部の入出力電流である第3電流(例えば、後述の実施形態での電流I)を検出する第3検出部(例えば、後述の実施形態での電流センサ107)を有する駆動モジュール(例えば、後述の実施形態での駆動モジュール113)と、
前記第1蓄電器と前記第2蓄電器の間の充放電を担う第1経路(例えば、後述の実施形態での第1充放電ルート)と、前記第1蓄電器と前記駆動部の間の充放電を担う第2経路(例えば、後述の実施形態での第2充放電ルート)と、前記第2蓄電器と前記駆動部の間の充放電を担う第3経路(例えば、後述の実施形態での第3充放電ルート)と、を有する充放電回路(例えば、後述の実施形態でのVCU103)と、
前記充放電を制御する制御部(例えば、後述の実施形態でのECU111)と、を備えた駆動装置が行う制御方法であって、
前記制御部は、
前記第1経路を介した前記第1蓄電器と前記第2蓄電器の間の充放電における前記第1電流及び前記第2電流を比較する第1動作、前記第2経路を介した前記第1蓄電器と前記駆動部の間の充放電における前記第1電流及び前記第3電流を比較する第2動作、及び前記第3経路を介した前記第2蓄電器と前記駆動部の間の充放電における前記第2電流及び前記第3電流を比較する第3動作のうち少なくとも2つの動作より得た比較結果に基づき、前記第1〜第3検出部のうち少なくとも1つの検出部の状態を判定する、制御方法である。
The invention according to claim 12
A first capacitor (for example, a high-capacity battery ES-E in an embodiment described later) and a first current (for example, a current Ie in an embodiment described later) that is an input / output current of the first capacitor are detected. A first power storage module (for example, a power storage module 113e in a later-described embodiment) having a first detection unit (for example, a current sensor 107e in a later-described embodiment);
A second battery (for example, a high-power battery ES-P in an embodiment described later) and a second current (for example, an electric current Ip in an embodiment described later) that is an input / output current of the second battery are detected. A second power storage module (for example, a power storage module 113p in a later-described embodiment) having a second detection unit (for example, a current sensor 107p in a later-described embodiment);
A drive unit (for example, a PDU 105 and a motor generator 101 in an embodiment described later) driven by electric power supplied from at least one of the first capacitor and the second capacitor, and a third input / output current of the drive unit A drive module (for example, a drive module 113 in an embodiment described later) having a third detector (for example, a current sensor 107 in an embodiment described later) for detecting an electric current (for example, an electric current I in an embodiment described later). When,
A first path (for example, a first charging / discharging route in an embodiment described later) responsible for charging / discharging between the first capacitor and the second capacitor, and charging / discharging between the first capacitor and the driving unit. A second path (for example, a second charge / discharge route in an embodiment described later) and a third path (for example, a third charge in an embodiment described later) responsible for charge / discharge between the second battery and the drive unit. A charging / discharging circuit (e.g., VCU 103 in an embodiment described later),
A control method performed by a drive device including a control unit (for example, ECU 111 in an embodiment described later) that controls the charge and discharge,
The controller is
A first operation for comparing the first current and the second current in charging / discharging between the first capacitor and the second capacitor via the first path; and the first capacitor via the second path; A second operation for comparing the first current and the third current in charging / discharging between the driving units, and the second in charging / discharging between the second capacitor and the driving unit via the third path. A control method for determining a state of at least one of the first to third detection units based on a comparison result obtained from at least two of the third operations for comparing the current and the third current. is there.

同一経路を流れる電流は、同一経路内で昇降圧を伴わない場合は、理論的には経路の全区間で同じ電流値となる。一方、同一経路内で昇降圧を伴う場合でも、昇降圧の前後における電流値の関係は、昇圧比または降圧比より計算できる。従って、同一経路内に設けられた2つの検出部の検出値を比較することで、これらの関係を検証できる。   The current flowing through the same path theoretically has the same current value in all sections of the path when there is no step-up / down in the same path. On the other hand, even when the step-up / step-down is accompanied in the same path, the relationship between the current values before and after the step-up / step-down can be calculated from the step-up ratio or the step-down ratio. Therefore, these relations can be verified by comparing the detection values of the two detection units provided in the same path.

しかし、単一の蓄電器と駆動部のみを有する駆動装置では、経路が1つのみであるため、上述した検証を行っても、いずれの検知部も正常か、いずれかの検知部が故障しているという判定までしかできない。従って、最も重要な故障している検出部又は較正すべき検出部の確定ができない。   However, in a driving device having only a single capacitor and a driving unit, there is only one path. Therefore, even if the above-described verification is performed, either detection unit is normal or one of the detection units fails. It can only be determined to be. Therefore, it is impossible to determine the most important faulty detection unit or the detection unit to be calibrated.

請求項1の発明、請求項11の発明及び請求項12の発明によれば、第1蓄電器と第2蓄電器と駆動部の間の三つ巴となった3本の充放電ルートを流れる各電流を、1本の充放電ルートあたり2つの検出部を用いて検出する。よって、少なくとも2本の充放電ルートの各々において得られた2つの検出部の検出値を比較した結果に基づけば、第1〜第3検出部のうち少なくとも1つの検出部の検出値が2度比較され、他の検出部の検出値は少なくとも1度は比較される。また、2本の充放電ルートの各々において得られた2つの電流センサの検出値を比較しても電流センサの状態を判定できない場合には、残りの1本の充放電ルートにおいて得られた2つの電流センサの検出値を比較した結果も参酌され、全ての電流センサの検出値が2度比較される。したがって、3つの検出部のうちの少なくとも1つの検出部が故障か正常か又は較正が必要かについて、当該検出部の状態を精度良く判定できる。   According to the invention of claim 1, the invention of claim 11 and the invention of claim 12, each current flowing through the three charging / discharging routes that is a triple battery between the first capacitor, the second capacitor, and the drive unit is Detection is performed using two detection units per charge / discharge route. Therefore, based on the result of comparing the detection values of the two detection units obtained in each of the at least two charging / discharging routes, the detection value of at least one of the first to third detection units is twice. The detection values of the other detection units are compared at least once. Further, if the state of the current sensor cannot be determined by comparing the detection values of the two current sensors obtained in each of the two charging / discharging routes, 2 obtained in the remaining one charging / discharging route. The result of comparing the detection values of the two current sensors is also taken into consideration, and the detection values of all the current sensors are compared twice. Therefore, it is possible to accurately determine the state of the detection unit as to whether at least one of the three detection units is faulty, normal, or requires calibration.

請求項2の発明によれば、3本の充放電ルートの各々において得られた2つの検出部の検出値を比較した結果に基づけば、第1〜第3検出部のどの検出部も検出値が2度比較される。したがって、3つの検出部のうちの少なくとも1つの検出部が故障か正常か又は較正が必要かについて、当該検出部の状態を精度良く判定できる。   According to invention of Claim 2, based on the result of having compared the detection value of the two detection parts obtained in each of three charging / discharging routes, any detection part of the 1st-3rd detection part is detection value. Are compared twice. Therefore, it is possible to accurately determine the state of the detection unit as to whether at least one of the three detection units is faulty, normal, or requires calibration.

請求項3の発明によれば、3本の充放電ルートの各々において得られた2つの検出部の検出値を比較した結果に基づけば、第1〜第3検出部のどの検出部も検出値が2度比較される。したがって、3つの検出部のうちの2つの検出部が故障か正常か又は較正が必要かについて、当該検出部の状態を精度良く判定できる。   According to the invention of claim 3, based on the result of comparing the detection values of the two detection units obtained in each of the three charge / discharge routes, any of the detection units of the first to third detection units is the detection value. Are compared twice. Therefore, it is possible to accurately determine the state of the detection unit as to whether two of the three detection units are faulty, normal, or require calibration.

