JP2017120255A - Circular polarization irradiator, analyzer, and microscope - Google Patents

Circular polarization irradiator, analyzer, and microscope Download PDF

Info

Publication number
JP2017120255A
JP2017120255A JP2016236414A JP2016236414A JP2017120255A JP 2017120255 A JP2017120255 A JP 2017120255A JP 2016236414 A JP2016236414 A JP 2016236414A JP 2016236414 A JP2016236414 A JP 2016236414A JP 2017120255 A JP2017120255 A JP 2017120255A
Authority
JP
Japan
Prior art keywords
polarized light
light
circularly polarized
polarization
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016236414A
Other languages
Japanese (ja)
Other versions
JP6784396B2 (en
Inventor
裕巳 岡本
Hiromi Okamoto
裕巳 岡本
成島 哲也
Tetsuya Narishima
哲也 成島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Natural Sciences
Original Assignee
National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Natural Sciences filed Critical National Institute of Natural Sciences
Publication of JP2017120255A publication Critical patent/JP2017120255A/en
Application granted granted Critical
Publication of JP6784396B2 publication Critical patent/JP6784396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circular polarization irradiator capable of generating and emitting circular polarization in which a linear polarization component is not mixed, and provide an analyzer and microscope using the irradiation unit.SOLUTION: A circular polarization irradiation unit 1 includes: a light source 10; a polarization separation unit 12 for dividing linear polarization emitted from the light source 10 or linear polarization L2 taken out of light L1 emitted from the light source 10 into an x-axis component L2x and a y-axis component L2y; a light block unit 13 for alternately blocking the x-axis component L2x and y-axis component L2y of the linear polarization divided by the polarization separation unit 12; a polarization combining unit 14 for coaxially combining the x-axis component L2x and y-axis component L2y of the linear polarization passing through the light block unit 13; and a polarization conversion unit 15 for converting linear polarization L3 emitted from the polarization combining unit 14 into circular polarization L4. The circular polarization irradiation unit is mounted on an analyzer or microscope.SELECTED DRAWING: Figure 1

Description

本発明は、円偏光を出射する光照射器と、この光照射器を備える分析装置及び顕微鏡に関する。より詳しくは、試料に対して円偏光を照射し、円二色性などの光学特性を測定する技術に関する。   The present invention relates to a light irradiator that emits circularly polarized light, and an analyzer and a microscope including the light irradiator. More specifically, the present invention relates to a technique for irradiating a sample with circularly polarized light and measuring optical characteristics such as circular dichroism.

円二色性(CD:Circular Dichroism)は、左円偏光と右円偏光とで吸収が異なる現象であり、左右円偏光の吸収の差で表される。この円二色性は、光学活性を有する物質特有の性質であり、光学活性物質の分析、光学異性体の存在率の測定、生体分子の構造や状態の解析などに利用されている(例えば、特許文献1、2参照。)。   Circular dichroism (CD: Circular Dichroism) is a phenomenon in which absorption is different between left circularly polarized light and right circularly polarized light, and is represented by a difference in absorption between left and right circularly polarized light. This circular dichroism is a property peculiar to substances having optical activity, and is used for analysis of optically active substances, measurement of the abundance of optical isomers, analysis of structures and states of biomolecules (for example, (See Patent Documents 1 and 2.)

一般に、円二色性分散計は、光弾性変調器などにより左円偏光と右円偏光を周期的に発生させて試料に照射し、試料を透過した透過光の強度を、変調周波数に同期させて検出する。また、従来、左右円偏光を照射して、試料から放射される蛍光を検出する円二色性蛍光顕微鏡(特許文献3参照)や、円二色性の光電子前方散乱ピークで形成される光電子回折パターンを検出する立体原子顕微鏡(特許文献4)も提案されている。   In general, a circular dichroism dispersometer periodically generates left circularly polarized light and right circularly polarized light with a photoelastic modulator or the like and irradiates the sample, and synchronizes the intensity of transmitted light transmitted through the sample with the modulation frequency. To detect. Conventionally, a circular dichroism fluorescence microscope (see Patent Document 3) that detects left and right circularly polarized light to detect fluorescence emitted from a sample, and photoelectron diffraction formed by a circular dichroism photoelectron forward scattering peak. A stereo atomic microscope (Patent Document 4) for detecting a pattern has also been proposed.

一方、前述した円二色性計測において、試料が直線偏光に対する二色性や複屈折などの円二色性以外の偏光特性を有する場合、円偏光変調に非線形性や位相歪みがあると、この円二色性以外の偏光特性が円二色性信号に混入し、アーティファクトが生じる。特に、試料が、液晶や結晶などの固体の場合や、膜、ミセル及びゲルなどの巨視的な異方性をもつ場合は、直線偏光に対するアーティファクトの影響が大きい。   On the other hand, in the circular dichroism measurement described above, when the sample has polarization characteristics other than circular dichroism such as dichroism or birefringence for linearly polarized light, if there is nonlinearity or phase distortion in circular polarization modulation, Polarization characteristics other than circular dichroism are mixed in the circular dichroic signal, resulting in artifacts. In particular, when the sample is a solid such as a liquid crystal or a crystal or has a macroscopic anisotropy such as a film, a micelle, or a gel, the influence of the artifact on the linearly polarized light is large.

図12は従来の円偏光照射器の構成例を示す模式図である。図12に示すように、従来の円二色性計測に用いられている円偏光照射器は、光源100から出射した光を直線偏光子101に入射させて直線偏光を取り出し、それを光弾性変調器102により左円偏光又は右円偏光に変調している。   FIG. 12 is a schematic diagram showing a configuration example of a conventional circularly polarized irradiator. As shown in FIG. 12, the circularly polarized irradiator used in the conventional circular dichroism measurement makes light emitted from the light source 100 incident on a linear polarizer 101 to extract linearly polarized light, which is photoelastically modulated. Modulator 102 modulates left circularly polarized light or right circularly polarized light.

しかしながら、通常、光弾性変調器で生成される光は、例えば90°と270°などのように特定の位相では左又は右偏光状態となるが、それ以外の位相では直線偏光又は直線偏光を含む楕円偏光状態となっている。このため、従来の装置では、直線偏光の混入がない純粋な左右円偏光を試料に照射することができず、固体試料や巨視的な異方性を持つ試料の円二色性を高精度で計測することは困難とされている。   However, typically, light generated by a photoelastic modulator is left or right polarized at certain phases, such as 90 ° and 270 °, but contains linear or linear polarization at other phases. It is in an elliptically polarized state. For this reason, the conventional apparatus cannot irradiate the sample with pure left and right circularly polarized light that does not contain linearly polarized light, and the circular dichroism of a solid sample or a sample having macroscopic anisotropy can be accurately obtained. It is considered difficult to measure.

従来、円二色性計測においてアーティファクトを取り除く技術としては、例えば固体試料については、試料を回転したり、裏返して両面を測定したりする方法が提案されている(特許文献5参照)。また、光位相変調器において直線偏光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差の最大値δが1/4λ<δとなるように位相差に変調を加える円偏光光源システムも提案されている(特許文献6参照)。 Conventionally, as a technique for removing artifacts in circular dichroism measurement, for example, for a solid sample, a method of rotating the sample or turning it over and measuring both sides has been proposed (see Patent Document 5). Further, in the optical phase modulator, the phase difference is set so that the maximum value δ 0 of the phase difference between two polarization components having a vibration plane different from that of the linearly polarized light and orthogonal to each other is 1 / 4λ <δ 0. A circularly polarized light source system for applying modulation has also been proposed (see Patent Document 6).

特開2001−13064号公報JP 2001-13064 A 国際公開第2006/085606号International Publication No. 2006/085606 国際公開第2007/088947号International Publication No. 2007/088947 特開2002−139466号公報JP 2002-139466 A 特開2002−122477号公報JP 2002-122477 A 特開2013−217702号公報JP 2013-217702 A

しかしながら、前述したアーティファクト除去技術には、以下に示す問題点がある。例えば、特許文献5に記載の測定方法は、回転や反転させることが困難な試料や装置には適用できない。また、特許文献6に記載の円偏光光源システムは、位相差変調が行われた光に含まれる水平偏光成分の光の出力がゼロとなるタイミングでゲートを開き、光を通過させているが、ゲート幅を最短にしても数%程度水平偏光成分が残っており、完全に純粋な円偏光照射は実現できていない。   However, the artifact removal technique described above has the following problems. For example, the measurement method described in Patent Document 5 cannot be applied to a sample or an apparatus that is difficult to rotate or reverse. Further, the circularly polarized light source system described in Patent Document 6 opens the gate at a timing when the output of the light of the horizontally polarized component contained in the light subjected to phase difference modulation becomes zero, and allows the light to pass through. Even when the gate width is made the shortest, a horizontal polarization component remains about several percent, and a completely pure circularly polarized light irradiation cannot be realized.

そこで、本発明は、直線偏光成分の混入のない円偏光を生成し出射することができる円偏光照射器、並びにこれを用いた分析装置及び顕微鏡を提供することを目的とする。   Accordingly, an object of the present invention is to provide a circularly polarized light irradiator capable of generating and emitting circularly polarized light free from the mixing of linearly polarized light components, and an analyzer and a microscope using the same.

本発明に係る円偏光照射器は、光源と、前記光源から出射された直線偏光又は前記光源から出射された光から取り出された直線偏光を、x軸方向成分とy軸方向成分とに分ける偏光分離部と、前記偏光分離部で分離された直線偏光のx軸方向成分とy軸方向成分とを交互に遮断する光遮断部と、前記光遮断部を通過した直線偏光のx軸方向成分とy軸方向成分とを同軸に合成する偏光合成部と、前記偏光合成部から出射された直線偏光を円偏光に変換する偏光変換部を有する。
この円偏光照射器は、前記偏光変換部から、右円偏光と左円偏光を交互にかつ連続的に出射することができる。
本発明の円偏光照射器は、前記光源と前記偏光分離部との間に、前記光源から出射された光から直線偏光を取り出す偏光子部が設けられていてもよい。
前記偏光分離部は、入射時の光軸に対して、前記直線偏光のx軸方向成分及びy軸方向成分のいずれか一方若しくは両方の光軸を変位又は角度変化させる光学素子を備えていてもよい。
前記光遮断部は、光チョッパを備えていてもよい。
前記光源としては、例えば平行光を出射するものを使用することができる。
The circularly polarized light irradiator according to the present invention divides a light source and linearly polarized light emitted from the light source or linearly polarized light extracted from the light emitted from the light source into an x-axis direction component and a y-axis direction component. A separating unit, a light blocking unit that alternately blocks the x-axis direction component and the y-axis direction component of the linearly polarized light separated by the polarization separating unit, and an x-axis direction component of the linearly polarized light that has passed through the light blocking unit, a polarization combining unit that coaxially combines the y-axis direction component; and a polarization conversion unit that converts linearly polarized light emitted from the polarization combining unit into circularly polarized light.
This circularly polarized light irradiator can emit right circularly polarized light and left circularly polarized light alternately and continuously from the polarization converter.
In the circularly polarized light irradiator of the present invention, a polarizer unit that extracts linearly polarized light from light emitted from the light source may be provided between the light source and the polarization separation unit.
The polarization separation unit may include an optical element that displaces or changes an angle of one or both of the x-axis direction component and the y-axis direction component of the linearly polarized light with respect to the incident optical axis. Good.
The light blocking unit may include a light chopper.
As the light source, for example, a light source that emits parallel light can be used.

