JP2017115254A - Multilayer laminate fiber - Google Patents

Multilayer laminate fiber Download PDF

Info

Publication number
JP2017115254A
JP2017115254A JP2015249527A JP2015249527A JP2017115254A JP 2017115254 A JP2017115254 A JP 2017115254A JP 2015249527 A JP2015249527 A JP 2015249527A JP 2015249527 A JP2015249527 A JP 2015249527A JP 2017115254 A JP2017115254 A JP 2017115254A
Authority
JP
Japan
Prior art keywords
laminated
fiber
multilayer
multilayer laminated
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015249527A
Other languages
Japanese (ja)
Other versions
JP6679921B2 (en
Inventor
知彦 松浦
Tomohiko Matsuura
知彦 松浦
慎也 中道
Shinya Nakamichi
慎也 中道
正人 増田
Masato Masuda
正人 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015249527A priority Critical patent/JP6679921B2/en
Publication of JP2017115254A publication Critical patent/JP2017115254A/en
Application granted granted Critical
Publication of JP6679921B2 publication Critical patent/JP6679921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer laminate fiber good in physical property such as abrasion resistance and feeling when made as a woven or knit fabric while having high light reflection and excellent aesthetic property by interference.SOLUTION: There is provided a multilayer laminate fiber having a cross section structure with 2 or more kinds of polymers laminated alternatively and lamination number of 3 or more at outermost layer of 2 μm. There is provided a multilayer laminate fiber having 10 or more multilayer structures laminated at concentric circular shape alternatively, single fiber fineness of 3 dtex or less, thickness of a layer of 0.6 μm or less and different refractive index of polymers laminated alternatively.SELECTED DRAWING: Figure 1

Description

本発明は、高い光反射と干渉により優れた審美性等を有しながらも、耐摩耗性等の力学特性や織編物とした際の風合いといった実用的特性も良好な多層積層繊維に関するものである。 The present invention relates to a multilayer laminated fiber that has excellent aesthetics due to high light reflection and interference, but also has good mechanical properties such as abrasion resistance and practical properties such as texture when made into a woven or knitted fabric. .

ポリエステルやポリアミドなどからなる合成繊維は優れた力学特性や寸法安定性を有しているため、衣料用途から非衣料用途まで幅広く利用されている。しかし、人々の生活が多様化し、より良い生活を求めるようになった昨今では、衣料をはじめとする多くの用途で、従来の合成繊維にはない高度な感性・機能を有する繊維が求められている。繊維の織り成す感性や機能には様々なものが存在し、その中のひとつに、いわゆる審美性を備えた繊維が衣料用途を中心に展開されている。 Synthetic fibers made of polyester, polyamide and the like have excellent mechanical properties and dimensional stability, and thus are widely used from clothing to non-clothing. However, in recent years when people's lives have diversified and people have come to seek a better life, there is a need for fibers with advanced sensibility and functions not found in conventional synthetic fibers for many uses, including clothing. Yes. There are various sensitivities and functions woven by fibers, and one of them is the development of fibers with so-called aesthetics, mainly for clothing.

審美性を有した合成繊維の代表例として、絹の心地よい光沢感を得るために繊維断面を通常の丸断面ではなく、三角形などとした異形断面繊維の活用が知られている。このような天然繊維が織り成す審美性を模倣する取り組みは盛んに行われているが、最近では玉虫やモルフォ蝶の発色メカニズムを模倣した精密断面繊維に関する技術提案がなされている。   As a representative example of synthetic fibers having aesthetics, it is known to use irregular cross-section fibers in which the cross section of the fiber is not an ordinary round cross section but a triangle or the like in order to obtain a comfortable glossy silk. There have been many efforts to imitate the aesthetics of natural fibers, but recently there have been technical proposals for precision cross-section fibers that mimic the coloring mechanism of iridescent and morpho butterflies.

このモルフォ蝶に代表される微細構造が織り成す発色現象は、多層薄膜干渉理論として知られており、この現象を繊維断面に応用した例として、特許文献1の提案がある。特許文献1では屈折率の異なる2種類のポリマーを積み重ねるように交互多層積層構造とし、その積層数と層厚みを精密に制御することで、可視光線領域の任意の色を発色させることを可能にしている。また、特許文献1に記載される原理を応用し、紫外線や赤外線を遮断することを試みた例としては、特許文献2の提案がある。   The coloring phenomenon woven by the fine structure represented by this morpho butterfly is known as a multilayer thin film interference theory, and there is a proposal of Patent Document 1 as an example of applying this phenomenon to a fiber cross section. In Patent Document 1, it is possible to develop an arbitrary color in the visible light region by adopting an alternate multilayer laminated structure in which two types of polymers having different refractive indexes are stacked, and precisely controlling the number and thickness of the laminated layers. ing. In addition, as an example of applying the principle described in Patent Document 1 and trying to block ultraviolet rays and infrared rays, there is a proposal in Patent Document 2.

しかし、特許文献1及び特許文献2の多層積層繊維は、組成や特性が大きく異なる異種ポリマーを交互積層させた構造になっている。このため、積層界面で界面エネルギー差に起因した層間剥離が起こりやすく、剥離した箇所が欠陥となり、光学機能が十分に発揮できなくなる場合がある。そしてなにより、該層間剥離は繊維の力学特性低下や耐摩耗性の悪化を招きやすく、非常に制約ある製品になる場合が多い。   However, the multilayer laminated fibers of Patent Literature 1 and Patent Literature 2 have a structure in which different types of polymers having greatly different compositions and properties are alternately laminated. For this reason, delamination due to the interface energy difference is likely to occur at the laminated interface, and the peeled portion becomes a defect, and the optical function may not be sufficiently exhibited. Above all, the delamination tends to cause deterioration of the mechanical properties and wear resistance of the fiber, often resulting in a very restricted product.

この対策として、耐摩耗性を担う保護層を積層構造の外層に配置し、剥離や力学特性を維持する取り組みが特許文献3に提案されている。
確かに、特許文献3においては、最外層に保護層を配置することで、特許文献1や特許文献2と比べて耐磨耗性等の力学特性の向上は期待される。しかし、特許文献3においても、そもそもの異種ポリマーを多層に積層した点では、特許文献1等と変わりはなく、強い荷重がかかる用途等では、やはり層間剥離が起こる場合がある。
また、繊維最外に配置した保護層の厚みは2μm以上と非常に分厚いものである。このため、保護層による減衰等を考慮し、過剰に積層数を増大させる必要があり、層厚みが極小化し、部分的な層の断裂やせん断方向の負荷に弱いなどの課題が残る。
As a countermeasure against this, Patent Document 3 proposes an approach in which a protective layer responsible for wear resistance is disposed on the outer layer of a laminated structure to maintain peeling and mechanical properties.
Certainly, in Patent Document 3, an improvement in mechanical properties such as wear resistance is expected compared to Patent Document 1 and Patent Document 2 by disposing a protective layer on the outermost layer. However, Patent Document 3 is the same as Patent Document 1 in that the different polymers are originally laminated in multiple layers, and delamination may still occur in applications where a heavy load is applied.
Moreover, the thickness of the protective layer arrange | positioned at the outermost part of a fiber is very thick with 2 micrometers or more. For this reason, it is necessary to excessively increase the number of laminated layers in consideration of attenuation due to the protective layer, etc., and the problems remain such that the layer thickness is minimized and the layer is partially broken or weak against a load in the shear direction.

更に、内部の過剰な多層積層構造に加え、最外には分厚い保護層を有しているため、おのずと繊維径は大きくなり、織編物とした場合には、柔軟性に欠けるものになる場合が多く、衣料用途への展開が非常に困難であった。また、特許文献3では、基本的に多層積層構造が板状の層を積層した形となっているため、この効果を発揮させるためには繊維全体の形態も扁平状かそれに類似した断面形態として、多層積層構造の向きを揃える必要があった。
このため、優れた審美性を有しつつも、使用上の制約がなく、織編物とした場合の風合いや力学特性が良好になる多層積層繊維が望まれていた。
Furthermore, in addition to the excessive multilayer laminated structure inside, it has a thick protective layer at the outermost part, so the fiber diameter naturally increases, and when woven or knitted, it may lack flexibility. Many of them were very difficult to develop for clothing. Further, in Patent Document 3, the multilayer laminated structure is basically a form in which plate-like layers are laminated. Therefore, in order to exert this effect, the form of the entire fiber is also flat or a cross-sectional form similar to it. Therefore, it was necessary to align the direction of the multilayer laminated structure.
For this reason, there has been a demand for a multi-layer laminated fiber that has excellent aesthetics, has no restrictions on use, and has good texture and mechanical properties when used as a woven or knitted fabric.

特開平7−34324号公報(特許請求の範囲)JP-A-7-34324 (Claims) 特開平7−195603号公報(特許請求の範囲)JP-A-7-195603 (Claims) 特開平11−181630号公報(特許請求の範囲)JP-A-11-181630 (Claims)

本発明は、上記した従来技術の問題点に鑑み、高い光反射や干渉による審美性を備えながらも、織編物とした際の風合いや耐磨耗等の力学特性に優れる多層積層繊維を提供するものである。   The present invention provides a multilayer laminated fiber that is excellent in mechanical properties such as texture and abrasion resistance when made into a woven or knitted fabric while having high light reflection and aesthetics due to interference in view of the above-mentioned problems of the prior art. Is.