請求項4の発明によれば、3本の充放電ルートの少なくとも1本のルートに電圧変換部が含まれる場合には、電圧変換部によって検出部の検出値が変わっても、当該電圧変換部に応じた所定の相関に基づいて比較可能な検出値の比較が行われる。   According to the invention of claim 4, when the voltage converter is included in at least one of the three charge / discharge routes, even if the detection value of the detector is changed by the voltage converter, the voltage converter The comparison of the detected values that can be compared is performed based on a predetermined correlation according to.

請求項5の発明によれば、充放電回路に含まれる電圧変換部の電圧変換率に基づき所定の相関が設定されるため、当該電圧変換部によって検出部の検出値が変わっても、当該所定の相関に基づいて比較可能な検出値の比較が行われる。   According to the invention of claim 5, since the predetermined correlation is set based on the voltage conversion rate of the voltage converter included in the charge / discharge circuit, even if the detection value of the detector is changed by the voltage converter, the predetermined Based on the correlation, the detected values that can be compared are compared.

請求項6の発明によれば、2つの比較結果が異なるため、1つの検出部が故障と精度良く判定できる。   According to the invention of claim 6, since the two comparison results are different, one detection unit can accurately determine that there is a failure.

請求項7の発明によれば、3つの比較結果のうち、検出値が略同一又は前記相関を有する結果が2つ含まれるため、3つの検出部が正常と精度良く判定できる。   According to the seventh aspect of the invention, among the three comparison results, two detection values that are substantially the same or have the correlation are included, so that the three detection units can accurately determine that the detection unit is normal.

請求項8の発明によれば、3つの比較結果のうち、検出値が略同一又は前記相関を有する結果が2つ含まれ、検出値が略同一でもなく前記相関も有さない1つの結果が含まれるため、2つの検出部が故障又は較正が必要と精度良く判定できる。   According to the invention of claim 8, among the three comparison results, two detection results are included that are substantially the same or have the correlation, and one result that the detection values are not substantially the same and does not have the correlation. Since it is included, it can be accurately determined that the two detection units are out of order or need calibration.

請求項9の発明によれば、少なくとも2つの比較結果に基づいて、実際に少なくとも1つの検出部の正常又は故障確定若しくは較正を行うため、検出部を用いた駆動装置の制御を高精度に行える。   According to the ninth aspect of the present invention, since at least one detection unit is actually normal or failure confirmed or calibrated based on at least two comparison results, the drive device using the detection unit can be controlled with high accuracy. .

請求項10の発明によれば、特性の異なる2つの蓄電器を併用する当該駆動装置において、検出部の状態を精度良く判定できる。   According to the tenth aspect of the present invention, the state of the detection unit can be accurately determined in the drive device that uses two capacitors having different characteristics.

本発明に係る一実施形態の電動車両の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the electric vehicle of one Embodiment which concerns on this invention. 高容量型バッテリ、高出力型バッテリ、VCU、PDU及びモータジェネレータの関係を示す電気回路図である。It is an electric circuit diagram which shows the relationship between a high capacity | capacitance type battery, a high output type battery, VCU, PDU, and a motor generator. 第1充放電パターンでの充放電を実行した際の電流の流れ(第1充放電ルート)を示す図である。It is a figure which shows the electric current flow (1st charging / discharging route | root) at the time of performing charging / discharging by a 1st charging / discharging pattern. 第2充放電パターンでの充放電を実行した際の電流の流れ(第2充放電ルート)を示す図である。It is a figure which shows the electric current flow (2nd charging / discharging route | root) at the time of performing charging / discharging by a 2nd charging / discharging pattern. 第3充放電パターンでの充放電を実行した際の電流の流れ(第3充放電ルート)を示す図である。It is a figure which shows the electric current flow (3rd charging / discharging root | route) at the time of performing charging / discharging by a 3rd charging / discharging pattern. ECUによる電流センサの状態判定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the state determination method of the current sensor by ECU. ECUによる電流センサの状態判定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the state determination method of the current sensor by ECU. ECUによる電流センサの状態判定方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the state determination method of the current sensor by ECU. ECUによる電流センサの状態判定方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the state determination method of the current sensor by ECU. ECUによる電流センサの状態判定方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the state determination method of the current sensor by ECU. ECUによる電流センサの状態判定方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the state determination method of the current sensor by ECU. 他の実施形態の電動車両の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the electric vehicle of other embodiment. 他の実施形態における高容量型バッテリ、高出力型バッテリ、VCU、PDU及びモータジェネレータの関係を示す電気回路図である。It is an electric circuit diagram which shows the relationship between the high capacity | capacitance type battery in another embodiment, a high output type battery, VCU, PDU, and a motor generator.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る一実施形態の電動車両の内部構成を示すブロック図である。図1に示す1MOT型の電動車両は、モータジェネレータ(MG)101と、高容量型バッテリES−Eと、高出力型バッテリES−Pと、VCU(Voltage Control Unit)103と、PDU(Power Drive Unit)105と、電流センサ107e,107p,107と、スイッチ部109と、ECU(Electronic Control Unit)111とを備える。なお、高容量型バッテリES−Eと電流センサ107eとによって1つの蓄電モジュール113eが構成され、高出力型バッテリES−Pと電流センサ107pとによって1つの蓄電モジュール113pが構成され、モータジェネレータ101とPDU105と電流センサ107とによって1つの駆動モジュール113が構成されている。図1中の太い実線は機械連結を示し、二重点線は電力配線を示し、細い実線は制御信号を示す。   FIG. 1 is a block diagram showing an internal configuration of an electric vehicle according to an embodiment of the present invention. A 1 MOT type electric vehicle shown in FIG. 1 includes a motor generator (MG) 101, a high capacity battery ES-E, a high output battery ES-P, a VCU (Voltage Control Unit) 103, and a PDU (Power Drive). Unit) 105, current sensors 107e, 107p, and 107, a switch unit 109, and an ECU (Electronic Control Unit) 111. The high-capacity battery ES-E and the current sensor 107e constitute one power storage module 113e, and the high-power battery ES-P and the current sensor 107p constitute one power storage module 113p. The PDU 105 and the current sensor 107 constitute one drive module 113. A thick solid line in FIG. 1 indicates mechanical connection, a double dotted line indicates power wiring, and a thin solid line indicates a control signal.

モータジェネレータ101は、高容量型バッテリES−E及び高出力型バッテリES−Pの少なくともいずれか一方から得られる電力によって駆動して、電動車両が走行するための動力を発生する。モータジェネレータ101で発生したトルクは、変速段又は固定段を含むギヤボックスGB及びデファレンシャル・ギアDを介して駆動輪Wに伝達される。また、モータジェネレータ101は、電動車両の減速時には発電機として動作して、電動車両の制動力を出力する。なお、モータジェネレータ101を発電機として動作させることで生じた回生電力は、高容量型バッテリES−Eと高出力型バッテリES−Pの少なくともいずれか一方に蓄えられる。   The motor generator 101 is driven by electric power obtained from at least one of the high-capacity battery ES-E and the high-power battery ES-P to generate power for running the electric vehicle. Torque generated by the motor generator 101 is transmitted to the drive wheels W via a gear box GB and a differential gear D including a shift stage or a fixed stage. Motor generator 101 operates as a generator when the electric vehicle decelerates and outputs braking force of the electric vehicle. Note that regenerative electric power generated by operating the motor generator 101 as a generator is stored in at least one of the high-capacity battery ES-E and the high-power battery ES-P.