本発明に係る分析装置は、前述した円偏光照射器を備えるものであり、前記円偏光照射器から出射された円偏光を試料に照射し、前記試料の光学特性を測定する。
本発明の分析装置は、前記試料からの透過光、反射光、散乱光又は発光を電気信号として検出する1又は2以上の光検出器を備えていてもよい。
更に、前記光検出器で検出された電気信号から円二色性信号を得る円二色性検出部を設けることもできる。
その場合、前記光検出器で透過光を検出し、前記円二色性検出部において、前記透過光の電気信号を、前記円偏光における左右円偏光変調の位相でロックイン検出を行い、前記透過光における左円偏光と右円偏光の相対的な強度差を求め、円二色性信号を得てもよい。
The analyzer according to the present invention includes the above-described circularly polarized light irradiator, irradiates the sample with circularly polarized light emitted from the circularly polarized light irradiator, and measures the optical characteristics of the sample.
The analyzer of the present invention may include one or more photodetectors that detect transmitted light, reflected light, scattered light, or light emission from the sample as an electrical signal.
Furthermore, a circular dichroism detection unit that obtains a circular dichroism signal from the electrical signal detected by the photodetector can be provided.
In this case, transmitted light is detected by the photodetector, and the circular dichroism detection unit performs lock-in detection on the electrical signal of the transmitted light with the phase of left-right circular polarization modulation in the circularly polarized light, and transmits the transmitted light. A circular dichroism signal may be obtained by obtaining a relative intensity difference between left circularly polarized light and right circularly polarized light in light.

本発明に係る顕微鏡は、前述した円偏光照射器を備えるものであり、観察対象の試料に、前記円偏光照射器から出射された円偏光を照射する。
この顕微鏡は、前記試料からの透過光を捕集する対物レンズと、前記対物レンズから出射した透過光を結像させる結像レンズと、前記透過光を電気信号として検出する光検出器と、前記光検出器で検出された電気信号から円二色性信号を得る円二色性検出部を備えていてもよい。
その場合、前記円二色性検出部は、例えば前記電気信号を、前記円偏光における左右円偏光変調の位相でロックイン検出を行い、前記透過光における左円偏光と右円偏光の相対的な強度差を求め、円二色性信号を得ることもできる。
本発明の顕微鏡は、前記透過光の結像位置にピンホールを設け、前記ピンホールを通過した光を前記光検出器で検出してもよい。
本発明の顕微鏡は、前記試料に対して前記円偏光を相対的に走査しながら照射することもできる。
A microscope according to the present invention includes the circularly polarized illuminator described above, and irradiates a sample to be observed with circularly polarized light emitted from the circularly polarized irradiator.
The microscope includes an objective lens that collects transmitted light from the sample, an imaging lens that forms an image of transmitted light emitted from the objective lens, a photodetector that detects the transmitted light as an electrical signal, You may provide the circular dichroism detection part which acquires a circular dichroism signal from the electric signal detected with the photodetector.
In that case, for example, the circular dichroism detection unit performs lock-in detection on the electrical signal at the phase of left-right circular polarization modulation in the circularly polarized light, and relative to the left circularly polarized light and the right circularly polarized light in the transmitted light. It is also possible to obtain an intensity difference and obtain a circular dichroism signal.
In the microscope of the present invention, a pinhole may be provided at the image forming position of the transmitted light, and the light passing through the pinhole may be detected by the photodetector.
The microscope of the present invention can also irradiate the sample while scanning the circularly polarized light relatively.

本発明によれば、試料に対して直線偏光成分の混入のない円偏光を照射することができるため、巨視的な異方性を有するものについてもアーティファクトの影響を抑えた円二色性の測定が可能となる。   According to the present invention, it is possible to irradiate a sample with circularly polarized light that does not contain linearly polarized light components. Therefore, even for those having macroscopic anisotropy, circular dichroism measurement with suppressed influence of artifacts is achieved. Is possible.

本発明の第1の実施形態の円偏光照射器の構成を示す概念図である。It is a conceptual diagram which shows the structure of the circularly polarized light irradiator of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例の円偏光照射器の構成を示す概念図である。It is a conceptual diagram which shows the structure of the circularly polarized light irradiator of the modification of the 1st Embodiment of this invention. 図2に示す円偏光照射器の具体的構成例を模式的に示す図である。It is a figure which shows typically the example of a specific structure of the circularly polarized light irradiator shown in FIG. Aは図3に示す円偏光照射器2の光路例を示す上面図であり、Bは光チョッパ23への入射位置を示す模式図である。A is a top view showing an example of an optical path of the circularly polarized irradiator 2 shown in FIG. 3, and B is a schematic diagram showing an incident position on the optical chopper 23. Aは光軸変位素子22の代わりに光軸角度変更素子を用いた場合の光路例を示す上面図であり、Bは光チョッパ23への入射位置を示す模式図である。A is a top view showing an example of an optical path when an optical axis angle changing element is used instead of the optical axis displacement element 22, and B is a schematic view showing an incident position on the optical chopper 23. 本発明の第2の実施形態の分析装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the analyzer of the 2nd Embodiment of this invention. Aは円偏光に変換する前の直線偏光L3の光強度を示し、Bは円偏光照射器1から出射された円偏光L4の光強度を示し、Cは試料3が円二色性を有しない場合の検出信号を示し、Dは試料3が円二色性を有する場合の検出信号を示す図である。A shows the light intensity of the linearly polarized light L3 before being converted into circularly polarized light, B shows the light intensity of the circularly polarized light L4 emitted from the circularly polarized illuminator 1, and C shows that the sample 3 does not have circular dichroism. Is a diagram showing a detection signal when the sample 3 has circular dichroism. 本発明の第3の実施形態の顕微鏡の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the microscope of the 3rd Embodiment of this invention. Aはクロム膜の透過光像であり、Bは本発明の顕微鏡を用いて撮影したクロム膜の円二色性像であり、CはBの中央付近のラインプロファイルである。A is a transmitted light image of the chromium film, B is a circular dichroic image of the chromium film photographed using the microscope of the present invention, and C is a line profile near the center of B. Aは二次元金属ナノ構造体の電子顕微鏡写真であり、Bは透過光像であり、Cは本発明の顕微鏡を用いて撮影した円二色性像である。A is an electron micrograph of a two-dimensional metal nanostructure, B is a transmitted light image, and C is a circular dichroism image photographed using the microscope of the present invention. Aは有機物結晶(1,8−Dihydroxyanthraquinone)の透過像であり、Bは円二色性像である。A is a transmission image of an organic crystal (1,8-Dihydroxyanthraquinone), and B is a circular dichroic image. 従来の円偏光照射器の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the conventional circularly polarized light irradiator.

以下、本発明を実施するための形態について、添付の図面を参照して、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments described below.

(第1の実施形態)
先ず、本発明の第1の実施形態に係る円偏光照射器について説明する。図1は本実施形態の円偏光照射器の構成を示す概念図であり、図2はその変形例に係る円偏光照射器の構成を示す概念図である。また、図3は図2に示す円偏光照射器の具体的構成例を模式的に示す図である。
(First embodiment)
First, the circularly polarized light irradiator according to the first embodiment of the present invention will be described. FIG. 1 is a conceptual diagram showing a configuration of a circularly polarized irradiator of this embodiment, and FIG. 2 is a conceptual diagram showing a configuration of a circularly polarized irradiator according to a modification thereof. FIG. 3 is a diagram schematically showing a specific configuration example of the circularly polarized light irradiator shown in FIG.

図1に示すように、本実施形態の円偏光照射器1は、円偏光を照射するものであり、少なくとも、光源10、偏光分離部12、光遮断部13、偏光合成部14及び偏光変換部15を備えている。また、本実施形態の円偏光照射器には、図2に示すように、光源10と偏光分離部12との間に、偏光子部11やその他の光学素子が設けられていてもよい。   As shown in FIG. 1, the circularly polarized irradiator 1 of the present embodiment irradiates circularly polarized light, and includes at least a light source 10, a polarization separation unit 12, a light blocking unit 13, a polarization combining unit 14, and a polarization conversion unit. 15 is provided. Further, in the circularly polarized light irradiator of this embodiment, as shown in FIG. 2, a polarizer unit 11 and other optical elements may be provided between the light source 10 and the polarization separation unit 12.

[光源10]
光源10は、試料の種類や検出光の波長などに応じて適宜選択することができ、例えば固体レーザや半導体レーザ(LD:laser diode)などの各種レーザ、発光ダイオード(LED:Light Emitting Diode)などの発光素子、各種放電管、白熱灯光源を適切に処理したもの、放射光(特に短波長)を使用することができる。光の利用効率、輝度、集光性などの観点から、光源10はレーザなどのコリメートされた光(平行光)を出射するものであることが好ましい。
[Light source 10]
The light source 10 can be appropriately selected according to the type of sample, the wavelength of detection light, and the like. For example, various lasers such as a solid laser and a semiconductor laser (LD: laser diode), a light emitting diode (LED), and the like. The light emitting element, various discharge tubes, appropriately processed incandescent lamp light sources, and radiated light (especially short wavelength) can be used. The light source 10 preferably emits collimated light (parallel light) such as a laser from the viewpoints of light utilization efficiency, luminance, light condensing performance, and the like.

[偏光子部11]
偏光子部11は、光源10から出射された光L1から直線偏光L2を取り出すものであり、必要に応じて光源10と偏光分離部12との間の光L1の光軸上に配置される。ここで、光源10から出射された光L1が直線偏光以外の成分を含む場合だけでなく、光源10から出射された光L1が直線偏光のみである場合にも、偏光成分の調整などのために、光源10と偏光分離部12との間に偏光子部11を配置することもできる。
[Polarizer 11]
The polarizer unit 11 extracts linearly polarized light L2 from the light L1 emitted from the light source 10, and is disposed on the optical axis of the light L1 between the light source 10 and the polarization separation unit 12 as necessary. Here, not only when the light L1 emitted from the light source 10 includes a component other than linearly polarized light but also when the light L1 emitted from the light source 10 is only linearly polarized light, for adjustment of the polarization component, etc. The polarizer unit 11 may be disposed between the light source 10 and the polarization separation unit 12.