本発明の目的は、以下の手段によって達成される。すなわち、
(1)2種以上のポリマーが交互に積層された多層断面構造を有しており、最外層2μmにおいて、積層数が少なくとも3以上であることを特徴とする多層積層繊維、
(2)同心円状に積層された多層構造が交互に10層以上積層されており、かつ単糸繊度3dtex以下であることを特徴とする(1)に記載の多層積層繊維、
(3)1層の厚みが0.6μm以下であり、交互に積層されたポリマーの屈折率が異なることを特徴とする(1)または(2)に記載の多層積層繊維、
(4)紫外から赤外領域のいずれかに反射波長領域を有した積層された多層構造を有する請求項(1)〜(3)のいずれか1項に記載の多層積層繊維、
(5)多層積層構造を構成するポリマーがいずれもポリエステルを主成分とすることを特徴とする(1)〜(4)のいずれか1項に記載の多層積層繊維、
(6)多層積層構造を構成する少なくとも1種類のポリマーがスピログリコール、シクロヘキサンジカルボン酸または1,4−シクロヘキサンジメタノールのうち1種類以上の成分を共重合したポリエステルであることを特徴とする請求項(1)〜(5)のいずれか1項に記載の多層積層繊維、
である。
The object of the present invention is achieved by the following means. That is,
(1) A multilayer laminated fiber characterized by having a multilayer cross-sectional structure in which two or more kinds of polymers are alternately laminated, and in the outermost layer of 2 μm, the number of laminated layers is at least 3;
(2) The multilayer laminated fiber according to (1), wherein the multilayer structure laminated concentrically is alternately laminated with 10 or more layers and has a single yarn fineness of 3 dtex or less,
(3) The multilayer laminated fiber according to (1) or (2), wherein the thickness of one layer is 0.6 μm or less, and the refractive index of the alternately laminated polymers is different.
(4) The multilayer laminated fiber according to any one of (1) to (3), wherein the multilayer laminated fiber has a laminated multilayer structure having a reflection wavelength region in any of the ultraviolet to infrared regions.
(5) The multilayer laminated fiber according to any one of (1) to (4), wherein the polymer constituting the multilayer laminated structure is mainly composed of polyester.
(6) The at least one polymer constituting the multilayer laminated structure is a polyester obtained by copolymerizing one or more components of spiroglycol, cyclohexanedicarboxylic acid or 1,4-cyclohexanedimethanol. The multilayer laminated fiber according to any one of (1) to (5),
It is.

本発明は、高い光反射や干渉による審美性を備えながらも、織編物とした際の風合いや耐磨耗等の力学特性に優れる多層積層繊維を提供するものである。   The present invention provides a multilayer laminated fiber having excellent mechanical properties such as texture and abrasion resistance when it is made into a woven or knitted fabric while having high aesthetics due to light reflection and interference.

本発明の同心円状積層繊維の横断面構造の概略図である。It is the schematic of the cross-sectional structure of the concentric circular laminated fiber of this invention. 本発明の同心楕円状積層繊維の横断面構造の概略図である。It is the schematic of the cross-sectional structure of the concentric elliptical laminated fiber of this invention. 本発明の同心円状傾斜積層繊維の横断面構造の概略図である。It is the schematic of the cross-sectional structure of the concentric inclined laminated fiber of this invention. 本発明の同心円状積層芯鞘繊維の横断面構造の概略図である。It is the schematic of the cross-sectional structure of the concentric laminated core-sheath fiber of this invention. 従来の扁平板状交互積層繊維の横断面構造の概略図である。It is the schematic of the cross-sectional structure of the conventional flat plate-like alternately laminated fiber. 本発明の多層積層繊維の製造方法を説明するための横断面図である。It is a cross-sectional view for demonstrating the manufacturing method of the multilayer laminated fiber of this invention.

以下、本発明について望ましい実施形態と共に詳述する。
本発明の多層積層繊維を図1に示した繊維外層から中心にかけて同心円状に交互積層構造部を有する複合繊維を例にして説明する。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
The multilayer laminated fiber of the present invention will be described by taking a composite fiber having an alternately laminated structure portion concentrically from the outer fiber layer to the center shown in FIG.

本発明の複合繊維は、繊維横断面において少なくとも3層以上が交互に積層された多層積層構造を形成している必要がある。ここで言う多層積層構造とは、繊維を構成する2種以上のポリマーにおいて、あるポリマーが層状構造を形成しており、他方のポリマーが形成する層と交互に積層された構造であることを意味する。   The conjugate fiber of the present invention needs to form a multilayer laminate structure in which at least three layers are alternately laminated in the fiber cross section. The multi-layer laminated structure mentioned here means that in two or more kinds of polymers constituting the fiber, a certain polymer forms a layered structure and is laminated alternately with layers formed by the other polymer. To do.

本発明の第一の要件は、多層積層繊維の最外層2μmにおいて、積層数が少なくとも3以上である必要がある。
ここで言う最外層とは、繊維断面に2点以上で外接する真円(図1のD)上から、繊維断面の面積を2等分するような任意の2本の直線の交点である繊維中心(図1のC)を通る任意の直線(図1のE)をひき、この直線と繊維断面が交差する点(図1のF)から外接円の中心方向へ2μmまでの領域をその繊維の最外層とする。本発明の繊維は該最外層の領域において、層状のポリマーが交互に3層以上積層されている必要がある。
The first requirement of the present invention is that the outermost layer of 2 μm of the multilayer laminated fiber needs to have a lamination number of at least 3 or more.
The outermost layer referred to here is a fiber that is the intersection of any two straight lines that bisect the area of the fiber cross section from a perfect circle (D in FIG. 1) circumscribing the fiber cross section at two or more points. An arbitrary straight line (E in FIG. 1) passing through the center (C in FIG. 1) is drawn, and an area from the point (F in FIG. 1) where this straight line intersects the fiber cross section to the center of the circumscribed circle is 2 μm. The outermost layer. In the fiber of the present invention, it is necessary that three or more layered polymers are alternately laminated in the outermost layer region.

本発明の繊維は審美性を有することを目的としており、見た目にもっとも影響を与える最外層に光反射と干渉を担う積層構造が形成されていることが重要になる。この光反射と干渉においては、異なるポリマーが交互に積層された構造により、その効果を奏でるものであり、最外層のみでも十分な光反射と干渉を発現するには3層以上の積層である必要がある。この最外層の積層数は多いほど審美性という観点で好ましく、5層以上であることが好ましい。可視光領域においては、層厚みをより薄くするほど、波長選択性が発現し、反射や干渉の強度は積総数により強度が増加することが知られており、可視光域(0.3μm〜0.8μm)の制御という観点からすると層厚みが0.2μm以下であることが好適であり、10層以上の積層が最外層に存在することが特に好ましい。ただし、ここで言う積層厚みとは繊維断面に内接する真円(図2のI)と繊維断面の交点(図2のJ)から繊維中心(図2のC)に向かって引いた直線(図2のK)上に存在する各ポリマー成分の積層構造における1層の厚みのことをいう。   The fiber of the present invention is intended to have aesthetics, and it is important that a laminated structure responsible for light reflection and interference is formed on the outermost layer that most affects the appearance. In this light reflection and interference, the effect is obtained by the structure in which different polymers are alternately laminated. In order to exhibit sufficient light reflection and interference even with only the outermost layer, it is necessary to have three or more layers. There is. The larger the number of the outermost layers, the better from the viewpoint of aesthetics, and it is preferably 5 layers or more. In the visible light region, it is known that as the layer thickness is made thinner, wavelength selectivity is exhibited, and the intensity of reflection and interference increases with the total number of products. The visible light region (0.3 μm to 0 μm) is known. .8 μm) from the viewpoint of control, it is preferable that the layer thickness is 0.2 μm or less, and it is particularly preferable that 10 or more layers are present in the outermost layer. However, the lamination thickness referred to here is a straight line drawn from the intersection of the perfect circle (I in FIG. 2) and the fiber cross section (J in FIG. 2) to the fiber center (C in FIG. 2) (FIG. 2). 2) It means the thickness of one layer in the laminated structure of each polymer component present on K).

また、本発明の目的には耐摩耗性等に対する耐性が高いことも含まれている。生産安定性や口金設計等の難易度等を含めて考えると、本発明における最外層の積層数の実質的な上限値は30積層である。30積層以下であれば、実使用に十分な審美性と力学特性を有した多層積層繊維を安定して製造することが可能である。   Further, the object of the present invention includes high resistance to wear resistance and the like. Considering the production stability, the difficulty of designing the die, etc., the upper limit of the number of outermost layers in the present invention is 30 layers. If it is 30 layers or less, it is possible to stably produce multilayer laminated fibers having aesthetics and mechanical properties sufficient for actual use.

本発明の多層積層繊維の断面に存在する交互積層構造は、同心円状(図1)、同心楕円状(図2)、その他同心三角状や同心Y形、同心星状などの同心異形状などあらゆる形態を採用することができる。特に同じ重心をもって繊維内層から外層に向けて年輪状に積層された多層積層構造(例えば、図1及び図2)は、原則的に単糸の周囲からいずれの位置からでもほぼ同様の反射と干渉の効果が得られる。すなわち、視野角依存性が低くなるため、衣料用などの縫製によって立体的な製品形態となる場合には、好ましいのである。また、該年輪状に積層された多層積層構造のうち、図1に示した同心円状(図1)や同心楕円状(図2)の多層積層構造においては、ストレート糸の場合、上記した視野角依存性の低い良好な審美性を得られる。一方で、仮撚りや嵩高加工等の繊維断面にひずみを加える、糸束の形態を変更するといった加工により、光反射や干渉がランダムに変化し、ストレート糸の場合とは異なる非常に複雑な光学特性を奏でるようになることを発見した。この場合、同じ品種の繊維により、高次加工の工夫(糸加工方法や染色等)によって見た目等が変化する加工糸を製造することが可能になることを意味している。また、他素材や高次加工を変えた本発明の繊維を混繊してなる加工糸の風合いや審美性は非常に幅広いものである。ファストファッションが一般常識となり、新規繊維製品の開発期間の短縮が進んでいる衣料用繊維として非常に優れた特徴である。このため、本発明の繊維においては、同心円状及び同楕円状の多層積層構造を有していることが好適であり、特に好ましい積層形態として挙げることができる。   The alternate laminated structure present in the cross section of the multilayer laminated fiber of the present invention can be any of concentric circles (FIG. 1), concentric ellipses (FIG. 2), and other concentric and irregular shapes such as concentric triangular shapes, concentric Y shapes, and concentric star shapes. A form can be adopted. In particular, a multilayer laminated structure (for example, FIG. 1 and FIG. 2) laminated in an annual ring shape from the inner layer to the outer layer with the same center of gravity is basically the same reflection and interference from any position from the periphery of the single yarn. The effect is obtained. That is, since the viewing angle dependency is reduced, it is preferable when a three-dimensional product form is obtained by sewing for clothing or the like. Among the multilayered laminated structures laminated in the shape of annual rings, in the concentric circular (FIG. 1) or concentric elliptical (FIG. 2) multilayered laminated structure shown in FIG. Good aesthetics with low dependency can be obtained. On the other hand, by processing such as false twisting and bulky processing, such as adding strain to the fiber cross section or changing the shape of the yarn bundle, light reflection and interference change randomly, and very complicated optics that is different from the case of straight yarn I have found that I can play the characteristics. In this case, it means that it is possible to manufacture processed yarns whose appearances and the like are changed by a high-order processing device (such as a yarn processing method and dyeing) with the same type of fiber. Moreover, the texture and aesthetics of the processed yarn obtained by blending the fibers of the present invention with different materials and higher-order processing are very wide. Fast fashion has become a common sense, and it is an excellent feature as a textile for clothing, where the development period of new textile products is being shortened. For this reason, in the fiber of this invention, it is suitable to have a concentric and elliptical multilayer laminated structure, and can be mentioned as a particularly preferred laminated form.