高容量型バッテリES−Eは、リチウムイオン電池やニッケル水素電池等といった複数の蓄電セルを有し、モータジェネレータ101に高電圧の電力を供給する。また、高出力型バッテリES−Pも、リチウムイオン電池やニッケル水素電池等といった複数の蓄電セルを有し、VCU103を介してモータジェネレータ101に高電圧の電力を供給する。高出力型バッテリES−Pは、VCU103を介して、PDU105に対して高容量型バッテリES−Eと並列に接続されている。また、一般的に、高出力型バッテリES−Pの電圧は、高容量型バッテリES−Eの電圧よりも低い。したがって、高出力型バッテリES−Pの電力は、VCU103によって高容量型バッテリES−Eの電圧と同レベルまで昇圧された後、PDU105を介してモータジェネレータ101に供給される。   The high-capacity battery ES-E has a plurality of power storage cells such as a lithium ion battery and a nickel hydride battery, and supplies high voltage power to the motor generator 101. The high-power battery ES-P also has a plurality of power storage cells such as a lithium ion battery and a nickel metal hydride battery, and supplies high voltage power to the motor generator 101 via the VCU 103. The high output battery ES-P is connected to the PDU 105 in parallel with the high capacity battery ES-E via the VCU 103. In general, the voltage of the high-power battery ES-P is lower than the voltage of the high-capacity battery ES-E. Therefore, the power of the high-power battery ES-P is boosted to the same level as the voltage of the high-capacity battery ES-E by the VCU 103 and then supplied to the motor generator 101 via the PDU 105.

なお、高容量型バッテリES−Eや高出力型バッテリES−Pは、前述したニッケル水素電池やリチウムイオン電池といった二次電池や、電池外部より活物質の供給を必要とする燃料電池や空気電池に限定される訳ではない。例えば、蓄電容量が少ないものの、短時間に大量の電力を充放電可能なコンデンサやキャパシタを高出力型バッテリES−Pとして用いても構わない。   The high-capacity battery ES-E and the high-power battery ES-P are secondary batteries such as the nickel-metal hydride battery and lithium-ion battery described above, and fuel cells and air batteries that require an active material to be supplied from the outside of the battery. It is not necessarily limited to. For example, a capacitor or a capacitor that has a small storage capacity but can charge and discharge a large amount of power in a short time may be used as the high-power battery ES-P.

また、高容量型バッテリES−Eの特性と高出力型バッテリES−Pの特性は互いに異なる。高容量型バッテリES−Eは、高出力型バッテリES−Pよりも、出力重量密度は低いが、エネルギー重量密度は高い。一方、高出力型バッテリES−Pは、高容量型バッテリES−Eよりも、エネルギー重量密度は低いが、出力重量密度は高い。このように、高容量型バッテリES−Eは、エネルギー重量密度の点で相対的に優れ、高出力型バッテリES−Pは、出力重量密度の点で相対的に優れる。なお、エネルギー重量密度とは、単位重量あたりの電力量(Wh/kg)であり、出力重量密度とは、単位重量あたりの電力(W/kg)である。したがって、エネルギー重量密度が優れている高容量型バッテリES−Eは、高容量を主目的とした蓄電器であり、出力重量密度が優れている高出力型バッテリES−Pは、高出力を主目的とした蓄電器である。   Further, the characteristics of the high-capacity battery ES-E and the characteristics of the high-power battery ES-P are different from each other. The high-capacity battery ES-E has a lower output weight density but a higher energy weight density than the high-power battery ES-P. On the other hand, the high-power battery ES-P has a lower energy weight density but a higher output weight density than the high-capacity battery ES-E. Thus, the high-capacity battery ES-E is relatively excellent in terms of energy weight density, and the high-power battery ES-P is relatively excellent in terms of output weight density. The energy weight density is the amount of power per unit weight (Wh / kg), and the output weight density is the power per unit weight (W / kg). Therefore, the high-capacity battery ES-E having an excellent energy weight density is a capacitor mainly for high capacity, and the high-power battery ES-P having an excellent output weight density is mainly intended for high output. It is a capacitor.

このような高容量型バッテリES−Eと高出力型バッテリES−Pの特性の違いは、例えば電極や活物質、電解質/液といった電池の構成要素の構造や材質等により定まる種々のパラメータに起因するものである。例えば、充放電可能な電気の総量を示すパラメータである蓄電可能容量は、高出力型バッテリES−Pより高容量型バッテリES−Eの方が優れる。一方、充放電に対する蓄電可能容量の劣化耐性を示すパラメータであるCレート特性や充放電に対する電気抵抗値を示すパラメータである内部抵抗(インピーダンス)は、高容量型バッテリES−Eより高出力型バッテリES−Pの方が優れる。   The difference in characteristics between the high-capacity battery ES-E and the high-power battery ES-P is caused by various parameters determined by the structure and material of the battery components such as electrodes, active materials, and electrolytes / liquids. To do. For example, the chargeable capacity, which is a parameter indicating the total amount of electricity that can be charged / discharged, is superior to the high-capacity battery ES-E than the high-power battery ES-P. On the other hand, the C rate characteristic, which is a parameter indicating the deterioration tolerance of the chargeable capacity with respect to charging / discharging, and the internal resistance (impedance), which is a parameter indicating the electric resistance value with respect to charging / discharging, are higher in output battery than the high capacity battery ES-E ES-P is superior.

VCU103は、高出力型バッテリES−Pの出力電圧を直流のまま昇圧する。また、VCU103は、電動車両の減速時にモータジェネレータ101が発電して直流に変換された電力を降圧する。さらに、VCU103は、高容量型バッテリES−Eの出力電圧を直流のまま降圧し、降圧された電力は高出力型バッテリES−Pに充電される。   The VCU 103 boosts the output voltage of the high-power battery ES-P while maintaining a direct current. The VCU 103 steps down the electric power generated by the motor generator 101 and converted into direct current when the electric vehicle is decelerated. Further, the VCU 103 steps down the output voltage of the high capacity battery ES-E while maintaining a direct current, and the stepped down power is charged to the high output battery ES-P.

PDU105は、直流電圧を交流電圧に変換して3相電流をモータジェネレータ101に供給する。また、PDU105は、モータジェネレータ101の回生動作時に入力される交流電圧を直流電圧に変換する。   PDU 105 converts a DC voltage into an AC voltage and supplies a three-phase current to motor generator 101. In addition, PDU 105 converts an AC voltage input during the regenerative operation of motor generator 101 into a DC voltage.

電流センサ107pは、高出力型バッテリES−Pの入出力電流Ipを検出する。電流センサ107pが検出した入出力電流Ipを示す信号はECU111に送られる。電流センサ107eは、高容量型バッテリES−Eの入出力電流Ieを検出する。電流センサ107eが検出した入出力電流Ieを示す信号はECU111に送られる。電流センサ107は、PDU105及びモータジェネレータ101によって構成される駆動部(以下、単に「駆動部」という。)の入出力電流Iを検出する。電流センサ107が検出した入出力電流Iを示す信号はECU111に送られる。   The current sensor 107p detects the input / output current Ip of the high-power battery ES-P. A signal indicating the input / output current Ip detected by the current sensor 107p is sent to the ECU 111. The current sensor 107e detects the input / output current Ie of the high capacity battery ES-E. A signal indicating the input / output current Ie detected by the current sensor 107e is sent to the ECU 111. The current sensor 107 detects an input / output current I of a drive unit (hereinafter simply referred to as “drive unit”) configured by the PDU 105 and the motor generator 101. A signal indicating the input / output current I detected by the current sensor 107 is sent to the ECU 111.

スイッチ部109は、高容量型バッテリES−EからPDU105又はVCU103までの電流経路を断接するコンタクタMCeと、高出力型バッテリES−PからVCU103までの電流経路を断接するコンタクタMCpとを有する。各コンタクタMCe,MCpは、ECU111の制御によって開閉される。   The switch unit 109 includes a contactor MCe that connects and disconnects the current path from the high-capacity battery ES-E to the PDU 105 or the VCU 103, and a contactor MCp that connects and disconnects the current path from the high-power battery ES-P to the VCU 103. Each contactor MCe, MCp is opened and closed under the control of the ECU 111.

