JP2017111864A - Electrode cutting device and electrode test method - Google Patents

Electrode cutting device and electrode test method Download PDF

Info

Publication number
JP2017111864A
JP2017111864A JP2015243171A JP2015243171A JP2017111864A JP 2017111864 A JP2017111864 A JP 2017111864A JP 2015243171 A JP2015243171 A JP 2015243171A JP 2015243171 A JP2015243171 A JP 2015243171A JP 2017111864 A JP2017111864 A JP 2017111864A
Authority
JP
Japan
Prior art keywords
electrode
transport
unit
individual
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015243171A
Other languages
Japanese (ja)
Other versions
JP6720516B2 (en
Inventor
寛恭 西原
Hiroyasu Nishihara
寛恭 西原
真也 浅井
Shinya Asai
真也 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2015243171A priority Critical patent/JP6720516B2/en
Publication of JP2017111864A publication Critical patent/JP2017111864A/en
Application granted granted Critical
Publication of JP6720516B2 publication Critical patent/JP6720516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode cutting device and an electrode test method which can improve the quality in image inspection of unit piece electrodes.SOLUTION: An electrode cutting device 1 according to one embodiment comprises: a first conveying part 2 which has a conveying face 22a for supporting a band electrode 10 by coming into contact with a lower face 10b of the band electrode 10, and which conveys the band electrode 10 in a conveyance direction by moving the conveying face 22a in the conveyance direction; a cutting part 3 which cuts the band electrode 10 during conveyance by the first conveying part 2 so as to divide the band electrode 10 into unit piece electrodes 15; and a first imaging part 4 which is arranged to face the conveying face 22a downstream the cutting part 3 in the conveyance direction so as to capture the image of an upper face 15a of each of the unit piece electrodes 15 being conveyed in the conveyance direction.SELECTED DRAWING: Figure 1

Description

本発明は、電極切断装置及び電極検査方法に関する。   The present invention relates to an electrode cutting device and an electrode inspection method.

従来、リチウムイオン二次電池等の、シート状の電極を積層させてなる積層型二次電池が知られている。このような積層型二次電池の製造工程においては、最終製品段階での不具合の発生を防ぐために、積層型二次電池を組み立てる前に個々の電極(以下「個片電極」)について各種検査が実行される。このような各種検査のうちの一つとして、個片電極の表面の画像検査が挙げられる。   Conventionally, a stacked secondary battery such as a lithium ion secondary battery in which sheet-like electrodes are stacked is known. In the manufacturing process of such a multilayer secondary battery, various inspections are performed on individual electrodes (hereinafter referred to as “individual electrodes”) before assembling the multilayer secondary battery in order to prevent occurrence of problems at the final product stage. Executed. As one of such various inspections, there is an image inspection of the surface of the individual electrode.

例えば、特許文献1には、アライメントステージを備えた極板積載装置が記載されている。この極板積載装置では、ベルトコンベアによりアライメントステージ上に移送された正極又は負極の極板は、上方に配置されたカメラにより撮影される。撮影データに基づいて、極板の表面状態が確認されると共にアライメントステージ上での極板の位置が検出される。そして、アライメントステージの移動による極板の位置合わせが行われた後、移載アームにより、正極及び負極の積層が行われる。   For example, Patent Document 1 describes an electrode plate stacking device including an alignment stage. In this electrode plate stacking apparatus, the positive electrode plate or the negative electrode plate transferred onto the alignment stage by the belt conveyor is photographed by a camera disposed above. Based on the imaging data, the surface state of the electrode plate is confirmed and the position of the electrode plate on the alignment stage is detected. Then, after the electrode plate is aligned by the movement of the alignment stage, the positive and negative electrodes are stacked by the transfer arm.

特開2012−174388号公報JP 2012-174388 A

特許文献1に記載の技術は、極板積層装置に関するものであるが、極板が積層装置に至る直前の搬送経路上で極板の検査を行う場合にも、同様にカメラによる撮影が行われることになる。例えば図7に示すように、所定の搬送方向に移動する搬送ベルト100の搬送面100a上に載置されて搬送される個片電極110について考える。このような場合、搬送面100a上の所定位置に配置したカメラの撮像範囲に各個片電極110が収まるようにするためには、個片電極110間の位置ずれ(位置のばらつき)を予め考慮し、個片電極110のサイズよりも大きい撮像範囲Cを設定する必要がある。これは、例えば電極が複数の搬送装置を経て搬送される過程において、電極の位置ずれの発生を避けられないことに起因する。   The technique described in Patent Document 1 relates to an electrode plate laminating apparatus. However, when the electrode plate is inspected on the transport path immediately before the electrode plate reaches the laminating apparatus, imaging by the camera is similarly performed. It will be. For example, as shown in FIG. 7, consider an individual electrode 110 that is placed and transported on a transport surface 100a of a transport belt 100 that moves in a predetermined transport direction. In such a case, in order to fit each individual electrode 110 within the imaging range of the camera arranged at a predetermined position on the transport surface 100a, a positional deviation (positional variation) between the individual electrodes 110 is considered in advance. It is necessary to set an imaging range C larger than the size of the individual electrode 110. This is because, for example, in the process in which the electrode is conveyed through a plurality of conveying devices, it is unavoidable that the electrode is displaced.

しかし、個片電極110のサイズよりも大きい撮像範囲Cを設定した場合には、個片電極110のサイズに合った大きさの撮像範囲を設定する場合と比較して、表面検査のために必要となる個片電極110部分に対応する画素数が減ってしまう。これは、画像検査の精度低下の原因となる。一方、個片電極110のサイズに合った大きさの撮像範囲を設定するために、カメラによる撮像位置よりも搬送方向上流側に個片電極110を整列させる機構を導入することは、設備の大型化や設備コストの増大に繋がるといった問題がある。   However, when an imaging range C larger than the size of the individual electrode 110 is set, it is necessary for surface inspection as compared with the case where an imaging range having a size that matches the size of the individual electrode 110 is set. As a result, the number of pixels corresponding to the individual electrode 110 is reduced. This causes a decrease in accuracy of image inspection. On the other hand, in order to set an imaging range that matches the size of the individual electrode 110, introducing a mechanism for aligning the individual electrodes 110 upstream of the imaging position by the camera in the transport direction is a large-scale facility. There is a problem that leads to increase in cost and equipment cost.

そこで、本発明は、個片電極の画像検査の精度を容易に向上させることができる電極切断装置及び電極検査方法を提供することを目的とする。   Then, an object of this invention is to provide the electrode cutting device and electrode inspection method which can improve the precision of the image test | inspection of an individual electrode easily.

本発明の一態様に係る電極切断装置は、長尺の帯状電極の一方側の表面に当接して帯状電極を支持する第1搬送面を有し、第1搬送面を搬送方向に移動させることにより帯状電極を搬送方向に搬送する第1搬送部と、第1搬送部によって搬送中の帯状電極を切断することにより、帯状電極を個片電極に個片化する切断部と、切断部よりも搬送方向下流側において第1搬送面に対向するように配置され、搬送方向に搬送される個片電極の他方側の表面の画像を撮像する第1撮像部と、を備える。   An electrode cutting device according to an aspect of the present invention has a first transport surface that contacts a surface of one side of a long strip electrode and supports the strip electrode, and moves the first transport surface in the transport direction. Than the first transport unit that transports the strip electrode in the transport direction, the cutting unit that separates the strip electrode into individual electrodes by cutting the strip electrode being transported by the first transport unit, and the cutting unit A first imaging unit that is disposed so as to face the first transport surface on the downstream side in the transport direction and captures an image of the surface of the other side of the individual electrode transported in the transport direction.

この電極切断装置では、帯状電極の一方側の表面が第1搬送面に当接した状態で搬送される最中に、切断部が帯状電極を切断して個片電極に個片化し、第1撮像部が当該個片電極の他方側の表面の画像を撮像する。すなわち、帯状電極の切断と個片電極の他方側の表面の画像の取得とが、同一の第1搬送部による搬送過程で実行される。このように、切断部及び第1撮像部を配置することにより、個片電極の位置ずれが少ない状態で当該個片電極の表面画像を精度良く取得することができる。すなわち、搬送される個片電極を整列させるための特別な処理を実行することなく、個片電極の表面画像を精度良く取得することができる。従って、上記電極切断装置によれば、個片電極の画像検査の精度を容易に向上させることができる。   In this electrode cutting device, the cutting part cuts the strip electrode into individual pieces while being transported in a state in which the surface on one side of the strip electrode is in contact with the first transport surface. The imaging unit captures an image of the surface on the other side of the individual electrode. That is, the cutting of the strip electrode and the acquisition of the image of the surface on the other side of the individual electrode are executed in the transport process by the same first transport unit. As described above, by disposing the cutting unit and the first imaging unit, the surface image of the individual electrode can be obtained with high accuracy in a state where the positional deviation of the individual electrode is small. That is, the surface image of the individual electrodes can be obtained with high accuracy without performing a special process for aligning the individual electrodes to be conveyed. Therefore, according to the electrode cutting apparatus, the accuracy of the image inspection of the individual electrodes can be easily improved.

上記電極切断装置では、第1搬送部は、帯状電極及び個片電極を第1搬送面に吸着させる第1吸着部を有してもよい。   In the electrode cutting apparatus, the first transport unit may include a first suction unit that sucks the strip electrode and the individual electrode on the first transport surface.

この構成によれば、帯状電極及び当該帯状電極から個片化された個片電極を第1搬送面に対して適切に位置決めすることができる。これにより、切断部の切断動作による個片電極の位置ずれを極小化でき、個片電極の表面画像をより精度良く取得することができる。その結果、個片電極の画像検査の精度をより向上させることができる。   According to this configuration, the strip electrode and the individual electrode separated from the strip electrode can be appropriately positioned with respect to the first transport surface. Thereby, the position shift of the individual electrode due to the cutting operation of the cutting part can be minimized, and the surface image of the individual electrode can be acquired with higher accuracy. As a result, the accuracy of the image inspection of the individual electrode can be further improved.