本発明の多層積層繊維は、基本的に断面全体において2種のポリマーからなる層状構造が積層された構造にあり、これを構成する1層あたりの厚みは0.6μm以下であると可視光域からの制御が可能となるため好ましい。後述する観点から可視光域でより優れた発色性を奏でるようにするためには、層厚みが0.3μm以下とするのがより好ましい範囲としてあげることができる。また、断面の安定が確保でき、安定した製造を可能にするという観点から該層厚みは0.01μm以上に設計することが好適である。   The multilayer laminated fiber of the present invention basically has a structure in which a layered structure composed of two kinds of polymers is laminated in the entire cross section, and the thickness per layer constituting this is 0.6 μm or less in the visible light region. It is preferable because control from the above becomes possible. In order to achieve more excellent color developability in the visible light range from the viewpoint described later, a more preferable range is that the layer thickness is 0.3 μm or less. In addition, the thickness of the layer is preferably designed to be 0.01 μm or more from the viewpoint of ensuring the stability of the cross section and enabling stable production.

本発明で言う積層数とは、繊維断面に内接する真円(図2のI)と繊維断面の交点(図2のJ)から繊維中心(図2のC)に向かって引いた直線(図2のK)上に存在する積層構造の総積層数をいう。
本発明の多層積層繊維は、以下の多層薄膜干渉理論に基づいて層厚みを制御することで紫外から赤外領域のいずれかに反射波長領域を有するような光反射・干渉性を有することができる。
4nd=(2m−1)・λ ・・・ 式(1)
n:2種のポリマーの平均屈折率
d:2種のポリマーの平均層厚み(nm)
m:任意の整数(1,2…)
λ:反射波長(nm)
目標の反射波長λに対して、上記の式(1)を満たすような積層厚みdとすることで光反射や干渉を制御できることが知られている。
The number of layers referred to in the present invention refers to a straight line drawn from the intersection of the perfect circle (I in FIG. 2) and the fiber cross section (J in FIG. 2) toward the fiber center (C in FIG. 2). 2) The total number of stacked layers of the stacked structure existing on K).
The multilayer laminated fiber of the present invention can have light reflection / coherence such that the reflection wavelength region is in any of the ultraviolet to infrared regions by controlling the layer thickness based on the following multilayer thin film interference theory. .
4nd = (2m−1) · λ Equation (1)
n: Average refractive index of the two polymers d: Average layer thickness (nm) of the two polymers
m: any integer (1, 2, ...)
λ: reflection wavelength (nm)
It is known that light reflection and interference can be controlled by setting the laminated thickness d so as to satisfy the above formula (1) with respect to the target reflection wavelength λ.

上記式において、mが3より大きくなるような積層厚みdでは、多重干渉により可視光域で広範囲に渡る反射・干渉が起こる。mが1〜2となるような積層厚みdとすると、可視光域で狭波長域での光反射・干渉となり、単色発色となる。   In the above formula, when the laminated thickness d is such that m is greater than 3, reflection / interference over a wide range occurs in the visible light region due to multiple interference. When the laminated thickness d is such that m is 1 to 2, light reflection / interference in a narrow wavelength region occurs in the visible light region, resulting in monochromatic color development.

本発明の多層積層繊維は目的用途に応じて、これらを構成するポリマーの屈折率を考慮し、上記原理に従い繊維断面の1層当たりの厚み及び積総数を制御すれば良い。例えば2種のポリマーの平均屈折率が1.6の時、交互積層構造での光反射・干渉性により特定の色への発色を狙うためには、可視光域でmが1〜2となる範囲、すなわち0.01μm≦d≦0.3μmとするのが好ましい。一方、特定の色に発色させずに真珠様や金属調の光沢感のみを出したい場合には、可視光域でmが3以上となる範囲、すなわち0.3μm≦dとするのが好ましい。   In the multilayer laminated fiber of the present invention, the thickness and the total number of products per layer of the fiber cross section may be controlled in accordance with the above principle in consideration of the refractive index of the polymer constituting them according to the intended use. For example, when the average refractive index of two kinds of polymers is 1.6, m is 1 to 2 in the visible light range in order to develop a specific color by light reflection / interference in an alternately laminated structure. The range, that is, 0.01 μm ≦ d ≦ 0.3 μm is preferable. On the other hand, when only a pearly or metallic luster is desired without giving a specific color, it is preferable that m is 3 or more in the visible light range, that is, 0.3 μm ≦ d.

本発明の多層積層構造は、図1に例示するような均一の層厚みからなる均一積層構造以外に、図3に例示するような、層厚みに傾斜をつけたような傾斜積層構造としてもよい。該傾斜積層構造とすると、屈折率の異なるポリマーの交互積層とした際に、得られる光反射・干渉の波長が特定の波長だけでなく広範囲の波長とすることができ、得られる発色性も金属調のものが得られる。該傾斜構造は、繊維中心から繊維外層に向かって、例えば、0.05〜1.0μmの範囲で徐々に厚くなる構造とすると多重干渉効果が得られて好適である。特に、後述する繊度範囲にて、積層数が比較的自由に設計できる層厚みは、0.3〜0.6μmの範囲であり、係る範囲であれば、本発明の繊維は、真珠様・金属調の見た目となる。   The multilayer laminated structure of the present invention may be an inclined laminated structure in which the layer thickness is inclined as illustrated in FIG. 3 in addition to the uniform laminated structure having a uniform layer thickness as illustrated in FIG. . When the inclined laminated structure is used, when the polymers having different refractive indexes are alternately laminated, the obtained light reflection / interference wavelength can be not only a specific wavelength but also a wide range of wavelengths, and the obtained color developability is also a metal. Tones are obtained. The inclined structure is preferably a structure that gradually increases from the fiber center toward the fiber outer layer, for example, in the range of 0.05 to 1.0 μm, because a multiple interference effect is obtained. In particular, in the fineness range described later, the layer thickness that can be designed relatively freely in the number of layers is in the range of 0.3 to 0.6 μm. It looks like a key.

また、本発明の多層積層繊維は、図4(a)、(b)に例示する芯鞘構造として、鞘に屈折率差の異なる2種のポリマーを均一厚みまたは傾斜厚みで同心円状に交互積層することもできる。この場合、芯が中空部、または有彩色を有するような第3成分のポリマーとすると、上記した単色発色や真珠様・金属調光沢感の視認性を高めることができる。特に黒色のポリマーを芯とすると、黒色により積層構造で反射・干渉する光以外の迷光を吸収し、単色発色や真珠様・金属調光沢感の視認性をより高めることができるため、好ましい。   Further, the multilayer laminated fiber of the present invention has a core-sheath structure exemplified in FIGS. 4A and 4B, and two kinds of polymers having different refractive index differences are alternately laminated in a concentric shape with a uniform thickness or an inclined thickness. You can also In this case, if the core is a hollow part or a third component polymer having a chromatic color, it is possible to improve the visibility of the above-described monochromatic color development and pearly / metallic luster. In particular, a black polymer is preferably used as a core because it can absorb stray light other than the light reflected and interfered with the laminated structure by black and can further improve the visibility of monochromatic color development and pearly / metallic luster.

本発明の多層積層繊維の総積層数は10以上にすると、ポリマー組み合わせに大きな制約を設けることなく、本発明の目的を達成するための十分な光反射や干渉の効果を得ることができる。この総積層数は単純には光反射や干渉の効果に相関があり、より多いほうが好適となり、総積層数が20以上であることがより好ましい。本発明において、該総積層数は任意に設計することも可能であるが、本発明の目的である良好な風合いや耐磨耗などの力学特性を担保するという観点から、実質的な上限値は150である。   When the total number of layers of the multilayer laminated fiber of the present invention is 10 or more, sufficient light reflection and interference effects for achieving the object of the present invention can be obtained without providing a great restriction on the polymer combination. The total number of stacked layers is simply correlated with the effects of light reflection and interference, and a larger number is preferable, and the total number of stacked layers is more preferably 20 or more. In the present invention, the total number of layers can be arbitrarily designed, but from the viewpoint of securing the mechanical properties such as good texture and wear resistance, which is the object of the present invention, the substantial upper limit value is 150.

上記した本発明の繊維からなる織編物の風合いを良好にするという考えを推し進めると、本発明の繊維は単糸繊度が3dtex以下とすることが好ましく、特に2dtex以下とすることで肌に触れるインナーやシャツ、ブラウス等にはより好適な範囲となる。ここでいう単糸繊度dtexとは、繊維の単位長さの重量を複数回測定した平均値から、10000m当たりの重量を算出し、フィラメント数で割った値を意味する。また、単糸繊度が0.1dtex未満になると、本発明の特徴である多層積層構造の形成が実質的に困難になるため、本発明の単糸繊度の下限値は0.1dtexである。   When the idea of improving the texture of the woven or knitted fabric comprising the fibers of the present invention described above is promoted, the fibers of the present invention preferably have a single yarn fineness of 3 dtex or less, and in particular, an inner that touches the skin by being 2 dtex or less. It is a more suitable range for shirts, shirts, blouses and the like. The single yarn fineness dtex here means a value obtained by calculating the weight per 10,000 m from the average value obtained by measuring the weight of the unit length of the fiber a plurality of times and dividing the weight by the number of filaments. In addition, when the single yarn fineness is less than 0.1 dtex, it becomes substantially difficult to form a multilayer laminated structure that is a feature of the present invention. Therefore, the lower limit value of the single yarn fineness of the present invention is 0.1 dtex.