図2は、高容量型バッテリES−E、高出力型バッテリES−P、VCU103、PDU105及びモータジェネレータ101の関係を示す電気回路図である。図2に示すように、VCU103は、高出力型バッテリES−Pの出力電圧を入力電圧として、ハイサイドとローサイドから成る2つのスイッチング素子をオンオフ切換動作することによって、高出力型バッテリES−Pの電圧を昇圧して出力する。また、PDU105は、高容量型バッテリES−Eの出力電圧を入力電圧として6つのスイッチング素子をオンオフ切換動作することによって、直流電圧を三相交流電圧に変換してモータジェネレータ101に出力する。   FIG. 2 is an electric circuit diagram showing a relationship among the high-capacity battery ES-E, the high-power battery ES-P, the VCU 103, the PDU 105, and the motor generator 101. As shown in FIG. 2, the VCU 103 uses the output voltage of the high-power battery ES-P as an input voltage, and performs on / off switching operation of two switching elements consisting of a high side and a low side, whereby the high-power battery ES-P Is boosted and output. The PDU 105 converts the DC voltage into a three-phase AC voltage and outputs it to the motor generator 101 by switching on and off the six switching elements using the output voltage of the high-capacity battery ES-E as an input voltage.

ECU111が、PDU105の全てのスイッチング素子をオフ制御して、高容量型バッテリES−E及び高出力型バッテリES−Pをモータジェネレータ101から電気系統的に開放し、かつ、VCU103をスイッチング制御することによって、図3に示すように、高容量型バッテリES−Eと高出力型バッテリES−PがVCU103を介して互いに充放電可能な状態になる。以下の説明では、このとき充放電電流が流れる電流経路を「第1充放電ルート」といい、第1充放電ルートで充放電が行われる形態を「第1充放電パターン」という。   The ECU 111 controls all the switching elements of the PDU 105 to be off, electrically opens the high capacity type battery ES-E and the high output type battery ES-P from the motor generator 101, and controls the switching of the VCU 103. Thus, as shown in FIG. 3, the high-capacity battery ES-E and the high-power battery ES-P can be charged and discharged with each other via the VCU 103. In the following description, the current path through which the charge / discharge current flows is referred to as a “first charge / discharge route”, and the form in which charge / discharge is performed in the first charge / discharge route is referred to as a “first charge / discharge pattern”.

ECU111が、PDU105をスイッチング制御し、かつ、VCU103の2つのスイッチング素子を共にオフ制御することによって、高出力型バッテリES−Pの電圧が高容量型バッテリES−Eの電圧より低いならば図4に示すように、高出力型バッテリES−Pは開回路の状態となり、高容量型バッテリES−Eと駆動部が互いに充放電可能な状態になる。以下の説明では、このとき充放電電流が流れる電流経路を「第2充放電ルート」といい、第2充放電ルートで充放電が行われる形態を「第2充放電パターン」という。または、図4に示すように高出力型バッテリES−P側のコンタクタMCpを開くことで、「第2充放電ルート」を実現しても良い。   If the voltage of the high-power battery ES-P is lower than the voltage of the high-capacity battery ES-E by the ECU 111 controlling the switching of the PDU 105 and turning off the two switching elements of the VCU 103, FIG. As shown, the high-power battery ES-P is in an open circuit state, and the high-capacity battery ES-E and the drive unit can be charged and discharged with each other. In the following description, the current path through which the charging / discharging current flows is referred to as a “second charging / discharging route”, and the form in which charging / discharging is performed in the second charging / discharging route is referred to as a “second charging / discharging pattern”. Alternatively, as shown in FIG. 4, the “second charge / discharge route” may be realized by opening the contactor MCp on the high-power battery ES-P side.

ECU111が、PDU105をスイッチング制御し、かつ、高容量型バッテリES−E側のコンタクタMCeを開くことによって、図5に示すように、高出力型バッテリES−Pと駆動部が互いに充放電可能な状態になる。以下の説明では、このとき充放電電流が流れる電流経路を「第3充放電ルート」といい、第3充放電ルートで充放電が行われる形態を「第3充放電パターン」という。   The ECU 111 performs switching control of the PDU 105 and opens the contactor MCe on the high-capacity battery ES-E side, so that the high-power battery ES-P and the drive unit can be charged and discharged as shown in FIG. It becomes a state. In the following description, the current path through which the charging / discharging current flows is referred to as “third charging / discharging route”, and the form in which charging / discharging is performed in the third charging / discharging route is referred to as “third charging / discharging pattern”.

ECU111は、PDU105及びVCU103の制御、並びに、スイッチ部109の開閉制御を行う。また、ECU111は、特性の異なる高容量型バッテリES−Eと高出力型バッテリES−Pの各々の特性を活かすよう、VCU103を用いた電力分配制御を行う。この電力分配制御を行えば、高容量型バッテリES−Eは、電動車両の加速走行時に一定の電力をモータジェネレータ101に電力を供給するよう用いられ、高出力型バッテリES−Pは、電動車両の走行のために大きな駆動力が必要なときに、モータジェネレータ101に電力を供給するよう用いられる。また、電動車両の減速走行時には、ECU111は、モータジェネレータ101に発生した回生電力によって、高容量型バッテリES−Eと高出力型バッテリES−Pの少なくともいずれか一方を充電する。特に回生電力による充電はCレートに換算すると高レートな充電に相当するので、高出力型バッテリES−Pに対して優先的に行われることが好ましい。当該電力分配制御が行われる電動車両の停車時には第1充放電ルートでの充放電が可能であり、走行時には上記説明した第2充放電ルート及び第3充放電ルートでの充放電が可能である。   The ECU 111 controls the PDU 105 and the VCU 103 and performs opening / closing control of the switch unit 109. Further, the ECU 111 performs power distribution control using the VCU 103 so as to make use of the characteristics of the high-capacity battery ES-E and the high-power battery ES-P having different characteristics. If this power distribution control is performed, the high-capacity battery ES-E is used to supply constant power to the motor generator 101 when the electric vehicle is accelerated, and the high-power battery ES-P is used for the electric vehicle. It is used to supply electric power to the motor generator 101 when a large driving force is required for traveling. Further, when the electric vehicle travels at a reduced speed, the ECU 111 charges at least one of the high-capacity battery ES-E and the high-power battery ES-P with the regenerative power generated in the motor generator 101. In particular, since charging by regenerative power corresponds to high rate charging when converted to C rate, it is preferable that the charging is performed preferentially for the high output type battery ES-P. Charging / discharging in the first charging / discharging route is possible when the electric vehicle in which the power distribution control is performed is stopped, and charging / discharging in the second charging / discharging route described above is possible in traveling. .

さらに、ECU111は、上記説明した第1〜第3充放電パターンでの充放電時に電流センサ107e,107p,107が検出した各入出力電流に基づき、電流センサ107e,107p,107が故障か正常かの状態を判定する。以下、ECU111による電流センサ107e,107p,107の状態判定方法について、図6及び図7を参照して詳細に説明する。図6及び図7は、ECU111による電流センサ107e,107p,107の状態判定方法の一例を示すフローチャートである。なお、フローチャート中の「Vin」は、駆動部側又は高容量型バッテリES−E側、高出力型バッテリES−P側を問わず、VCU103に印加される入力電圧を示し、「Vout」はVCU103の出力電圧を示す。したがって、VCU103の電圧変換率は、Vout/Vinと表される。以下説明する第1充放電パターンでの充放電時に得られた電流の比較及び第3充放電パターンでの充放電時に得られた電流の比較は、当該電圧変換率に応じた所定の相関関係に基づいて行われる。   Further, the ECU 111 determines whether the current sensors 107e, 107p, 107 are faulty or normal based on the input / output currents detected by the current sensors 107e, 107p, 107 during the charging / discharging in the first to third charging / discharging patterns described above. The state of is determined. Hereinafter, the state determination method of the current sensors 107e, 107p, 107 by the ECU 111 will be described in detail with reference to FIGS. 6 and 7 are flowcharts showing an example of a state determination method of the current sensors 107e, 107p, 107 by the ECU 111. FIG. In the flowchart, “Vin” indicates an input voltage applied to the VCU 103 regardless of the drive unit side, the high capacity battery ES-E side, or the high output battery ES-P side, and “Vout” indicates the VCU 103. Indicates the output voltage. Therefore, the voltage conversion rate of the VCU 103 is expressed as Vout / Vin. The comparison of the current obtained at the time of charging / discharging with the first charge / discharge pattern and the comparison of the current obtained at the time of charging / discharging with the third charge / discharge pattern described below have a predetermined correlation according to the voltage conversion rate. Based on.