上記電極切断装置は、搬送方向上流側の端部が第1搬送面の搬送方向下流側の端部に対向するように第1搬送面と並設され、個片電極の他方側の表面に当接する第2搬送面と、個片電極を第2搬送面に吸着させる第2吸着部と、を有し、第2搬送面を搬送方向に移動させることにより個片電極を搬送方向に搬送する第2搬送部と、第2搬送面に対向するように配置され、搬送方向に搬送される個片電極の一方側の表面の画像を撮像する第2撮像部と、を更に備えてもよい。   The electrode cutting device is juxtaposed with the first transport surface so that the end on the upstream side in the transport direction faces the end on the downstream side in the transport direction of the first transport surface and contacts the other surface of the individual electrode. A second conveying surface that contacts the second conveying surface; and a second adsorption unit that adsorbs the individual electrode to the second conveying surface, and moves the second conveying surface in the conveying direction to convey the individual electrode in the conveying direction. You may further provide a 2 conveyance part and the 2nd imaging part which is arrange | positioned so as to oppose a 2nd conveyance surface, and images the surface of the one side of the piece electrode conveyed in a conveyance direction.

この構成によれば、個片電極は、第1搬送面の搬送方向下流側の端部と第2搬送面の搬送方向上流側の端部とが互いに対向する位置で、第1搬送部から第2搬送部へと受け渡される。この際、個片電極が第1搬送面上に支持された状態で、第2搬送面が当該個片電極の他方側の表面を吸着するので、第1搬送部から第2搬送部への個片電極の受け渡しが、当該個片電極の位置ずれが少ない状態で実行される。その結果、第2搬送面に対向するように配置された第2撮像部によって、個片電極の一方側の表面の画像を精度良く取得できる。以上の構成によれば、第1撮像部及び第2撮像部により取得された個片電極の一方側及び他方側の表面の画像に基づいて、個片電極の両面の画像検査を容易且つ精度良く実行することができる。   According to this configuration, the individual electrode is disposed at the position where the end on the downstream side in the transport direction of the first transport surface and the end on the upstream side in the transport direction of the second transport surface face each other from the first transport unit. 2 Delivered to the transport section. At this time, since the second transport surface sucks the surface of the other side of the individual electrode in a state where the individual electrode is supported on the first transport surface, the individual from the first transport unit to the second transport unit. The delivery of the single electrode is performed in a state where the positional deviation of the individual electrode is small. As a result, an image of the surface on one side of the individual electrode can be obtained with high accuracy by the second imaging unit arranged so as to face the second transport surface. According to the above configuration, the image inspection on both sides of the individual electrode is easily and accurately performed based on the images of the surfaces of the individual electrodes obtained by the first imaging unit and the second imaging unit. Can be executed.

本発明の一態様に係る電極検査方法は、長尺の帯状電極を第1搬送部に供給する供給工程と、第1搬送部によって搬送中の帯状電極を切断することにより、帯状電極を個片電極に個片化する切断工程と、切断工程において切断された個片電極の表面の画像を撮像する検査工程と、検査工程における撮像が完了した個片電極を、第1搬送部から当該第1搬送部の後段の第2搬送部に移載する移載工程と、を含む。   In the electrode inspection method according to one aspect of the present invention, a strip electrode is separated into pieces by supplying a long strip electrode to the first transport unit and cutting the strip electrode being transported by the first transport unit. A cutting step for separating the electrodes into individual pieces, an inspection step for picking up an image of the surface of the individual piece electrodes cut in the cutting step, and an individual piece electrode for which imaging in the inspection step has been completed, from the first transport unit to the first And a transfer step of transferring to the second transfer unit at the subsequent stage of the transfer unit.

この電極検査方法では、帯状電極を個片電極に個片化する切断工程と個片電極の表面の画像を撮像する検査工程とが、個片電極が第1搬送部から後段の第2搬送部に移載される前に(すなわち、同一の第1搬送部による搬送過程で)実行される。このように、切断工程及び検査工程を実行することにより、個片電極の位置ずれが少ない状態で当該個片電極の表面画像を精度良く取得することができる。すなわち、搬送される個片電極を整列させるための特別な処理を実行することなく、個片電極の表面画像を精度良く取得することができる。従って、上記電極検査方法によれば、個片電極の画像検査の精度を容易に向上させることができる。   In this electrode inspection method, the cutting step for dividing the strip electrode into individual electrodes and the inspection step for capturing an image of the surface of the individual electrodes are performed by the individual second electrode from the first conveying unit to the second conveying unit at the subsequent stage. This is executed before being transferred to (i.e., in the transfer process by the same first transfer unit). Thus, by performing the cutting process and the inspection process, the surface image of the individual electrode can be obtained with high accuracy in a state where the positional deviation of the individual electrode is small. That is, the surface image of the individual electrodes can be obtained with high accuracy without performing a special process for aligning the individual electrodes to be conveyed. Therefore, according to the electrode inspection method, it is possible to easily improve the accuracy of image inspection of individual electrodes.

本発明によれば、個片電極の画像検査の精度を容易に向上させることができる電極切断装置及び電極検査方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode cutting device and the electrode test | inspection method which can improve the precision of the image test | inspection of an individual electrode easily can be provided.

本発明の一実施形態に係る電極切断装置の全体構成を模式的に示す図である。It is a figure showing typically the whole electrode cutting device composition concerning one embodiment of the present invention. 第1搬送部の搬送面を示す平面図である。It is a top view which shows the conveyance surface of a 1st conveyance part. 図1のIII−III線に沿った帯状電極の断面図である。It is sectional drawing of the strip | belt-shaped electrode along the III-III line of FIG. 図1に示す第1搬送部の搬送面上の領域を上方から見た平面図である。It is the top view which looked at the area | region on the conveyance surface of the 1st conveyance part shown in FIG. 1 from upper direction. 図1に示す第2搬送部の搬送面上の領域を下方から見た平面図である。It is the top view which looked at the area | region on the conveyance surface of the 2nd conveyance part shown in FIG. 1 from the downward direction. 変形例に係る電極切断装置を示す図である。It is a figure which shows the electrode cutting device which concerns on a modification. 比較例に係る画像検査において設定される撮像範囲を示す図である。It is a figure which shows the imaging range set in the image test | inspection which concerns on a comparative example.

以下、図面を参照しながら、本発明の実施形態について詳細に説明する。なお、図面において同一要素には同一符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る電極切断装置の全体構成を模式的に示す図である。図1に示す電極切断装置1は、リチウムイオン二次電池等の蓄電装置の製造システムに組み込まれる装置である。具体的には、電極切断装置1は、帯状電極10を搬送しながら、当該帯状電極10を予め定められた電極形状に切断することにより個片電極15に個片化し、当該個片電極15の表面の画像を画像検査のために撮像する。個片電極15の例としては、例えば電極組立体を構成する正極又は負極が挙げられる。   FIG. 1 is a diagram schematically showing the overall configuration of the electrode cutting apparatus according to the present embodiment. An electrode cutting apparatus 1 shown in FIG. 1 is an apparatus incorporated in a manufacturing system for a power storage device such as a lithium ion secondary battery. Specifically, the electrode cutting device 1 divides the band-like electrode 10 into predetermined electrode shapes while conveying the band-like electrode 10, thereby dividing the band-like electrode 10 into individual pieces 15. A surface image is taken for image inspection. Examples of the individual electrode 15 include a positive electrode or a negative electrode constituting an electrode assembly.

正極は、例えばアルミニウム箔からなる矩形の金属箔の両面に正極活物質層が形成されてなる。正極活物質層は、正極活物質とバインダとを含んで形成される。正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。正極の一縁部には、正極端子との接続に用いられるタブが形成される。   The positive electrode has a positive electrode active material layer formed on both sides of a rectangular metal foil made of, for example, an aluminum foil. The positive electrode active material layer is formed including a positive electrode active material and a binder. Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur. The composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium. A tab used for connection with the positive electrode terminal is formed at one edge of the positive electrode.

一方、負極は、例えば銅箔からなる金属箔の両面に負極活物質層が形成されてなる。負極活物質層は、負極活物質とバインダとを含んで形成される。負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等が挙げられる。バインダは、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、又はアルコキシシリル基含有樹脂であってよい。負極の一縁部には、負極端子の位置に対応してタブが形成される。正極のタブと負極のタブとは、正極と負極とを重ねた場合に互いに重ならない位置に形成される。   On the other hand, the negative electrode has a negative electrode active material layer formed on both surfaces of a metal foil made of, for example, copper foil. The negative electrode active material layer is formed including a negative electrode active material and a binder. Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ≦ x ≦ 1.5 ) And the like, and boron-added carbon. The binder is, for example, a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene, or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, or an alkoxysilyl group-containing resin. Good. A tab is formed on one edge of the negative electrode corresponding to the position of the negative electrode terminal. The positive electrode tab and the negative electrode tab are formed at positions that do not overlap each other when the positive electrode and the negative electrode are stacked.

図1に示すように、電極切断装置1は、第1搬送部2、切断部3、第1撮像部4、第2搬送部5、第2撮像部6、及び第3搬送部7を含んで構成される。図1の例では、電極切断装置1は、水平方向に沿った搬送方向(X軸方向)に帯状電極10を搬送しながら個片電極15に個片化し、個片電極15の鉛直方向(Z軸方向)上側(他方側)の表面及び鉛直方向下側(一方側)の表面の画像を画像検査のために取得するように構成されている。なお、本実施形態では、帯状電極10は上述した正極を作成するための母材であり、個片電極15は正極である場合を例として説明する。   As shown in FIG. 1, the electrode cutting apparatus 1 includes a first transport unit 2, a cutting unit 3, a first imaging unit 4, a second transport unit 5, a second imaging unit 6, and a third transport unit 7. Composed. In the example of FIG. 1, the electrode cutting device 1 is divided into individual electrodes 15 while conveying the strip electrode 10 in the conveying direction (X-axis direction) along the horizontal direction, and the vertical direction (Z An image of the surface on the upper side (the other side) in the axial direction and the surface on the lower side in the vertical direction (one side) is acquired for image inspection. In the present embodiment, the case where the strip electrode 10 is a base material for producing the positive electrode described above and the individual electrode 15 is a positive electrode will be described as an example.