また、風合いや高次加工の自由度という観点から、本発明の多層積層繊維の異形度は2.0以下であることが好ましい。より好ましくは異形度1.5以下、特に好ましくは異形度1.1以下の同心円状であることである。ここでいう異形度とは、繊維断面の切断面に外接する真円の径(図2のHの長さ)を繊維径とし、さらに内接する真円の径(図2のKの長さ)を内接円径として、異形度=繊維径÷内接円径から得られる値をいう。異形度を2.0以下とすることで布帛とした際の風合い(柔軟性)も良好となるため、衣料用素材として好適なものとすることができる。さらに異形度1.1以下の同心円状とすることで、繊維外層から繊維中心を通って繊維軸方向に平行に見た際の断面は、繊維外層のどこから見てもほとんど均一となる。そのため、風合いの良さに加えて、前述したように視野角依存性の低い良好な審美性を有しつつ、高次加工が限定されないという利点が生まれる。   Moreover, from the viewpoint of the texture and the degree of freedom of high-order processing, the deformed degree of the multilayer laminated fiber of the present invention is preferably 2.0 or less. More preferably, it is a concentric circle having an irregularity of 1.5 or less, particularly preferably an irregularity of 1.1 or less. The degree of irregularity here refers to the diameter of the perfect circle circumscribing the cut surface of the fiber cross section (length H in FIG. 2) as the fiber diameter, and the diameter of the perfect circle inscribed (length K in FIG. 2). Is a value obtained from the degree of irregularity = fiber diameter ÷ inscribed circle diameter. When the degree of profile is 2.0 or less, the texture (flexibility) when used as a fabric is improved, and therefore, it can be made suitable as a material for clothing. Furthermore, by making it concentric with an irregularity of 1.1 or less, the cross section when viewed from the outer fiber layer through the fiber center and parallel to the fiber axis direction is almost uniform from any position of the outer fiber layer. Therefore, in addition to good texture, there is an advantage that high-order processing is not limited while having good aesthetics with low viewing angle dependency as described above.

本発明の多層積層繊維においては、屈折率が異なる2種以上のポリマーの交互積層であることが重要である。屈折率の異なるポリマーの交互積層構造を有することで、その層間での光の反射や反射した光の干渉を利用し、今までにない光沢感や発色性、紫外・赤外線反射といった高機能を有する多層積層繊維が得られるのである。この際、必要とする屈折率差としては0.05以上、好ましくは0.1以上である。屈折率差を0.1以上とすることでより高い光反射・干渉性が得ることが可能になり、得られる繊維の光沢感や発色性、機能性を高めることができる。   In the multilayer laminated fiber of the present invention, it is important that the laminated fibers are alternately laminated of two or more kinds of polymers having different refractive indexes. By having an alternating laminated structure of polymers with different refractive indexes, it has high functions such as unprecedented glossiness, color development, and ultraviolet / infrared reflection, utilizing reflection of light between the layers and interference of reflected light. A multilayer laminated fiber is obtained. At this time, the necessary refractive index difference is 0.05 or more, preferably 0.1 or more. When the refractive index difference is 0.1 or more, higher light reflection / interference can be obtained, and glossiness, color developability and functionality of the resulting fiber can be improved.

本発明の多層積層繊維において、光学制御の観点から交互積層するポリマーは屈折率の異なるものであることが好適である。本願発明の繊維を溶融紡糸にて製造する場合には、熱可塑性ポリマー同士であると加工性に優れるため、例えばポリエステル系、ポリエチレン系、ポリプロピレン系、ポリスチレン系、ポリアミド系、ポリカーボネート系、ポリメタクリル酸メチル系、ポリフェニレンサルファイド系などのポリマー群から選ぶと良い。   In the multilayer laminated fiber of the present invention, it is preferable that the alternately laminated polymers have different refractive indices from the viewpoint of optical control. When the fibers of the present invention are produced by melt spinning, since thermoplastic polymers are excellent in processability, for example, polyester, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polymethacrylic acid It is better to select from a polymer group such as methyl group or polyphenylene sulfide group.

また、層間剥離の抑制と複合断面を良好とする観点から交互積層するポリマーは両方共ポリエステルであることが好ましい。特に高屈折率側のポリマーとしてはポリエチレンテレフタレートやポリエチレンナフタレート、低屈折率側のポリマーとしてはスピログリコール、シクロヘキサンジカルボン酸または1,4−シクロヘキサンジメタノールのうち1種類以上の成分を共重合されたポリエステルであることが好ましい。このように低屈折率側のポリマーをポリエチレンテレフタレートやポリエチレンナフタレートと同じポリエステルとすることによって、高い界面親和性を付与することができる。そのため交互積層構造としたときに、界面の親和性の高さにより層間剥離の抑制を有し、複合断面異常のない多層積層繊維が得られる。   Moreover, it is preferable that both the polymers laminated alternately are polyester from a viewpoint of suppressing delamination and making a composite cross section favorable. In particular, polyethylene terephthalate or polyethylene naphthalate was copolymerized on the high refractive index side, and one or more components of spiroglycol, cyclohexanedicarboxylic acid or 1,4-cyclohexanedimethanol were copolymerized on the low refractive index side. Polyester is preferred. Thus, high interface affinity can be provided by making the polymer of the low refractive index side into the same polyester as polyethylene terephthalate or polyethylene naphthalate. Therefore, when an alternate laminated structure is used, a multilayer laminated fiber having suppression of delamination due to the high affinity of the interface and no abnormality in the composite cross section can be obtained.

さらに好ましくは低屈折率側のポリマーがスピログリコール及びシクロヘキサンジカルボン酸を共重合させたポリエチレンテレフタレートとすることである。こうすることで、ポリエチレンテレフタレートやポリエチレンナフタレートとの屈折率差が0.1以上となり、高い光反射・干渉性が得られるばかりでなく、ガラス転移温度が近いことにより過延伸になりにくく、層間剥離のさらなる抑制と複合異常のない多層積層繊維を得ることが可能となる。   More preferably, the low refractive index polymer is polyethylene terephthalate obtained by copolymerization of spiroglycol and cyclohexanedicarboxylic acid. By doing so, the refractive index difference from polyethylene terephthalate and polyethylene naphthalate becomes 0.1 or more, and not only high light reflection / interference is obtained, but also the glass transition temperature is close, and it is difficult to be overstretched. It becomes possible to obtain a multi-layer laminated fiber without further debonding and no complex abnormality.

本発明の多層積層繊維は、その高い光反射と干渉により優れた審美性、耐摩耗性等の力学特性や織編物とした際の風合いを活かして、インナー・アウターなどの一般衣料用途、カーテン・クロスなどのインテリア用途など衣料・アパレル用途として幅広く用いることができる。   The multilayer laminated fiber of the present invention is used for general garments such as inner and outer, curtains, It can be widely used for clothing and apparel such as cloth interiors.

以下に本発明の多層積層繊維の製造方法の一例を詳述する。
本発明の多層積層繊維は、複合口金を用いて2種以上のポリマーからなる交互積層構造を有する複合繊維を製糸することにより製造可能である。ここで多層積層繊維を製糸する方法としては、溶融紡糸が生産性を高めるという観点から好適である。その際の紡糸温度については、2種以上のポリマーのうち、主に高融点や高粘度ポリマーが流動性を示す温度とする。この流動性を示す温度としては、分子量によっても異なるが、そのポリマーの融点から融点+60℃の間で設定すると安定して製造することができる。
Below, an example of the manufacturing method of the multilayer laminated fiber of this invention is explained in full detail.
The multilayer laminated fiber of the present invention can be produced by producing a composite fiber having an alternate laminated structure composed of two or more kinds of polymers using a composite die. Here, as a method for producing a multilayer laminated fiber, melt spinning is preferable from the viewpoint of improving productivity. The spinning temperature at that time is a temperature at which a high-melting-point or high-viscosity polymer exhibits fluidity among two or more kinds of polymers. The temperature showing the fluidity varies depending on the molecular weight, but when it is set between the melting point of the polymer and the melting point + 60 ° C., it can be stably produced.

紡糸速度については、500〜6000m/分程度にするとよく、ポリマーの物性や多層積層繊維の使用目的によって変更可能である。特に、高い光反射・干渉効果が必要な場合には、500〜2000m/分とし、その後高倍率延伸することで、繊維の一軸配向を促進させ、ポリマー間の屈折率差を高めることができるため、好ましい。延伸に際しては、ポリマーのガラス転移温度など、軟化できる温度を目安として、予熱温度を適切に設定することが好ましい。予熱温度の上限としては、予熱過程で繊維の自発伸長により糸道乱れが発生しない温度とすることが好ましい。例えば、ガラス転移温度が70℃付近に存在するPETの場合には、通常この予熱温度は80〜95℃程度で設定される。
また、本発明の多層積層繊維における複合口金での単孔当たりにおける吐出量としては、0.1〜10g/分・孔程度にすると安定して製造することが可能となる。
また、本発明に使用されるポリマーの溶融粘度比は、2.0未満とすることで、安定的に複合ポリマー流を形成でき、良好な複合断面の多層積層繊維を得ることができる。
The spinning speed is preferably about 500 to 6000 m / min, and can be changed depending on the physical properties of the polymer and the intended use of the multilayer laminated fiber. In particular, when a high light reflection / interference effect is required, the uniaxial orientation of the fiber can be promoted and the refractive index difference between the polymers can be increased by drawing at a high magnification of 500 to 2000 m / min and then drawing at a high magnification. ,preferable. In stretching, it is preferable to appropriately set the preheating temperature using as a guide the temperature at which the polymer can be softened, such as the glass transition temperature of the polymer. The upper limit of the preheating temperature is preferably a temperature at which yarn path disturbance does not occur due to spontaneous elongation of the fiber during the preheating process. For example, in the case of PET having a glass transition temperature in the vicinity of 70 ° C., this preheating temperature is usually set at about 80 to 95 ° C.
Further, when the discharge amount per single hole in the composite die in the multilayer laminated fiber of the present invention is set to about 0.1 to 10 g / min / hole, stable production can be achieved.
In addition, when the melt viscosity ratio of the polymer used in the present invention is less than 2.0, a composite polymer flow can be stably formed, and a multilayer laminated fiber having a good composite cross section can be obtained.

本発明の多層積層繊維に用いる複合口金としては特開2011−208313号公報に記載される複合口金を用いるのが好ましい。図6に示した複合口金は、上から計量プレート1、分配プレート2および吐出プレート3の大きく3種類の部材が積層された状態で紡糸パック内に組み込まれ、紡糸に供される。ちなみに図6は、AポリマーおよびBポリマーといった2種類のポリマーを用いた例であり、必要であれば、3種類以上のポリマーを用いて製糸しても良い。従来複合口金では、3種類以上のポリマーを複合化することは困難であり、やはり図6に例示したような微細流路を利用した複合口金を用いることが好ましい。   As the composite die used for the multilayer laminated fiber of the present invention, it is preferable to use a composite die described in JP2011-208313A. The composite base shown in FIG. 6 is assembled into a spinning pack in a state where three kinds of members, ie, a metering plate 1, a distribution plate 2, and a discharge plate 3, are stacked from above, and is used for spinning. Incidentally, FIG. 6 shows an example using two types of polymers such as an A polymer and a B polymer. If necessary, yarns may be produced using three or more types of polymers. In the conventional composite base, it is difficult to composite three or more kinds of polymers, and it is preferable to use a composite base that uses a fine channel as illustrated in FIG.