偏光子部11を構成する光学素子には、各種直線偏光子を用いることができる。直線偏光子の具体例としては、複屈折結晶を用いたグラントムソン、グランテーラー、グランレーザーなどの各種プリズム、プラスチックフィルムなどを用いた吸収型偏光フィルター、薄膜偏光素子、ワイヤグリッド型偏光子などが挙げられる。   Various optical polarizers can be used for the optical elements constituting the polarizer unit 11. Specific examples of linear polarizers include various prisms such as Glan-Thomson, Glan-Taylor, and Glan-Laser using birefringent crystals, absorption polarizing filters using plastic films, thin-film polarizing elements, wire grid polarizers, and the like. Can be mentioned.

なお、円偏光照射器1から出射される円偏光L4の左円偏光と右円偏光のバランスがずれていると、円二色性計測などに用いた場合に、得られる円二色性信号にオフセットが生じることがある。そこで、左円偏光と右円偏光の強度が一致した円偏光L4を出射するため、偏光子部11を構成する光学素子には、回転などによって直線偏光L2における縦と横の偏光成分の比率を調整できるものを用いることが好ましい。   If the left circularly polarized light and right circularly polarized light of the circularly polarized light L4 emitted from the circularly polarized light irradiator 1 are out of balance, the circular dichroism signal obtained when used for circular dichroism measurement or the like is used. An offset may occur. Therefore, in order to emit the circularly polarized light L4 in which the intensity of the left circularly polarized light and the right circularly polarized light coincides, the optical element constituting the polarizer unit 11 has a ratio of the vertical and horizontal polarization components in the linearly polarized light L2 by rotation or the like. What can be adjusted is preferably used.

[偏光分離部12]
偏光分離部12は、光源10から出射された直線偏光L2又は偏光子部11で取り出された直線偏光L2を、x軸方向成分L2xとy軸方向成分L2yとに分離するものであり、直線偏光L2の光軸上に配置されている。この偏光分離部12では、例えば直線偏光L2の入射時の光軸に対して、x軸方向成分L2x及びy軸方向成分L2yのいずれか一方若しくは両方の光軸を変位させるか又は光軸の角度(進行方向)を変化させる。
[Polarization separation unit 12]
The polarization separation unit 12 separates the linearly polarized light L2 emitted from the light source 10 or the linearly polarized light L2 extracted by the polarizer unit 11 into an x-axis direction component L2x and a y-axis direction component L2y. It is arranged on the optical axis of L2. In the polarization separation unit 12, for example, one or both of the x-axis direction component L2x and the y-axis direction component L2y are displaced with respect to the optical axis when the linearly polarized light L2 is incident, or the angle of the optical axis Change the direction of travel.

偏光分離部12を構成する光学素子としては、例えば方解石を用いた偏波ビームディスプレーサ(PBD:Polarizing beam displacer)、ウォラストンプリズム、グランテーラープリズム、グランレーザプリズム、ローションプリズム、サヴァール板、偏光ビームスプリッタ(PBS:Polarizing Beam Splitter)などが挙げられる。これらの光学素子のうち、偏波ビームディスプレーサ及びサヴァール板は光軸変位素子22であり、その他の素子は光軸角度変更素子である。   As an optical element constituting the polarization separation unit 12, for example, a polarizing beam displacer (PBD) using calcite, a Wollaston prism, a Grand Taylor prism, a Grand laser prism, a lotion prism, a Savart plate, a polarizing beam splitter (PBS: Polarizing Beam Splitter). Among these optical elements, the polarization beam displacer and the savar plate are the optical axis displacement elements 22, and the other elements are optical axis angle changing elements.

偏光分離部12を構成する光学素子は、直線偏光L2をx軸方向成分L2xとy軸方向成分L2yとに分離可能なものであればよく、その種類や数は特に限定されるものではない。例えば、直線偏光L2を分離する光学素子の偏光消光比が低い場合は、分離されたx軸方向成分L2x及びy軸方向成分L2yの各光軸上に高い消光比をもつ直線偏光子を配置することで、偏光消光比が高い分離素子を用いた場合と同等の効果を得ることができる。ただし、部品数低減などの観点から、偏光分離部12を構成する光学素子には、高い偏光消光比で直線偏光中の成分を分離するものを用いることが好ましい。   The optical element that constitutes the polarization separation unit 12 is not particularly limited as long as it can separate the linearly polarized light L2 into the x-axis direction component L2x and the y-axis direction component L2y. For example, when the polarization extinction ratio of the optical element that separates the linearly polarized light L2 is low, a linear polarizer having a high extinction ratio is disposed on each optical axis of the separated x-axis direction component L2x and y-axis direction component L2y. Thus, an effect equivalent to that obtained when a separation element having a high polarization extinction ratio is used can be obtained. However, from the viewpoint of reducing the number of components, it is preferable to use an optical element that constitutes the polarization separation unit 12 that separates components in linearly polarized light with a high polarization extinction ratio.

[光遮断部13]
光遮断部13は、偏光分離部12で分離された直線偏光のx軸方向成分L2x及びy軸方向成分L2yの光軸上に配置され、x軸方向成分L2x及びy軸方向成分L2yを交互に遮断するものである。この光遮断部13を構成する光学素子としては、光チョッパ23や光シャッターなどのように光を物理的に遮断するものが好ましいが、これらに限定されるものではなく、電気光学素子や音響光学素子、液晶偏光素子などを使用してもよい。
[Light blocking unit 13]
The light blocking unit 13 is disposed on the optical axis of the x-axis direction component L2x and the y-axis direction component L2y of the linearly polarized light separated by the polarization separation unit 12, and alternately converts the x-axis direction component L2x and the y-axis direction component L2y. It is a thing to cut off. The optical element constituting the light blocking unit 13 is preferably an optical element that physically blocks light, such as the optical chopper 23 or an optical shutter, but is not limited thereto, and is not limited thereto. An element, a liquid crystal polarizing element, or the like may be used.

また、光遮断部13に光チョッパ23を用いる場合は、動作時の振動が他の光学素子に影響しないように、光遮断部13は他の光学素子とは分離し、独立配置することが好ましい。更に、光チョッパ23には、デューティ比が1〜49%程度のものを使用することが好ましい。これにより、x軸方向成分L2xとy軸方向成分L2yとが同時に光チョッパ23を通過することを防止し、光チョッパ23からこれらの成分を離散的に出射することが可能となる。   Further, when the optical chopper 23 is used for the light blocking unit 13, it is preferable that the light blocking unit 13 is separated from the other optical elements and arranged independently so that vibration during operation does not affect the other optical elements. . Furthermore, it is preferable to use a light chopper 23 having a duty ratio of about 1 to 49%. Thereby, the x-axis direction component L2x and the y-axis direction component L2y are prevented from passing through the optical chopper 23 at the same time, and these components can be emitted discretely from the optical chopper 23.

なお、光遮断部13は、x軸方向成分L2x及びy軸方向成分L2yの光軸上にそれぞれ1つずつ設けられていてもよく、また、1つの光遮断部13でx軸方向成分L2x及びy軸方向成分L2yの両方を遮断してもよい。   One light blocking unit 13 may be provided on each of the optical axes of the x-axis direction component L2x and the y-axis direction component L2y. Both y-axis direction components L2y may be blocked.

[偏光合成部14]
偏光合成部14は、光遮断部13を通過したx軸方向成分L2x及びy軸方向成分L2yを同軸に合成して同一光軸の直線偏光に戻すものであり、光遮断部13を通過したx軸方向成分L2x及びy軸方向成分L2yの光軸上に配置されている。この偏光合成部14では、例えば、光遮断部13を通過したx軸方向成分L2x及びy軸方向成分L2yのいずれか一方若しくは両方の光軸を変位させるか、又は光軸の角度(進行方向)を変化させる。これにより、x軸方向の直線偏光とy軸方向の直線偏光が離散的に繰り返す変調を有する直線偏光L3が得られる。
[Polarized light synthesis unit 14]
The polarization combining unit 14 is configured to coaxially combine the x-axis direction component L2x and the y-axis direction component L2y that have passed through the light blocking unit 13 to return to linearly polarized light of the same optical axis, and the x that has passed through the light blocking unit 13 Arranged on the optical axis of the axial component L2x and the y-axis component L2y. In this polarization beam combiner 14, for example, either or both of the x-axis direction component L2x and the y-axis direction component L2y that have passed through the light blocking unit 13 are displaced, or the angle of the optical axis (traveling direction). To change. Thereby, the linearly polarized light L3 having a modulation in which the linearly polarized light in the x-axis direction and the linearly polarized light in the y-axis direction are discretely repeated is obtained.

偏光合成部14を構成する光学素子としては、前述した偏光分離部12と同様に、例えば方解石を用いた偏波ビームディスプレーサ(PBD)、ウォラストンプリズム、グランテーラープリズム、グランレーザプリズム、ローションプリズム、サヴァール板、偏光ビームスプリッタ(PBS)などが挙げられる。なお、偏光合成部14に用いる光学素子と偏光分離部12に用いる光学素子は、同種の対をなすものであることが好ましいが、種類の異なる光学素子を組み合わせ使用することもできる。偏光合成部14に、偏光分離部12で用いた光学素子と光学特性が同じものを使用することにより、2つに分離させた直線偏光成分を容易に1本のビームに戻すことが可能となる。   As the optical element constituting the polarization combining unit 14, as in the polarization separation unit 12, for example, a polarization beam displacer (PBD) using calcite, a Wollaston prism, a Gran Taylor prism, a Grand laser prism, a lotion prism, Examples include a Savart plate and a polarizing beam splitter (PBS). The optical element used in the polarization combining unit 14 and the optical element used in the polarization separation unit 12 are preferably the same type of pair, but different types of optical elements can be used in combination. By using an optical element having the same optical characteristics as the optical element used in the polarization separating unit 12 for the polarization combining unit 14, the linearly polarized component separated into two can be easily returned to one beam. .

[偏光変換部15]
偏光変換部15は、偏光合成部14から出射された直線偏光L3を円偏光に変換するものであり、直線偏光L3の光軸上に配置されている。この偏光変換部15を構成する光学素子としては、例えば1/4波長板25、バビネ−ソレイユの補償板、液晶可変リターダなどの液晶偏光素子を用いることができる。x軸方向の直線偏光とy軸方向の直線偏光が離散的に繰り返す変調を有する直線偏光L3を、偏光変換部15で円偏光に変換することで、直線偏光成分を含まず、左円偏光と右円偏光が離散的に繰り返す変調を有する円偏光L4が得られる。
[Polarization converter 15]
The polarization conversion unit 15 converts the linearly polarized light L3 emitted from the polarization combining unit 14 into circularly polarized light, and is disposed on the optical axis of the linearly polarized light L3. As an optical element constituting the polarization conversion unit 15, for example, a liquid crystal polarizing element such as a quarter-wave plate 25, a Babinet-Soleil compensation plate, a liquid crystal variable retarder, or the like can be used. The linearly polarized light L3 having a modulation in which the linearly polarized light in the x-axis direction and the linearly polarized light in the y-axis direction are discretely repeated are converted into circularly polarized light by the polarization conversion unit 15, thereby not including the linearly polarized light component and Circularly polarized light L4 having a modulation in which the right circularly polarized light is discretely repeated is obtained.

[その他の光学素子]
光源10から直線偏光が出射される場合は、偏光子部11に代えて、光源10と偏光分離部12との間に半波長板(図示せず)を配置してもよい。半波長板は、直線偏光の偏光方向を変えるものであり、光源10から出射された直線偏光を、半波長板により適切な偏光方向に回転させてから偏光分離部12に入射させることで、左円偏光と右円偏光の強度が一致した円偏光L4を出射することができる。
[Other optical elements]
When linearly polarized light is emitted from the light source 10, a half-wave plate (not shown) may be disposed between the light source 10 and the polarization separation unit 12 instead of the polarizer unit 11. The half-wave plate changes the polarization direction of the linearly polarized light, and the linearly polarized light emitted from the light source 10 is rotated by the half-wave plate in an appropriate polarization direction and then incident on the polarization separation unit 12. Circularly polarized light L4 having intensities of circularly polarized light and right circularly polarized light can be emitted.

[動作]
次に、本実施形態の円偏光照射器の動作について、図3に示す円偏光照射器2を例に説明する。図3に示す円偏光照射器2は、レーザ光源20、直線偏光子21、光軸変位素子22、光チョッパ23、光軸変位素子24、1/4波長板25がこの順に配置されている。この円偏光照射器2では、先ず、レーザ光源20から出射された平行光L1は、偏光を揃えるため、直線偏光子21に入射される。
[Operation]
Next, the operation of the circularly polarized light irradiator of the present embodiment will be described using the circularly polarized light irradiator 2 shown in FIG. 3 as an example. In the circularly polarized light irradiator 2 shown in FIG. 3, a laser light source 20, a linear polarizer 21, an optical axis displacement element 22, an optical chopper 23, an optical axis displacement element 24, and a quarter wavelength plate 25 are arranged in this order. In this circularly polarized light irradiator 2, first, the parallel light L <b> 1 emitted from the laser light source 20 is incident on the linear polarizer 21 in order to align the polarization.

そして、直線偏光子21において、x軸又はy軸から45°方向の直線偏光L2が生成する。この直線偏光L2は、x軸方向とy軸方向に同じ強度をもつ2つの直線偏光状態を合成したものと考えられる。次に、光軸変位素子22により、直線偏光L2をx軸方向成分L2xとy軸方向成分L2yとに分離し、得られた2本の平行ビーム(x軸方向成分L2x及びy軸方向成分L2y)を、光チョッパ23などで交互に遮断する。   In the linear polarizer 21, linearly polarized light L2 in the direction of 45 ° from the x-axis or y-axis is generated. The linearly polarized light L2 is considered to be a combination of two linearly polarized light states having the same intensity in the x-axis direction and the y-axis direction. Next, the linearly polarized light L2 is separated into the x-axis direction component L2x and the y-axis direction component L2y by the optical axis displacement element 22, and the obtained two parallel beams (x-axis direction component L2x and y-axis direction component L2y). ) Are alternately blocked by the light chopper 23 or the like.

図4Aは図3に示す円偏光照射器2の光路例を示す上面図であり、図4Bは光チョッパ23への入射位置を示す模式図である。例えば、光軸変位素子22として偏波ビームディスプレーサを用いた場合、図4Aに示すように、直線偏光L2を光軸変位素子22に入射させると、x軸方向の直線偏光成分(x軸方向成分L2x)のみが入射時の光軸に対して光軸を平行に保ったまま変位し、出射される。一方、y軸方向の直線偏光成分(y軸方向成分L2y)は、光軸変位せず、入射時の光軸のまま出射される。   4A is a top view illustrating an example of an optical path of the circularly polarized irradiator 2 illustrated in FIG. 3, and FIG. 4B is a schematic diagram illustrating an incident position on the optical chopper 23. For example, when a polarization beam displacer is used as the optical axis displacement element 22, as shown in FIG. 4A, when linearly polarized light L2 is incident on the optical axis displacement element 22, a linearly polarized light component in the x-axis direction (x-axis direction component) Only L2x) is displaced while keeping the optical axis parallel to the optical axis at the time of incidence, and is emitted. On the other hand, the linearly polarized light component in the y-axis direction (y-axis direction component L2y) is emitted with the optical axis at the time of incidence without being displaced.

光軸変位素子22から出射されたx軸方向成分L2x及びy軸方向成分L2yは、光チョッパ23により交互に遮断され、光チョッパ23からはこれらの成分が離散的に出射される。その際、図4Bに示すように、x軸方向成分L2x及びy軸方向成分L2yは相互に近接した位置に入射するが、デューティ比が1〜49%程度の光チョッパ23を用いることで、x軸方向成分L2xとy軸方向成分L2yとが同時に光チョッパ23を通過することを防止できる。   The x-axis direction component L2x and the y-axis direction component L2y emitted from the optical axis displacement element 22 are alternately cut off by the optical chopper 23, and these components are discretely emitted from the optical chopper 23. At that time, as shown in FIG. 4B, the x-axis direction component L2x and the y-axis direction component L2y are incident on positions close to each other, but by using an optical chopper 23 having a duty ratio of about 1 to 49%, It is possible to prevent the axial component L2x and the y-axis component L2y from passing through the optical chopper 23 at the same time.

次に、光チョッパ23を通過したx軸方向成分L2x及びy軸方向成分L2yの両方を光軸変位素子24に入射させ、これら2つの平行ビームを再度同軸に戻す。例えば光軸変位素子24に偏波ビームディスプレーサを用いた場合、図4Aに示すように、x軸方向成分L2xは入射時の光軸に対して平行方向に変位し、光軸変位せずに入射時の光軸のまま進行するy軸方向成分L2yに合流する。これにより、x軸方向成分L2xとy軸方向成分L2yとが離散的に繰り返す直線偏光L3が得られる。   Next, both the x-axis direction component L2x and the y-axis direction component L2y that have passed through the optical chopper 23 are incident on the optical axis displacement element 24, and these two parallel beams are returned to the same axis again. For example, when a polarization beam displacer is used for the optical axis displacement element 24, as shown in FIG. 4A, the x-axis direction component L2x is displaced in a direction parallel to the optical axis at the time of incidence, and is incident without being displaced. It merges with the y-axis direction component L2y that travels with the optical axis at the time. Thereby, linearly polarized light L3 in which the x-axis direction component L2x and the y-axis direction component L2y repeat discretely is obtained.

ここで、光軸変位素子22,24に偏波ビームディスプレーサを用いると、x軸方向成分L2xとy軸方向成分L2yとで素子を通過する時間が異なる場合も考えられるが、その差は、光遮断部13における遮断時間に比べて極わずかであるため、これらの成分を合成する際は問題にならない。このように、本実施形態の円偏光照射器2では、各成分の光路長を厳密に同一にしなくても、x軸方向成分L2xとy軸方向成分L2yとが離散的に繰り返す直線偏光L3を生成することが可能である。   Here, when a polarization beam displacer is used for the optical axis displacement elements 22 and 24, it may be considered that the x-axis direction component L2x and the y-axis direction component L2y have different times for passing through the element. Since it is very short compared with the interruption time in the interruption part 13, it does not become a problem when synthesize | combining these components. As described above, in the circularly polarized light irradiator 2 of the present embodiment, the linearly polarized light L3 in which the x-axis direction component L2x and the y-axis direction component L2y are discretely repeated is obtained even if the optical path lengths of the respective components are not exactly the same. It is possible to generate.

本実施形態の円偏光照射器2では、前述した光軸変換素子22,24に代えて光軸角度変更素子を用いることもできる。図5Aは光軸角度変更素子を用いた場合の光路例を示す上面図であり、図5Bは光チョッパ23への入射位置を示す模式図である。例えば光軸角度変更素子32としてウォラストンプリズムを用いた場合、図5Aに示すように、直線偏光L2を光軸角度変更素子32に入射させると、x軸方向の直線偏光成分(x軸方向成分L2x)及びy軸方向の直線偏光成分(y軸方向成分L2y)の両方の光軸が、入射時の光軸に対して角度変化し、即ち進行方向が変更されて、出射される。   In the circularly polarized light irradiator 2 of the present embodiment, an optical axis angle changing element can be used instead of the optical axis converting elements 22 and 24 described above. FIG. 5A is a top view showing an example of an optical path when an optical axis angle changing element is used, and FIG. 5B is a schematic diagram showing an incident position on the optical chopper 23. For example, when a Wollaston prism is used as the optical axis angle changing element 32, as shown in FIG. 5A, when linearly polarized light L2 is incident on the optical axis angle changing element 32, a linearly polarized light component in the x-axis direction (x-axis direction component) The optical axes of both the L2x) and linearly polarized light components in the y-axis direction (y-axis direction component L2y) change with respect to the optical axis at the time of incidence, that is, the traveling direction is changed and emitted.

光軸角度変更素子32から出射されたx軸方向成分L2x及びy軸方向成分L2yは、例えばミラー26などにより光軸が相互に平行になるように進行方向が変更された後、光チョッパ23により交互に遮断される。その際、図5Bに示すように、x軸方向成分L2x及びy軸方向成分L2yは、例えば一方の成分が光チョッパ23の右側、他方の成分が光チョッパ23の左側のように、比較的離れた位置にそれぞれ入射する。この場合も、光チョッパ23からはx軸方向成分L2x及びy軸方向成分L2yが離散的に出射される。   The x-axis direction component L2x and the y-axis direction component L2y emitted from the optical axis angle changing element 32 are changed by the optical chopper 23 after the traveling direction is changed by the mirror 26 or the like so that the optical axes are parallel to each other. Interleaved alternately. At that time, as shown in FIG. 5B, the x-axis direction component L2x and the y-axis direction component L2y are relatively separated, for example, one component is on the right side of the optical chopper 23 and the other component is on the left side of the optical chopper 23. The incident light enters each position. Also in this case, the x-axis direction component L2x and the y-axis direction component L2y are discretely emitted from the optical chopper 23.

次に、ミラー26などにより進行方向を変更し、光チョッパ23を通過したx軸方向成分L2x及びy軸方向成分L2yを、光軸角度変更素子34に入射させる。そして、光軸角度変更素子34において、x軸方向成分L2x及びy軸方向成分L2yを再度同軸に戻す。これにより、x軸方向成分L2xとy軸方向成分L2yとが離散的に繰り返す直線偏光L3が得られる。   Next, the traveling direction is changed by the mirror 26 or the like, and the x-axis direction component L2x and the y-axis direction component L2y that have passed through the optical chopper 23 are incident on the optical axis angle changing element 34. In the optical axis angle changing element 34, the x-axis direction component L2x and the y-axis direction component L2y are returned to the same axis again. Thereby, linearly polarized light L3 in which the x-axis direction component L2x and the y-axis direction component L2y repeat discretely is obtained.