図6に示すように、ECU111は、第1充放電パターンでの充放電を実行するようPDU105及びVCU103を制御する(ステップS101)。次に、ECU111は、第1充放電パターンでの充放電時に電流センサ107e,107pが検出した電流Ie,Ipが「Ie≠(Vin/Vout)×Ip」の関係を満たすか否かを判断し(ステップS102)、当該関係を満たせばステップS103に進み、満たさなければステップS104に進む。ステップS103では、ECU111は、電流センサ107e,107pのいずれかに故障の可能性があると判定し、ステップS111に進む。一方、ステップS104では、ECU111は、電流センサ107e,107p共に正常であると判定し、図7に示すステップS105に進む。   As shown in FIG. 6, the ECU 111 controls the PDU 105 and the VCU 103 to execute charge / discharge with the first charge / discharge pattern (step S101). Next, the ECU 111 determines whether or not the currents Ie and Ip detected by the current sensors 107e and 107p satisfy the relationship of “Ie ≠ (Vin / Vout) × Ip” during charging / discharging in the first charging / discharging pattern. (Step S102) If the relationship is satisfied, the process proceeds to Step S103. If not satisfied, the process proceeds to Step S104. In step S103, the ECU 111 determines that any of the current sensors 107e and 107p has a possibility of failure, and proceeds to step S111. On the other hand, in step S104, the ECU 111 determines that both the current sensors 107e and 107p are normal, and proceeds to step S105 shown in FIG.

ステップS105では、ECU111は、第2充放電パターンでの充放電を実行するようPDU105及びVCU103を制御する。次に、ECU111は、第2充放電パターンでの充放電時に電流センサ107e,107が検出した電流Ie,Iが「Ie≠I」の関係を満たすか否かを判断し(ステップS106)、当該関係を満たせばステップS107に進み、満たさなければステップS109に進む。ステップS107では、ECU111は、ステップS104で電流センサ107e,107p共に正常であると判定した状態で「Ie≠I」の関係が成り立つため、電流センサ107に故障の可能性があると判定し、ステップS108に進む。ステップS108では、ECU111は、電流センサ107の故障を確定し、一連の処理を終了する。一方、ステップS109では、ECU111は、ステップS104で電流センサ107e,107p共に正常であると判定した状態で「Ie=I」の関係が成り立つため、電流センサ107e,107p,107のいずれも正常であると判定し、ステップS110に進む。ステップS110では、ECU111は、全ての電流センサ107e,107p,107が正常であると確定し、一連の処理を終了する。   In step S105, the ECU 111 controls the PDU 105 and the VCU 103 so as to perform charging / discharging with the second charging / discharging pattern. Next, the ECU 111 determines whether or not the currents Ie and I detected by the current sensors 107e and 107 during charging / discharging in the second charging / discharging pattern satisfy the relationship “Ie ≠ I” (step S106). If the relationship is satisfied, the process proceeds to step S107, and if not, the process proceeds to step S109. In step S107, the ECU 111 determines that there is a possibility of failure in the current sensor 107 because the relationship of “Ie ≠ I” is established in the state where both the current sensors 107e and 107p are determined to be normal in step S104. The process proceeds to S108. In step S108, the ECU 111 determines a failure of the current sensor 107 and ends a series of processes. On the other hand, in step S109, the ECU 111 determines that both of the current sensors 107e and 107p are normal in step S104, and therefore the relationship of “Ie = I” is established. Therefore, all of the current sensors 107e, 107p, and 107 are normal. And proceed to step S110. In step S110, the ECU 111 determines that all the current sensors 107e, 107p, 107 are normal, and ends a series of processes.

ステップS111では、ECU111は、第2充放電パターンでの充放電を実行するようPDU105及びVCU103を制御する。次に、ECU111は、第2充放電パターンでの充放電時に電流センサ107e,107が検出した電流Ie,Iが「Ie≠I」の関係を満たすか否かを判断し(ステップS112)、当該関係を満たせばステップS113に進み、満たさなければステップS114に進む。ステップS113では、ECU111は、ステップS103で電流センサ107e,107pのいずれかに故障の可能性があると判定した状態で「Ie≠I」の関係が成り立つため、電流センサ107にも故障の可能性があると判定し、ステップS121に進む。一方、ステップS114では、ECU111は、ステップS103で電流センサ107e,107pのいずれかに故障の可能性があると判定した状態で「Ie=I」の関係が成り立つため、電流センサ107eと電流センサ107の双方が正常であり、電流センサ107pに故障の可能性があると判定し、ステップS115に進む。ステップS115では、ECU111は、電流センサ107pの故障を確定し、図7に示すステップS116に進む。   In step S111, the ECU 111 controls the PDU 105 and the VCU 103 to execute charging / discharging with the second charging / discharging pattern. Next, the ECU 111 determines whether or not the currents Ie and I detected by the current sensors 107e and 107 during charging / discharging in the second charging / discharging pattern satisfy the relationship “Ie ≠ I” (step S112). If the relationship is satisfied, the process proceeds to step S113; otherwise, the process proceeds to step S114. In step S113, the ECU 111 determines that there is a possibility of failure in either of the current sensors 107e and 107p in step S103, so that the relationship of “Ie ≠ I” is established. The process proceeds to step S121. On the other hand, in step S114, the ECU 111 determines that either of the current sensors 107e and 107p has a possibility of failure in step S103, so that the relationship of “Ie = I” is established. Both are normal and it is determined that there is a possibility of failure in the current sensor 107p, and the process proceeds to step S115. In step S115, the ECU 111 determines the failure of the current sensor 107p, and proceeds to step S116 shown in FIG.

ステップS116では、ECU111は、第3充放電パターンでの充放電を実行するようPDU105及びVCU103を制御する。次に、ECU111は、第3充放電パターンでの充放電時に電流センサ107,107pが検出した電流I,Ipが「I=(Vin/Vout)×Ip」の関係を満たすか否かを判断し(ステップS117)、当該関係を満たせばステップS118に進み、満たさなければステップS120に進む。ステップS118では、ECU111は、ステップS115で電流センサ107pの故障が確定した状態で「I=(Vin/Vout)×Ip」の関係が成り立つため、電流センサ107にも故障の可能性があると判定し、ステップS119に進む。ステップS119では、ECU111は、電流センサ107の故障を確定し、一連の処理を終了する。一方、ステップS120では、ECU111は、ステップS115で電流センサ107pの故障が確定した状態で「I≠(Vin/Vout)×Ip」の関係が成り立つため、電流センサ107が故障とも正常とも判定できずに、一連の処理を終了する。   In step S116, the ECU 111 controls the PDU 105 and the VCU 103 to perform charging / discharging with the third charging / discharging pattern. Next, the ECU 111 determines whether or not the currents I and Ip detected by the current sensors 107 and 107p during charging / discharging in the third charging / discharging pattern satisfy the relationship “I = (Vin / Vout) × Ip”. (Step S117) If the relationship is satisfied, the process proceeds to Step S118. If not satisfied, the process proceeds to Step S120. In step S118, the ECU 111 determines that there is a possibility that the current sensor 107 may also fail because the relationship of “I = (Vin / Vout) × Ip” is established in a state where the failure of the current sensor 107p is confirmed in step S115. Then, the process proceeds to step S119. In step S119, the ECU 111 determines a failure of the current sensor 107 and ends a series of processes. On the other hand, in step S120, since the relationship of “I ≠ (Vin / Vout) × Ip” is established with the failure of the current sensor 107p determined in step S115, the ECU 111 cannot determine whether the current sensor 107 is normal or not. Finally, a series of processing is completed.