図6に例示した口金部材では、計量プレート1が各吐出孔および各分配孔当たりのポリマー量を計量して流入し、分配プレート2によって、単繊維の断面における複合断面およびその断面形状を制御、吐出プレート3によって、分配プレート2で形成された複合ポリマー流を圧縮して、吐出するという役割を担っている。   In the base member illustrated in FIG. 6, the measuring plate 1 measures and flows in the polymer amount per each discharge hole and each distribution hole, and the distribution plate 2 controls the composite cross section in the cross section of the single fiber and the cross sectional shape thereof. The discharge plate 3 plays a role of compressing and discharging the composite polymer flow formed on the distribution plate 2.

複合口金の説明が錯綜するのを避けるために、図示されていないが、計量プレート1より上に積層する部材に関しては、紡糸機および紡糸パックに合わせて、流路を形成した部材を用いれば良い。計量プレート1を、既存の流路部材に合わせて設計することで、既存の紡糸パックおよびその部材がそのまま活用することができる。このため、特に該口金のために紡糸機を専有化する必要はない。また、実際には流路−計量プレート間あるいは計量プレート1−分配プレート2間に複数枚の流路プレートを積層すると良い。   In order to avoid complication of the description of the composite base, although not shown in the drawing, as for the member laminated above the measuring plate 1, a member having a flow path may be used in accordance with the spinning machine and the spinning pack. . By designing the weighing plate 1 according to the existing flow path member, the existing spin pack and its members can be utilized as they are. For this reason, it is not necessary to dedicate a spinning machine especially for the die. In practice, a plurality of flow path plates may be stacked between the flow path and the measurement plate or between the measurement plate 1 and the distribution plate 2.

これは、口金断面方向および単繊維の断面方向に効率よく、ポリマーが移送される流路を設け、分配プレート2に導入される構成とすることが目的である。吐出プレート3より吐出された複合ポリマー流は、上述の製造方法に従い、冷却固化後、油剤を付与され、規定の周速になったローラーで引き取られる。その後、加熱ローラーで延伸され、所望の複合繊維となる。   The purpose of this is to provide a flow path through which the polymer is efficiently transferred in the cross-sectional direction of the die and the cross-section of the single fiber, and to be introduced into the distribution plate 2. The composite polymer flow discharged from the discharge plate 3 is taken up by a roller having a prescribed peripheral speed after being cooled and solidified, to which oil is applied, in accordance with the above-described manufacturing method. Then, it is drawn with a heating roller to form a desired composite fiber.

以下実施例を挙げて、本発明の多層積層繊維を具体的に説明する。
実施例および比較例については下記の評価を行った。
The multilayer laminated fiber of the present invention will be specifically described below with reference to examples.
The following evaluation was performed about the Example and the comparative example.

A.ポリマーの溶融粘度
チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、実施例あるいは比較例には、1216s−1の溶融粘度を記載している。ちなみに、加熱炉にサンプルを投入してから測定開始までを5分とし、窒素雰囲気下で測定を行った。
A. Polymer melt viscosity
The chip-like polymer was adjusted to a moisture content of 200 ppm or less using a vacuum dryer, and the melt viscosity was measured by changing the strain rate stepwise using a Toyo Seiki Capillograph. The measurement temperature is the same as the spinning temperature, and the melt viscosity of 1216s-1 is described in the examples or comparative examples. By the way, it took 5 minutes from putting the sample into the heating furnace to starting the measurement, and the measurement was performed in a nitrogen atmosphere.

B.ポリマーの屈折率
JIS K7142(1996)A法に従って測定した。
B. The refractive index of the polymer was measured according to JIS K7142 (1996) A method.

C.繊度
多層積層繊維の100mの重量を測定し、その値を100倍した値を算出した。この動作を10回繰り返し、その平均値を繊度(dtex)とした。また上記の繊度をフィラメント数で割った値を単糸繊度(dtex)とした。
C. Fineness A weight of 100 m of the multilayer laminated fiber was measured, and a value obtained by multiplying the value by 100 was calculated. This operation was repeated 10 times, and the average value was defined as the fineness (dtex). The value obtained by dividing the fineness by the number of filaments was defined as the single yarn fineness (dtex).

D.異形度
多層積層繊維を繊維軸方向の任意の位置で切断し、その繊維断面をHITACHI製 走査型電子顕微鏡(SEM)にて撮影し、繊維断面の切断面に外接する真円の径(図2のHの長さ)を繊維径とし、さらに内接する真円の径(図2のKの長さ)を内接円径として、異形度=繊維径÷内接円径から得られる値をいう。この操作を10ヶ所において行い、得られた結果の平均値を異形度とした。
D. The irregularly shaped multilayer laminated fiber is cut at an arbitrary position in the fiber axis direction, the cross section of the fiber is photographed with a scanning electron microscope (SEM) manufactured by HITACHI, and the diameter of a perfect circle circumscribing the cut surface of the fiber cross section (FIG. 2 (Length of H) is the fiber diameter, and the diameter of the inscribed circle (the length of K in FIG. 2) is the inscribed circle diameter, which is a value obtained from the degree of deformity = fiber diameter ÷ inscribed circle diameter. . This operation was performed at 10 locations, and the average value of the obtained results was defined as the degree of irregularity.

E.複合断面(積層数及び積層厚み)
吐出直後の多層積層繊維を繊維軸方向の任意の位置で切断し、その繊維断面をOLYMPUS製 光学顕微鏡にて倍率50倍で観察し、積層数と積層厚み(押し流し積層厚み)を測定した。ただし、ここでいう積層数と積層厚みとは繊維断面に内接する真円(図2のI)と繊維断面の交点(図2のJ)から繊維中心(図2のC)に向かって引いた直線(図2のK)上に存在する各ポリマー成分の積層構造における総積層数と1層の厚みのことをいう。また繊維断面の切断面に外接する真円の径を押し流し繊維径として測定した。これら2つの値と、前述のDで求めた繊維径を用いて多積層繊維の積層厚み=押し流し積層厚み×繊維径/押し流し繊維径の値を求めた。この操作を10ヶ所において行い、得られた結果の平均値を多積層繊維の積層厚みとした。
E. Composite cross section (number of layers and thickness)
The multilayer laminated fiber immediately after discharge was cut at an arbitrary position in the fiber axis direction, the cross section of the fiber was observed with an optical microscope manufactured by OLYMPUS at a magnification of 50 times, and the number of laminated layers and the laminated thickness (push-off laminated thickness) were measured. However, the number of laminations and the lamination thickness here were drawn from the intersection of the perfect circle (I in FIG. 2) and the fiber cross section (J in FIG. 2) toward the fiber center (C in FIG. 2). It refers to the total number of layers and the thickness of one layer in the laminated structure of each polymer component existing on a straight line (K in FIG. 2). Further, the diameter of a perfect circle circumscribing the cut surface of the fiber cross section was measured as the fiber diameter. Using these two values and the fiber diameter determined in the above-mentioned D, the value of the laminated thickness of the multi-laminated fiber = push-off laminated thickness × fiber diameter / push-out fiber diameter was obtained. This operation was performed at 10 locations, and the average value of the obtained results was defined as the laminated thickness of the multi-laminated fiber.

F.干渉効果(発色性、光沢度)
黒色板に多層積層繊維のマルチフィラメントを間隔を空けずに50本平行に並べた糸サンプルを作製した。得られた糸サンプルについて、一定光量の下、検査者(5人)の視認により、干渉効果による発色性を評価した。また上記のサンプルをSHIMADZU製 分光光度計 UV−3150を用い、糸サンプルの繊維軸方向に平行に入射角8°で光を入射し、鏡面反射を含んだ相対拡散反射測定(標準白板:BaSO)を行った。この測定により可視光域(380〜750nm)での反射率(%)の平均値を算出し、この値を光沢度(%)とした。発色性を有し、光沢度が高いほど、発色と光沢性を兼ね備えており、審美性が高いと評価した。
F. Interference effect (color development, glossiness)
A yarn sample in which 50 multifilaments of multi-layer laminated fibers were arranged in parallel on a black plate without a gap was produced. About the obtained thread | yarn sample, the coloring property by an interference effect was evaluated by visual recognition of an inspector (5 persons) under fixed light quantity. In addition, a spectrophotometer UV-3150 manufactured by SHIMADZU was used for the above sample, light was incident at an incident angle of 8 ° parallel to the fiber axis direction of the yarn sample, and relative diffuse reflection measurement including specular reflection (standard white plate: BaSO 4 ) By this measurement, the average value of the reflectance (%) in the visible light region (380 to 750 nm) was calculated, and this value was defined as the glossiness (%). It was evaluated that the higher the glossiness was, the higher the glossiness, the higher the aesthetics as it had both coloring and glossiness.

G.耐剥離性
多層積層繊維を織密度が180本/inchとなるように繊維の本数を調整し、平織地を作成した。得られた平織地について、フロスティング評価を強条件(湿潤状態、荷重:7.36N)または弱条件(乾状態、荷重:4.12N)で行った後、平織地を繊維軸方向と垂直に切断し、その繊維断面をHITACHI製 走査型電子顕微鏡(SEM)にて撮影して、得られた繊維断面写真の切断面に層間剥離が存在するかを観察した。この時、耐剥離性を次の基準に基づき3段階判定した。
G. A plain woven fabric was prepared by adjusting the number of fibers of the peel-resistant multilayer laminated fiber so that the weave density was 180 / inch. The obtained plain woven fabric was subjected to frosting evaluation under strong conditions (wet state, load: 7.36 N) or weak conditions (dry state, load: 4.12 N), and then the plain woven fabric was perpendicular to the fiber axis direction. It cut | disconnected and image | photographed the fiber cross section with the scanning electron microscope (SEM) made from HITACHI, and observed whether delamination existed in the cut surface of the obtained fiber cross-section photograph. At this time, the peel resistance was determined in three stages based on the following criteria.

優:強条件のフロスティング後でも層間剥離なし。     Excellent: No delamination even after frosting under strong conditions.

良:強条件のフロスティング後では層間剥離が存在するが、弱条件では層間剥離なし。     Good: There is delamination after frosting under strong conditions, but there is no delamination under weak conditions.

不可:弱条件のフロスティング後でも層間剥離が存在する。     Impossible: Delamination exists even after frosting under weak conditions.

H.風合い(柔軟性)
多層積層繊維を織密度が180本/inchとなるように繊維の本数を調整し、平織地を作成した。得られた平織地について、風合い(柔軟性)を検査者(5人)の触感により次の基準に基づき4段階判定した。
H. Texture (flexibility)
A plain woven fabric was prepared by adjusting the number of fibers of the multilayer laminated fiber so that the woven density was 180 / inch. The texture (flexibility) of the obtained plain woven fabric was determined in four stages based on the following criteria based on the touch of the inspector (five people).

優:風合いが優れている。     Excellent: The texture is excellent.

良:風合いが良好。     Good: The texture is good.

可:衣料用途として使用可能なレベル。     Possible: Level that can be used for clothing.

不可:風合いが悪い。     Impossible: The texture is bad.

[実施例1]
積層成分1として、ポリエチレンテレフタレート(PET 溶融粘度120Pa・s 屈折率1.66)と、積層成分2としてスピログリコール21モル%及びシクロヘキサンジカルボン酸29モル%共重合したポリエチレンテレフタレート(SPG−CHDC共重合PET 溶融粘度75Pa・s 屈折率1.53)を285℃で別々に溶融後、積層成分1/積層成分2の吐出比を50/50として、図6に例示した複合口金が組み込まれた紡糸パックに流入させ、図1に示すような同心円状均一積層繊維断面であって積層数が40層の複合形態となるように、吐出孔から流入ポリマーを吐出した。この際、積層成分1が最外層となり、積層成分1/積層成分2/積層成分1/…の交互積層となるように配置した。吐出された複合ポリマー流を、冷却固化後油剤付与し、紡糸速度1300m/minで巻取り、154dtex−24フィラメント(総吐出量20g/min)の未延伸糸を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、48dtex−24フィラメント(単糸繊度2.0dtex)の延伸繊維を得た。得られた多層積層繊維の各積層成分の層厚みは共に0.17μmであり、最外層2μmの積層数は12であった。また該多層積層繊維は紫色に発色しており、光沢感も強く、光沢度は75%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛は優れた風合いを有していた。
[Example 1]
As the lamination component 1, polyethylene terephthalate (PET melt viscosity 120 Pa · s refractive index 1.66) and as the lamination component 2 polyethylene terephthalate (SPG-CHDC copolymerized PET) copolymerized with 21 mol% spiroglycol and 29 mol% cyclohexanedicarboxylic acid The melt viscosity of 75 Pa · s (refractive index: 1.53) was melted separately at 285 ° C., and the discharge ratio of laminated component 1 / laminated component 2 was set to 50/50, and the spin pack incorporating the composite die illustrated in FIG. The inflow polymer was discharged from the discharge holes so as to form a composite form having a cross section of concentric uniform laminated fibers as shown in FIG. At this time, the laminated component 1 is the outermost layer, and the laminated components 1 / laminated components 2 / laminated components 1 / ... are alternately laminated. The discharged composite polymer stream was cooled and solidified, and then an oil agent was applied. The resultant was wound at a spinning speed of 1300 m / min, and 154 dtex-24 filaments (total discharge amount 20 g / min) were drawn. The wound unstretched fiber was stretched 3.2 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 48 dtex-24 filament (single yarn fineness 2.0 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.17 μm, and the number of laminated layers of the outermost layer 2 μm was 12. The multilayer laminated fiber was colored purple, had a strong gloss, and had a glossiness of 75%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. Moreover, the fabric using this multilayer laminated fiber had an excellent texture.

[実施例2]
積層成分1として、ポリエチレンテレフタレート(PET 溶融粘度120Pa・s 屈折率1.66)と、積層成分2としてスピログリコール21モル%及びシクロヘキサンジカルボン酸29モル%共重合したポリエチレンテレフタレート(SPG−CHDC共重合PET 溶融粘度75Pa・s 屈折率1.53)を285℃で別々に溶融後、積層成分1/積層成分2の吐出比を50/50として、図6に例示した複合口金が組み込まれた紡糸パックに流入させ、図3に示すような同心円状傾斜積層繊維断面であって積層数が20層の複合形態となるように、吐出孔から流入ポリマーを吐出した。この際、積層成分1が最外層となり、積層成分1/積層成分2/積層成分1/…の交互積層となるように配置した。また積層構造の傾斜は繊維外層/中心で傾斜比1.8となるようにした。吐出された複合ポリマー流を、冷却固化後油剤付与し、紡糸速度1300m/minで巻取り、115dtex−15フィラメント(総吐出量15g/min)の未延伸糸を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、36dtex−15フィラメント(単糸繊度2.4dtex)の延伸繊維を得た。得られた多層積層繊維の各積層成分の層厚みは共に0.3〜0.5μmで傾斜しており、最外層2μmの積層数は4であった。また該多層積層繊維は金属調を有しており、光沢度は65%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛は良好な風合いを有していた。
[Example 2]
As the lamination component 1, polyethylene terephthalate (PET melt viscosity 120 Pa · s refractive index 1.66) and as the lamination component 2 polyethylene terephthalate (SPG-CHDC copolymerized PET) copolymerized with 21 mol% spiroglycol and 29 mol% cyclohexanedicarboxylic acid The melt viscosity of 75 Pa · s (refractive index: 1.53) was melted separately at 285 ° C., and the discharge ratio of laminated component 1 / laminated component 2 was set to 50/50, and the spin pack incorporating the composite die illustrated in FIG. The inflow polymer was discharged from the discharge holes so as to form a composite form having a cross section of concentric inclined laminated fibers as shown in FIG. At this time, the laminated component 1 is the outermost layer, and the laminated components 1 / laminated components 2 / laminated components 1 / ... are alternately laminated. In addition, the inclination of the laminated structure was set to an inclination ratio of 1.8 at the fiber outer layer / center. The discharged composite polymer stream was cooled and solidified, and then an oil agent was applied thereto. The composite polymer stream was wound at a spinning speed of 1300 m / min, and 115 dtex-15 filament (total discharge amount 15 g / min) undrawn yarn was collected. The wound unstretched fiber was stretched 3.2 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 36 dtex-15 filament (single yarn fineness 2.4 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was inclined at 0.3 to 0.5 μm, and the number of laminated layers of the outermost layer 2 μm was 4. The multilayer laminated fiber had a metallic tone and had a glossiness of 65%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. The fabric using the multilayer laminated fiber had a good texture.

[実施例3]
積層成分1として、ポリエチレンテレフタレート(PET 溶融粘度120Pa・s 屈折率1.66)と、積層成分2としてスピログリコール21モル%及びシクロヘキサンジカルボン酸29モル%共重合したポリエチレンテレフタレート(SPG−CHDC共重合PET 溶融粘度75Pa・s 屈折率1.53)、積層成分3として黒色顔料(カーボンブラック)を1wt%含んだポリエチレンテレフタレート(PET 溶融粘度110Pa・s 屈折率1.66)を285℃で別々に溶融後、積層成分1/積層成分2/積層成分3の吐出比を40/40/20として、図6に例示した複合口金が組み込まれた紡糸パックに流入させ、図4(a)に示すような芯鞘同心円状均一積層繊維断面であって積層数が22層の複合形態となるように、吐出孔から流入ポリマーを吐出した。この時、芯部は積層成分3であり、鞘部は積層成分1が最外層となり、積層成分1/積層成分2/積層成分1/…の交互積層となるように配置した。吐出された複合ポリマー流を、冷却固化後油剤付与し、紡糸速度1300m/minで巻取り、154dtex−24フィラメント(総吐出量20g/min)の未延伸糸を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、48dtex−24フィラメント(単糸繊度2.0dtex)の延伸繊維を得た。得られた多層積層繊維の各積層成分の層厚みは共に0.17μmであり、最外層2μmの積層数は12であった。また該多層積層繊維は実施例1に比べて強い紫色に発色しており、光沢度は70%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛は優れた風合いを有していた。
[Example 3]
As the lamination component 1, polyethylene terephthalate (PET melt viscosity 120 Pa · s refractive index 1.66) and as the lamination component 2 polyethylene terephthalate (SPG-CHDC copolymerized PET) copolymerized with 21 mol% spiroglycol and 29 mol% cyclohexanedicarboxylic acid Melt viscosity 75 Pa · s refractive index 1.53), polyethylene terephthalate (PET melt viscosity 110 Pa · s refractive index 1.66) containing 1 wt% of black pigment (carbon black) as laminate component 3 after separately melting at 285 ° C. Then, the discharge ratio of laminated component 1 / laminated component 2 / laminated component 3 is set to 40/40/20, and the mixture is made to flow into a spinning pack incorporating the composite base illustrated in FIG. 6, and the core as shown in FIG. The cross section of the sheathed concentric uniform laminated fiber and the number of laminated layers is 22 layers. It ejected flowing polymer from the holes. At this time, the core portion was the laminated component 3, and the sheath portion was arranged such that the laminated component 1 was the outermost layer, and the laminated components 1 / laminated component 2 / laminated component 1 / ... were alternately laminated. The discharged composite polymer stream was cooled and solidified, and then an oil agent was applied. The resultant was wound at a spinning speed of 1300 m / min, and 154 dtex-24 filaments (total discharge amount 20 g / min) were drawn. The wound unstretched fiber was stretched 3.2 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 48 dtex-24 filament (single yarn fineness 2.0 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.17 μm, and the number of laminated layers of the outermost layer 2 μm was 12. Further, the multilayer laminated fiber had a strong purple color compared to Example 1, and the glossiness was 70%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. Moreover, the fabric using this multilayer laminated fiber had an excellent texture.