前述した方法で生成した直線偏光L3は、1/4波長板25によって円偏光L4に変換される。その結果、図4A及び図5Aに示すように、1/4波長板25からは、右円偏光RCPと左円偏光LCPとが交互にかつ連続的に出射することとなる。   The linearly polarized light L3 generated by the above-described method is converted into circularly polarized light L4 by the quarter wavelength plate 25. As a result, as shown in FIGS. 4A and 5A, the quarter-wave plate 25 emits the right circularly polarized light RCP and the left circularly polarized light LCP alternately and continuously.

本実施形態の円偏光照射器は、x軸方向の直線偏光成分とy軸方向の直線偏光成分が離散的に繰り返す直線偏光を生成し、これを円偏光に変換しているため、直線偏光成分の混入を排除し、試料に対して右円偏光と左円偏光を交互にかつ連続的に照射することができる。また、本実施形態の円偏光照射器は、電気的変調を用いていないため、得られる円偏光に非線形性や位相歪みは生じない。   The circularly polarized light irradiator of this embodiment generates linearly polarized light in which the linearly polarized light component in the x-axis direction and the linearly polarized light component in the y-axis direction are discretely repeated, and converts this into circularly polarized light. Thus, right circularly polarized light and left circularly polarized light can be alternately and continuously irradiated on the sample. Moreover, since the circularly polarized light irradiator of this embodiment does not use electrical modulation, nonlinearity and phase distortion do not occur in the obtained circularly polarized light.

前述した特許文献6に記載の技術は、短い時間ゲートをかけることによってなるべく純粋な円偏光を得ようとするものであるため、時間的な光の利用効率が低く、円偏光の純度にも限界がある。これに対して、本実施形態の円偏光照射器は、特許文献6に記載の方法に比べて光の利用効率が高く、また、円偏光の純度も、偏光変換部の特性のみで決まるため、十分に高くすることが可能である。   The technique described in Patent Document 6 described above is intended to obtain as purely circularly polarized light as possible by applying a short time gate, so that temporal light use efficiency is low, and the purity of circularly polarized light is also limited. There is. On the other hand, the circularly polarized irradiator of the present embodiment has higher light utilization efficiency than the method described in Patent Document 6, and the purity of the circularly polarized light is determined only by the characteristics of the polarization conversion unit. It can be made high enough.

以上から、本実施形態の円偏光照射器を用いることにより、従来の方法では実現することができなかった直線偏光成分の混入のない純粋な円偏光を、試料に照射することが可能となる。その結果、異方性を有する試料についてもアーティファクトの影響を抑えた円二色性の測定が可能となる。   As described above, by using the circularly polarized light irradiator of the present embodiment, it is possible to irradiate the sample with pure circularly polarized light that is not mixed with a linearly polarized light component that cannot be realized by the conventional method. As a result, it is possible to measure circular dichroism while suppressing the influence of artifacts even for samples having anisotropy.

(第2の実施形態)
次に、本発明の第2の実施形態に係る分析装置について説明する。本実施形態の分析装置は、前述した第1の実施形態の円偏光照射器1を備え、この円偏光照射器1から出射された円偏光L4を試料に照射し、試料の光学特性を測定するものである。
(Second Embodiment)
Next, an analysis apparatus according to the second embodiment of the present invention will be described. The analyzer of the present embodiment includes the circularly polarized light irradiator 1 of the first embodiment described above, and irradiates the sample with the circularly polarized light L4 emitted from the circularly polarized light irradiator 1, and measures the optical characteristics of the sample. Is.

本実施形態の分析装置は、透過光、反射光、散乱光又は蛍光などの発光を電気信号として検出する1又は複数の検出器を備えていてもよい。その場合、各検出器は、検出する光に応じて適宜配置することができる。また、検出器の種類も特に限定されるものではないが、例えばPMT(Photo-Multiplier Tube;光電子増倍管)、CCD(Charge Coupled Device;電荷結合素子)やCMOS(Complementary Metal Oxide Semiconductor)などの固体撮像素子を用いた光検出器を使用することができる。   The analyzer according to the present embodiment may include one or a plurality of detectors that detect emitted light such as transmitted light, reflected light, scattered light, or fluorescence as an electrical signal. In that case, each detector can be appropriately arranged according to the light to be detected. Also, the type of detector is not particularly limited. For example, PMT (Photo-Multiplier Tube), CCD (Charge Coupled Device), CMOS (Complementary Metal Oxide Semiconductor), etc. A photodetector using a solid-state image sensor can be used.

図6は本実施形態の分析装置の構成例を示す模式図である。例えば本実施形態の分析装置により円二色性を測定する場合は、図6に示すように、試料3を挟んで、円偏光照射器1と、透過光T1を検出するための光検出器4とを配置する。また、本実施形態の分析装置には、検出器4で検出された光信号S1と、円偏光照射器1の光遮断部13からの参照信号S2に基づき、円二色性信号を生成する円二色性検出部5を設けることもできる。   FIG. 6 is a schematic diagram illustrating a configuration example of the analyzer according to the present embodiment. For example, when the circular dichroism is measured by the analyzer of this embodiment, as shown in FIG. 6, the sample 3 is sandwiched between the circularly polarized irradiator 1 and the photodetector 4 for detecting the transmitted light T1. And place. Further, in the analysis apparatus of the present embodiment, a circular dichroism signal is generated based on the optical signal S1 detected by the detector 4 and the reference signal S2 from the light blocking unit 13 of the circularly polarized illuminator 1. A dichroism detection unit 5 can also be provided.

図7Aは円偏光に変換する前の直線偏光L3の光強度を示し、図7Bは円偏光照射器1から出射された円偏光L4の光強度を示し、図7Cは試料3が円二色性を有しない場合の検出信号を示し、図7Dは試料3が円二色性を有する場合の検出信号を示す図である。円偏光照射器1では、光源から出射された直線偏光又は光源から出射された光から取り出された直線偏光を、直線偏光のx軸方向成分とy軸方向成分に分離した後、これらの成分を交互に遮断して、離散的に2つの直線偏光の間で変調された光ビームを生成する。図7Aに示すように、この光ビーム(直線偏光)では、x軸方向成分の光強度IXLPと、y軸方向成分の光強度IYLPは、同じになっている。 7A shows the light intensity of the linearly polarized light L3 before being converted into circularly polarized light, FIG. 7B shows the light intensity of the circularly polarized light L4 emitted from the circularly polarized light irradiator 1, and FIG. 7C shows that the sample 3 has circular dichroism. FIG. 7D is a diagram showing a detection signal when the sample 3 has circular dichroism. In the circularly polarized light irradiator 1, the linearly polarized light emitted from the light source or the linearly polarized light extracted from the light emitted from the light source is separated into the x-axis direction component and the y-axis direction component of the linearly polarized light, and then these components are converted. Alternately blocking produces a light beam that is discretely modulated between two linear polarizations. As shown in FIG. 7A, in the optical beam (linearly polarized light), and the light intensity I XLP the x-axis direction component, the light intensity I YLP the y-axis direction component is the same.

この直線偏光は、x軸方向成分及びy軸方向成分がそれぞれ左円偏光と右円偏光に変換されて、左円偏光と右円偏光が離散的に繰り返す円偏光L4が生成し、この円偏光L4が試料3に照射される。このとき、光学素子としてバビネ−ソレイユの補償板を用いると、高精度に左円偏光又は右円偏光に変換することが可能となる。また、図7Bに示すように、円偏光L4では、左円偏光成分の光強度ILCPと、右円偏光成分の光強度IRCPは、同じである。 This linearly polarized light is converted into a left circularly polarized light and a right circularly polarized light in the x-axis direction component and the y-axis direction component, respectively, and circularly polarized light L4 in which the left circularly polarized light and the right circularly polarized light are discretely generated is generated. The sample 3 is irradiated with L4. At this time, if a Babinet-Soleil compensator is used as the optical element, it can be converted into left circularly polarized light or right circularly polarized light with high accuracy. Further, as shown in FIG. 7B, in the circularly polarized light L4, the light intensity I LCP of the left circularly polarized component and the light intensity I RCP of the right circularly polarized component are the same.

試料3を透過した光T1は、検出器4で検出される。このとき、試料3が円二色性を有しない場合は、図7Cに示すように、左円偏光の検出信号強度ILCPと、右円偏光の検出信号強度IRCPは同じになる。一方、入射光の波長において、左円偏光と右円偏光とで吸光度に差(円二色性)がある場合は、図7Dに示すように、左円偏光の検出信号強度ILCPと、右円偏光の検出信号強度IRCPに差が生じる。 The light T1 transmitted through the sample 3 is detected by the detector 4. At this time, when the sample 3 does not have circular dichroism, as shown in FIG. 7C, the detection signal intensity I LCP of the left circular polarization and the detection signal intensity I RCP of the right circular polarization are the same. On the other hand, when there is a difference in absorbance (circular dichroism) between the left circularly polarized light and the right circularly polarized light at the wavelength of the incident light, as shown in FIG. 7D, the detection signal intensity I LCP of the left circularly polarized light and the right A difference occurs in the detection signal intensity I RCP of circularly polarized light.

そこで、変調光の位相を予め片方のビームを遮断して決定し、その変調光の位相(参照信号S2)で光信号S1をロックイン検出することにより、左円偏光と右円偏光の強度の相対的な光強度差(ILCP−IRCP)を得ることができる。そして、この相対的な光強度差から円二色性信号を見積もることにより、確度の高い円二色性信号を高感度に検出することが可能となる。 Accordingly, the phase of the modulated light is determined in advance by blocking one of the beams, and the optical signal S1 is locked-in by the phase of the modulated light (reference signal S2), whereby the intensity of the left circularly polarized light and the right circularly polarized light can be determined. A relative light intensity difference (I LCP -I RCP ) can be obtained. Then, by estimating the circular dichroism signal from this relative light intensity difference, it is possible to detect a highly accurate circular dichroic signal with high sensitivity.

以上のように、本実施形態の分析装置は、試料に対して直線偏光成分の混入のない円偏光を照射することができるため、異方性を有する試料についてもアーティファクトの影響を抑えた円二色性測定が可能となる。更に、本実施形態の分析装置は、透過光に基づく円二色性測定だけでなく、反射光、散乱光又は発光の測定についても、従来の装置に比べて高精度の検出が可能であり、その結果、特に、固体試料などについては、周期構造の配列に関する情報などのように試料特有の性質を抽出することもできる。   As described above, the analyzer according to the present embodiment can irradiate the sample with circularly polarized light that does not include linearly polarized light components. Color measurement can be performed. Furthermore, the analyzer of this embodiment can detect not only circular dichroism based on transmitted light but also highly accurate detection of reflected light, scattered light, or luminescence compared to conventional devices. As a result, particularly for a solid sample or the like, it is possible to extract sample-specific properties such as information on the arrangement of periodic structures.

(第3の実施形態)
次に、本発明の第3の実施形態に係る顕微鏡について説明する。本実施形態の顕微鏡は、前述した第1の実施形態の円偏光照射器を備え、観察対象の試料に円偏光照射器1から出射された円偏光を照射するものである。図8は本実施形態の顕微鏡の構成例を示す模式図である。
(Third embodiment)
Next, a microscope according to the third embodiment of the present invention will be described. The microscope of this embodiment includes the circularly polarized light irradiator of the first embodiment described above, and irradiates the sample to be observed with circularly polarized light emitted from the circularly polarized light irradiator 1. FIG. 8 is a schematic diagram illustrating a configuration example of the microscope according to the present embodiment.

例えば、本実施形態の顕微鏡が円二色性顕微鏡である場合は、図8に示すように、円偏光照射器1、対物レンズ6、結像レンズ7、光検出器4、円二色性検出部5などを備える。図8に示す顕微鏡により試料3の円二色性像を観察する場合は、円偏光照射器1から出射された円偏光を試料3に照射し、試料3からの透過光を対物レンズ6で捕集した後、結像レンズ7で結像させ、光検出器4で電気信号として検出する。   For example, when the microscope of the present embodiment is a circular dichroism microscope, as shown in FIG. 8, a circularly polarized light irradiator 1, an objective lens 6, an imaging lens 7, a photodetector 4, a circular dichroism detection. Part 5 and the like. When observing a circular dichroism image of the sample 3 with the microscope shown in FIG. 8, the sample 3 is irradiated with circularly polarized light emitted from the circularly polarized irradiator 1, and the transmitted light from the sample 3 is captured by the objective lens 6. After being collected, it is imaged by the imaging lens 7 and detected as an electrical signal by the photodetector 4.

光検出器4で検出された電気信号は円二色性検出部5に送られ、円二色性検出部5において円二色性信号が算出される。具体的には、円二色性検出部5では、ロックインアンプなどを用いて、光検出器4で検出された電気信号を、円偏光における左右円偏光変調の位相でロックイン検出を行い、透過光における左円偏と右円偏光の相対的な強度差(ILCP−IRCP)を求め、円二色性信号を得る。これにより、確度の高い円二色性信号を高感度に検出することが可能となる。 The electrical signal detected by the photodetector 4 is sent to the circular dichroism detection unit 5, and the circular dichroism detection unit 5 calculates a circular dichroism signal. Specifically, the circular dichroism detection unit 5 uses a lock-in amplifier or the like to perform lock-in detection on the electrical signal detected by the photodetector 4 at the phase of left-right circular polarization modulation in circular polarization, A relative intensity difference (I LCP -I RCP ) between the left circular polarization and the right circular polarization in the transmitted light is obtained, and a circular dichroism signal is obtained. This makes it possible to detect a highly accurate circular dichroism signal with high sensitivity.

本実施形態の顕微鏡は、透過光の結像位置にピンホール8が設けられていてもよい。その場合、ピンホール8を通過した光が光検出器4で検出される。このように、対物レンズ6と結像レンズ7で結像させた光学イメージの一部を、ピンホール8で抽出することにより、試料3からの局所的な応答を検出することができる。   In the microscope of this embodiment, the pinhole 8 may be provided at the imaging position of the transmitted light. In that case, the light passing through the pinhole 8 is detected by the photodetector 4. Thus, by extracting a part of the optical image formed by the objective lens 6 and the imaging lens 7 with the pinhole 8, the local response from the sample 3 can be detected.

ただし、この場合、光検出器4で得られる信号は、試料の特定の領域からのものに限定される。そこで、より広範囲な領域を観察する場合は、例えばX−Yステージ9で試料3を移動させるか、又は、円偏光照射器1からの照射位置を移動させるなどの方法により、試料3に対して円偏光を相対的に走査しながら照射する。これにより、局所的な光学応答の二次元マッピングを行うことができるため、円二色性を表す走査顕微鏡像を得ることができる。   However, in this case, the signal obtained by the photodetector 4 is limited to that from a specific region of the sample. Therefore, when observing a wider area, the sample 3 is moved with respect to the sample 3 by a method such as moving the sample 3 on the XY stage 9 or moving the irradiation position from the circularly polarized irradiator 1. Irradiate while relatively scanning circularly polarized light. Thereby, since two-dimensional mapping of a local optical response can be performed, the scanning microscope image showing circular dichroism can be obtained.

更に、本実施形態の顕微鏡は、光検出器4に高速イメージセンサを用い、それぞれの素子において前述したロックイン検出を行えば、試料3に対して円偏光を相対的に走査しながら照射しなくても、円二色性を表す顕微鏡像を得ることができる。   Furthermore, the microscope of the present embodiment uses a high-speed image sensor for the photodetector 4 and performs the above-described lock-in detection in each element, so that the sample 3 is not irradiated while being scanned with circularly polarized light relatively. However, a microscopic image representing circular dichroism can be obtained.

本実施形態の顕微鏡は、基本的には、円偏光は集光せず、平行ビームの状態で試料に照射するが、例えば試料3に照射する光の偏光特性に擾乱を生じない場合には、円偏光照射器1と試料3との間に集光レンズ(図示せず)などを配置し、円偏光照射器1から出射された円偏光を集光して試料3に照射してもよい。   The microscope of this embodiment basically does not collect circularly polarized light and irradiates the sample in the state of a parallel beam. For example, when there is no disturbance in the polarization characteristics of the light applied to the sample 3, A condensing lens (not shown) or the like may be disposed between the circularly polarized light irradiator 1 and the sample 3 to collect the circularly polarized light emitted from the circularly polarized light irradiator 1 and irradiate the sample 3.

以上のように、本実施形態の顕微鏡は、円偏光照射器により発生した左右円偏光が離散的に繰り返す円偏光変調ビームを、円偏光の特性に擾乱を生じない場合を除き、集光せずに平行ビームの状態で用いるため、光学系による不要な擾乱を受けることなく、高い円偏光純度を保ったまま試料に照射することができる。その結果、従来は観察が難しいとされてきた固体試料の円二色性も、アーティファクトの影響を抑え、高い感度と分解能で観察することが可能となる。   As described above, the microscope according to the present embodiment does not collect the circularly polarized modulated beam in which the left and right circularly polarized light generated by the circularly polarized irradiator is discretely repeated unless the characteristic of the circularly polarized light is not disturbed. Therefore, it is possible to irradiate the sample while maintaining high circular polarization purity without receiving unnecessary disturbance by the optical system. As a result, the circular dichroism of a solid sample that has conventionally been difficult to observe can also be observed with high sensitivity and resolution while suppressing the influence of artifacts.

また、本実施形態の顕微鏡では、左円偏光と右円偏光を単一のビームとして試料に照射し、試料からの局所的な円二色性信号を検出することにより、不均一な試料についても、円二色性の局所分布を高空間分解能で分析することができる。更に、本実施形態の顕微鏡は、試料の円二色性強度の空間分布を得ることが可能であるため、例えば分子単体の光学活性の評価・追跡のみならず、凝集体・集合体生成による光学活性の変化の過程などをライブ観察することも可能である。即ち、本実施形態の顕微鏡は、医療・バイオなど幅広い分野において新しい観察・定量評価手法を提供するものである。   In the microscope of this embodiment, the left circularly polarized light and the right circularly polarized light are irradiated onto the sample as a single beam, and a local circular dichroism signal from the sample is detected, so that even a non-uniform sample can be detected. The local distribution of circular dichroism can be analyzed with high spatial resolution. Furthermore, since the microscope of the present embodiment can obtain a spatial distribution of the circular dichroic intensity of the sample, for example, not only the evaluation and tracking of the optical activity of a single molecule but also the optical by aggregate / aggregate generation. It is also possible to observe the process of activity change live. That is, the microscope of the present embodiment provides a new observation / quantitative evaluation method in a wide range of fields such as medicine and biotechnology.

更にまた、本実施形態の顕微鏡は、生体細胞内における不斉分子の掌性の変換や輸送過程の観察にも有用である。そして、今後、円二色性をプローブ信号にしたイメージ技術が確立されれば、本実施形態の顕微鏡を適用することで、基質染色やラマン散乱による分子イメージ法に続く新しいバイオライブイメージング技術を実現可能となる。   Furthermore, the microscope of the present embodiment is useful for the conversion of the chirality of asymmetric molecules in living cells and the observation of transport processes. In the future, if an image technology using circular dichroism as a probe signal is established, a new bio-live imaging technology following the molecular imaging method using substrate staining and Raman scattering will be realized by applying the microscope of this embodiment. It becomes possible.

なお、本実施形態の顕微鏡における上記以外の構成及び効果は、前述した第2の実施形態と同様である。   The configuration and effects of the microscope of this embodiment other than those described above are the same as those of the second embodiment described above.

以下、本発明の実施例及び比較例を示し、本発明の効果について具体的に説明する。   Examples of the present invention and comparative examples will be shown below, and the effects of the present invention will be specifically described.

<実施例1>
先ず、本発明の円偏光照射器を用いて顕微鏡観察を行い、固体試料の円二色性像を得た。試料には、光学不活性である透明ガラス基板上に、厚さ1nmの金属クロム膜を形成したものを用いた。また、測定には直径0.1mmのピンホールを用い、観察波長は700nmとした。
<Example 1>
First, microscopic observation was performed using the circularly polarized irradiator of the present invention, and a circular dichroism image of a solid sample was obtained. The sample used was a 1 nm thick metal chromium film formed on an optically inactive transparent glass substrate. Further, a pinhole having a diameter of 0.1 mm was used for the measurement, and the observation wavelength was 700 nm.

図9Aは試料の透過光像であり、図9Bは円二色性像であり、図9Cは試料中心付近の円二色性信号のラインプロファイルである。図9Aに示す透過光像では、破線の右側にクロム薄膜が観察された。これに対して、図9Bに示すロックインの時定数300m秒で取得した円二色性像でも、クロム薄膜と基板との境界付近を除き、ほぼ0の円二色性信号が得られた。   9A is a transmitted light image of the sample, FIG. 9B is a circular dichroic image, and FIG. 9C is a line profile of a circular dichroic signal near the center of the sample. In the transmitted light image shown in FIG. 9A, a chromium thin film was observed on the right side of the broken line. On the other hand, even in the circular dichroism image acquired with a lock-in time constant of 300 milliseconds shown in FIG. 9B, a substantially zero circular dichroism signal was obtained except for the vicinity of the boundary between the chromium thin film and the substrate.