第1搬送部2は、搬送方向に互いに離間して配置されたローラ対21,21と、当該ローラ対21,21に巻架された無端状の搬送ベルト22と、を有する。ローラ対21,21が回転すると、搬送ベルト22は連れ回りする。図1の例では、ローラ対21,21が図示しない駆動部によって回転駆動力を付与され、時計回りに回転することによって、搬送ベルト22は、時計回りに循環する。   The first transport unit 2 includes roller pairs 21 and 21 that are spaced apart from each other in the transport direction, and an endless transport belt 22 that is wound around the roller pairs 21 and 21. When the roller pairs 21 and 21 rotate, the conveyor belt 22 rotates. In the example of FIG. 1, the roller pair 21, 21 is given a rotational driving force by a drive unit (not shown) and rotates clockwise, whereby the conveyor belt 22 circulates clockwise.

第1搬送部2は、長尺の帯状電極10の下面(一方側の表面)10bに当接して帯状電極10を支持する搬送面(第1搬送面)22aを有する。具体的には、ローラ対21,21によって循環させられる搬送ベルト22の搬送方向に移動する部分の上面が、搬送面22aとして機能する。第1搬送部2は、ローラ対21,21の回転によって搬送ベルト22を循環させ、搬送面22aを搬送方向に移動させることにより、帯状電極10を所定の搬送速度で搬送方向に搬送する。   The 1st conveyance part 2 has the conveyance surface (1st conveyance surface) 22a which contact | abuts the lower surface (one surface) 10b of the elongate strip electrode 10, and supports the strip electrode 10. As shown in FIG. Specifically, the upper surface of the portion of the conveyor belt 22 that is circulated by the roller pair 21 and 21 that moves in the conveyance direction functions as the conveyance surface 22a. The first transport unit 2 circulates the transport belt 22 by the rotation of the roller pairs 21 and 21 and moves the transport surface 22a in the transport direction, thereby transporting the strip electrode 10 in the transport direction at a predetermined transport speed.

図2に示すように、搬送ベルト22は、外側表面から内側表面にかけて貫通する複数の貫通孔22bを有するスチールベルトである。複数の貫通孔22bは、搬送ベルト22の長手方向(搬送方向と同じX軸方向)及び幅方向(X軸方向及びZ軸方向に直交するY軸方向)のそれぞれで等間隔に設けられた断面円形の通気孔である。図2の例では、搬送ベルト22の幅方向に、4つの貫通孔22bが配置されている。ただし、搬送ベルト22は、スチールベルト以外でもよい。また、貫通孔22bの大きさ、形状、個数はこの例に限られない。また、貫通孔22bのピッチは、等間隔でなくてもよい。特に、貫通孔22bの配置については、貫通孔22bは、帯状電極10又は個片電極15が重なる領域にのみ設けられてもよい。   As shown in FIG. 2, the conveyance belt 22 is a steel belt having a plurality of through holes 22b penetrating from the outer surface to the inner surface. The plurality of through holes 22b are cross sections provided at equal intervals in the longitudinal direction (the same X-axis direction as the transport direction) and the width direction (the Y-axis direction orthogonal to the X-axis direction and the Z-axis direction) of the transport belt 22. A circular vent. In the example of FIG. 2, four through holes 22 b are arranged in the width direction of the conveyor belt 22. However, the conveyance belt 22 may be other than the steel belt. Further, the size, shape, and number of the through holes 22b are not limited to this example. Moreover, the pitch of the through holes 22b may not be equal. In particular, regarding the arrangement of the through-holes 22b, the through-holes 22b may be provided only in the region where the strip electrode 10 or the individual electrode 15 overlaps.

搬送ベルト22の内側であって搬送面22aの下方の部分には、吸着部(第1吸着部)23が設けられている。吸着部23は、例えば、搬送面22a上の空間に貫通孔22bを介して連通する閉空間を形成するダクトと、当該ダクト内の空間を負圧にするバキュープポンプや負圧ファン等の所定の減圧手段とによって構成される。吸着部23は、所定の減圧手段によってダクト内の空間を負圧にすることにより、搬送面22a上に載置される被搬送物(すなわち、帯状電極10及び後述する切断部3によって個片化された個片電極15)を搬送面22aに吸着させる。これにより、帯状電極10及び個片電極15が搬送面22aに位置決めされ、帯状電極10及び個片電極15の両方の位置ずれの発生が抑制される。   An adsorption portion (first adsorption portion) 23 is provided inside the conveyance belt 22 and below the conveyance surface 22a. For example, the adsorbing unit 23 includes a duct that forms a closed space communicating with the space on the conveyance surface 22a via the through hole 22b, and a vacuum pump, a negative pressure fan, and the like that make the space in the duct a negative pressure. Pressure reducing means. The suction part 23 is separated into pieces to be transported (that is, the strip electrode 10 and the cutting part 3 described later) placed on the transport surface 22a by making the space in the duct a negative pressure by a predetermined decompression means. The individual electrode 15) thus made is adsorbed to the transport surface 22a. Thereby, the strip | belt-shaped electrode 10 and the piece electrode 15 are positioned by the conveyance surface 22a, and generation | occurrence | production of the position shift of both the strip | belt-shaped electrode 10 and the piece electrode 15 is suppressed.

図3に示すように、帯状電極10は、個片電極15(本実施形態では上述の通り正極)の材料となる長尺の金属箔11の両面に予め正極活物質層12,13が塗工された母材である。正極活物質層12は、金属箔11の上面11aに塗工された層である。正極活物質層12の上面12aは、搬送面22a上において鉛直上方を向いて露出する面であり、帯状電極10の上面10aに相当する。一方、正極活物質層13は、金属箔11の下面11bに塗工された層である。正極活物質層13の下面13aは、鉛直下方を向いて搬送面22aに支持される面であり、帯状電極10の下面10bに相当する。   As shown in FIG. 3, the strip electrode 10 has positive electrode active material layers 12 and 13 applied in advance on both surfaces of a long metal foil 11 which is a material of an individual electrode 15 (in the present embodiment, the positive electrode as described above). The base material that was made. The positive electrode active material layer 12 is a layer coated on the upper surface 11 a of the metal foil 11. The upper surface 12 a of the positive electrode active material layer 12 is a surface that is exposed vertically upward on the transport surface 22 a and corresponds to the upper surface 10 a of the strip electrode 10. On the other hand, the positive electrode active material layer 13 is a layer coated on the lower surface 11 b of the metal foil 11. The lower surface 13 a of the positive electrode active material layer 13 is a surface that is vertically supported and supported by the transport surface 22 a and corresponds to the lower surface 10 b of the strip electrode 10.

図3及び図4に示すように、帯状電極10において個片電極15のタブT及びタブT側の縁部に対応する部分(すなわち帯状電極10が後述する切断部3によって打ち抜かれることによって個片電極15のタブT及びタブT側の縁部が形成される部分)には、正極活物質層12,13は塗工されておらず、金属箔11が露出した状態となっている。帯状電極10は、例えばロール状に巻かれて所定のリールにセットされており、当該リールから第1搬送部2に供給される。図4に示すように、第1搬送部2に供給される帯状電極10は、当該帯状電極10の長手方向が搬送方向に平行になるように、搬送面22a上の予め定められた幅位置(Y軸方向における予め定められた位置)に載置される。   As shown in FIGS. 3 and 4, in the strip electrode 10, the portion corresponding to the tab T and the edge on the tab T side of the strip electrode 15 (that is, the strip electrode 10 is punched by a cutting portion 3 described later to separate the strip electrode 10). The positive electrode active material layers 12 and 13 are not coated on the tab T of the electrode 15 and the portion where the tab T side edge is formed, and the metal foil 11 is exposed. The strip electrode 10 is wound, for example, in a roll shape and set on a predetermined reel, and is supplied from the reel to the first transport unit 2. As shown in FIG. 4, the strip electrode 10 supplied to the first transport unit 2 has a predetermined width position (on the transport surface 22 a) such that the longitudinal direction of the strip electrode 10 is parallel to the transport direction ( (Predetermined position in the Y-axis direction).

切断部3は、第1搬送部2によって搬送中の帯状電極10を切断することにより、帯状電極10を個片電極15に個片化する加工装置である。本実施形態では一例として、切断部3は、レーザLを帯状電極10に照射することにより帯状電極10の切断加工を実行する装置である。ただし、帯状電極10の切断加工は、レーザによる切断に限られず、例えば金型を用いた打ち抜き加工等であってもよい。   The cutting unit 3 is a processing device that separates the strip electrode 10 into individual electrodes 15 by cutting the strip electrode 10 being transported by the first transport unit 2. In the present embodiment, as an example, the cutting unit 3 is an apparatus that performs cutting processing of the strip electrode 10 by irradiating the strip electrode 10 with the laser L. However, the cutting of the strip electrode 10 is not limited to laser cutting, and may be, for example, punching using a mold.

切断部3は、搬送面22aの上方の所定の移動可能範囲内において、X軸方向及びY軸方向の各々に移動可能に構成されている。図4に示すように、切断部3は、予めプログラムされた所定の移動パターンでX軸方向及びY軸方向に移動することにより、レーザLの照射位置Pを移動させる。これにより、切断部3は、帯状電極10を所定の切断パターンで切断し、個片電極15を得る。   The cutting unit 3 is configured to be movable in each of the X-axis direction and the Y-axis direction within a predetermined movable range above the transport surface 22a. As shown in FIG. 4, the cutting unit 3 moves the irradiation position P of the laser L by moving in the X-axis direction and the Y-axis direction with a predetermined movement pattern programmed in advance. Thereby, the cutting part 3 cuts the strip electrode 10 with a predetermined cutting pattern to obtain the individual electrode 15.