[比較例1]
図6に例示した複合口金が組み込まれた紡糸パックに溶融ポリマーを流入させ、図1に示すような同心円状均一積層繊維断面であって積層数が5層の複合形態となるようにする以外は実施例2と同じポリマー、吐出比、吐出量、紡糸条件で紡糸し、多層積層繊維を製造した。巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、36dtex−15フィラメント(単糸繊度2.4dtex)の延伸繊維を得た。得られた多層積層繊維の各積層成分の層厚みは共に1.5μmであり、最外層2μmの積層数は2であった。得られた多層積層繊維は発色しておらず、光沢度は56%であった。
[Comparative Example 1]
Except that the molten polymer is allowed to flow into the spin pack in which the composite base illustrated in FIG. 6 is incorporated, so that the cross-section is a concentric uniform laminated fiber cross section as shown in FIG. Spinning was performed under the same polymer, discharge ratio, discharge amount, and spinning conditions as in Example 2 to produce a multilayer laminated fiber. The wound unstretched fiber was stretched 3.2 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 36 dtex-15 filament (single yarn fineness 2.4 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 1.5 μm, and the number of laminated layers of the outermost layer 2 μm was 2. The obtained multilayer laminated fiber was not colored and had a glossiness of 56%.

[比較例2]
積層成分1として、ポリエチレンテレフタレート(PET 溶融粘度120Pa・s 屈折率1.66)と、積層成分2としてポリアミド−6(N6 溶融粘度100Pa・s 屈折率1.53)を280℃で別々に溶融後、図6に例示した複合口金が組み込まれた紡糸パックに流入させ、図5に示すような扁平板状交互積層繊維断面であって積層数が40層の複合形態となるように、吐出孔から流入ポリマーを吐出した。この際、積層成分1からなる保護部(図5のM)と、積層成分1/積層成分2/積層成分1/…の交互積層構造部(図5のA及びB)となるように配置し、積層成分1/積層成分2の吐出比を80/20(交互積層構造部での積層成分1/積層成分2の比は50/50)とした。また吐出孔を縦横比1:10のスリット孔として、吐出された複合ポリマー流を、冷却固化後油剤付与し、紡糸速度1300m/minで巻取り、異型度4の192dtex−12フィラメント(総吐出量25g/min)の未延伸糸を採取した。巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、60dtex−12フィラメント(単糸繊度5.0dtex)の延伸繊維を得た。得られた該多層積層繊維の各積層成分の層厚みは共に0.07μmであり、最外層2μmの積層数は1であった。該多層積層繊維は紫色に発色しており、光沢感も強く光沢度は85%であったが、弱条件のフロスティング後でも層間の剥離が見られ、耐剥離性は不可であった。該多層積層繊維を用いた布帛の触感が硬く、風合いも不可であった。
[Comparative Example 2]
After laminating polyethylene terephthalate (PET melt viscosity 120 Pa · s refractive index 1.66) as laminate component 1 and polyamide-6 (N6 melt viscosity 100 Pa · s refractive index 1.53) separately at 280 ° C. as laminate component 2 6 is allowed to flow into a spinning pack in which the composite base illustrated in FIG. 6 is incorporated, and from the discharge hole so as to form a composite form having a flat plate-like alternating laminated fiber cross section as shown in FIG. The inflow polymer was discharged. At this time, the protective portion (M in FIG. 5) composed of the laminated component 1 and the alternately laminated structure portion (A and B in FIG. 5) of the laminated component 1 / laminated component 2 / laminated component 1 ... are arranged. The discharge ratio of laminated component 1 / laminated component 2 was 80/20 (ratio of laminated component 1 / laminated component 2 in the alternate laminated structure portion was 50/50). In addition, the discharge hole was made into a slit hole with an aspect ratio of 1:10, and the discharged composite polymer flow was cooled and solidified and then applied with an oil agent, wound at a spinning speed of 1300 m / min, and a 192 dtex-12 filament with a degree of modification 4 (total discharge amount) 25 g / min) of undrawn yarn was collected. The wound unstretched fiber was stretched 3.2 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 60 dtex-12 filament (single yarn fineness 5.0 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.07 μm, and the number of laminated layers of the outermost layer 2 μm was 1. The multilayer laminated fiber was colored purple and had a strong gloss and a glossiness of 85%. However, even after frosting under weak conditions, delamination was observed and the peel resistance was not possible. The fabric using the multi-layer laminated fiber had a hard feel and was unable to feel.

[実施例4]
未延伸糸を38dtex−24フィラメント(総吐出量5g/min)とする以外は実施例1と同じ複合口金、ポリマー、吐出比、紡糸条件で紡糸し、巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、12dtex−24フィラメント(単糸繊度0.5dtex)の延伸繊維を得た。得られた該多層積層繊維の各積層成分の層厚みは共に0.09μmであり、最外層2μmの積層数は23であった。また該多層積層繊維は黄色に発色しており、光沢感も強く、光沢度は74%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛は優れた風合いを有していた。
[Example 4]
Except for the undrawn yarn being 38 dtex-24 filament (total discharge amount 5 g / min), the same union fiber as in Example 1 was spun under the same condition as the base, polymer, discharge ratio, and spinning conditions. The film was stretched 3.2 times between rollers heated to ° C. to obtain a stretched fiber of 12 dtex-24 filament (single yarn fineness 0.5 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.09 μm, and the number of laminated layers of the outermost layer 2 μm was 23. The multilayer laminated fiber was colored yellow, had a strong gloss, and had a glossiness of 74%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. Moreover, the fabric using this multilayer laminated fiber had an excellent texture.

[実施例5]
未延伸糸を230dtex−24フィラメント(総吐出量30g/min)とする以外は実施例1と同じ複合口金、ポリマー、吐出比、紡糸条件で紡糸し、巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、72dtex−24フィラメント(単糸繊度3.0dtex)の延伸繊維を得た。得られた該多層積層繊維の各積層成分の層厚みは共に0.20μmであり、最外層2μmの積層数は10であった。また該多層積層繊維は青色に発色しており、光沢感も強く、光沢度は75%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛は良好な風合いを有していた。
[Example 5]
Except for the undrawn yarn being 230 dtex-24 filament (total discharge rate 30 g / min), the same union fiber as in Example 1 was spun under the same condition as the base, polymer, discharge ratio, and spinning conditions. The film was stretched 3.2 times between rollers heated to ° C to obtain a drawn fiber having 72 dtex-24 filaments (single yarn fineness of 3.0 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.20 μm, and the number of laminated layers of the outermost layer 2 μm was 10. The multilayer laminated fiber was colored blue, had a strong gloss, and had a glossiness of 75%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. The fabric using the multilayer laminated fiber had a good texture.

[実施例6]
実施例1の複合口金において、吐出孔を縦横比1:5のスリット孔とする以外は実施例1と同じポリマー、吐出比、吐出量、紡糸条件で紡糸し、多層積層繊維を製造した。巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、異型度2.0の48dtex−24フィラメント(単糸繊度2.0dtex)の延伸繊維を得た。得られた該多層積層繊維の各積層成分の層厚みは共に0.12μmであり、最外層2μmの積層数は9〜17であった。また該多層積層繊維は赤色に発色しており、さらに扁平形とすることで丸形よりも光沢感が増加し、光沢度は80%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛は良好な風合いを有していた。
[Example 6]
In the composite die of Example 1, spinning was performed with the same polymer, discharge ratio, discharge amount, and spinning conditions as in Example 1 except that the discharge holes were slit holes with an aspect ratio of 1: 5 to produce multilayer laminated fibers. The wound unstretched fiber was stretched 3.2 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 48 dtex-24 filament (single yarn fineness 2.0 dtex) having a degree of profile 2.0. . The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.12 μm, and the number of laminated layers of the outermost layer 2 μm was 9-17. Further, the multilayer laminated fiber was colored in red, and by making it flat, the glossiness increased more than the round shape, and the glossiness was 80%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. The fabric using the multilayer laminated fiber had a good texture.

[実施例7]
未延伸糸を230dtex−24フィラメント(総吐出量30g/min)とする以外は実施例5と同じ複合口金、ポリマー、吐出比、紡糸条件で紡糸し、巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、72dtex−24フィラメント(単糸繊度3.0dtex)の延伸繊維を得た。得られた該多層積層繊維の各積層成分の層厚みは共に0.14μmであり、最外層2μmの積層数は8〜15であった。また該多層積層繊維は赤色に発色しており、さらに扁平形とすることで丸形よりも光沢感が増加し、光沢度は80%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛の風合いは衣料用途として使用可能なレベルであった。
[Example 7]
Except for the undrawn yarn being 230 dtex-24 filaments (total discharge rate 30 g / min), the same union fiber as in Example 5 was spun under the same composite die, polymer, discharge ratio, and spinning conditions. The film was stretched 3.2 times between rollers heated to ° C to obtain a drawn fiber having 72 dtex-24 filaments (single yarn fineness of 3.0 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.14 μm, and the number of laminated layers of the outermost layer 2 μm was 8-15. Further, the multilayer laminated fiber was colored in red, and by making it flat, the glossiness increased more than the round shape, and the glossiness was 80%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. The texture of the fabric using the multilayer laminated fiber was at a level that can be used for clothing.

[実施例8]
積層成分2として1,4−シクロヘキサンジメタノールを30モル%共重合したポリエチレンテレフタレート(CHDM共重合PET 溶融粘度100Pa・s 屈折率1.58)とし、285℃で溶融する以外は実施例1と同じ複合口金、ポリマー、吐出比、吐出量、紡糸条件で紡糸し、巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、48dtex−24フィラメント(単糸繊度2.0dtex)の延伸繊維を得た。得られた該多層積層繊維の各積層成分の層厚みは共に0.17μmであり、最外層2μmの積層数は12であった。また該多層積層繊維は紫色に発色しており、光沢感も強く、光沢度は65%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛は優れた風合いを有していた。
[Example 8]
The same as Example 1 except that polyethylene terephthalate (CHDM copolymerized PET melt viscosity 100 Pa · s refractive index 1.58) obtained by copolymerizing 30 mol% of 1,4-cyclohexanedimethanol as the laminate component 2 was melted at 285 ° C. The composite base, the polymer, the discharge ratio, the discharge amount, and the spinning conditions were spun and the unstretched fiber wound up was stretched 3.2 times between rollers heated to 90 ° C and 130 ° C, and a 48 dtex-24 filament (single yarn) A drawn fiber having a fineness of 2.0 dtex) was obtained. The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.17 μm, and the number of laminated layers of the outermost layer 2 μm was 12. The multilayer laminated fiber was colored purple, had a strong gloss, and had a glossiness of 65%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. Moreover, the fabric using this multilayer laminated fiber had an excellent texture.

[実施例9]
積層成分2をポリアミド−6(N6 溶融粘度100Pa・s 屈折率1.53)とし、280℃で溶融する以外は実施例1と同じ複合口金、ポリマー、吐出比、吐出量、紡糸条件で紡糸し、巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い48dtex−24フィラメント(単糸繊度2.0dtex)の延伸繊維を得た。得られた該多層積層繊維の各積層成分の層厚みは共に0.18μmであり、最外層2μmの積層数は12であった。また該多層積層繊維は紫色に発色しており、光沢感も強く、光沢度は75%であった。耐剥離性については、強条件のフロスティング後では層間剥離が見られたものの、弱条件では層間剥離が見られなかった。また該多層積層繊維を用いた布帛は優れた風合いを有していた。
[Example 9]
The laminated component 2 was polyamide-6 (N6 melt viscosity 100 Pa · s refractive index 1.53), and spinning was performed under the same composite die, polymer, discharge ratio, discharge amount, and spinning conditions as in Example 1 except that it was melted at 280 ° C. The unstretched fiber wound up was stretched 3.2 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 48 dtex-24 filament (single yarn fineness 2.0 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.18 μm, and the number of laminated layers of the outermost layer 2 μm was 12. The multilayer laminated fiber was colored purple, had a strong gloss, and had a glossiness of 75%. As for the peel resistance, delamination was observed after frosting under strong conditions, but delamination was not observed under weak conditions. Moreover, the fabric using this multilayer laminated fiber had an excellent texture.

[実施例10]
積層成分2をポリブチレンテレフタレート(PBT 溶融粘度100Pa・s 屈折率1.64)とし、280℃で溶融する以外は実施例1と同じ複合口金、ポリマー、吐出比、吐出量、紡糸条件で紡糸し、巻き取った未延伸繊維を90℃と130℃に加熱したローラー間で3.2倍延伸を行い、48dtex−24フィラメント(単糸繊度2.0dtex)の延伸繊維を得た。得られた該多層積層繊維の各積層成分の層厚みは共に0.17μmであり、最外層2μmの積層数は12であった。また該多層積層繊維は薄紫色に発色しており、光沢度は58%であった。耐剥離性については、強条件のフロスティング後でも層間の剥離は見受けられなかった。また該多層積層繊維を用いた布帛は優れた風合いを有していた。
[Example 10]
The laminated component 2 is polybutylene terephthalate (PBT melt viscosity 100 Pa · s, refractive index 1.64), and spinning is performed with the same composite die, polymer, discharge ratio, discharge amount, and spinning conditions as in Example 1 except for melting at 280 ° C. The unstretched fiber thus wound was stretched 3.2 times between rollers heated to 90 ° C. and 130 ° C. to obtain a stretched fiber of 48 dtex-24 filament (single yarn fineness 2.0 dtex). The layer thickness of each laminated component of the obtained multilayer laminated fiber was 0.17 μm, and the number of laminated layers of the outermost layer 2 μm was 12. The multilayer laminated fiber was colored light purple and had a glossiness of 58%. Regarding peel resistance, no delamination was observed even after frosting under strong conditions. Moreover, the fabric using this multilayer laminated fiber had an excellent texture.

本発明の多層積層繊維は、その高い光反射と干渉により優れた審美性、耐摩耗性等の力学特性や織編物とした際の風合いを活かして、インナー・アウターなどの一般衣料用途、カーテン・クロスなどのインテリア用途など衣料・アパレル用途として幅広く用いることができる。 The multilayer laminated fiber of the present invention is used for general garments such as inner and outer, curtains, It can be widely used for clothing and apparel such as cloth interiors.

A ポリマー層
B ポリマー層
C 繊維断面の面積を2等分するような任意の2本の直線の交点(繊維中心)
D 繊維断面に2点以上で外接する真円(外接円)
E 外接円から繊維中心へ引いた任意の直線
F 外接円から繊維中心へ引いた任意の直線と繊維断面が交差する点
G 繊維断面とその外接円の任意の交点
H 繊維断面とその外接円の任意の交点から繊維中心へ引いた直線
I 繊維断面に2点以上で内接する真円(内接円)
J 繊維断面とその内接円の任意の交点
K 繊維断面とその内接円の任意の交点から繊維中心へ引いた直線
L 中空部または第三成分のポリマ−
M 保護部
1 計量プレート
2 分配プレート
3 吐出プレート
A Polymer layer B Polymer layer C Intersection of any two straight lines that divide the fiber cross-sectional area into two equal parts (fiber center)
D A perfect circle circumscribing the fiber cross section at two or more points (circumscribed circle)
E An arbitrary straight line drawn from the circumscribed circle to the fiber center F A point where an arbitrary straight line drawn from the circumscribed circle to the fiber center intersects the fiber cross section G An arbitrary intersection of the fiber cross section and its circumscribed circle H The fiber cross section and its circumscribed circle Straight line I drawn from any intersection to the fiber center A perfect circle (inscribed circle) inscribed in the fiber cross section at two or more points
J An arbitrary intersection point K of the fiber cross section and its inscribed circle K A straight line L drawn from an arbitrary intersection point of the fiber cross section and its inscribed circle to the fiber center, or a third component polymer
M Protection unit 1 Weighing plate 2 Distribution plate 3 Discharge plate

Claims (6)

2種以上のポリマーが交互に積層された多層断面構造を有しており、最外層2μmにおいて、積層数が少なくとも3以上であることを特徴とする多層積層繊維。 A multilayer laminated fiber having a multilayer cross-sectional structure in which two or more kinds of polymers are alternately laminated, wherein the number of laminated layers is at least 3 in the outermost layer of 2 μm. 同心円状に積層された多層構造が交互に10層以上積層されており、かつ単糸繊度3dtex以下であることを特徴とする請求項1に記載の多層積層繊維。 10. The multilayer laminated fiber according to claim 1, wherein ten or more layers of the multilayer structure laminated concentrically are alternately laminated and have a single yarn fineness of 3 dtex or less. 1層の厚みが0.6μm以下であり、交互に積層されたポリマーの屈折率が異なることを特徴とする請求項1または2に記載の多層積層繊維。 The multilayer laminated fiber according to claim 1 or 2, wherein the thickness of one layer is 0.6 µm or less, and the refractive indexes of the alternately laminated polymers are different. 紫外から赤外領域のいずれかに反射波長領域を有した積層された多層構造を有する請求項1〜3のいずれか1項に記載の多層積層繊維。 The multilayer laminated fiber according to any one of claims 1 to 3, wherein the multilayer laminated fiber has a laminated multilayer structure having a reflection wavelength region in any of ultraviolet to infrared regions. 多層積層構造を構成するポリマーがいずれもポリエステルを主成分とすることを特徴とする請求項1〜4のいずれか1項に記載の多層積層繊維。 The multilayer laminated fiber according to any one of claims 1 to 4, wherein all the polymers constituting the multilayer laminated structure are mainly composed of polyester. 多層積層構造を構成する少なくとも1種類のポリマーがスピログリコール、シクロヘキサンジカルボン酸または1,4−シクロヘキサンジメタノールのうち1種類以上の成分を共重合したポリエステルであることを特徴とする請求項1〜5のいずれか1項に記載の多層積層繊維。 The at least one polymer constituting the multilayer laminated structure is a polyester obtained by copolymerizing one or more components of spiroglycol, cyclohexanedicarboxylic acid or 1,4-cyclohexanedimethanol. The multilayer laminated fiber according to any one of the above.
JP2015249527A 2015-12-22 2015-12-22 Multi-layer laminated fiber Active JP6679921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015249527A JP6679921B2 (en) 2015-12-22 2015-12-22 Multi-layer laminated fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015249527A JP6679921B2 (en) 2015-12-22 2015-12-22 Multi-layer laminated fiber

Publications (2)

Publication Number Publication Date
JP2017115254A true JP2017115254A (en) 2017-06-29
JP6679921B2 JP6679921B2 (en) 2020-04-15

Family

ID=59233744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015249527A Active JP6679921B2 (en) 2015-12-22 2015-12-22 Multi-layer laminated fiber

Country Status (1)

Country Link
JP (1) JP6679921B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250529A (en) * 2021-12-14 2022-03-29 浙江大学 Aerogel fiber with specific section morphological characteristics and preparation method and device thereof
WO2022131312A1 (en) * 2020-12-18 2022-06-23 東レ株式会社 Composite fiber and multifilament

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850719B (en) * 2019-04-30 2022-03-04 东华大学 Reflective fiber and spinning pack thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131312A1 (en) * 2020-12-18 2022-06-23 東レ株式会社 Composite fiber and multifilament
CN114250529A (en) * 2021-12-14 2022-03-29 浙江大学 Aerogel fiber with specific section morphological characteristics and preparation method and device thereof
CN114250529B (en) * 2021-12-14 2023-08-22 浙江大学 Aerogel fiber with specific cross-sectional morphological characteristics and preparation method and device thereof

Also Published As

Publication number Publication date
JP6679921B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
KR100334487B1 (en) Fiber having optical interference function and its utilization
CN105874111B (en) Island-in-sea type composite fiber, compound superfine fibre and fiber product
JP7031310B2 (en) Glossy fiber
KR100324459B1 (en) Fiber Structure and Textile Using Same
KR20190087462A (en) Eccentric core-sheath composite fiber and horn
JP6090159B2 (en) Kaishima fiber, blended yarn and textile products
JP6679921B2 (en) Multi-layer laminated fiber
JP2019214798A (en) Woven or knitted fabric using eccentric core-sheath conjugate fiber
KR20210087030A (en) Method of manufacturing stretch-processed yarn, textile products, composite slits and composite fibers
KR101866688B1 (en) Rayon-like polyester composite yarn having excellent melange effect, drapability and high elasticity and manufacturing method thereof
JP2005248369A (en) Conjugated fiber having light interference color-developing function excellent in esthetic property
US20220341060A1 (en) Sheath-core composite fiber and multifilament
JPH11181630A (en) Conjugated fiber
JP5324360B2 (en) Fabrics and textile products including core-sheath type composite false twisted yarn
JP2021011662A (en) Light shielding fiber
JPH05239717A (en) New conjugate fiber
JPH11124747A (en) Composite yarn having optical interfering function
JP3673812B2 (en) Method for producing composite polymer fiber and spinneret therefor
JPH11124733A (en) Filament yarn improved in optical interference function
JPS6257982A (en) Production of fabric excellent in opacity
JP2512392B2 (en) Method for producing woven fabric with excellent opacity
JPH11124773A (en) Production of fiber construction having improved optical interference function
JP2005194662A (en) Multifilament yarn having optical interference function
JPH03130428A (en) Blended interlacing yarn and its production
JPH11124748A (en) Multifilament yarm having optical interfering function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6679921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151