図9Cに示すその中央付近のラインプロファイルから、0.00061O.D.という標準偏差の値(楕円率に換算して20.1mdegに相当)が得られた。この値がこの測定のノイズレベルとなり、0.14%の光吸収信号の大きさに相当する。以上から、例えば円二色性の値として楕円率約20mdeg以上の変化がある試料では、本発明の顕微鏡を用いることで、円二色性の分布を画像として得ることができる。なお、本測定では、直径0.1mmのピンホールを用いているが、ピンホールの径を大きくすれば、空間分解能は低下するが、感度限界を大きくすることが可能である。   From the line profile near the center shown in FIG. D. A standard deviation value (corresponding to 20.1 mdeg in terms of ellipticity) was obtained. This value is the noise level of this measurement and corresponds to the magnitude of the light absorption signal of 0.14%. From the above, for example, in a sample having a change in ellipticity of about 20 mdeg or more as the circular dichroism value, the circular dichroism distribution can be obtained as an image by using the microscope of the present invention. In this measurement, a pinhole having a diameter of 0.1 mm is used. However, if the diameter of the pinhole is increased, the spatial resolution is lowered, but the sensitivity limit can be increased.

<実施例2>
次に、本発明の顕微鏡の空間分解能を評価した。図10Aは二次元金属ナノ構造体の電子顕微鏡写真であり、図10Bは透過光像であり、図10Cは本発明の顕微鏡を用いて撮影した円二色性像である。本実施例では、円二色性信号を、光学顕微鏡として十分な空間分解能を確保しつつ、可視化できるか確認するため、試料には、円二色性の掌性が選択でき、任意の面積領域に試料作成が可能なキラルな形状の二次元金属ナノ構造体を用いた。具体的には、図10Aに示すように、ガラス基板上に、風車型の金ナノ構造体を1μm間隔で形成したものを試料とした。
<Example 2>
Next, the spatial resolution of the microscope of the present invention was evaluated. FIG. 10A is an electron micrograph of a two-dimensional metal nanostructure, FIG. 10B is a transmitted light image, and FIG. 10C is a circular dichroism image taken using the microscope of the present invention. In this example, in order to confirm whether the circular dichroism signal can be visualized while ensuring sufficient spatial resolution as an optical microscope, the circular dichroic palmarity can be selected for the sample, and an arbitrary area region can be selected. In addition, a two-dimensional metal nanostructure having a chiral shape capable of sample preparation was used. Specifically, as shown in FIG. 10A, a windmill type gold nanostructure formed on a glass substrate at intervals of 1 μm was used as a sample.

図10Bに示す透過光像では、ナノ構造体の配列状態に対応した格子状のパターンが観察された。この透過光像と走査型電子顕微鏡(SEM)像を比較したところ、図10Bにおいて強い消光が起きている部位に、ナノ構造体の中心が位置していた。これに対して、図10Cに示す円二色性像では、強い消光が起きていた位置よりも、ナノ構造体の上下左右の4箇所の局所部位において、円二色性の極大値がみられた。この円二色性の極大値を示したスポットの大きさ(ピークの半値幅)は300〜400nmであった。   In the transmitted light image shown in FIG. 10B, a lattice-like pattern corresponding to the arrangement state of the nanostructures was observed. When this transmitted light image and a scanning electron microscope (SEM) image were compared, the center of the nanostructure was located at a site where strong quenching occurred in FIG. 10B. On the other hand, in the circular dichroic image shown in FIG. 10C, the local maximum of circular dichroism is observed at the four local parts on the top, bottom, left, and right of the nanostructure rather than the position where strong quenching occurred. It was. The size of the spot showing the maximum value of the circular dichroism (peak half width) was 300 to 400 nm.

また、この試料の隣り合うスポットの間隔は707nmと見積もられる。2点間を識別できる光学顕微鏡の分解能はレーリーの基準によると、この測定波長700nm及び用いた対物レンズから算出すると570nmであるが、この円二色性像では約700nm離れたスポットは明瞭に分離しており、空間分解能は300〜400nm程度まで高くなっていると考えられる。図10Cにおけるロックインの時定数は100ミリ秒であり、縦100×横100ピクセルの本観察にはおおよそ20分程度の時間が必要であった。   The interval between adjacent spots of this sample is estimated to be 707 nm. According to Rayleigh's standard, the resolution of an optical microscope that can distinguish between two points is 570 nm when calculated from this measurement wavelength of 700 nm and the objective lens used. In this circular dichroism image, spots separated by about 700 nm are clearly separated. Therefore, it is considered that the spatial resolution is increased to about 300 to 400 nm. The lock-in time constant in FIG. 10C is 100 milliseconds, and the main observation of 100 pixels in the vertical direction and 100 pixels in the horizontal direction takes about 20 minutes.

また、図10Cの円二色性像では、ΔAの値の範囲は約0.06〜0.07であり、イメージのコントラストが光学密度で0.01程度に留まるが、明瞭に構造が組織され、空間的に分離できていた。   Further, in the circular dichroic image in FIG. 10C, the range of ΔA is about 0.06 to 0.07, and the contrast of the image remains at about 0.01 in terms of optical density, but the structure is clearly organized. It was separated spatially.

<実施例3>
次に、本発明の顕微鏡を用いて、有機物結晶の円二色性像観察を行った。試料には、1,8−Dihydroxyanthraquinone(DHA)の結晶を用い、観察波長は600nmとした。DHAは、結晶化していない状態ではアキラル分子であり円二色性を示さないが、結晶化するとキラルな結晶構造をとるため、円二色性を発現する。図11Aは有機物結晶(1,8−Dihydroxyanthraquinone)の透過像であり、図11Bはその円二色性像である。
<Example 3>
Next, the circular dichroism image observation of the organic crystal | crystallization was performed using the microscope of this invention. As the sample, 1,8-dihydroxyanthraquinone (DHA) crystals were used, and the observation wavelength was 600 nm. DHA is an achiral molecule in a non-crystallized state and does not exhibit circular dichroism. However, DHA exhibits circular dichroism because it has a chiral crystal structure. FIG. 11A is a transmission image of an organic crystal (1,8-Dihydroxyanthraquinone), and FIG. 11B is a circular dichroism image thereof.

図11A及び図11Bに示すように、本発明の顕微鏡を用いると、有機物結晶についても、明瞭な円二色性像を得ることができた。図11Bは、キラルな構造をとった領域が示す円二色性信号の空間分布を示している。同じ結晶の内部でも正と負の円二色性信号を示す領域がみられるが、これは場所により異なる掌性をもつキラルな結晶構造が現れていることを意味する。   As shown in FIGS. 11A and 11B, a clear circular dichroism image could be obtained for the organic crystal using the microscope of the present invention. FIG. 11B shows the spatial distribution of the circular dichroism signal indicated by the region having the chiral structure. Even within the same crystal, a region showing positive and negative circular dichroism signals can be seen, which means that a chiral crystal structure with different palmality appears depending on the location.

以上の結果から、光学特性の計測や顕微鏡観察を行う際に、本発明の円偏光照明器を用い、ロックイン検出を行うことにより、高分解能と高感度を両立できることが確認された。   From the above results, it was confirmed that high resolution and high sensitivity can be achieved by performing lock-in detection using the circularly polarized illuminator of the present invention when measuring optical characteristics and observing under a microscope.

1、2 円偏光照射器
3 試料
4 光検出器
5 円二色性検出部
6 対物レンズ
7 結像レンズ
8 ピンホール
9 X−Yステージ
10、100 光源
11 偏光子部
12 偏光分離部
13 光遮断部
14 偏光合成部
15 偏光変換部
20 レーザ光源
21、101 直線偏光子
22、24 光軸変位素子
23 光チョッパ
25 1/4波長板
26 ミラー
32、34 光軸角度変更素子
102 光弾性変調器
L1 光
L2、L3 直線偏光
L2x x軸方向成分
L2y y軸方向成分
L4 円偏光
LCP 左円偏光
RCP 右円偏光
S1 光信号
S2 参照信号
T1 透過光
DESCRIPTION OF SYMBOLS 1, 2 Circularly polarized light irradiation device 3 Sample 4 Photodetector 5 Circular dichroism detection part 6 Objective lens 7 Imaging lens 8 Pinhole 9 XY stage 10, 100 Light source 11 Polarizer part 12 Polarization separation part 13 Light interruption | blocking Unit 14 Polarization Synthesizer 15 Polarization Conversion Unit 20 Laser Light Source 21, 101 Linear Polarizer 22, 24 Optical Axis Displacement Element 23 Optical Chopper 25 1/4 Wave Plate 26 Mirror 32, 34 Optical Axis Angle Change Element 102 Photoelastic Modulator L1 Light L2, L3 Linearly polarized light L2x x-axis direction component L2y y-axis direction component L4 circularly polarized light LCP left circularly polarized light RCP right circularly polarized light S1 optical signal S2 reference signal T1 transmitted light

Claims (15)

光源と、
前記光源から出射された直線偏光又は前記光源から出射された光から取り出された直線偏光を、x軸方向成分とy軸方向成分とに分ける偏光分離部と、
前記偏光分離部で分離された直線偏光のx軸方向成分とy軸方向成分とを交互に遮断する光遮断部と、
前記光遮断部を通過した直線偏光のx軸方向成分とy軸方向成分とを同軸に合成する偏光合成部と、
前記偏光合成部から出射された直線偏光を円偏光に変換する偏光変換部と
を有する円偏光照射器。
A light source;
A polarization separation unit that divides linearly polarized light emitted from the light source or linearly polarized light extracted from the light emitted from the light source into an x-axis direction component and a y-axis direction component;
A light blocking unit that alternately blocks the x-axis direction component and the y-axis direction component of the linearly polarized light separated by the polarization separation unit;
A polarization combining unit that coaxially combines the x-axis direction component and the y-axis direction component of the linearly polarized light that has passed through the light blocking unit;
A circularly polarized light irradiator having a polarization conversion unit that converts linearly polarized light emitted from the polarization combining unit into circularly polarized light.
前記偏光変換部から右円偏光と左円偏光とが交互にかつ連続的に出射される請求項1に記載の円偏光照射器。   The circularly polarized light irradiator according to claim 1, wherein right circularly polarized light and left circularly polarized light are emitted alternately and continuously from the polarization conversion unit. 前記光源と前記偏光分離部との間に、前記光源から出射された光から直線偏光を取り出す偏光子部が設けられている請求項1又は2に記載の円偏光照射器。   The circularly polarized light irradiator according to claim 1, wherein a polarizer unit that extracts linearly polarized light from light emitted from the light source is provided between the light source and the polarization separation unit. 前記偏光分離部は、入射時の光軸に対して、前記直線偏光のx軸方向成分及びy軸方向成分のいずれか一方若しくは両方の光軸を変位又は角度変化させる光学素子を備える請求項1〜3のいずれか1項に記載の円偏光照射器。   2. The polarization separation unit includes an optical element that displaces or changes an angle of one or both of an x-axis direction component and a y-axis direction component of the linearly polarized light with respect to an optical axis at the time of incidence. The circularly polarized light irradiator according to any one of to 3. 前記光遮断部は、光チョッパを備える請求項1〜4のいずれか1項に記載の円偏光照射器。   The circularly polarized irradiator according to claim 1, wherein the light blocking unit includes a light chopper. 前記光源は平行光を出射する請求項1〜5のいずれか1項に記載の円偏光照射器。   The circularly polarized light irradiator according to claim 1, wherein the light source emits parallel light. 請求項1〜6のいずれか1項に記載の円偏光照射器を備え、
前記円偏光照射器から出射された円偏光を試料に照射し、前記試料の光学特性を測定する分析装置。
The circularly polarized light irradiator according to any one of claims 1 to 6,
An analyzer that irradiates a sample with circularly polarized light emitted from the circularly polarized irradiator and measures optical characteristics of the sample.
前記試料からの透過光、反射光、散乱光又は発光を電気信号として検出する1又は2以上の光検出器を備える請求項7に記載の分析装置。   The analyzer according to claim 7, further comprising one or more photodetectors that detect transmitted light, reflected light, scattered light, or light emission from the sample as an electrical signal. 前記光検出器で検出された電気信号から円二色性信号を得る円二色性検出部を備える請求項8に記載の分析装置。   The analyzer according to claim 8, further comprising a circular dichroism detection unit that obtains a circular dichroism signal from the electrical signal detected by the photodetector. 前記光検出器で透過光を検出し、前記円二色性検出部において、前記透過光の電気信号を、前記円偏光における左右円偏光変調の位相でロックイン検出を行い、前記透過光における左円偏光と右円偏光の相対的な強度差を求め、円二色性信号を得る請求項9に記載の分析装置。   The transmitted light is detected by the photodetector, and the circular dichroism detection unit performs lock-in detection on the phase of the left-right circular polarization modulation in the circularly polarized light in the circular dichroism detection unit, The analyzer according to claim 9, wherein a relative intensity difference between circularly polarized light and right circularly polarized light is obtained to obtain a circular dichroism signal. 請求項1〜6のいずれか1項に記載の円偏光照射器を備え、
観察対象の試料に、前記円偏光照射器から出射された円偏光を照射する顕微鏡。
The circularly polarized light irradiator according to any one of claims 1 to 6,
A microscope that irradiates a sample to be observed with circularly polarized light emitted from the circularly polarized light irradiator.
前記試料からの透過光を捕集する対物レンズと、
前記対物レンズから出射した透過光を結像させる結像レンズと、
前記透過光を電気信号として検出する光検出器と、
前記光検出器で検出された電気信号から円二色性信号を得る円二色性検出部と、
を備える請求項11に記載の顕微鏡。
An objective lens for collecting transmitted light from the sample;
An imaging lens that forms an image of transmitted light emitted from the objective lens;
A photodetector for detecting the transmitted light as an electrical signal;
A circular dichroism detector for obtaining a circular dichroism signal from the electrical signal detected by the photodetector;
The microscope according to claim 11.
前記円二色性検出部は、前記電気信号を、前記円偏光における左右円偏光変調の位相でロックイン検出を行い、前記透過光における左円偏光と右円偏光の相対的な強度差を求め、円二色性信号を得る請求項12に記載の顕微鏡。   The circular dichroism detection unit performs lock-in detection on the electrical signal at a phase of left and right circular polarization modulation in the circularly polarized light, and obtains a relative intensity difference between the left circularly polarized light and the right circularly polarized light in the transmitted light. The microscope according to claim 12, wherein a circular dichroism signal is obtained. 前記透過光の結像位置にはピンホールが設けられており、前記ピンホールを通過した光が前記光検出器で検出される請求項12又は13に記載の顕微鏡。   The microscope according to claim 12 or 13, wherein a pinhole is provided at an imaging position of the transmitted light, and light that has passed through the pinhole is detected by the photodetector. 前記試料に対して前記円偏光を相対的に走査しながら照射する請求項11〜14のいずれか1項に記載の顕微鏡。   The microscope according to claim 11, wherein the circularly polarized light is irradiated while scanning the sample relatively.
JP2016236414A 2015-12-28 2016-12-06 Circular polarization irradiator, analyzer and microscope Active JP6784396B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015257226 2015-12-28
JP2015257226 2015-12-28

Publications (2)

Publication Number Publication Date
JP2017120255A true JP2017120255A (en) 2017-07-06
JP6784396B2 JP6784396B2 (en) 2020-11-11

Family

ID=59271838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236414A Active JP6784396B2 (en) 2015-12-28 2016-12-06 Circular polarization irradiator, analyzer and microscope

Country Status (1)

Country Link
JP (1) JP6784396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181320A1 (en) 2021-02-25 2022-09-01 大学共同利用機関法人自然科学研究機構 Circularly polarized light illuminator, analysis device, and microscope
CN115327456A (en) * 2022-09-01 2022-11-11 中国矿业大学 Method for measuring spin Hall angle of n-type gallium arsenide-doped semiconductor at room temperature

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088353A (en) * 1983-10-20 1985-05-18 Seiko Instr & Electronics Ltd Refractive index measuring apparatus for liquid
JPH0545304A (en) * 1991-08-20 1993-02-23 Hitachi Ltd Method and apparatus for observing magnetic domain using circularly polarized light of x ray
JPH0735702A (en) * 1993-07-21 1995-02-07 Yokogawa Electric Corp Orientation gauge for sheet-like object
JP2002122477A (en) * 2000-10-13 2002-04-26 Japan Science & Technology Corp Measuring device
US20030081196A1 (en) * 2001-10-28 2003-05-01 Hans-Dieter Geiler Method and arrangement for optical stress analysis of solids
WO2006085606A1 (en) * 2005-02-10 2006-08-17 Kanagawa Academy Of Science And Technology Circular dichroic thermal lens microscope
WO2007088947A1 (en) * 2006-02-02 2007-08-09 National University Corporation NARA Institute of Science and Technology Circular dichroism fluorescent microscope
JP2013015500A (en) * 2011-07-06 2013-01-24 Hamamatsu Photonics Kk Circular dichroism imaging device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088353A (en) * 1983-10-20 1985-05-18 Seiko Instr & Electronics Ltd Refractive index measuring apparatus for liquid
JPH0545304A (en) * 1991-08-20 1993-02-23 Hitachi Ltd Method and apparatus for observing magnetic domain using circularly polarized light of x ray
JPH0735702A (en) * 1993-07-21 1995-02-07 Yokogawa Electric Corp Orientation gauge for sheet-like object
JP2002122477A (en) * 2000-10-13 2002-04-26 Japan Science & Technology Corp Measuring device
US20030081196A1 (en) * 2001-10-28 2003-05-01 Hans-Dieter Geiler Method and arrangement for optical stress analysis of solids
WO2006085606A1 (en) * 2005-02-10 2006-08-17 Kanagawa Academy Of Science And Technology Circular dichroic thermal lens microscope
WO2007088947A1 (en) * 2006-02-02 2007-08-09 National University Corporation NARA Institute of Science and Technology Circular dichroism fluorescent microscope
JP2013015500A (en) * 2011-07-06 2013-01-24 Hamamatsu Photonics Kk Circular dichroism imaging device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"2次元金属ナノ構造体が示す強い局所光学活性:近接場円二色性イメージング", 表面科学, vol. 35, no. 6, JPN7020002055, June 2014 (2014-06-01), pages 312 - 318, ISSN: 0004358624 *
"Local Optical Activity in Achiral Two-Dimensional Gold Nanostructures", JOURNAL PHYSICAL CHEMISTRY C, vol. 118, JPN6020025824, 26 August 2014 (2014-08-26), US, pages 22229 - 22233, ISSN: 0004308320 *
"Local optical responses of plasmon resonances visualised by near-field optical imaging", PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 17, JPN7020002053, 30 January 2015 (2015-01-30), GB, pages 6192 - 6206, ISSN: 0004308321 *
"近接場光照射による新たな光学活性ナノイメージング手法の開発", 第9回分子化学討論会, JPN7020002056, 16 September 2015 (2015-09-16), ISSN: 0004358625 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181320A1 (en) 2021-02-25 2022-09-01 大学共同利用機関法人自然科学研究機構 Circularly polarized light illuminator, analysis device, and microscope
CN115327456A (en) * 2022-09-01 2022-11-11 中国矿业大学 Method for measuring spin Hall angle of n-type gallium arsenide-doped semiconductor at room temperature
CN115327456B (en) * 2022-09-01 2023-05-12 中国矿业大学 Method for measuring spin hall angle of n-type doped gallium arsenide semiconductor at room temperature

Also Published As

Publication number Publication date
JP6784396B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
US11674897B2 (en) Depth-resolved mid-infrared photothermal imaging of living cells and organisms with sub-micron spatial resolution
JP5918658B2 (en) Optical device
WO2014110900A1 (en) Method and apparatus for laser differential confocal spectrum microscopy
JP2016521866A (en) Polarization microscope with high extinction ratio characteristics based on spectrum coding
JP5918009B2 (en) Defect inspection method and defect inspection apparatus
JP2012132741A (en) Time-resolved fluorescence measuring device and method
WO2015079786A1 (en) Light measuring device and light measuring method
US20160076940A1 (en) Cars microscope
JP2009025245A (en) Device for observing optical interference
JP2013536415A (en) Method and apparatus for non-resonant background reduction in coherent anti-Stokes Raman scattering (CARS) spectroscopy
JP6784396B2 (en) Circular polarization irradiator, analyzer and microscope
WO2022181320A1 (en) Circularly polarized light illuminator, analysis device, and microscope
JP7330538B2 (en) Apparatus for performing polarization-resolved Raman spectroscopy
JP3365474B2 (en) Polarizing imaging device
JP2019045431A (en) Optical image measurement device
TW201725372A (en) Inspection device and inspection method
CN215179684U (en) Multi-beam Raman imaging system based on SPP thermoelectric optical tweezers
JP2013003204A (en) Laser microscope device
CN113433074A (en) Circular dichroism microscopic imaging system based on discrete modulation
US10132681B2 (en) Noise reduction apparatus and detection apparatus including the same
Chouaib et al. A micro-optical modulation spectroscopy technique for local strain measurement
WO2022163445A1 (en) Optical microscope and imaging method
JPH0886738A (en) Method and device for measuring particulate
CN114787609A (en) Method and apparatus for optimized interference scattering microscopy
CN116930092A (en) Broadband femtosecond time resolution circular dichroscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201016

R150 Certificate of patent or registration of utility model

Ref document number: 6784396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250