より具体的には、切断部3は、第1搬送部2の搬送速度と等速度でX軸方向に移動しつつ、所定の速度でY軸方向に移動することにより、帯状電極10の幅方向に沿って帯状電極10を切断することができる。また、切断部3は、Y軸方向における所定の位置にレーザLの照射位置Pを固定することにより、帯状電極10の長手方向に沿って帯状電極10を切断することができる。従って、切断部3は、例えば、個片電極15の形状及び第1搬送部2の搬送速度等に応じて予め決定される動作パターンに基づいてレーザLの照射位置Pを移動させることにより、帯状電極10から個片電極15を切り抜くことができる(図4参照)。また、切断部3は、1つの個片電極15を切り抜く際の動作パターンを繰り返し実行することにより、図4に示すように、複数の個片電極15が連続して整列するように切断加工を実行する。   More specifically, the cutting unit 3 moves in the X-axis direction at a predetermined speed while moving in the X-axis direction at the same speed as the transport speed of the first transport unit 2, thereby moving the strip electrode 10 in the width direction. The strip electrode 10 can be cut along the line. Moreover, the cutting part 3 can cut | disconnect the strip | belt-shaped electrode 10 along the longitudinal direction of the strip | belt-shaped electrode 10 by fixing the irradiation position P of the laser L to the predetermined position in the Y-axis direction. Therefore, for example, the cutting unit 3 moves the irradiation position P of the laser L on the basis of an operation pattern determined in advance according to the shape of the individual electrode 15 and the conveyance speed of the first conveyance unit 2. The individual electrode 15 can be cut out from the electrode 10 (see FIG. 4). Further, the cutting unit 3 repeatedly performs an operation pattern when cutting out one individual electrode 15 to perform a cutting process so that a plurality of individual electrodes 15 are continuously aligned as shown in FIG. Run.

第1撮像部4は、切断部3よりも搬送方向下流側において搬送面22aに対向するように配置され、搬送方向に搬送される個片電極15の上面15a(他方側の表面)の画像を撮像する。ここで、個片電極15の上面15aとは、個片電極15を構成する金属箔11の上面11a及び正極活物質層12の上面12aのうち鉛直上方に露出する部分である。   The first imaging unit 4 is disposed so as to face the transport surface 22a on the downstream side in the transport direction with respect to the cutting unit 3, and an image of the upper surface 15a (the other surface) of the individual electrode 15 transported in the transport direction. Take an image. Here, the upper surface 15 a of the individual electrode 15 is a portion exposed vertically upward of the upper surface 11 a of the metal foil 11 and the upper surface 12 a of the positive electrode active material layer 12 constituting the individual electrode 15.

第1撮像部4は、例えば、切断部3よりも搬送方向下流側の所定位置において、レンズ部分が搬送面22aに対向するように固定されたカメラである。第1撮像部4は、帯状電極10が搬送面22a上に載置される幅位置及び個片電極15の幅(搬送方向における長さ)等のパラメータ情報を事前に取得している。第1撮像部4は、これらのパラメータ情報に基づいて、個片電極15のサイズに合った大きさの撮像範囲R1の画像を撮像するように予め設定されている。また、第1撮像部4は、例えば第1搬送部2の搬送速度や切断部3による切断動作が開始された時点等の情報に基づいて、切断部3によって個片化された個片電極15が撮像範囲R1に丁度収まるタイミングを把握する。そして、第1撮像部4は、このようにして把握されたタイミングで撮像範囲R1の画像を撮像することにより、第1搬送部2によって順次搬送される個片電極15の上面15aの画像を得ることができる。   The first imaging unit 4 is, for example, a camera that is fixed so that the lens portion faces the conveyance surface 22a at a predetermined position downstream of the cutting unit 3 in the conveyance direction. The first imaging unit 4 acquires in advance parameter information such as the width position where the strip electrode 10 is placed on the transport surface 22a and the width of the individual electrode 15 (length in the transport direction). The first imaging unit 4 is set in advance so as to capture an image of the imaging range R1 having a size that matches the size of the individual electrode 15 based on the parameter information. In addition, the first imaging unit 4, for example, the individual electrode 15 separated by the cutting unit 3 based on information such as the conveyance speed of the first conveyance unit 2 and the time when the cutting operation by the cutting unit 3 is started. Grasps the timing when the image is just within the imaging range R1. And the 1st imaging part 4 obtains the image of the upper surface 15a of the piece electrode 15 sequentially conveyed by the 1st conveyance part 2 by imaging the image of imaging range R1 at the timing grasped | ascertained in this way. be able to.

第1搬送部2により搬送される個片電極15は、後述する第2搬送部5に受け渡される。一方、帯状電極10のうち個片電極15を形成しない領域部分(本実施形態では、金属箔11の一部)は、図示しない巻取機構によって巻き取り回収され、第2搬送部5には受け渡されないようになっている。   The individual electrodes 15 transported by the first transport unit 2 are transferred to the second transport unit 5 described later. On the other hand, a region of the strip electrode 10 where the individual electrode 15 is not formed (in this embodiment, a part of the metal foil 11) is wound and collected by a winding mechanism (not shown) and received by the second transport unit 5. It is not passed.

第2搬送部5は、搬送方向に互いに離間して配置されたローラ対51,51と、当該ローラ対51,51に巻架された無端状の搬送ベルト52と、を有する。ローラ対51,51が回転すると、搬送ベルト52は連れ回りする。図1の例では、ローラ対51,51が図示しない駆動部によって回転駆動力を付与され、反時計回りに回転することによって、搬送ベルト52は、反時計回りに循環する。   The second transport unit 5 includes a pair of rollers 51 and 51 that are spaced apart from each other in the transport direction, and an endless transport belt 52 that is wound around the pair of rollers 51 and 51. When the roller pair 51, 51 rotates, the conveyor belt 52 rotates. In the example of FIG. 1, the roller pair 51, 51 is given a rotational driving force by a drive unit (not shown) and rotates counterclockwise, whereby the conveyor belt 52 circulates counterclockwise.

第2搬送部5は、搬送方向上流側の端部52cが第1搬送部2の搬送面22aの搬送方向下流側の端部22cに対向するように搬送面22aと並設される搬送面(第2搬送面)52aを有する。具体的には、ローラ対51,51によって循環させられる搬送ベルト52の搬送方向に移動する部分の下面が、搬送面52aとして機能する。第2搬送部5は、ローラ対51,51の回転によって搬送ベルト52を循環させ、搬送面52aを搬送方向に移動させることにより、第1搬送部2から受け渡された個片電極15を所定の搬送速度で搬送方向に搬送する(第1搬送部2から第2搬送部5への個片電極15の受け渡しについては後述する)。   The second transport unit 5 includes a transport surface that is arranged in parallel with the transport surface 22a such that the end 52c on the upstream side in the transport direction faces the end 22c on the downstream side in the transport direction of the transport surface 22a of the first transport unit 2. (Second transport surface) 52a. Specifically, the lower surface of the portion that moves in the transport direction of the transport belt 52 circulated by the roller pair 51, 51 functions as the transport surface 52a. The second transport unit 5 circulates the transport belt 52 by the rotation of the roller pairs 51 and 51, and moves the transport surface 52a in the transport direction, so that the individual electrode 15 delivered from the first transport unit 2 is predetermined. (The transfer of the individual electrode 15 from the first transport unit 2 to the second transport unit 5 will be described later).

搬送ベルト52は、搬送ベルト22と同様に、外側表面から内側表面にかけて貫通する複数の貫通孔52bを有するスチールベルトである。搬送ベルト52の内側であって搬送面52aの上方の部分には、吸着部(第2吸着部)53が設けられている。吸着部53は、吸着部23と同様に、例えば、搬送面52aの下方の空間に貫通孔52bを介して連通する閉空間を形成するダクトと、当該ダクト内の空間を負圧にするバキュープポンプや負圧ファン等の所定の減圧手段とによって構成される。吸着部53は、所定の減圧手段によってダクト内の空間を負圧にすることにより、搬送面52aに当接する被搬送物(すなわち、個片電極15)を搬送面52aに吸着させる。   Similar to the conveyor belt 22, the conveyor belt 52 is a steel belt having a plurality of through holes 52 b that penetrate from the outer surface to the inner surface. A suction part (second suction part) 53 is provided inside the transport belt 52 and above the transport surface 52a. Similar to the suction unit 23, the suction unit 53 includes, for example, a duct that forms a closed space communicating with the space below the conveyance surface 52 a through the through hole 52 b, and a vacuum that creates a negative pressure in the space in the duct. It is comprised with predetermined pressure reduction means, such as a pump and a negative pressure fan. The adsorbing part 53 adsorbs the object to be conveyed (that is, the individual electrode 15) in contact with the conveying surface 52a to the conveying surface 52a by setting the space in the duct to a negative pressure by a predetermined pressure reducing means.

搬送面52aの搬送方向上流側の端部52cと搬送面22aの搬送方向下流側の端部22cとは、鉛直方向における両側から個片電極15の上面15a及び下面15bを挟み込むように配置されている。ここで、個片電極15の下面15bとは、個片電極15を構成する金属箔11の下面11b及び正極活物質層13の下面13aのうち鉛直下方に露出する部分である。従って、搬送面52aの端部52cと搬送面22aの端部22cとが互いに対向する部分においては、個片電極15は、搬送面22a及び搬送面52aの両方に吸着される。   An end 52c on the upstream side in the transport direction of the transport surface 52a and an end 22c on the downstream side in the transport direction of the transport surface 22a are arranged so as to sandwich the upper surface 15a and the lower surface 15b of the individual electrode 15 from both sides in the vertical direction. Yes. Here, the lower surface 15 b of the individual electrode 15 is a portion exposed vertically downward of the lower surface 11 b of the metal foil 11 and the lower surface 13 a of the positive electrode active material layer 13 that constitute the individual electrode 15. Accordingly, in the portion where the end 52c of the transport surface 52a and the end 22c of the transport surface 22a face each other, the individual electrode 15 is attracted to both the transport surface 22a and the transport surface 52a.