ステップS121では、ECU111は、第3充放電パターンでの充放電を実行するようPDU105及びVCU103を制御する。次に、ECU111は、第3充放電パターンでの充放電時に電流センサ107,107pが検出した電流I,Ipが「I≠(Vin/Vout)×Ip」の関係を満たすか否かを判断し(ステップS122)、当該関係を満たせばステップS123に進み、満たさなければステップS125に進む。ステップS123では、ECU111は、ステップS113で電流センサ107e,107p,107のいずれかに故障の可能性があると判定した状態で「I≠(Vin/Vout)×Ip」の関係が成り立つため、やはり電流センサ107e,107p,107のいずれにも故障の可能性があると判定し、ステップS124に進む。ステップS124では、ECU111は、電流センサの故障は確定できず、一連の処理を終了する。一方、ステップS125では、ECU111は、ステップS113で電流センサ107e,107p,107のいずれかに故障の可能性があると判定した状態で「I=(Vin/Vout)×Ip」の関係が成り立つため、電流センサ107eに故障の可能性があると判定し、ステップS126に進む。ステップS126では、ECU111は、電流センサ107eの故障を確定し、一連の処理を終了する。   In step S121, the ECU 111 controls the PDU 105 and the VCU 103 to execute charging / discharging with the third charging / discharging pattern. Next, the ECU 111 determines whether or not the currents I and Ip detected by the current sensors 107 and 107p at the time of charging / discharging in the third charging / discharging pattern satisfy the relationship “I ≠ (Vin / Vout) × Ip”. (Step S122) If the relationship is satisfied, the process proceeds to Step S123. Otherwise, the process proceeds to Step S125. In step S123, since the relationship of “I ≠ (Vin / Vout) × Ip” is established when the ECU 111 determines that any of the current sensors 107e, 107p, and 107 has a possibility of failure in step S113, the ECU 111 also holds. It is determined that any of the current sensors 107e, 107p, and 107 has a failure, and the process proceeds to step S124. In step S124, the ECU 111 cannot determine the failure of the current sensor and ends the series of processes. On the other hand, in step S125, the ECU 111 determines that there is a possibility that any of the current sensors 107e, 107p, 107 has a failure in step S113, so that the relationship “I = (Vin / Vout) × Ip” is established. Then, it is determined that there is a possibility of failure in the current sensor 107e, and the process proceeds to step S126. In step S126, the ECU 111 determines a failure of the current sensor 107e and ends a series of processes.

なお、上述の状態判定方法では、最初に第1充放電パターンでの充放電を実行した後、第2充放電パターンでの充放電を実行し、その後、第3充放電パターンでの充放電を実行するが、図8及び図9に示すように、最初に第2充放電パターンでの充放電を実行した後、第3充放電パターンでの充放電を実行し、その後、第1充放電パターンでの充放電を実行したり、最初に第2充放電パターンでの充放電を実行した後、第1充放電パターンでの充放電を実行し、その後、第3充放電パターンでの充放電を実行しても良い。また、図10及び図11に示すように、最初に第3充放電パターンでの充放電を実行した後、第1充放電パターンでの充放電を実行し、その後、第2充放電パターンでの充放電を実行したり、最初に第3充放電パターンでの充放電を実行した後、第2充放電パターンでの充放電を実行し、その後、第1充放電パターンでの充放電を実行しても良い。   In the above-described state determination method, first charging / discharging with the first charging / discharging pattern is performed, then charging / discharging with the second charging / discharging pattern is performed, and then charging / discharging with the third charging / discharging pattern is performed. As shown in FIG. 8 and FIG. 9, after performing the charge / discharge with the second charge / discharge pattern first, the charge / discharge with the third charge / discharge pattern is performed, and then the first charge / discharge pattern is performed. Charge / discharge at the first charge / discharge pattern, or first charge / discharge at the second charge / discharge pattern, then charge / discharge at the first charge / discharge pattern, and then charge / discharge at the third charge / discharge pattern. May be executed. Moreover, as shown in FIG.10 and FIG.11, after performing charging / discharging by a 3rd charging / discharging pattern first, charging / discharging by a 1st charging / discharging pattern is performed, Then, in 2nd charging / discharging pattern After charging / discharging or first charging / discharging with the third charging / discharging pattern, charging / discharging with the second charging / discharging pattern is performed, and thereafter charging / discharging with the first charging / discharging pattern is performed. May be.

以上説明したように、本実施形態によれば、三つ巴となった高容量型バッテリES−Eと高出力型バッテリES−Pと駆動部の間の3本の充放電ルートを流れる各電流を、1本の充放電ルートあたり2つの電流センサを用いて検出し、少なくとも2本の充放電ルートの各々において得られた2つの電流センサの検出値を比較した結果に基づけば、電流センサ107e,107p,107のうち少なくとも1つの電流センサの検出値が2度比較され、他の電流センサの検出値は少なくとも1度は比較される。また、2本の充放電ルートの各々において得られた2つの電流センサの検出値を比較しても電流センサの状態を判定できない場合には、残りの1本の充放電ルートにおいて得られた2つの電流センサの検出値を比較した結果も参酌され、全ての電流センサの検出値が2度比較される。したがって、3つの電流センサ107e,107p,107のうちの少なくとも1つの電流センサが故障か正常かの状態を精度良く判定できる。   As described above, according to the present embodiment, each current flowing through the three charge / discharge routes between the high-capacity battery ES-E, the high-power battery ES-P, and the drive unit, which is a triple battery, Based on the result of comparing the detection values of two current sensors obtained at each of at least two charge / discharge routes based on the result of detection using two current sensors per charge / discharge route, current sensors 107e, 107p. , 107, the detection value of at least one current sensor is compared twice, and the detection values of the other current sensors are compared at least once. Further, if the state of the current sensor cannot be determined by comparing the detection values of the two current sensors obtained in each of the two charging / discharging routes, 2 obtained in the remaining one charging / discharging route. The result of comparing the detection values of the two current sensors is also taken into consideration, and the detection values of all the current sensors are compared twice. Therefore, it is possible to accurately determine whether at least one of the three current sensors 107e, 107p, 107 is faulty or normal.

なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上記説明した電動車両は、1MOT型のEV(Electrical Vehicle)であるが、複数のモータジェネレータを搭載したEVであっても、少なくとも1つのモータジェネレータと共に内燃機関を搭載したHEV(Hybrid Electrical Vehicle)やPHEV(Plug-in Hybrid Electrical Vehicle)であっても、FCV(Fuel Cell Vehicle)であっても良い。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. For example, although the electric vehicle described above is a 1MOT type EV (Electrical Vehicle), even an EV equipped with a plurality of motor generators is an HEV (Hybrid Electrical Vehicle) equipped with an internal combustion engine together with at least one motor generator. ), PHEV (Plug-in Hybrid Electrical Vehicle), or FCV (Fuel Cell Vehicle).

また、本実施形態のVCU101は、高出力型バッテリES−Pの電圧Vpを昇圧するが、高容量型バッテリES−Eの電圧Veが高出力型バッテリES−Pの電圧Vpよりも低い場合、高出力型バッテリES−Pの電圧Vpを降圧するVCUが用いられる。また、双方向に昇降圧が可能なVCUを用いても良い。また、図12及び図13に示すように、高容量型バッテリES−E側にもVCU203を設けても良い。2つのVCUを設けることで、モータジェネレータ101及びPDU105に印加される電圧が高容量型バッテリES−Eに束縛されないため、効率が向上する。   Further, the VCU 101 of the present embodiment boosts the voltage Vp of the high-power battery ES-P, but when the voltage Ve of the high-capacity battery ES-E is lower than the voltage Vp of the high-power battery ES-P, A VCU that steps down the voltage Vp of the high-power battery ES-P is used. Further, a VCU capable of increasing / decreasing pressure in both directions may be used. As shown in FIGS. 12 and 13, the VCU 203 may also be provided on the high capacity battery ES-E side. By providing two VCUs, the voltage applied to the motor generator 101 and the PDU 105 is not constrained by the high-capacity battery ES-E, thereby improving the efficiency.