第2搬送部5によって個片電極15が搬送方向に更に搬送され、個片電極15の下面15bが搬送面22a上から離れると、個片電極15は、搬送面52aに上面15aを吸着されながら、下面15bを鉛直下方に露出した状態で、搬送方向に搬送される。このように、個片電極15が第1搬送部2の搬送面22a上に支持された状態で、搬送面52aが当該個片電極15の上面15aに当接して吸着するので、第1搬送部2から第2搬送部5への個片電極15の受け渡しが、当該個片電極15の位置ずれが少ない状態で実行される。   When the individual electrode 15 is further conveyed in the conveying direction by the second conveying unit 5 and the lower surface 15b of the individual electrode 15 is separated from the conveying surface 22a, the individual electrode 15 is attracted to the conveying surface 52a while the upper surface 15a is adsorbed. In the state where the lower surface 15b is exposed vertically downward, it is transported in the transport direction. In this way, since the individual electrode 15 is supported on the conveyance surface 22a of the first conveyance unit 2 and the conveyance surface 52a is in contact with and adsorbs the upper surface 15a of the individual electrode 15, the first conveyance unit The transfer of the individual electrode 15 from 2 to the second transport unit 5 is executed in a state where the positional deviation of the individual electrode 15 is small.

第2撮像部6は、搬送面52aに対向するように配置され、搬送方向に搬送される個片電極15の下面15b(一方側の表面)の画像を撮像する。   The second imaging unit 6 is disposed so as to face the transport surface 52a, and captures an image of the lower surface 15b (one surface) of the individual electrode 15 transported in the transport direction.

第2撮像部6は、例えば、搬送面52aの端部52cと搬送面22aの端部22cとが互いに対向する部分よりも搬送方向下流側の所定位置において、レンズ部分が搬送面52aに対向するように固定されたカメラである。第2撮像部6は、個片電極15が搬送面52aに吸着される幅位置及び個片電極15の幅等のパラメータ情報を事前に取得している。図5に示すように、第2撮像部6は、これらのパラメータ情報に基づいて、個片電極15のサイズに合った大きさの撮像範囲R2の画像を撮像するように予め設定されている。また、第2撮像部6は、例えば、第1撮像部4による撮像タイミング、個片電極15の搬送速度(第1搬送部2及び第2搬送部5に共通の搬送速度)、撮像範囲R1から撮像範囲R2までの距離等の情報に基づいて、個片電極15が撮像範囲R2に丁度収まるタイミングを把握する。そして、第2撮像部6は、このようにして把握されたタイミングで撮像範囲R2の画像を撮像することにより、第2搬送部5によって順次搬送される個片電極15の下面15bの画像を得ることができる。   In the second imaging unit 6, for example, the lens portion faces the conveyance surface 52 a at a predetermined position downstream in the conveyance direction from the portion where the end 52 c of the conveyance surface 52 a and the end 22 c of the conveyance surface 22 a face each other. Is a fixed camera. The second imaging unit 6 acquires in advance parameter information such as the width position at which the individual electrode 15 is attracted to the transport surface 52 a and the width of the individual electrode 15. As shown in FIG. 5, the second imaging unit 6 is set in advance to capture an image of the imaging range R2 having a size that matches the size of the individual electrode 15 based on these parameter information. In addition, the second imaging unit 6 includes, for example, an imaging timing by the first imaging unit 4, a conveyance speed of the individual electrode 15 (a conveyance speed common to the first conveyance unit 2 and the second conveyance unit 5), and an imaging range R1. Based on information such as the distance to the imaging range R2, the timing at which the individual electrode 15 is exactly within the imaging range R2 is grasped. Then, the second imaging unit 6 obtains an image of the lower surface 15b of the individual electrodes 15 sequentially conveyed by the second conveyance unit 5 by imaging the image of the imaging range R2 at the timing grasped in this way. be able to.

第2搬送部5によって搬送される個片電極15は、第2搬送部5の搬送方向下流側の端部52dにおいて、第2搬送部5の搬送方向下流側に配置された第3搬送部7に受け渡され、次工程へと搬送される。第3搬送部7は、搬送方向に互いに離間して配置されたローラ対71,71と、当該ローラ対71,71に巻架された無端状の搬送ベルト72と、を有する。ローラ対71,71が回転すると、搬送ベルト72は連れ回りする。図1の例では、ローラ対71,71が図示しない駆動部によって回転駆動力を付与され、時計回りに回転することによって、搬送ベルト72は、時計回りに循環する。   The individual electrodes 15 transported by the second transport unit 5 are arranged at the downstream end 52 d of the second transport unit 5 in the transport direction, and are disposed on the downstream side of the second transport unit 5 in the transport direction. To the next process. The third transport unit 7 includes roller pairs 71 and 71 that are spaced apart from each other in the transport direction, and an endless transport belt 72 that is wound around the roller pairs 71 and 71. When the roller pair 71, 71 rotates, the conveyor belt 72 is rotated. In the example of FIG. 1, the roller pair 71, 71 is given a rotational driving force by a driving unit (not shown) and rotates clockwise, whereby the conveyor belt 72 circulates clockwise.

第3搬送部7は、搬送方向上流側の端部72bが第2搬送部5の搬送面52aの搬送方向下流側の端部52dに対向するように搬送面52aと並設される搬送面72aを有する。具体的には、ローラ対71,71によって循環させられる搬送ベルト72の搬送方向に移動する部分の上面が、搬送面72aとして機能する。第3搬送部7は、ローラ対71,71の回転によって搬送ベルト72を循環させ、搬送面72aを搬送方向に移動させることにより、第2搬送部5から受け渡される個片電極15を所定の搬送速度で搬送方向に搬送する。これにより、個片電極15は、上面15aが搬送面52aに吸着されて下面15bが鉛直下方に露出する状態から、下面15bが搬送面72aに支持されて上面15aが露出する状態へと変化する。   The third transport unit 7 includes a transport surface 72a that is arranged in parallel with the transport surface 52a so that the end 72b on the upstream side in the transport direction faces the end 52d on the downstream side in the transport direction of the transport surface 52a of the second transport unit 5. Have Specifically, the upper surface of the portion of the conveyance belt 72 that is circulated by the roller pairs 71 and 71 that moves in the conveyance direction functions as the conveyance surface 72a. The third transport unit 7 circulates the transport belt 72 by the rotation of the roller pairs 71 and 71, and moves the transport surface 72a in the transport direction, whereby the individual electrode 15 delivered from the second transport unit 5 is transferred to a predetermined state. Transport in the transport direction at the transport speed. Thereby, the individual electrode 15 changes from a state in which the upper surface 15a is attracted to the transport surface 52a and the lower surface 15b is exposed vertically downward to a state in which the lower surface 15b is supported by the transport surface 72a and the upper surface 15a is exposed. .

なお、第1撮像部4及び第2撮像部6によって撮像された個片電極15の上面15a及び下面15bの表面画像に対する画像検査によって不良と判定された個片電極15は、例えば第3搬送部7上の所定位置(或いは第3搬送部7よりも下流側の搬送装置上)で取り除かれてもよい。これにより、不良と判定された個片電極15が後続の製造工程(例えば積層工程)において電極組立体の一部として混入してしまうことを防ぎ、最終製品段階での不具合の発生率を下げることができる。   In addition, the individual electrode 15 determined to be defective by the image inspection on the surface images of the upper surface 15a and the lower surface 15b of the individual electrode 15 imaged by the first imaging unit 4 and the second imaging unit 6 is, for example, the third transport unit. 7 may be removed at a predetermined position (or on a transport device downstream of the third transport unit 7). This prevents the individual electrodes 15 determined to be defective from being mixed as part of the electrode assembly in the subsequent manufacturing process (for example, the lamination process), and reduces the occurrence rate of defects at the final product stage. Can do.

以上述べた電極切断装置1では、帯状電極10の下面10bが搬送面22aに当接した状態で搬送される最中に、切断部3が帯状電極10を切断して個片電極15に個片化し、第1撮像部4が当該個片電極15の上面15aの画像を撮像する。すなわち、帯状電極10の切断と個片電極15の上面15aの画像の取得とが、同一の第1搬送部2による搬送過程で実行される。このように、切断部3及び第1撮像部4を配置することにより、個片電極15の位置ずれが少ない状態で当該個片電極15の表面画像(上面15aの画像)を精度良く取得することができる。すなわち、搬送される個片電極15を整列させるための特別な処理を実行することなく、個片電極15の表面画像を精度良く取得することができる。   In the electrode cutting apparatus 1 described above, the cutting unit 3 cuts the band-like electrode 10 to be separated into individual pieces 15 while being conveyed while the lower surface 10b of the band-like electrode 10 is in contact with the conveyance surface 22a. The first imaging unit 4 captures an image of the upper surface 15a of the individual electrode 15. That is, the cutting of the strip electrode 10 and the acquisition of the image of the upper surface 15 a of the individual electrode 15 are executed in the transport process by the same first transport unit 2. As described above, by disposing the cutting unit 3 and the first imaging unit 4, the surface image (image of the upper surface 15 a) of the individual electrode 15 can be accurately obtained in a state where the positional deviation of the individual electrode 15 is small. Can do. That is, the surface image of the individual electrode 15 can be obtained with high accuracy without performing a special process for aligning the individual electrodes 15 being conveyed.

具体的には、第1撮像部4による撮像範囲を個片電極15の位置ずれを考慮して余裕を持った大きさに設定する必要がなく、個片電極15のサイズに合った撮像範囲R1とすることができる。ここで、「個片電極15のサイズに合った撮像範囲R1」とは、位置ずれを考慮した余裕幅が少なく、なるべく個片電極15の全体がぎりぎり収まるような大きさの撮像範囲のことを意味する。これにより、検査対象となる個片電極15の上面15a部分の画素数が多く、検査対象となる領域の解像度が高い画像を得ることが可能となる。従って、電極切断装置1によれば、個片電極15の画像検査の精度を容易に向上させることができる。   Specifically, it is not necessary to set the imaging range by the first imaging unit 4 to have a sufficient size in consideration of the positional deviation of the individual electrode 15, and the imaging range R <b> 1 that matches the size of the individual electrode 15. It can be. Here, the “imaging range R1 that matches the size of the individual electrode 15” refers to an imaging range that has a margin that takes into account the positional deviation and is small enough to fit the entire individual electrode 15 as much as possible. means. As a result, it is possible to obtain an image having a large number of pixels on the upper surface 15a of the individual electrode 15 to be inspected and having a high resolution in the area to be inspected. Therefore, according to the electrode cutting device 1, the accuracy of the image inspection of the individual electrode 15 can be easily improved.

また、電極切断装置1では、第1搬送部2は、帯状電極10及び個片電極15を搬送面22aに吸着させる吸着部23を有している。この構成により、帯状電極10及び当該帯状電極10から個片化された個片電極15を搬送面22aに対して適切に位置決めすることができる。これにより、切断部3の切断動作による個片電極15の位置ずれを極小化でき、個片電極15の表面画像(上面15aの画像)をより精度良く取得することができる。その結果、個片電極15の画像検査の精度をより向上させることができる。   Moreover, in the electrode cutting device 1, the 1st conveyance part 2 has the adsorption | suction part 23 which adsorb | sucks the strip | belt-shaped electrode 10 and the piece electrode 15 to the conveyance surface 22a. With this configuration, the strip electrode 10 and the individual electrode 15 separated from the strip electrode 10 can be appropriately positioned with respect to the transport surface 22a. Thereby, the position shift of the individual electrode 15 due to the cutting operation of the cutting unit 3 can be minimized, and the surface image (image of the upper surface 15a) of the individual electrode 15 can be acquired with higher accuracy. As a result, the accuracy of the image inspection of the individual electrode 15 can be further improved.

ただし、第1搬送部2は、必ずしも吸着部23を有する必要はなく、第1搬送部2は、帯状電極10及び個片電極15を吸着搬送しなくてもよい。このような場合であっても、帯状電極10の切断と個片電極15の上面15aの画像の取得とが同一の第1搬送部2による搬送過程で実行されることにより、個片電極15の位置ずれの影響が少ない状態で個片電極15の表面画像を取得することができる。   However, the 1st conveyance part 2 does not necessarily need to have the adsorption | suction part 23, and the 1st conveyance part 2 does not need to adsorb and convey the strip | belt-shaped electrode 10 and the piece electrode 15. FIG. Even in such a case, the cutting of the strip electrode 10 and the acquisition of the image of the upper surface 15a of the individual electrode 15 are performed in the conveyance process by the same first conveyance unit 2, so that the individual electrode 15 The surface image of the individual electrode 15 can be acquired in a state where the influence of the positional deviation is small.

また、電極切断装置1は、上述した構成の第2搬送部5及び第2撮像部6を更に備える。この構成により、個片電極15は、搬送面22aの搬送方向下流側の端部22cと搬送面52aの搬送方向上流側の端部52cとが互いに対向する位置で、第1搬送部2から第2搬送部5へと受け渡される。この際、個片電極15が第1搬送部2の搬送面22a上に支持された状態で、搬送面52aが当該個片電極15の上面15aを吸着するので、第1搬送部2から第2搬送部5への個片電極15の受け渡しが、当該個片電極15の位置ずれが少ない状態で実行される。その結果、搬送面52aに対向するように配置された第2撮像部6によって、個片電極15の下面15bの画像を精度良く取得できる。具体的には、第2撮像部6による撮像範囲を個片電極15の位置ずれを考慮して余裕を持った大きさに設定する必要がなく、個片電極15のサイズに合った撮像範囲R2とすることができる。これにより、検査対象となる個片電極15の下面15b部分の画素数がなるべく多く、検査対象となる領域の解像度が高い画像を得ることが可能となる。以上の構成により、第1撮像部4及び第2撮像部6により取得された個片電極15の上面15a及び下面15bの表面の画像に基づいて、個片電極15の両面の画像検査を容易且つ精度良く実行することができる。   The electrode cutting device 1 further includes the second transport unit 5 and the second imaging unit 6 configured as described above. With this configuration, the individual electrode 15 is arranged so that the end 22c on the downstream side in the transport direction of the transport surface 22a and the end 52c on the upstream side in the transport direction of the transport surface 52a face each other from the first transport unit 2 to the first. 2 Delivered to the transport unit 5. At this time, the transport surface 52a attracts the upper surface 15a of the individual electrode 15 in a state where the individual electrode 15 is supported on the transport surface 22a of the first transport unit 2, so that the first transport unit 2 to the second Delivery of the individual electrode 15 to the transport unit 5 is executed in a state where the positional deviation of the individual electrode 15 is small. As a result, the image of the lower surface 15b of the individual electrode 15 can be obtained with high accuracy by the second imaging unit 6 disposed so as to face the transport surface 52a. Specifically, it is not necessary to set the imaging range by the second imaging unit 6 to have a sufficient size in consideration of the positional deviation of the individual electrode 15, and the imaging range R <b> 2 that matches the size of the individual electrode 15. It can be. As a result, it is possible to obtain an image in which the number of pixels on the lower surface 15b portion of the individual electrode 15 to be inspected is as large as possible and the resolution of the region to be inspected is high. With the above configuration, based on the images of the surfaces of the upper surface 15a and the lower surface 15b of the individual electrode 15 acquired by the first imaging unit 4 and the second imaging unit 6, image inspection on both sides of the individual electrode 15 can be performed easily and It can be executed with high accuracy.

次に、上述した電極切断装置1の動作について、電極検査方法としての観点から説明する。まず、長尺の帯状電極10が第1搬送部2に供給される(供給工程)。続いて、切断部3が、第1搬送部2によって搬送中の帯状電極10を切断することにより、帯状電極10を個片電極15に個片化する(切断工程)。続いて、第1撮像部4が、切断工程において切断された個片電極15の表面(本実施形態では、個片電極15の上面15a)の画像を撮像する(検査工程)。続いて、検査工程における撮像が完了した個片電極15は、第1搬送部2から第1搬送部2の後段の第2搬送部5へと移載される(移載工程)。   Next, operation | movement of the electrode cutting device 1 mentioned above is demonstrated from a viewpoint as an electrode test | inspection method. First, the elongate strip electrode 10 is supplied to the 1st conveyance part 2 (supply process). Subsequently, the cutting unit 3 cuts the strip electrode 10 being transported by the first transport unit 2, thereby dividing the strip electrode 10 into individual electrodes 15 (cutting step). Subsequently, the first imaging unit 4 captures an image of the surface of the individual electrode 15 cut in the cutting process (in this embodiment, the upper surface 15a of the individual electrode 15) (inspection process). Subsequently, the individual electrode 15 that has been imaged in the inspection process is transferred from the first transfer unit 2 to the second transfer unit 5 subsequent to the first transfer unit 2 (transfer process).

上記電極検査方法では、帯状電極10を個片電極15に個片化する切断工程と個片電極15の表面(上面15a)の画像を撮像する検査工程とが、個片電極15が第1搬送部2から後段の第2搬送部5に移載される前に(すなわち、同一の第1搬送部2による搬送過程で)実行される。このように、切断工程及び検査工程を実行することにより、個片電極15の位置ずれが少ない状態で当該個片電極15の表面画像を精度良く取得することができる。すなわち、搬送される個片電極15を整列させるための特別な処理を実行することなく、個片電極15の表面画像を精度良く取得することができる。従って、上記電極検査方法によれば、個片電極15の画像検査の精度を容易に向上させることができる。   In the above-described electrode inspection method, the individual electrode 15 includes the cutting process for dividing the strip electrode 10 into the individual electrodes 15 and the inspection process for capturing an image of the surface (upper surface 15a) of the individual electrodes 15. It is executed before being transferred from the unit 2 to the second transport unit 5 in the subsequent stage (that is, in the transport process by the same first transport unit 2). As described above, by performing the cutting process and the inspection process, the surface image of the individual electrode 15 can be obtained with high accuracy in a state where the positional deviation of the individual electrode 15 is small. That is, the surface image of the individual electrode 15 can be obtained with high accuracy without performing a special process for aligning the individual electrodes 15 being conveyed. Therefore, according to the electrode inspection method, the accuracy of the image inspection of the individual electrode 15 can be easily improved.

なお、本実施形態においては、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、個片電極15は、上述した正極及び負極以外に、タブを除いた部分が袋状のセパレータ内に収容された状態となっているセパレータ包み正極であってもよい。ここで、セパレータの形成材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。   In the present embodiment, various modifications can be made without departing from the spirit of the present embodiment. For example, in addition to the positive electrode and the negative electrode described above, the individual electrode 15 may be a separator-wrapped positive electrode in which a portion excluding the tab is housed in a bag-shaped separator. Here, examples of the material for forming the separator include porous films made of polyolefin resins such as polyethylene (PE) and polypropylene (PP), woven fabrics and nonwoven fabrics made of polypropylene, polyethylene terephthalate (PET), methylcellulose, and the like. The

また、上記実施形態では、切断部3による切断手段をレーザ切断又は打ち抜き加工とする場合について模式的に説明したが、例えばレーザによる切断の場合、2台又はそれ以上の切断部により、帯状電極10を切断してもよい。図6に、変形例に係る電極切断装置100を示す。図6の(a)は、電極切断装置100を模式的に示す平面図であり、図6の(b)は、電極切断装置100における上流側搬送部101及び下流側搬送部103の配置関係を示す平面図である。図6に示すように、電極切断装置100は、上流側搬送部101と、上流側切断部102と、下流側搬送部(第1搬送部)103と、下流側切断部(切断部)104と、撮像部(第1撮像部)105と、を備える。   Moreover, in the said embodiment, although the case where the cutting | disconnection means by the cutting part 3 was set as laser cutting or stamping was demonstrated typically, in the case of the cutting | disconnection by a laser, for example, the strip | belt-shaped electrode 10 is by two or more cutting parts. May be cut. FIG. 6 shows an electrode cutting device 100 according to a modification. 6A is a plan view schematically showing the electrode cutting device 100, and FIG. 6B shows the arrangement relationship between the upstream transport unit 101 and the downstream transport unit 103 in the electrode cutting device 100. FIG. FIG. As shown in FIG. 6, the electrode cutting apparatus 100 includes an upstream conveying unit 101, an upstream cutting unit 102, a downstream conveying unit (first conveying unit) 103, and a downstream cutting unit (cutting unit) 104. An imaging unit (first imaging unit) 105.

図6の(b)に示すように、下流側搬送部103は、上流側搬送部101よりも搬送方向下流側に配置される。また、上流側搬送部101及び下流側搬送部103は、互いに幅方向において重複しないように配置される。一例として、上流側搬送部101及び下流側搬送部103はそれぞれ、帯状電極10の幅方向における一部を支持しながら、帯状電極10を搬送方向に搬送するベルト部材である。この例では、上流側搬送部101は、帯状電極10の幅方向における中央部分を支持する。また、下流側搬送部103は、搬送方向に沿って並設された一対の搬送ベルト103A,103Bによって、帯状電極10の幅方向における両端部分を支持する。また、上流側搬送部101及び下流側搬送部103は、それぞれ帯状電極10を吸着するための貫通孔101a,103aを有する。   As shown in FIG. 6B, the downstream side transport unit 103 is arranged on the downstream side in the transport direction with respect to the upstream side transport unit 101. Further, the upstream transport unit 101 and the downstream transport unit 103 are arranged so as not to overlap each other in the width direction. As an example, each of the upstream transport unit 101 and the downstream transport unit 103 is a belt member that transports the strip electrode 10 in the transport direction while supporting a part of the strip electrode 10 in the width direction. In this example, the upstream transport unit 101 supports the central portion in the width direction of the strip electrode 10. Further, the downstream side conveyance unit 103 supports both end portions in the width direction of the strip electrode 10 by a pair of conveyance belts 103A and 103B arranged in parallel along the conveyance direction. The upstream transport unit 101 and the downstream transport unit 103 have through holes 101 a and 103 a for adsorbing the belt-like electrode 10, respectively.

上流側切断部102は、上流側搬送部101によって支持されて搬送される帯状電極10の両端部分(すなわち、平面視で上流側搬送部101と重ならない部分)の切断位置にレーザL1を照射することで、帯状電極10を切断する。また、下流側切断部104は、下流側搬送部103によって支持されて搬送される帯状電極10の中央部分(すなわち、平面視で下流側搬送部103と重ならない部分)の切断位置にレーザL2を照射することで、帯状電極10を切断する。このように、まず上流側切断部102による切断が行われた後に下流側切断部104による切断が行われることで、個片電極15が形成される。撮像部105は、下流側切断部104よりも搬送方向下流側において、下流側搬送部103の搬送面に対向するように配置され、個片電極15のサイズに合った大きさの撮像範囲R3の画像を撮像するように予め設定されている。   The upstream cutting unit 102 irradiates the laser L1 at the cutting positions of both end portions of the belt-like electrode 10 supported and transported by the upstream transport unit 101 (that is, the portion that does not overlap with the upstream transport unit 101 in plan view). Thus, the strip electrode 10 is cut. Further, the downstream cutting unit 104 applies the laser L2 to the cutting position of the central portion of the strip electrode 10 that is supported and transported by the downstream transport unit 103 (that is, the portion that does not overlap the downstream transport unit 103 in plan view). Irradiation cuts the strip electrode 10. As described above, the individual electrode 15 is formed by first performing the cutting by the upstream cutting unit 102 and then performing the cutting by the downstream cutting unit 104. The imaging unit 105 is disposed on the downstream side of the downstream cutting unit 104 in the conveyance direction so as to face the conveyance surface of the downstream conveyance unit 103, and the imaging unit 105 has an imaging range R3 having a size that matches the size of the individual electrode 15. It is preset to take an image.

以上述べた電極切断装置100では、下流側切断部104が帯状電極10を切断して個片電極15に個片化し、撮像部105が当該個片電極15の上面15aの画像を撮像する。すなわち、帯状電極10の切断と個片電極15の上面15aの画像の取得とが、同一の下流側搬送部103による搬送過程で実行される。このように、下流側切断部104及び撮像部105を配置することにより、個片電極15の位置ずれが少ない状態で当該個片電極15の表面画像(上面15aの画像)を精度良く取得することができる。すなわち、搬送される個片電極15を整列させるための特別な処理を実行することなく、個片電極15の表面画像を精度良く取得することができる。   In the electrode cutting apparatus 100 described above, the downstream-side cutting unit 104 cuts the strip electrode 10 and divides it into individual electrodes 15, and the imaging unit 105 captures an image of the upper surface 15 a of the individual electrode 15. That is, the cutting of the strip electrode 10 and the acquisition of the image of the upper surface 15 a of the individual electrode 15 are performed in the transport process by the same downstream transport unit 103. As described above, by disposing the downstream-side cutting unit 104 and the imaging unit 105, the surface image (image of the upper surface 15a) of the individual electrode 15 can be obtained with high accuracy in a state where the positional deviation of the individual electrode 15 is small. Can do. That is, the surface image of the individual electrode 15 can be obtained with high accuracy without performing a special process for aligning the individual electrodes 15 being conveyed.

また、個片電極15がセパレータ包み正極である場合、それに対応する帯状電極10は、等間隔に並べられた複数の正極の両面側にシート状のセパレータが重ねられ、個々の正極の周囲(或いは周囲の一部)において一対のセパレータ同士が溶着されたものとなる。この場合、切断部3による切断によって得られる個片電極15は、上述したセパレータ包み電極となり、上述した構成の電極切断装置1によって、セパレータ包み電極の両面(すなわち、セパレータ表面)の画像検査を精度良く実行することができる。   When the individual electrode 15 is a separator-wrapped positive electrode, the corresponding strip-like electrode 10 is formed by stacking sheet-like separators on both sides of a plurality of positive electrodes arranged at equal intervals, and surrounding each positive electrode (or In a part of the periphery, a pair of separators are welded to each other. In this case, the individual electrode 15 obtained by cutting by the cutting unit 3 becomes the above-described separator-wrapped electrode, and the electrode cutting apparatus 1 having the above-described configuration accurately performs image inspection on both surfaces of the separator-wrapped electrode (that is, the separator surface). Can perform well.

また、撮像部(第1撮像部4、第2撮像部6、又は撮像部105)の撮像範囲R1,R2,R3の上流側に電極の位置を検出するセンサ(例えばタブ位置を検出するセンサ)を設け、当該センサの検出結果に基づく演算により、撮像部による個片電極15の撮像タイミングを求めてもよい。また、個片電極15は、タブTが設けられた部分、タブT側の縁部、活物質層等、様々なパーツに分かれており、特定のパーツ部分についてのみ画像検査を実施したい場合もあり得る。その場合には、上記実施形態のように個片電極15のサイズに合った撮像範囲R1,R2,R3を設定する代わりに、検査対象のパーツ部分がなるべく大きく映るように撮像範囲を設定してもよい。上述した電極切断装置1又は電極切断装置100によれば、個片電極15の位置ずれが少ない状態(すなわち、予め想定される位置からのずれが少ない状態)で撮像部(第1撮像部4、第2撮像部6、又は撮像部105)による撮像を行うことができる。従って、検査対象のパーツ部分に該当する範囲のみを撮像範囲として設定し、当該パーツ部分の画像を精度良く取得することにより、当該パーツ部分の画像検査の精度を向上させることができる。   In addition, a sensor (for example, a sensor that detects a tab position) that detects the position of an electrode on the upstream side of the imaging ranges R1, R2, and R3 of the imaging unit (the first imaging unit 4, the second imaging unit 6, or the imaging unit 105). And the imaging timing of the individual electrode 15 by the imaging unit may be obtained by calculation based on the detection result of the sensor. In addition, the individual electrode 15 is divided into various parts such as a portion where the tab T is provided, an edge on the tab T side, an active material layer, and the like, and there is a case where it is desired to perform an image inspection only on a specific part portion. obtain. In that case, instead of setting the imaging ranges R1, R2, and R3 that match the size of the individual electrodes 15 as in the above embodiment, the imaging range is set so that the part part to be inspected appears as large as possible. Also good. According to the electrode cutting device 1 or the electrode cutting device 100 described above, the imaging unit (the first imaging unit 4, the state where the positional deviation of the individual electrode 15 is small (that is, the state where the deviation from a presumed position is small) is small. Imaging can be performed by the second imaging unit 6 or the imaging unit 105). Therefore, by setting only the range corresponding to the part portion to be inspected as the imaging range and acquiring the image of the part portion with high accuracy, the accuracy of the image inspection of the part portion can be improved.

1,100…電極切断装置、2…第1搬送部、3…切断部、4…第1撮像部、5…第2搬送部、6…第2撮像部、7…第3搬送部、10…帯状電極、10a…上面、10b…下面(一方側の表面)、15…個片電極、15a…上面(他方側の表面)、15b…下面(一方側の表面)、22a…搬送面(第1搬送面)、22c…搬送方向下流側の端部、23…吸着部、52a…搬送面(第2搬送面)、52c…搬送方向上流側の端部、53…吸着部(第2吸着部)、103…下流側搬送部(第1搬送部)、104…下流側切断部(切断部)、105…撮像部(第1撮像部)。   DESCRIPTION OF SYMBOLS 1,100 ... Electrode cutting device, 2 ... 1st conveyance part, 3 ... Cutting part, 4 ... 1st imaging part, 5 ... 2nd conveyance part, 6 ... 2nd imaging part, 7 ... 3rd conveyance part, 10 ... Strip electrode, 10a ... upper surface, 10b ... lower surface (one side surface), 15 ... individual electrode, 15a ... upper surface (other side surface), 15b ... lower surface (one side surface), 22a ... transport surface (first) Transport surface), 22c ... end on the downstream side in the transport direction, 23 ... suction unit, 52a ... transport surface (second transport surface), 52c ... end on the upstream side in transport direction, 53 ... suction unit (second suction unit) Reference numerals 103, 103, a downstream transport unit (first transport unit), 104, a downstream cutting unit (cutting unit), and 105, an imaging unit (first imaging unit).

Claims (4)

長尺の帯状電極の一方側の表面に当接して前記帯状電極を支持する第1搬送面を有し、前記第1搬送面を搬送方向に移動させることにより前記帯状電極を前記搬送方向に搬送する第1搬送部と、
前記第1搬送部によって搬送中の前記帯状電極を切断することにより、前記帯状電極を個片電極に個片化する切断部と、
前記切断部よりも前記搬送方向下流側において前記第1搬送面に対向するように配置され、前記搬送方向に搬送される前記個片電極の他方側の表面の画像を撮像する第1撮像部と、を備える、
電極切断装置。
It has a first transport surface that contacts the surface of one side of the long strip electrode and supports the strip electrode, and transports the strip electrode in the transport direction by moving the first transport surface in the transport direction. A first conveying unit that
By cutting the strip electrode being transported by the first transport section, a cutting section that separates the strip electrode into individual electrodes;
A first imaging unit that is arranged to face the first transport surface downstream of the cutting unit in the transport direction, and that captures an image of the surface of the other side of the individual electrode transported in the transport direction; Comprising
Electrode cutting device.
前記第1搬送部は、前記帯状電極及び前記個片電極を前記第1搬送面に吸着させる第1吸着部を有する、
請求項1に記載の電極切断装置。
The first transport unit includes a first suction unit that sucks the strip electrode and the individual electrode on the first transport surface.
The electrode cutting device according to claim 1.
前記搬送方向上流側の端部が前記第1搬送面の前記搬送方向下流側の端部に対向するように前記第1搬送面と並設され、前記個片電極の前記他方側の表面に当接する第2搬送面と、前記個片電極を前記第2搬送面に吸着させる第2吸着部と、を有し、前記第2搬送面を前記搬送方向に移動させることにより前記個片電極を前記搬送方向に搬送する第2搬送部と、
前記第2搬送面に対向するように配置され、前記搬送方向に搬送される前記個片電極の前記一方側の表面の画像を撮像する第2撮像部と、を更に備える、
請求項1又は2に記載の電極切断装置。
The end on the upstream side in the transport direction is juxtaposed with the first transport surface so as to face the end on the downstream side in the transport direction of the first transport surface, and contacts the other surface of the individual electrode. A second conveying surface that contacts the second conveying surface; and a second adsorption unit that adsorbs the individual electrode to the second conveying surface; and moving the second conveying surface in the conveying direction to move the individual electrode to the second conveying surface. A second transport unit for transporting in the transport direction;
A second imaging unit that is arranged to face the second transport surface and captures an image of the surface of the one side of the individual electrode that is transported in the transport direction;
The electrode cutting device according to claim 1 or 2.
長尺の帯状電極を第1搬送部に供給する供給工程と、
前記第1搬送部によって搬送中の前記帯状電極を切断することにより、前記帯状電極を個片電極に個片化する切断工程と、
前記切断工程において切断された前記個片電極の表面の画像を撮像する検査工程と、
前記検査工程における撮像が完了した前記個片電極を、前記第1搬送部から当該第1搬送部の後段の第2搬送部に移載する移載工程と、を含む、
電極検査方法。
Supplying a long strip electrode to the first transport unit;
A cutting step of separating the strip electrode into individual electrodes by cutting the strip electrode being transported by the first transport section;
An inspection step of capturing an image of the surface of the individual electrode cut in the cutting step;
A transfer step of transferring the individual electrodes, which have been imaged in the inspection step, from the first transfer unit to a second transfer unit subsequent to the first transfer unit,
Electrode inspection method.
JP2015243171A 2015-12-14 2015-12-14 Electrode cutting device and electrode inspection method Active JP6720516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243171A JP6720516B2 (en) 2015-12-14 2015-12-14 Electrode cutting device and electrode inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243171A JP6720516B2 (en) 2015-12-14 2015-12-14 Electrode cutting device and electrode inspection method

Publications (2)

Publication Number Publication Date
JP2017111864A true JP2017111864A (en) 2017-06-22
JP6720516B2 JP6720516B2 (en) 2020-07-08

Family

ID=59080831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243171A Active JP6720516B2 (en) 2015-12-14 2015-12-14 Electrode cutting device and electrode inspection method

Country Status (1)

Country Link
JP (1) JP6720516B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079766A (en) * 2017-10-27 2019-05-23 株式会社豊田自動織機 Electrode carrier device
JP2019079770A (en) * 2017-10-27 2019-05-23 株式会社豊田自動織機 Electrode manufacturing device
JP2019086509A (en) * 2017-11-02 2019-06-06 株式会社豊田自動織機 Inspection device
WO2019107344A1 (en) * 2017-11-30 2019-06-06 日東電工株式会社 Long film laser machining method
JP2020038204A (en) * 2018-08-30 2020-03-12 理想科学工業株式会社 Image inspection device
JP2020053112A (en) * 2018-09-21 2020-04-02 株式会社豊田自動織機 Electrode manufacturing device
CN111316473A (en) * 2017-09-13 2020-06-19 罗伯特·博世有限公司 Method for producing an electrode
WO2021112551A1 (en) * 2019-12-06 2021-06-10 주식회사 엘지에너지솔루션 Apparatus for manufacturing electrode assembly, and electrode assembly and secondary battery manufactured using same
KR20220029883A (en) * 2020-09-02 2022-03-10 엘지전자 주식회사 Device of manufacturing a secondary battery
WO2023227664A1 (en) * 2022-05-25 2023-11-30 Mb Automation Gmbh & Co. Kg Device and method for sensor-based inspection of an object

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7262020B2 (en) * 2018-04-06 2023-04-21 パナソニックIpマネジメント株式会社 Method for manufacturing electrode body
KR102515416B1 (en) * 2020-09-08 2023-03-30 엘지전자 주식회사 Device of manufacturing a secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316473A (en) * 2017-09-13 2020-06-19 罗伯特·博世有限公司 Method for producing an electrode
CN111316473B (en) * 2017-09-13 2022-08-16 罗伯特·博世有限公司 Method for producing an electrode
JP2019079770A (en) * 2017-10-27 2019-05-23 株式会社豊田自動織機 Electrode manufacturing device
JP7009916B2 (en) 2017-10-27 2022-02-10 株式会社豊田自動織機 Electrode transfer device
JP2019079766A (en) * 2017-10-27 2019-05-23 株式会社豊田自動織機 Electrode carrier device
JP2019086509A (en) * 2017-11-02 2019-06-06 株式会社豊田自動織機 Inspection device
JP7119767B2 (en) 2017-11-02 2022-08-17 株式会社豊田自動織機 inspection equipment
CN111432974A (en) * 2017-11-30 2020-07-17 日东电工株式会社 Laser processing method for long film
JP2019098355A (en) * 2017-11-30 2019-06-24 日東電工株式会社 Laser-processing method for long film
WO2019107344A1 (en) * 2017-11-30 2019-06-06 日東電工株式会社 Long film laser machining method
JP2020038204A (en) * 2018-08-30 2020-03-12 理想科学工業株式会社 Image inspection device
JP7366638B2 (en) 2018-08-30 2023-10-23 理想科学工業株式会社 Image inspection device
JP2020053112A (en) * 2018-09-21 2020-04-02 株式会社豊田自動織機 Electrode manufacturing device
JP7070285B2 (en) 2018-09-21 2022-05-18 株式会社豊田自動織機 Electrode manufacturing equipment
WO2021112551A1 (en) * 2019-12-06 2021-06-10 주식회사 엘지에너지솔루션 Apparatus for manufacturing electrode assembly, and electrode assembly and secondary battery manufactured using same
KR20220029883A (en) * 2020-09-02 2022-03-10 엘지전자 주식회사 Device of manufacturing a secondary battery
KR102653991B1 (en) 2020-09-02 2024-04-04 엘지전자 주식회사 Device of manufacturing a secondary battery
WO2023227664A1 (en) * 2022-05-25 2023-11-30 Mb Automation Gmbh & Co. Kg Device and method for sensor-based inspection of an object

Also Published As

Publication number Publication date
JP6720516B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6720516B2 (en) Electrode cutting device and electrode inspection method
JP6524841B2 (en) Device for manufacturing electrode plate package
JP7103291B2 (en) Electrode manufacturing equipment with separator and electrode manufacturing method with separator
JP2017123321A (en) Electrode manufacturing apparatus
JP2016033868A (en) Position correction/conveyance stage device and correction method for position correction/conveyance stage
JP6607027B2 (en) Separator electrode manufacturing apparatus and separator electrode manufacturing method
JP2018067421A (en) Electrode manufacturing apparatus
JP2016197527A (en) Work stacking device
JP2018041625A (en) Electrode manufacturing device
JP2017054813A (en) Inspection method of electrode laminate
JP2018169380A (en) Inspection device, inspection method, and manufacturing method of film wound body
JP6631027B2 (en) Work laminating equipment
JP2019212461A (en) Electrode manufacturing method and electrode manufacturing device
JP6575370B2 (en) Electrode laminator
JP6776893B2 (en) Electrode manufacturing equipment
JP2016225246A (en) Electrode manufacturing device
JP6488834B2 (en) Work laminating equipment
JP2016206170A (en) Method and apparatus for manufacturing resin film for power storage devices
JP6737172B2 (en) Electrode inspection device
JP7027879B2 (en) Electrode manufacturing equipment and electrode manufacturing method
JP2021048010A (en) Manufacturing apparatus for bagged electrode, integrated device and manufacturing method of bagged electrode
JP6582679B2 (en) Separator electrode manufacturing apparatus and separator electrode manufacturing method
JP2020053112A (en) Electrode manufacturing device
JP6789687B2 (en) Sheet-shaped device, sheet-shaped secondary battery manufacturing method, and manufacturing equipment
JPWO2019044549A1 (en) Electrode manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R151 Written notification of patent or utility model registration

Ref document number: 6720516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151