また、上記実施形態では、同一充放電ルートにおける2つの電流センサの検出値が同一または相関関係を有するかに基づいて、電流センサの状態を判定するが、2つの電流センサの検出値の比較にあたっては若干のバッファを設けても良い。電気回路にはインダクタ以外にも不可避的に誘導成分を含む構成部品が含まれる可能性があるため、バッファを設ければ、より正確に電流センサの状態を判定できる。   Moreover, in the said embodiment, although the state of a current sensor is determined based on whether the detected value of the two current sensors in the same charging / discharging route is the same or has a correlation, in comparing the detected values of the two current sensors. May have some buffers. Since the electric circuit may inevitably include components including inductive components other than the inductor, the state of the current sensor can be determined more accurately by providing a buffer.

さらに、他の実施形態としては、電流センサが正常か故障かの判定に加えて、電流センサの較正を行っても良い。例えば、少なくとも1つの電流センサの正常が確定しているのならば、この正常な電流センサを含む充放電ルートにおける充放電を実施し、正常な電流センサの検出値ともう一方の電流センサの検出値を比較して、オフセット誤差などを較正しても良い。   In another embodiment, the current sensor may be calibrated in addition to determining whether the current sensor is normal or malfunctioning. For example, if the normality of at least one current sensor is determined, charging / discharging in the charging / discharging route including this normal current sensor is performed, and the detection value of the normal current sensor and the detection of the other current sensor are detected. The offset error or the like may be calibrated by comparing the values.

101 モータジェネレータ
103,203 VCU
105 PDU
107e,107p,107 電流センサ
109 スイッチ部
111 ECU
113e,113p 蓄電モジュール
113 駆動モジュール
ES−E 高容量型バッテリ
ES−P 高出力型バッテリ
MCe,MCp コンタクタ
101 Motor generator 103, 203 VCU
105 PDU
107e, 107p, 107 Current sensor 109 Switch unit 111 ECU
113e, 113p Storage module 113 Drive module ES-E High-capacity battery ES-P High-power battery MCe, MCp Contactor

Claims (12)

第1蓄電器、及び該第1蓄電器の入出力電流である第1電流を検出する第1検出部を有する第1蓄電モジュールと、
第2蓄電器、及び該第2蓄電器の入出力電流である第2電流を検出する第2検出部を有する第2蓄電モジュールと、
前記第1蓄電器及び前記第2蓄電器の少なくとも一方から供給される電力により駆動する駆動部、並びに該駆動部の入出力電流である第3電流を検出する第3検出部を有する駆動モジュールと、
前記第1蓄電器と前記第2蓄電器の間の充放電を担う第1経路と、前記第1蓄電器と前記駆動部の間の充放電を担う第2経路と、前記第2蓄電器と前記駆動部の間の充放電を担う第3経路と、を有する充放電回路と、
前記充放電を制御する制御部と、を備えた駆動装置であって、
前記制御部は、
前記第1経路を介した前記第1蓄電器と前記第2蓄電器の間の充放電における前記第1電流及び前記第2電流を比較する第1動作、前記第2経路を介した前記第1蓄電器と前記駆動部の間の充放電における前記第1電流及び前記第3電流を比較する第2動作、及び前記第3経路を介した前記第2蓄電器と前記駆動部の間の充放電における前記第2電流及び前記第3電流を比較する第3動作のうち少なくとも2つの動作より得た比較結果に基づき、前記第1〜第3検出部のうち少なくとも1つの検出部の状態を判定する、駆動装置。
A first power storage module, and a first power storage module having a first detection unit that detects a first current that is an input / output current of the first power storage;
A second power storage module, and a second power storage module having a second detection unit that detects a second current that is an input / output current of the second power storage;
A drive module having a drive unit that is driven by power supplied from at least one of the first capacitor and the second capacitor, and a third detection unit that detects a third current that is an input / output current of the drive unit;
A first path responsible for charge / discharge between the first capacitor and the second capacitor, a second path responsible for charge / discharge between the first capacitor and the drive unit, and the second capacitor and the drive unit. A charge / discharge circuit having a third path for charge / discharge between
A drive unit comprising a control unit for controlling the charge and discharge,
The controller is
A first operation for comparing the first current and the second current in charging / discharging between the first capacitor and the second capacitor via the first path; and the first capacitor via the second path; A second operation for comparing the first current and the third current in charging / discharging between the driving units, and the second in charging / discharging between the second capacitor and the driving unit via the third path. A driving apparatus that determines a state of at least one detection unit among the first to third detection units based on a comparison result obtained from at least two operations among a third operation for comparing a current and the third current.
請求項1に記載の駆動装置であって、
前記制御部は、前記第1〜第3動作の全てより得た比較結果に基づき、前記第1〜第3検出部のうち少なくとも1つの検出部の状態を判定する、駆動装置。
The drive device according to claim 1,
The said control part is a drive device which determines the state of at least 1 detection part among the said 1st-3rd detection parts based on the comparison result obtained from all of the said 1st-3rd operation | movement.
請求項2に記載の駆動装置であって、
前記制御部は、前記第1〜第3動作の全てより得た比較結果に基づき、前記第1〜第3検出部のうち2つの検出部の状態を判定する、駆動装置。
The drive device according to claim 2,
The said control part is a drive device which determines the state of two detection parts among the said 1st-3rd detection parts based on the comparison result obtained from all of the said 1st-3rd operation | movement.
請求項1から3のいずれか1項に記載の駆動装置であって、
前記比較結果は、比較する2つの検出部の検出値が略同一か又は所定の相関を有するか否かを前記制御部が判別した結果である、駆動装置。
The drive device according to any one of claims 1 to 3,
The comparison result is a drive device in which the control unit determines whether the detection values of the two detection units to be compared are substantially the same or have a predetermined correlation.
請求項4に記載の駆動装置であって、
前記相関は、前記比較する2つの検出部の間の前記充放電回路における電圧変換率に基づく、駆動装置。
The drive device according to claim 4,
The said correlation is a drive device based on the voltage conversion rate in the said charging / discharging circuit between the two detection parts to compare.
請求項4又は5に記載の駆動装置であって、
前記制御部は、前記第1〜第3動作のうち少なくとも2つの動作より得た比較結果に、検出値が略同一又は前記相関を有する結果と、検出値が略同一でもなく前記相関も有さない結果とが含まれる場合、前記第1〜第3検出部のうちいずれか1つが故障と判定する、駆動装置。
The drive device according to claim 4 or 5,
The control unit has a comparison result obtained from at least two of the first to third operations, a detection value substantially the same or a result having the correlation, and the detection value is not substantially the same and has the correlation. If any result is not included, the driving device determines that one of the first to third detection units is a failure.
請求項4から6のいずれか1項に記載の駆動装置であって、
前記制御部は、前記第1〜第3動作のうち少なくとも2つの動作より得た比較結果に、検出値が略同一又は前記相関を有する結果が2つ含まれる場合、前記第1〜第3検出部が正常と判定する、駆動装置。
The drive device according to any one of claims 4 to 6,
When the comparison result obtained from at least two of the first to third operations includes two results having substantially the same detection value or the correlation, the control unit performs the first to third detections. The drive device that determines that the unit is normal.
請求項4から7のいずれか1項に記載の駆動装置であって、
前記制御部は、前記第1〜第3動作の全てより得た比較結果に、検出値が略同一又は前記相関を有する2つの結果と、検出値が略同一でもなく前記相関も有さない1つの結果が含まれる場合、前記第1〜第3検出部のうち2つが故障と判定する、駆動装置。
The drive device according to any one of claims 4 to 7,
The control unit has two comparison results obtained from all of the first to third operations, the detection value is substantially the same or two results having the correlation, and the detection value is not substantially the same and has no correlation 1 When two results are included, the driving device determines that two of the first to third detection units are faulty.
請求項1から8のいずれか1項に記載の駆動装置であって、
前記制御部は、前記第1〜第3検出部のうち少なくとも1つの検出部の状態の判定に基づき、前記第1〜第3検出部のうち少なくとも1つの検出部の正常判定又は故障確定若しくは較正を行う、駆動装置。
The drive device according to any one of claims 1 to 8,
Based on the determination of the state of at least one of the first to third detection units, the control unit determines whether the at least one detection unit of the first to third detection units is normal or has a failure confirmed or calibrated. Do the driving device.
請求項1から9のいずれか1項に記載の駆動装置であって、
前記第2蓄電器は、前記第1蓄電器に比べて、出力重量密度が優れ、かつ、エネルギー重量密度が劣る、駆動装置。
The drive device according to any one of claims 1 to 9,
The second battery is a drive device that has an excellent output weight density and an inferior energy weight density compared to the first battery.
請求項1から10のいずれか1項に記載の駆動装置を有する、輸送機器。   A transport device comprising the drive device according to claim 1. 第1蓄電器、及び該第1蓄電器の入出力電流である第1電流を検出する第1検出部を有する第1蓄電モジュールと、
第2蓄電器、及び該第2蓄電器の入出力電流である第2電流を検出する第2検出部を有する第2蓄電モジュールと、
前記第1蓄電器及び前記第2蓄電器の少なくとも一方から供給される電力により駆動する駆動部、並びに該駆動部の入出力電流である第3電流を検出する第3検出部を有する駆動モジュールと、
前記第1蓄電器と前記第2蓄電器の間の充放電を担う第1経路と、前記第1蓄電器と前記駆動部の間の充放電を担う第2経路と、前記第2蓄電器と前記駆動部の間の充放電を担う第3経路と、を有する充放電回路と、
前記充放電を制御する制御部と、を備えた駆動装置が行う制御方法であって、
前記制御部は、
前記第1経路を介した前記第1蓄電器と前記第2蓄電器の間の充放電における前記第1電流及び前記第2電流を比較する第1動作、前記第2経路を介した前記第1蓄電器と前記駆動部の間の充放電における前記第1電流及び前記第3電流を比較する第2動作、及び前記第3経路を介した前記第2蓄電器と前記駆動部の間の充放電における前記第2電流及び前記第3電流を比較する第3動作のうち少なくとも2つの動作より得た比較結果に基づき、前記第1〜第3検出部のうち少なくとも1つの検出部の状態を判定する、制御方法。
A first power storage module, and a first power storage module having a first detection unit that detects a first current that is an input / output current of the first power storage;
A second power storage module, and a second power storage module having a second detection unit that detects a second current that is an input / output current of the second power storage;
A drive module having a drive unit that is driven by power supplied from at least one of the first capacitor and the second capacitor, and a third detection unit that detects a third current that is an input / output current of the drive unit;
A first path responsible for charge / discharge between the first capacitor and the second capacitor, a second path responsible for charge / discharge between the first capacitor and the drive unit, and the second capacitor and the drive unit. A charge / discharge circuit having a third path for charge / discharge between
A control method performed by a driving device including a control unit that controls the charge and discharge,
The controller is
A first operation for comparing the first current and the second current in charging / discharging between the first capacitor and the second capacitor via the first path; and the first capacitor via the second path; A second operation for comparing the first current and the third current in charging / discharging between the driving units, and the second in charging / discharging between the second capacitor and the driving unit via the third path. A control method for determining a state of at least one detection unit among the first to third detection units based on a comparison result obtained from at least two operations among a third operation for comparing a current and the third current.
JP2016003524A 2016-01-12 2016-01-12 Drive device, transportation device and control method Expired - Fee Related JP6713284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016003524A JP6713284B2 (en) 2016-01-12 2016-01-12 Drive device, transportation device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016003524A JP6713284B2 (en) 2016-01-12 2016-01-12 Drive device, transportation device and control method

Publications (2)

Publication Number Publication Date
JP2017125700A true JP2017125700A (en) 2017-07-20
JP6713284B2 JP6713284B2 (en) 2020-06-24

Family

ID=59364136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016003524A Expired - Fee Related JP6713284B2 (en) 2016-01-12 2016-01-12 Drive device, transportation device and control method

Country Status (1)

Country Link
JP (1) JP6713284B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099033A (en) * 2005-10-03 2007-04-19 Mazda Motor Corp Error detecting device of current sensor
JP2013090474A (en) * 2011-10-19 2013-05-13 Toyota Motor Corp Power storage system and method for detecting abnormality in current sensor
JP2013187108A (en) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd Fuel cell system and fuel cell system control device
JP2013257297A (en) * 2012-06-14 2013-12-26 Nissan Motor Co Ltd Intermediate seizure diagnostic apparatus
JP2014241224A (en) * 2013-06-11 2014-12-25 イーメックス株式会社 Hybrid battery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099033A (en) * 2005-10-03 2007-04-19 Mazda Motor Corp Error detecting device of current sensor
JP2013090474A (en) * 2011-10-19 2013-05-13 Toyota Motor Corp Power storage system and method for detecting abnormality in current sensor
JP2013187108A (en) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd Fuel cell system and fuel cell system control device
JP2013257297A (en) * 2012-06-14 2013-12-26 Nissan Motor Co Ltd Intermediate seizure diagnostic apparatus
JP2014241224A (en) * 2013-06-11 2014-12-25 イーメックス株式会社 Hybrid battery system

Also Published As

Publication number Publication date
JP6713284B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP5775935B2 (en) Battery system monitoring device and power storage device including the same
JP6600586B2 (en) DRIVE DEVICE, TRANSPORTATION DEVICE, AND CONTROL METHOD
US10386400B2 (en) Abnormality detection device and method for insulation and welding
JP5753764B2 (en) Battery system monitoring device and power storage device including the same
JP6412847B2 (en) Power storage device and control method
JP6214609B2 (en) Drive device
CN103958262B (en) The charging unit of elec. vehicle
JP6343599B2 (en) Drive device
JP5796457B2 (en) Battery system and battery system control method
US10439405B2 (en) Power storage apparatus, transport device, and control method
JP2011069720A (en) Power supply device for vehicle and vehicle to which power supply device is mounted
JP5780107B2 (en) Power storage system and method for detecting current sensor abnormality
JP6251136B2 (en) Battery system monitoring device and power storage device including the same
JP6194344B2 (en) Driving device and transportation equipment
US10158246B2 (en) Energy storage device, transport apparatus, and control method
JP6713283B2 (en) Power storage device, transportation device, and control method
JP6170984B2 (en) Power storage device, transport device and control method
JP2012138278A (en) Controller of power supply and control method of power supply
US10439544B2 (en) Drive system, transporter, and control method performed by drive system
JP6713284B2 (en) Drive device, transportation device and control method
JP6600587B2 (en) DRIVE DEVICE, TRANSPORTATION DEVICE, AND CONTROL METHOD
JP6335860B2 (en) DRIVE DEVICE, ITS CONTROL METHOD, AND TRANSPORTATION DEVICE
JP6322620B2 (en) DRIVE DEVICE, TRANSPORTATION DEVICE, AND CONTROL METHOD
JP2017118658A (en) Drive device, transport equipment and control method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200603

R150 Certificate of patent or registration of utility model

Ref document number: 6713284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees