JP2017107858A - Power storage device, and electronic apparatus and power storage unit using the same - Google Patents

Power storage device, and electronic apparatus and power storage unit using the same Download PDF

Info

Publication number
JP2017107858A
JP2017107858A JP2016238330A JP2016238330A JP2017107858A JP 2017107858 A JP2017107858 A JP 2017107858A JP 2016238330 A JP2016238330 A JP 2016238330A JP 2016238330 A JP2016238330 A JP 2016238330A JP 2017107858 A JP2017107858 A JP 2017107858A
Authority
JP
Japan
Prior art keywords
power storage
battery group
storage device
storage element
storage elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016238330A
Other languages
Japanese (ja)
Inventor
絢加 堀川
Ayaka Horikawa
絢加 堀川
上野 哲也
Tetsuya Ueno
哲也 上野
佐藤 洋
Hiroshi Sato
洋 佐藤
文吾 櫻井
Bungo Sakurai
文吾 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of JP2017107858A publication Critical patent/JP2017107858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Photovoltaic Devices (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device that is adaptable to curvature or bend and twist, and maintains high capacity.SOLUTION: A power storage device of the present invention comprises: lead-wires extending in a prescribed direction; a first battery group in which a plurality of power storage elements are arrayed in the prescribed direction and parallelly connected; and a second battery group in which a plurality of power storage elements are arrayed in the prescribed direction and parallelly connected, at least on one principal surface of a substrate having flexibility, in which the power storage elements of the first battery group and the power storage elements of the second battery group are arranged on positions different from each other when the power storage device is projected from either direction of the prescribed direction and an orthogonal direction orthogonal to the direction, the first battery group is serially connected with the second battery group by arranging terminals having different polarities from each other on the same lead-wire, at least four of the lead-wires are arranged, which are arrayed with a prescribed interval from each other, and an interval adjacent to the lead-wire which is arrayed on the outermost side is wider than an interval arrayed inside the interval.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電装置およびそれを用いた電子機器並びに蓄電ユニットに関する。   The present invention relates to a power storage device, an electronic device using the power storage device, and a power storage unit.

近年、携帯電話やスマートフォンに代表される情報端末やゲーム機等の民生用電子機器の電源、蓄電装置としてリチウムイオン二次電池は広く利用されている。このような電子機器には、長寿命・高容量であることに加え、軽量化や小型化、外形設計の自由度を得るために可撓性を有する電池への需要が高まっている。可撓性を有する蓄電装置を実現することにより、例えばリストウォッチ等のウェアラブル機器や、薄型の電子機器など、湾曲又は屈曲する部分や厚さの薄い部分にも蓄電装置を設置することができる。   In recent years, lithium ion secondary batteries have been widely used as power sources and power storage devices for consumer electronic devices such as information terminals and game machines such as mobile phones and smartphones. In such an electronic device, in addition to a long life and high capacity, there is an increasing demand for a battery having flexibility in order to obtain a light weight, a small size, and a degree of freedom in external design. By realizing a flexible power storage device, the power storage device can be installed in a curved or bent portion or a thin portion such as a wearable device such as a wristwatch or a thin electronic device.

従来の非水系リチウムイオン二次電池は、アルミニウムや銅などのシート状の集電体にリチウムイオンを放出する正極活物質を塗布した正極と、リチウムイオンを吸蔵する負極活物質を塗布した負極を有する。これら正極と負極の間にセパレータを挟み、これを巻いて捲回体を形成し、この捲回体を電解液とともに外装体内に封入することで得られる。正極、セパレータ、負極はそれぞれ可撓性を有する部材ではあるものの、捲回体を形成し外装体に封入した後は、形状が固定されるため、可撓性は完全に喪失してしまい、電池に湾曲または屈曲する自由度を持たせることはできなかった。
また、このような非水系リチウムイオン二次電池には電解質として有機溶剤が用いられている。そのため電池を湾曲または屈曲させることで液漏れする恐れがあった。
A conventional non-aqueous lithium ion secondary battery includes a positive electrode in which a positive electrode active material that releases lithium ions is applied to a sheet-like current collector such as aluminum or copper, and a negative electrode in which a negative electrode active material that absorbs lithium ions is applied. Have. It is obtained by sandwiching a separator between the positive electrode and the negative electrode, winding the separator to form a wound body, and encapsulating the wound body together with the electrolyte in the exterior body. Although the positive electrode, the separator, and the negative electrode are each flexible members, the shape is fixed after the wound body is formed and sealed in the exterior body, so the flexibility is completely lost, and the battery Could not be given a degree of freedom of bending or bending.
Moreover, an organic solvent is used as an electrolyte in such a non-aqueous lithium ion secondary battery. For this reason, there is a risk of liquid leakage by bending or bending the battery.

そこで、特許文献1に開示されているように電解質として有機溶剤の代わりに無機固体電解質を用いた薄型の蓄電素子や特許文献2に開示されているようなシート状の蓄電装置の研究が盛んに行われている。   Therefore, as disclosed in Patent Document 1, research on a thin power storage element using an inorganic solid electrolyte instead of an organic solvent as an electrolyte and a sheet-shaped power storage device disclosed in Patent Document 2 are actively conducted. Has been done.

特開2007−123081号公報Japanese Patent Laid-Open No. 2007-123081 特開2013−239435号公報JP 2013-239435 A

しかしながら、特許文献1に開示されているような薄型の蓄電素子では、湾曲または屈曲させた場合に、正極と負極の短絡や割れ等が生じる恐れがあるため、湾曲または屈曲に対応することはできなかった。特許文献2に開示されているようなシート型の蓄電装置は湾曲や屈曲には対応できるものの、ウェアラブル機器に必要なねじれに対応することはできなかった。さらに、蓄電装置の容量を大きくするために、蓄電装置を構成する蓄電素子の実装密度を大きくすると、ねじれへの対応はより困難になる。さらに高容量化するために蓄電素子を複数蓄電装置内に実装すると、蓄電装置内の不均一な温度分布のため蓄電素子の実装場所によって特性が安定せず、高容量を維持することが困難であった。   However, in a thin energy storage device as disclosed in Patent Document 1, there is a risk of short-circuiting or cracking between the positive electrode and the negative electrode when bent or bent. There wasn't. Although the sheet-type power storage device disclosed in Patent Document 2 can cope with bending and bending, it cannot cope with the twist required for the wearable device. Furthermore, if the mounting density of the power storage elements constituting the power storage device is increased in order to increase the capacity of the power storage device, it becomes more difficult to cope with the twist. In order to further increase the capacity, when the power storage elements are mounted in a plurality of power storage devices, the characteristics are not stable depending on the mounting location of the power storage elements due to the uneven temperature distribution in the power storage device, and it is difficult to maintain the high capacity there were.

本発明は上記従来の課題を解決するためになされたもので、湾曲または屈曲、及びねじれに対応し、高密度実装され、高容量を維持した蓄電装置およびそれを用いた電子機器並びに蓄電ユニットを提供することを目的とする。   The present invention has been made in order to solve the above-described conventional problems. A power storage device that can handle bending, bending, and twisting, is mounted at a high density, maintains a high capacity, an electronic device using the power storage device, and a power storage unit. The purpose is to provide.

上記課題を解決するため、本発明にかかる蓄電装置は可撓性を有する基板の少なくとも一方の主面に、所定方向に延びる導線と、複数の蓄電素子が前記所定方向に配列され並列接続した第一電池群と、複数の蓄電素子が前記所定方向に配列され並列接続した第二電池群と、を備え、前記所定方向、及びそれに直交する直交方向のいずれの方向から投影したときも第一電池群の蓄電素子と第二電池群の蓄電素子は互いに異なる位置に配置され、第一電池群と第二電池群は、互いに異なる極性を持った端子を同一の導線上に配置することで、直列接続され、導線は少なくとも4本配置し、互いに前記所定間隔を持って配列するとともに、そのうち最も外側に配列される導線に隣接する間隔は、その内側に配列される間隔よりも広いことを特徴とする。   In order to solve the above-described problems, a power storage device according to the present invention includes a conductive wire extending in a predetermined direction and a plurality of power storage elements arranged in the predetermined direction and connected in parallel on at least one main surface of a flexible substrate. One battery group and a second battery group in which a plurality of power storage elements are arranged in parallel in the predetermined direction, and the first battery is projected from any direction of the predetermined direction and an orthogonal direction perpendicular thereto. The storage element of the group and the storage element of the second battery group are arranged at different positions, and the first battery group and the second battery group are arranged in series by arranging terminals having different polarities on the same conductor. Connected, at least four conductors are arranged and arranged with the predetermined distance from each other, and an interval adjacent to the outermost arranged conductor is wider than an interval arranged inside the conductor. You .

かかる蓄電装置によれば、可撓性を有する基板上に蓄電素子が互い違いに配列されているため、容量を大きくするために、基板上への実装密度を増加させても湾曲または屈曲、及びねじれに対応することができるとともに、最も外側に配線されている導線に隣接する間隔を、その内側に配列される間隔よりも広くし、熱抵抗を大きくすることで熱の流出を抑制し、蓄電装置内に生じる温度勾配を小さくすることが可能となる。そのため、基板上に生じた温度差に伴って生じる蓄電素子の特性の変化を小さくすることができ、複数の蓄電素子を高密度に実装した高容量の蓄電装置であっても安定した容量維持をはかることができる。   According to such a power storage device, since the power storage elements are alternately arranged on the flexible substrate, even if the mounting density on the substrate is increased in order to increase the capacity, the power storage device is curved, bent, or twisted. In addition, the space adjacent to the outermost conductive wire is made wider than the space arranged on the inside, and the heat resistance is increased to suppress the outflow of heat. It is possible to reduce the temperature gradient generated inside. Therefore, it is possible to reduce the change in characteristics of the power storage element caused by the temperature difference generated on the substrate, and to maintain stable capacity even in a high capacity power storage device in which a plurality of power storage elements are mounted at high density. Can measure.

本発明にかかる蓄電装置は、最も外側に配列される導線の幅が、その内側に配列される導線の幅よりも狭いことが好ましい。   In the power storage device according to the present invention, it is preferable that the width of the conducting wire arranged on the outermost side is narrower than the width of the conducting wire arranged on the inner side.

かかる蓄電装置によれば、外側の導線の幅を狭くすることによって、より効率的に熱の流出を抑制することができる。さらに、内部の導線の幅を太くすることで、蓄電装置内に生じる熱勾配を小さくすることができる。そのため、温度分布の差による蓄電素子の特性のばらつきを抑制でき、温度差が小さく、蓄電素子が実装可能な領域を広くできるため、より安定的に蓄電装置の容量維持向上が可能となる。   According to such a power storage device, the outflow of heat can be more efficiently suppressed by narrowing the width of the outer conductive wire. Further, by increasing the width of the internal conductor, the thermal gradient generated in the power storage device can be reduced. Therefore, variation in characteristics of the power storage element due to a difference in temperature distribution can be suppressed, a temperature difference is small, and a region where the power storage element can be mounted can be widened, so that the capacity of the power storage device can be maintained and improved more stably.

本発明にかかる蓄電装置は、さらに、蓄電装置を前記所定方向から投影したときに、第一電池群の蓄電素子の一部と第二電池群の蓄電素子の一部とが互いに重なり合う位置で配置されていることが好ましい。   The power storage device according to the present invention is further arranged at a position where a part of the power storage element of the first battery group and a part of the power storage element of the second battery group overlap each other when the power storage device is projected from the predetermined direction. It is preferable that

かかる蓄電装置によれば、湾曲または屈曲及びねじれに対応するとともに、より効率的に高密度実装ができ、容量維持向上が可能となる。   According to such a power storage device, it is possible to cope with bending, bending, and twisting, and more efficiently perform high-density mounting, and capacity maintenance can be improved.

本発明にかかる蓄電装置は、第一電池群と第二電池群が、前記直交方向に交互に配列されていることが好ましい。   In the power storage device according to the present invention, it is preferable that the first battery group and the second battery group are alternately arranged in the orthogonal direction.

かかる蓄電装置によれば、可撓性を有する基板上に蓄電素子が互い違いに配置されているため、ねじれへの対応が容易となり、ねじれによって生じる蓄電素子への負荷が軽減するとともに、高密度実装による容量維持向上が可能となる。   According to such a power storage device, since the power storage elements are alternately arranged on the flexible substrate, it is easy to cope with the twist, and the load on the power storage element caused by the twist is reduced, and the high-density mounting is performed. It becomes possible to improve capacity maintenance.

本発明にかかる蓄電装置は電子機器に搭載されていることが好ましい。   The power storage device according to the present invention is preferably mounted on an electronic device.

本発明にかかる電子機器によれば、湾曲または屈曲及びねじれが生じる部分にも蓄電装置を搭載することができるので、より自由度の高い電子機器を提供することができる。   According to the electronic device of the present invention, since the power storage device can be mounted on a portion where bending, bending, and twisting occur, an electronic device with a higher degree of freedom can be provided.

本発明にかかる蓄電ユニットは、蓄電装置の主面とは反対側にシート状の太陽光発電素子を貼り合わせ、太陽光発電素子と蓄電装置を電気的に接続されていることが好ましい。   In the power storage unit according to the present invention, it is preferable that a sheet-like solar power generation element is bonded to the opposite side of the main surface of the power storage device, and the solar power generation element and the power storage device are electrically connected.

かかる蓄電ユニットによれば、可撓性を有した太陽光蓄電ユニットを得ることができる。また、太陽の熱によって蓄電素子が温められ、蓄電素子の性能向上が期待できる。   According to this power storage unit, a flexible solar power storage unit can be obtained. Moreover, the storage element is warmed by the heat of the sun, and an improvement in performance of the storage element can be expected.

本発明によれば、湾曲または屈曲、及びねじれに対応した高容量を維持できる蓄電装置およびそれを用いた電子機器ならびに蓄電ユニットを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrical storage apparatus which can maintain the high capacity | capacitance corresponding to a curve or a bending, and a twist, an electronic device using the same, and an electrical storage unit can be provided.

蓄電装置の模式図である。It is a schematic diagram of a power storage device. 外側導線の細い蓄電装置の模式図である。It is a schematic diagram of the electrical storage apparatus with a thin outer side conducting wire. 導線の太さの異なる蓄電装置の模式図である。It is a schematic diagram of the electrical storage apparatus from which the thickness of conducting wire differs. 導線の形が長方形でない蓄電装置の模式図である。It is a schematic diagram of the electrical storage apparatus with which the shape of conducting wire is not a rectangle. 3種類の電池群を有する蓄電装置の模式図である。It is a schematic diagram of the electrical storage apparatus which has three types of battery groups. 3種類の電池群を有する蓄電装置の模式図である。It is a schematic diagram of the electrical storage apparatus which has three types of battery groups. 蓄電素子の断面模式図である。It is a cross-sectional schematic diagram of an electrical storage element. 蓄電装置と太陽光発電素子を組み合わせた蓄電ユニットの模式図である。It is a schematic diagram of the electrical storage unit which combined the electrical storage apparatus and the photovoltaic power generation element. 所定方向および垂直方向から投影したときに、第一電池群の蓄電素子と第二電池群の蓄電素子とが互いに重なり合わない位置で配置されている蓄電装置の模式図である。It is a schematic diagram of the electrical storage apparatus arrange | positioned in the position where the electrical storage element of a 1st battery group and the electrical storage element of a 2nd battery group do not mutually overlap when projected from a predetermined direction and a perpendicular direction. 4種類の電池群を有する蓄電装置の模式図である。It is a schematic diagram of the electrical storage apparatus which has four types of battery groups.

以下、図面を参照しながら本発明の好適な実施条件について説明する。なお、本発明は以下の実施形態に限定されるものではない。さらに、以下に記載した構成要素は適宜組み合わせることができる。   Hereinafter, preferred implementation conditions of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. Furthermore, the constituent elements described below can be appropriately combined.

(蓄電装置)
図1は本実施形態とする蓄電装置30を示す平面模式図である。図1のように蓄電装置30、主として、可撓性基板1と可撓性基板1上に配置された第一電池群2と第二電池群3から構成されている。導線4は可撓性基板1の表面や内部に複数備えられており、回路の一部を担っている。導線4は蓄電素子が実装されている実装領域のもっとも外側に備えられた1つ以上の外側導線5と、導線4のうち外側導線5を除く複数の内側導線6から構成されている。第一電池群2および第二電池群3はそれぞれ所定方向に配列された複数の蓄電素子10で構成されており、蓄電素子10は導線4と蓄電素子10の端子電極18を通じて電気的に接続されている。
(Power storage device)
FIG. 1 is a schematic plan view showing a power storage device 30 according to this embodiment. As shown in FIG. 1, the power storage device 30 mainly includes a flexible substrate 1, a first battery group 2 and a second battery group 3 disposed on the flexible substrate 1. A plurality of conductive wires 4 are provided on the surface or inside of the flexible substrate 1 and serve as a part of the circuit. The conducting wire 4 is composed of one or more outer conducting wires 5 provided on the outermost side of the mounting region where the storage element is mounted, and a plurality of inner conducting wires 6 excluding the outer conducting wire 5 among the conducting wires 4. The first battery group 2 and the second battery group 3 are each composed of a plurality of power storage elements 10 arranged in a predetermined direction, and the power storage elements 10 are electrically connected to the lead wires 4 through the terminal electrodes 18 of the power storage elements 10. ing.

(蓄電素子の接続)
図1に示す蓄電装置では、矩形状の可撓性基板1上の長手方向に平行に5本の導線4が備えられている。そのうち、隣り合う2本の導線4にまたがるように蓄電素子10が実装されている。図1では、一つの第一電池群2を構成する3個の蓄電素子10は並列に接続されており、一つの第二電池群3を構成する3個の蓄電素子10も並列に接続されており、第一電池群2と第二電池群3は直列に接続されている。このようにして図1では4直列―3並列の蓄電装置を構成している。この蓄電装置は第一電池群2と第二電池群3の互いに異なる極性を持った端子電極18を同一導線上に配置させている点で、高密度実装と湾曲又は屈曲、及びねじれに対応した優れたものとなる。
(Connection of storage element)
In the power storage device shown in FIG. 1, five conductive wires 4 are provided in parallel with the longitudinal direction on the rectangular flexible substrate 1. Among them, the storage element 10 is mounted so as to straddle two adjacent conductive wires 4. In FIG. 1, three power storage elements 10 constituting one first battery group 2 are connected in parallel, and three power storage elements 10 constituting one second battery group 3 are also connected in parallel. The first battery group 2 and the second battery group 3 are connected in series. Thus, in FIG. 1, a 4 series-3 parallel power storage device is configured. This power storage device corresponds to high-density mounting, bending or bending, and twisting in that the terminal electrodes 18 having different polarities of the first battery group 2 and the second battery group 3 are arranged on the same conductor. It will be excellent.

(導線間隔)
外側導線5と外側導線5と隣り合う内側導線6の間隔は、隣り合う2本の内側導線6の間隔に比べ広くなるよう設計されている。外側導線5と内側導線6との距離を広げることで、蓄電装置内の熱の流出を抑制でき、蓄電装置内に生じる温度差および温度分布のむらを小さくすることができる。この結果、実装された複数の蓄電素子の温度むらが小さくなり、より性能の安定した蓄電装置を提供することが可能となる。
(Lead wire spacing)
The interval between the outer conductor 5 and the inner conductor 6 adjacent to the outer conductor 5 is designed to be wider than the interval between the two adjacent inner conductors 6. By increasing the distance between the outer conductive wire 5 and the inner conductive wire 6, it is possible to suppress the outflow of heat in the power storage device, and to reduce the temperature difference and the uneven temperature distribution that occur in the power storage device. As a result, the temperature unevenness of the plurality of mounted power storage elements is reduced, and a power storage device with more stable performance can be provided.

内側導線6が3本以上ある場合、隣り合う2本の内側導線6の間隔は同じでも異なっていても良いが、同じであるほうが好ましい。   When there are three or more inner conductors 6, the interval between two adjacent inner conductors 6 may be the same or different, but is preferably the same.

図2及び図3には、導線4や外側導線5の太さが一様でない場合の蓄電装置の模式図を示す。複数の導線4及び外側導線5はそれぞれ同じ太さでもよいが、異なる太さでもよい。外側導線5から外部への熱の流出を抑制するため、外側導線5よりも導線4の方が太い方が好ましい。   2 and 3 are schematic views of the power storage device when the thicknesses of the conductive wires 4 and the outer conductive wires 5 are not uniform. The plurality of conducting wires 4 and the outer conducting wires 5 may have the same thickness, but may have different thicknesses. In order to suppress the outflow of heat from the outer conductor 5 to the outside, the conductor 4 is preferably thicker than the outer conductor 5.

導線の形状はすべて同じでもよいが、異なっていても良い。図4には外側導線5が櫛形の蓄電装置30を示す。図4のように外側導線5の重心と内側導線6の重心との距離が離れている方が好ましい。   The shapes of the conductors may all be the same or different. FIG. 4 shows a power storage device 30 in which the outer conductor 5 has a comb shape. It is preferable that the distance between the center of gravity of the outer conductor 5 and the center of the inner conductor 6 is as shown in FIG.

本実施形態にかかる導線は図1乃至6に示すものに限らず、蓄電装置30に要求される容量や電流仕様に応じて幅広く変化させることが可能である。また、基板上に蓄電素子10以外の電子部品を搭載しても良く、例えば、整流回路や保護回路、ICチップなどを備えていても良いし、第一電池群2及び第二電池群3をはじめとする電池群に含まれていない蓄電素子などを備えていても良い。   The conducting wires according to the present embodiment are not limited to those shown in FIGS. 1 to 6, and can be widely changed according to the capacity and current specifications required for the power storage device 30. Further, electronic components other than the power storage element 10 may be mounted on the substrate. For example, a rectifier circuit, a protection circuit, an IC chip, or the like may be provided, and the first battery group 2 and the second battery group 3 may be provided. You may provide the electrical storage element etc. which are not contained in the battery group including the first.

(電池の配置)
第一電池群2を構成する蓄電素子10と第二電池群3の蓄電素子10は所定方向及び所定方向に直交する直交方向のいずれの方向から投影した時も、互いに異なる位置で配置される方が、可撓性基板1上に蓄電素子10を高密度実装できるため、好ましい。
(Battery arrangement)
The storage element 10 constituting the first battery group 2 and the storage element 10 of the second battery group 3 are arranged at different positions when projected from either a predetermined direction or an orthogonal direction orthogonal to the predetermined direction. However, it is preferable because the storage element 10 can be mounted on the flexible substrate 1 with high density.

所定方向から投影した際の第一電池群2と第二電池群3の重なりが大きいと、蓄電装置の容量を大きくするために蓄電素子の実装密度を高くした場合であっても、湾曲及び屈曲、またはねじれが生じた際に可撓性基板1上に実装された蓄電素子10のそれぞれに応力が拡散するため、応力を加え可撓性基板1を所定量変位させた場合であっても応力が一部に集中する恐れを低減することができる。その結果、蓄電装置30の損傷を防ぐことができる。   If the overlap between the first battery group 2 and the second battery group 3 when projected from a predetermined direction is large, even if the mounting density of the power storage elements is increased to increase the capacity of the power storage device, bending and bending In addition, since stress is diffused to each of the power storage elements 10 mounted on the flexible substrate 1 when twisting occurs, the stress is applied even when the flexible substrate 1 is displaced by a predetermined amount by applying stress. Can reduce the risk of being concentrated in part. As a result, damage to the power storage device 30 can be prevented.

(3列目以降の配列)
図5及び図6は図1とは電池の配列が異なる蓄電装置の例である。図5及び図6のように、一列目に第一電池群2を配置し、直交方向に二列目として、第二電池群3を配列した時、三列目以降に複数の蓄電素子を所定方向に配列し接続した電池群を配置し、直交方向に並んだ第二電池群をはじめとした電池群と直列に接続することが好ましい。図5及び図6には4直列―3並列の配置を持つ場合の蓄電素子の配置の例を模式的に示した。三列目以降には、図1乃至図4のように第一電池群2と第二電池群3を交互に配列しても良いし、図5及び図6のように第一電池群2や第二電池群3と異なる電池群を配列してもよい。第一電池群2や第二電池群3と異なる電池群を直交方向に配列する場合は、第一電池群2を構成する一つの蓄電素子10と第二電池群3を構成する一つの蓄電素子10の重心を結んだ直線上に三列目以降の電池群の蓄電素子10が配列されていればよい。
(Sequence after the third column)
5 and 6 are examples of a power storage device having a battery arrangement different from that in FIG. As shown in FIGS. 5 and 6, when the first battery group 2 is arranged in the first row and the second battery group 3 is arranged as the second row in the orthogonal direction, a plurality of power storage elements are predetermined in the third row and thereafter. It is preferable that the battery groups arranged and connected in the direction are arranged and connected in series with the battery group including the second battery group arranged in the orthogonal direction. FIG. 5 and FIG. 6 schematically show examples of the arrangement of the electricity storage elements in the case of 4 series-3 parallel arrangement. In the third and subsequent rows, the first battery group 2 and the second battery group 3 may be alternately arranged as shown in FIGS. 1 to 4, or the first battery group 2 and the second battery group 3 as shown in FIGS. A battery group different from the second battery group 3 may be arranged. When battery groups different from the first battery group 2 and the second battery group 3 are arranged in the orthogonal direction, one power storage element 10 constituting the first battery group 2 and one power storage element constituting the second battery group 3 The power storage elements 10 in the third and subsequent battery groups need only be arranged on a straight line connecting the 10 centers of gravity.

(電池群の容量)
複数の蓄電素子10を並列接続して、第一電池群2や第二電池群3をはじめとする電池群を形成し、複数の電池群を直列接続するとき、並列接続された蓄電素子10が互いに異なる容量、あるいは、直列接続された電池群が互いに異なる容量を持つ場合、それらによって構成される蓄電装置30には、充放電効率の低下や過充電状態が生じる可能性がある。そのため、一つの電池群を構成する並列接続された蓄電素子10の容量は互いに同じであり、直列接続された電池群は互いに同じ容量であることが好ましい。
(Battery capacity)
When a plurality of power storage elements 10 are connected in parallel to form a battery group including the first battery group 2 and the second battery group 3, and the plurality of battery groups are connected in series, the power storage elements 10 connected in parallel are When different capacities or series connected battery groups have different capacities, there is a possibility that the power storage device 30 constituted by them may have a reduced charge / discharge efficiency or an overcharged state. Therefore, it is preferable that the capacity | capacitance of the storage element 10 connected in parallel which comprises one battery group is the same mutually, and the battery group connected in series is the mutually same capacity | capacitance.

(電池群の個数)
一つの電池群を構成する並列接続された蓄電素子10の数や、直列接続された電池群の数は多い方が好ましい。複数の蓄電素子10が並列接続されて電池群を構成し、複数の電池群が、隣り合う電池群と導線を共有しながら直列接続されることで、湾曲及び屈曲、あるいはねじれによる導線の断線や回路の短絡、蓄電素子10に割れ接続不良や内部短絡等による電気抵抗値や容量の変化が生じても、蓄電装置を構成する蓄電素子10のうち、1つあたりに加わる電気的な負荷の変化量は小さくなるため、蓄電装置の電流値及び電圧値の維持が可能になるため好ましい。
(Number of battery groups)
It is preferable that the number of power storage elements 10 connected in parallel constituting one battery group and the number of battery groups connected in series are large. A plurality of power storage elements 10 are connected in parallel to form a battery group, and the plurality of battery groups are connected in series while sharing a lead wire with an adjacent battery group, thereby leading to disconnection of a lead wire due to bending, bending, or twisting. Even if a change in electrical resistance value or capacity occurs due to a short circuit or a cracked connection failure or an internal short circuit in the storage element 10, a change in electrical load applied to one of the storage elements 10 constituting the storage device Since the amount is small, the current value and voltage value of the power storage device can be maintained, which is preferable.

可撓性基板上に配列された蓄電素子10の配列の対称性が高いほど、高密度実装やねじれへの対応は容易になるので、第一電池群2と第二電池群3を交互に配列する方が好適である。また、直交方向に配列された電池群の間の間隔は特に定めないが、等間隔であることが好ましい。   The higher the symmetry of the arrangement of the electricity storage elements 10 arranged on the flexible substrate, the easier it is to deal with high density mounting and twisting. Therefore, the first battery group 2 and the second battery group 3 are arranged alternately. Is preferred. Moreover, although the space | interval between the battery groups arranged in the orthogonal direction is not specifically defined, it is preferable that it is equal intervals.

図1に示す蓄電装置は第一電池群2と第二電池群3が交互に配置されており、所定方向及び直交方向のいずれの方向に対しても蓄電素子10が等間隔で周期的に配列されている。さらに、第一電池群2と第二電池群3の配列は平行であり、第二電池群3を構成する蓄電素子10の配列は、第一電池群2を構成する蓄電素子10の所定方向の周期の半分だけ所定方向にずれ、第一電池群2と同じ周期で所定方向に配列されている。可撓性基板1上の蓄電素子10の配列は、高い対称性を有するため、同じ数の蓄電素子10を高密度に実装した場合であっても、湾曲及び屈曲またはねじれへの対応が容易となるため好適である。   In the power storage device shown in FIG. 1, the first battery group 2 and the second battery group 3 are alternately arranged, and the power storage elements 10 are periodically arranged at equal intervals in any of the predetermined direction and the orthogonal direction. Has been. Furthermore, the arrangement of the first battery group 2 and the second battery group 3 is parallel, and the arrangement of the electricity storage elements 10 constituting the second battery group 3 is in the predetermined direction of the electricity storage elements 10 constituting the first battery group 2. The first battery group 2 is arranged in the predetermined direction with the same period as that of the first battery group 2 by shifting by half of the period. Since the arrangement of the power storage elements 10 on the flexible substrate 1 has high symmetry, even when the same number of power storage elements 10 are mounted at high density, it is easy to cope with bending, bending, or twisting. Therefore, it is preferable.

導線4に用いることができる材料としては、導電性材料であれば特に限定されるものではないが、可撓性基板1を湾曲、屈曲させた際に追従を要するため、展性や延性に優れた材料であることが好ましい。例えば、金、白金、銅、アルミニウム、チタン、ステンレス、鉄、亜鉛などの金属、及びこれらの合金を用いることが好ましい。   The material that can be used for the conductive wire 4 is not particularly limited as long as it is a conductive material. However, since the flexible substrate 1 needs to be tracked and bent, it has excellent malleability and ductility. Preferably, the material is For example, it is preferable to use metals such as gold, platinum, copper, aluminum, titanium, stainless steel, iron, and zinc, and alloys thereof.

導線4に用いる材料は同じでもよいし異なっていても良い。外側導線5に用いる材料の熱伝導率の方が内側導線6に用いる材料の熱伝導率に比べ小さい方が、可撓性基板上の温度差が小さくなるため好ましい。   The material used for the conducting wire 4 may be the same or different. It is preferable that the thermal conductivity of the material used for the outer conductive wire 5 is smaller than the thermal conductivity of the material used for the inner conductive wire 6 because the temperature difference on the flexible substrate becomes smaller.

導線4は可撓性基板1上に露出していても良いが、一部が樹脂で覆われていても良い。蓄電素子10と接続する部分を除き樹脂で覆われている方が、予期せぬ短絡を防ぐことができるため好ましい。   The conducting wire 4 may be exposed on the flexible substrate 1, but a part thereof may be covered with resin. It is preferable to cover with the resin except the portion connected to the power storage element 10 because an unexpected short circuit can be prevented.

(可撓性基板の材料)
可撓性基板1にはフレキシブルプリント基板など樹脂材料からなる基板を用いることが好ましい。より具体的には、ポリエーテルスルフォン、ポリカーボネート、ポリアリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリプロピレン、ポリエステル等のプラスチック材料を用いることができる。樹脂材料を用いることでガラスや金属材料を用いた場合と比べて、薄膜、軽量で高強度を維持しつつ可撓性を具備させることができる。ひいては蓄電装置の薄層化、軽量化が現実可能となり、ウェアラブルな機器への適用に好適である。
(Flexible substrate material)
The flexible substrate 1 is preferably a substrate made of a resin material such as a flexible printed substrate. More specifically, plastic materials such as polyether sulfone, polycarbonate, polyarylate, polyethylene terephthalate, polyethylene naphthalate, polyimide, polypropylene, and polyester can be used. By using a resin material, it is possible to provide flexibility while maintaining high strength with a thin film and light weight compared to the case of using glass or metal material. As a result, it is possible to reduce the thickness and weight of the power storage device, which is suitable for application to wearable devices.

(基板との接続)
蓄電素子10の端子電極18と導線4との接続には、電子部品を回路基板に実装させる技術を用いることができる。その材料には、ハンダ、クリームハンダ、鉛フリーハンダ、鉛フリーハンダペースト、カーボンペースト、導電性ペースト、金属含有樹脂などを用いることができる。クリームハンダや鉛フリーハンダペーストを使用する場合、リフロー炉を通してそれを硬化させる。リフロー炉のピーク温度は200℃から280℃程度が好ましい。
(Connection with substrate)
A technique of mounting an electronic component on a circuit board can be used to connect the terminal electrode 18 of the power storage element 10 and the conductive wire 4. As the material, solder, cream solder, lead-free solder, lead-free solder paste, carbon paste, conductive paste, metal-containing resin, or the like can be used. When using cream solder or lead-free solder paste, cure it through a reflow oven. The peak temperature of the reflow furnace is preferably about 200 to 280 ° C.

次に本実施形態の蓄電装置の製造方法について順に説明する。   Next, a method for manufacturing the power storage device of this embodiment will be described in order.

(蓄電素子の構造)
図7は本実施形態における蓄電装置に実装された蓄電素子10の断面の模式図である。蓄電素子10は、正極層11と負極層12との間に固体電解質層13を有しており、正極層11は正極集電体層14と正極活物質層15からなり、負極層12は負極集電体層16と負極活物質層17からなる。さらに正極集電体14と負極集電体16はそれぞれ外部と電気的接触をとるため、端子電極18が電気的に接続されている。大気中の水分と蓄電素子10が反応しないよう、蓄電素子10の表面に樹脂やセラミックス、ガラスなどからなる保護層があるとより好ましい。尚、図7では5個の電池セルが積層された並列型の蓄電素子10の断面図が示されている。しかし、本実施形態の蓄電素子10に関する技術は、図1に示す5個の電池セルが積層された並列型の場合に限らず、任意の複数層からなる蓄電素子や直列型の蓄電素子にも適用できる。図7に示すものに限らず、蓄電装置30に要求される容量や電流仕様に応じて幅広く変化させることが可能である。
(Structure of power storage element)
FIG. 7 is a schematic diagram of a cross section of the power storage element 10 mounted on the power storage device in the present embodiment. The power storage element 10 includes a solid electrolyte layer 13 between a positive electrode layer 11 and a negative electrode layer 12, and the positive electrode layer 11 includes a positive electrode current collector layer 14 and a positive electrode active material layer 15, and the negative electrode layer 12 is a negative electrode. It consists of a current collector layer 16 and a negative electrode active material layer 17. Further, since the positive electrode current collector 14 and the negative electrode current collector 16 are in electrical contact with the outside, the terminal electrode 18 is electrically connected. More preferably, a protective layer made of resin, ceramics, glass, or the like is provided on the surface of the electricity storage element 10 so that moisture in the atmosphere does not react with the electricity storage element 10. Note that FIG. 7 shows a cross-sectional view of a parallel-type power storage element 10 in which five battery cells are stacked. However, the technology relating to the electricity storage device 10 of the present embodiment is not limited to the parallel type in which the five battery cells shown in FIG. 1 are stacked, but also to an electricity storage device composed of an arbitrary plurality of layers or a series type electricity storage device. Applicable. The present invention is not limited to that shown in FIG. 7, and can be widely changed according to the capacity and current specifications required for the power storage device 30.

(固体電解質)
本実施形態の固体電解質層13を構成する固体電解質としては、電子の伝導性が小さく、リチウムイオンの伝導性が高い材料を用いるのが好ましい。また、大気雰囲気で高温焼成できる無機材料であることが好ましい。例えば、La0.5Li0.5TiOなどのペロブスカイト型化合物や、Li14Zn(GeOなどのリシコン型化合物、LiLaZr12などのガーネット型化合物、Li1.3Al0.3Ti1.7(POやLi1.5Al0.5Ge1.5(POなどのナシコン型化合物、Li3.25Ge0.250.75やLiPSなどのチオリシコン型化合物、LiS−PやLiO−V−SiOなどのガラス化合物、LiPOやLi3.5Si0.50.5やLi2.9PO3.30.46などのリン酸化合物、よりなる群から選択される少なくとも1種であることが望ましい。
(Solid electrolyte)
As the solid electrolyte constituting the solid electrolyte layer 13 of the present embodiment, it is preferable to use a material having low electron conductivity and high lithium ion conductivity. Moreover, it is preferable that it is an inorganic material which can be baked at high temperature in an atmospheric condition. For example, perovskite type compounds such as La 0.5 Li 0.5 TiO 3 , silicon type compounds such as Li 14 Zn (GeO 4 ) 4 , garnet type compounds such as Li 7 La 3 Zr 2 O 12 , Li 1. NASICON compounds such as 3 Al 0.3 Ti 1.7 (PO 4 ) 3 and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 3.25 Ge 0.25 P 0.75 Thiolicone type compounds such as S 4 and Li 3 PS 4 , glass compounds such as Li 2 S—P 2 S 5 and Li 2 O—V 2 O 5 —SiO 2 , Li 3 PO 4 and Li 3.5 Si 0. It is desirable that it is at least one selected from the group consisting of phosphoric acid compounds such as 5 P 0.5 O 4 and Li 2.9 PO 3.3 N 0.46 .

(集電体材料)
正極集電体層15および負極集電体層17を構成する導電性材料の具体例としては、金(Au)、白金(Pt)、白金(Pt)−パラジウム(Pd)、銀(Ag)、銀(Ag)−パラジウム(Pd)、アルミニウム(Al)、銅(Cu)、インジウム−錫酸化膜(ITO)などを挙げることが出来る。
(Current collector material)
Specific examples of the conductive material constituting the positive electrode current collector layer 15 and the negative electrode current collector layer 17 include gold (Au), platinum (Pt), platinum (Pt) -palladium (Pd), silver (Ag), Silver (Ag) -palladium (Pd), aluminum (Al), copper (Cu), indium-tin oxide film (ITO), and the like can be given.

(正極活物質及び負極活物質)
本実施形態の蓄電素子10を構成する正極活物質層14及び負極活物質層16を構成する正極活物質及び負極活物質としては、リチウムイオンを効率よく放出、吸蔵する材料を用いるのが好ましい。例えば、遷移金属酸化物、遷移金属複合酸化物を用いるのが好ましい。具体的には、リチウムマンガン複合酸化物LiMnx3Ma1−x3(0.8≦x3≦1、Ma=Co、Ni)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNix4Coy4Mnz4(x4+y4+z4=1、0≦x4≦1、0≦y4≦1、0≦z4≦1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMbPO(ただし、Mbは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)、リン酸バナジウムリチウム(Li(PO又はLiVOPO)、Li過剰系固溶体正極LiMnO−LiMcO(Mc=Mn、Co、Ni)、チタン酸リチウム(LiTi12)、LiaNix5Coy5Alz5(0.9<a<1.3、0.9<x5+y5+z5<1.1)で表される複合金属酸化物のいずれかであることが好ましい。
(Positive electrode active material and negative electrode active material)
As the positive electrode active material and the negative electrode active material constituting the positive electrode active material layer 14 and the negative electrode active material layer 16 constituting the electricity storage device 10 of the present embodiment, it is preferable to use a material that efficiently releases and occludes lithium ions. For example, it is preferable to use a transition metal oxide or a transition metal composite oxide. Specifically, the lithium manganese composite oxide Li 2 Mn x3 Ma 1-x3 O 3 (0.8 ≦ x3 ≦ 1, Ma = Co, Ni), lithium cobaltate (LiCoO 2), lithium nickelate (LiNiO 2 ), Lithium manganese spinel (LiMn 2 O 4 ), and a general formula: LiNi x4 Co y4 Mn z4 O 2 (x4 + y4 + z4 = 1, 0 ≦ x4 ≦ 1, 0 ≦ y4 ≦ 1, 0 ≦ z4 ≦ 1) Composite metal oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMbPO 4 (where Mb is one or more selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr) Element), lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 or LiVOPO 4 ), Li-rich solid solution positive electrode Li 2 MnO 3 -L iMcO 2 (Mc = Mn, Co, Ni), lithium titanate (Li 4 Ti 5 O 12 ), LiaNi x5 Co y5 Al z5 O 2 (0.9 <a <1.3, 0.9 <x5 + y5 + z5 <1 .1) is preferably one of the composite metal oxides represented by

ここで、正極活物質層15又は負極活物質層17を構成する活物質には明確な区別がなく、より貴な電位を示す化合物を正極活物質層15として用い、より卑な電位を示す化合物を負極活物質層17として用いることができる。また、正極活物質層15を構成している活物質と負極活物質層16を構成する活物質は同じ材料を用いても良いし、異なっても良い。   Here, there is no clear distinction between the active materials constituting the positive electrode active material layer 15 or the negative electrode active material layer 17, a compound showing a lower potential by using a compound showing a noble potential as the positive electrode active material layer 15. Can be used as the negative electrode active material layer 17. Moreover, the active material which comprises the positive electrode active material layer 15 and the active material which comprises the negative electrode active material layer 16 may use the same material, and may differ.

(蓄電素子の製造)
本実施形態の蓄電素子10は、電解質層13、正極活物質層15、負極活物質層17、正極集電体層14、及び負極集電体層16の各材料をそれぞれペースト化し、その後、塗布、乾燥してグリーンシートを作製し、かかるグリーンシートを積層、圧着して積層体を作り、かかる積層体を同時焼成することによって製造する。
(Manufacture of electricity storage elements)
In the storage element 10 of the present embodiment, each material of the electrolyte layer 13, the positive electrode active material layer 15, the negative electrode active material layer 17, the positive electrode current collector layer 14, and the negative electrode current collector layer 16 is pasted and then applied. It is dried to produce a green sheet, and the green sheet is laminated and pressed to form a laminated body, and the laminated body is simultaneously fired.

(ペーストの作製)
ペースト化の方法は、特に限定されないが、例えば、ビヒクルに上記各材料の粉末を混合してペーストを得ることができる。ここで、ビヒクルとは、液相における媒質の総称である。ビヒクルには、溶媒、バインダーが含まれる。かかる方法により、正極集電体層14用のペースト、正極活物質層15用のペースト、固体電解質層13用のペースト、負極活物質層16用のペースト、及び、負極集電体層17用のペーストを作製する。
(Preparation of paste)
The method for forming the paste is not particularly limited, and for example, a paste can be obtained by mixing the powder of each of the above materials in a vehicle. Here, the vehicle is a general term for the medium in the liquid phase. The vehicle includes a solvent and a binder. By this method, the paste for the positive electrode current collector layer 14, the paste for the positive electrode active material layer 15, the paste for the solid electrolyte layer 13, the paste for the negative electrode active material layer 16, and the negative electrode current collector layer 17 Make a paste.

ペーストの組成は特に限定されない。例えば、正極活物質層15用のペーストおよび負極活物質層17用のペーストには活物質のほかに固体電解質や焼結助剤、導電性材料が含まれていても良いし、正極集電体層14及び負極集電体16用のペーストに活物質や固体電解質、焼結助剤が含まれていても良い。   The composition of the paste is not particularly limited. For example, the paste for the positive electrode active material layer 15 and the paste for the negative electrode active material layer 17 may contain a solid electrolyte, a sintering aid, and a conductive material in addition to the active material. The paste for the layer 14 and the negative electrode current collector 16 may contain an active material, a solid electrolyte, and a sintering aid.

作製したペーストをPET(ポリエチレンテレフタラート)などの基材上に所望の順序で塗布し、必要に応じ乾燥させた後、基材を剥離し、グリーンシートを作製する。ペーストの塗布方法は、特に限定されず、スクリーン印刷、塗布、転写、ドクターブレード等の公知の方法を採用することができる。   The prepared paste is applied in a desired order on a base material such as PET (polyethylene terephthalate) and dried as necessary, and then the base material is peeled to prepare a green sheet. The paste application method is not particularly limited, and a known method such as screen printing, application, transfer, doctor blade, or the like can be employed.

作製した正極集電体層14用、正極活物質層15用、固体電解質層13用、負極活物質層17用、及び、負極集電体層16用のそれぞれのグリーンシートを所望の順序、積層数で積み重ね、必要に応じアライメント、切断等を行い、積層体を作製する。並列型又は直並列型の電池を作製する場合は、正極層の端面と負極層の端面が一致しないようにアライメントを行い積み重ねるのが好ましい。   The green sheets for the produced positive electrode current collector layer 14, positive electrode active material layer 15, solid electrolyte layer 13, negative electrode active material layer 17, and negative electrode current collector layer 16 are laminated in a desired order and stacked. Stacked by number, alignment, cutting, etc. are performed as necessary to produce a laminate. In the case of manufacturing a parallel type or series-parallel type battery, it is preferable to align and stack the end surfaces of the positive electrode layer and the negative electrode layer so that they do not coincide with each other.

作製した積層体を一括して圧着する。圧着は加熱しながら行うが、加熱温度は、例えば、40〜90℃とする。   The produced laminate is pressed together. The pressure bonding is performed while heating, and the heating temperature is, for example, 40 to 90 ° C.

得られた積層体は必要に応じて切断し、所望の寸法に切断する。切断方法は限定されないが、例えば、ダイシングソーやナイフ切断機で行うとよい。また、切断はアラインメントしてから行うことが好ましい。   The obtained laminate is cut as necessary and cut to a desired dimension. Although the cutting method is not limited, for example, it may be performed with a dicing saw or a knife cutting machine. The cutting is preferably performed after alignment.

個片化された積層体を、例えば、大気雰囲気下で加熱し焼成を行い、焼結体を得る。焼成温度は、600〜1200℃の範囲とするのが好ましい。600℃未満では、焼成が十分進まず、1200℃を超えると、固体電解質が融解する、正極活物質、負極活物質の構造が変化するなどの問題が発生する可能性がある。更に、700〜1100℃の範囲とするほうが、焼成の促進、製造コストの低減により好適である。焼成時間は、例えば、0.1〜3時間が好ましい。   For example, the laminated body is heated and fired in an air atmosphere to obtain a sintered body. The firing temperature is preferably in the range of 600 to 1200 ° C. If the temperature is lower than 600 ° C., the firing does not proceed sufficiently, and if the temperature exceeds 1200 ° C., problems such as melting of the solid electrolyte and changes in the structure of the positive electrode active material and the negative electrode active material may occur. Furthermore, it is more preferable that the temperature is in the range of 700 to 1100 ° C. because the firing is accelerated and the manufacturing cost is reduced. The firing time is preferably, for example, 0.1 to 3 hours.

積層体の焼結体に対し乾式バレル研磨や湿式バレル研磨を行っても良い。この時、アルミナやジルコニア、樹脂ビーズなどの研磨剤を用いて行うと好ましい。湿式バレルの場合、溶媒は特に限定されないが、イオン交換水、純水、フッ素系溶媒を主としたものが好ましい。   You may perform dry barrel grinding | polishing or wet barrel grinding | polishing with respect to the sintered compact of a laminated body. At this time, it is preferable to use an abrasive such as alumina, zirconia, or resin beads. In the case of a wet barrel, the solvent is not particularly limited, but those mainly composed of ion-exchanged water, pure water, and a fluorinated solvent are preferable.

端子電極18の形成方法は限定されないが、電子部品などに用いられている技術を用いることが出来る。たとえば、熱硬化性導電性ペーストのディッピングやスパッタ、真空蒸着、メッキで形成することが好ましい。このような形成方法にて端子電極18を形成し、蓄電素子10を得る。   A method for forming the terminal electrode 18 is not limited, but a technique used for an electronic component or the like can be used. For example, it is preferably formed by dipping, sputtering, vacuum deposition, or plating of a thermosetting conductive paste. The terminal electrode 18 is formed by such a forming method, and the power storage element 10 is obtained.

また、端子電極18の材料は導電性を有するものが好ましく、たとえば、金(Au)、白金(Pt)、白金(Pt)−パラジウム(Pd)、銀(Ag)、銀(Ag)−パラジウム(Pd)、アルミニウム(Al)、銅(Cu)、インジウム、インジウム−錫酸化膜(ITO)を主として含んだものを用いることができる。   The material of the terminal electrode 18 is preferably a conductive material, for example, gold (Au), platinum (Pt), platinum (Pt) -palladium (Pd), silver (Ag), silver (Ag) -palladium ( A material mainly containing Pd), aluminum (Al), copper (Cu), indium, and indium-tin oxide film (ITO) can be used.

なお、信頼性向上のため、焼結体の表面には樹脂やガラス、セラミックによる被膜の形成をしても良いし、気密性の高いケースに収納しても良い。   In order to improve reliability, a coating film made of resin, glass, or ceramic may be formed on the surface of the sintered body, or may be housed in a highly airtight case.

(蓄電装置の作製方法)
上述した蓄電素子10を用い、図1に示す通り、可撓性基板1に導線4をあらかじめ施したものを準備し、その導線4上に上述した実装方法にて蓄電素子10を実装する。このようにして蓄電装置を得る。
(Method for manufacturing power storage device)
As shown in FIG. 1, using the above-described power storage element 10, a flexible substrate 1 that has been previously provided with a conductive wire 4 is prepared, and the power storage element 10 is mounted on the conductive wire 4 by the mounting method described above. In this way, a power storage device is obtained.

(実装時の蓄電素子の向き)
蓄電素子10はリチウムイオンの吸蔵によって膨張収縮が生じることがある。蓄電素子10を可撓性基板に実装する際は、蓄電素子10を構成する積層体の積層方向への膨張収縮が大きいため、隣接する蓄電素子10との距離を短くすることができるので、蓄電素子10を構成する積層体の積層方向が可撓性基板に対して直交する向きに実装することが好ましい。平面内での蓄電素子の向きに関しては蓄電素子の端子電極18を結ぶ線が導線4に対して平行でも良いし、傾いていても良いが、すべての電池が同じ向きであるほうが、蓄電素子の実装密度を大きくしやすいため好ましい。
(Direction of storage element when mounted)
The storage element 10 may expand and contract due to occlusion of lithium ions. When the power storage element 10 is mounted on a flexible substrate, since the expansion and contraction in the stacking direction of the laminate constituting the power storage element 10 is large, the distance from the adjacent power storage element 10 can be shortened. It is preferable that the stacking direction of the stacked body constituting the element 10 is mounted in a direction perpendicular to the flexible substrate. Regarding the orientation of the electricity storage element in the plane, the line connecting the terminal electrodes 18 of the electricity storage element may be parallel to or inclined with respect to the conductive wire 4, but it is better that all the batteries are in the same direction. This is preferable because the mounting density can be easily increased.

また、蓄電素子10が実装される面は可撓性基板1の片面でもよいが両面でもよい。この時、可撓性基板1の一方の主面側から裏面に向けて蓄電素子10を投影した時、裏面に実装される蓄電素子10の配列は主面と同じ、あるいは、主面の配置で所定方向に平行にずれた配置であることが好ましい。   Further, the surface on which the electricity storage element 10 is mounted may be one side of the flexible substrate 1, but may be both sides. At this time, when the power storage element 10 is projected from one main surface side of the flexible substrate 1 toward the back surface, the arrangement of the power storage elements 10 mounted on the back surface is the same as the main surface or the arrangement of the main surface. It is preferable that the arrangement be shifted parallel to the predetermined direction.

(蓄電素子周囲の余白)
蓄電素子の膨張によって隣接する蓄電素子との間の距離が狭くなることを防ぐため、蓄電素子の実装時に、蓄電素子の周りにはそれを想定した空間を保持していた方が好ましい
(Margins around the storage element)
In order to prevent the distance between adjacent power storage elements from becoming narrow due to the expansion of the power storage element, it is preferable to hold a space assuming that around the power storage element when the power storage element is mounted.

(電子機器)
本発明にかかる蓄電装置は可撓性のある電子機器や、電子機器の屈曲部に用いることが好ましい。例えば、リストウォッチや、薄型電子機器と組み合わせるのが好ましい。
(Electronics)
The power storage device according to the present invention is preferably used for a flexible electronic device or a bent portion of the electronic device. For example, it is preferable to combine with a wristwatch or a thin electronic device.

(蓄電ユニット)
図8には本発明にかかる蓄電装置30をシート状太陽光発電素子31と組み合わせた蓄電ユニット32の概念的模式図を示す。上述した蓄電装置と組み合わせる発電素子としては、太陽光発電素子以外にも圧電素子、熱電変換素子などを用いることができるが、可撓性を有する発電素子が好ましい。その中でもシート状の太陽光発電素子が好適である。蓄電素子は高温でも動作可能であり、また、温度が高いほど蓄電素子の電池特性は向上することが期待できる。太陽光により蓄電ユニットが温められることで、より安定的に駆動可能な蓄電ユニットが得られる。
(Electric storage unit)
FIG. 8 is a conceptual schematic diagram of a power storage unit 32 in which the power storage device 30 according to the present invention is combined with a sheet-like solar power generation element 31. As the power generation element combined with the power storage device described above, a piezoelectric element, a thermoelectric conversion element, or the like can be used in addition to the solar power generation element, but a flexible power generation element is preferable. Among these, a sheet-like photovoltaic power generation element is suitable. The power storage element can operate at a high temperature, and the battery characteristics of the power storage element can be expected to improve as the temperature increases. A power storage unit that can be driven more stably is obtained by heating the power storage unit with sunlight.

以下に実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されない。なお、部表示は、断りない限り重量部である。   EXAMPLES The present invention will be described in detail below using examples, but the present invention is not limited to these examples. In addition, unless otherwise indicated, a part display is a weight part.

(実施例1)
(活物質の作製)
活物質として、以下の方法で作製したLi(POを用いた。LiCOとVとNHPOとを出発材料とし、これらをモル比3:2:6となるように秤量し、水を溶媒としてボールミルで16時間湿式混合を行った後、脱水乾燥した。得られた粉体を850℃で2時間、窒素水素混合ガス中で仮焼した。仮焼品を粗粉砕し、水を溶媒としてボールミルで16時間湿式粉砕を行った後、脱水乾燥して活物質粉末を得た。作製した粉体の組成がLi(POであることは、X線回折装置を使用して確認した。
Example 1
(Production of active material)
Li 3 V 2 (PO 4 ) 3 produced by the following method was used as the active material. Using Li 2 CO 3 , V 2 O 5 and NH 4 H 2 PO 4 as starting materials, these were weighed so as to have a molar ratio of 3: 2: 6, and wet mixed in a ball mill for 16 hours using water as a solvent. And then dehydrated and dried. The obtained powder was calcined in a nitrogen-hydrogen mixed gas at 850 ° C. for 2 hours. The calcined product was coarsely pulverized, wet pulverized with a ball mill for 16 hours using water as a solvent, and then dehydrated and dried to obtain an active material powder. It was confirmed using an X-ray diffractometer that the composition of the produced powder was Li 3 V 2 (PO 4 ) 3 .

(活物質ペーストの作製)
活物質ペーストは、この活物質粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、三本ロールで混練・分散して活物質ペーストを作製した。
(Production of active material paste)
The active material paste was prepared by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of this active material powder, and kneading and dispersing with three rolls.

(固体電解質シートの作製)
固体電解質として、以下の方法で作製したLi1.3Al0.3Ti1.7(POを用いた。LiCOとAlとTiOとNHPOを出発材料として、これらをモル比0.65:0.15:1.7:3となるように秤量し、水を溶媒としてボールミルで16時間湿式混合を行った後、脱水乾燥した。得られた粉体を800℃で2時間、空気中で仮焼した。仮焼品を粗粉砕し、水を溶媒としてボールミルで24時間湿式粉砕を行った後、脱水乾燥して固体電解質の粉末を得た。作製した粉体の組成がLi1.3Al0.3Ti1.7(POであることは、X線回折装置を使用して確認した。
(Preparation of solid electrolyte sheet)
As the solid electrolyte, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 prepared by the following method was used. Using Li 2 CO 3 , Al 2 O 3 , TiO 2 and NH 4 H 2 PO 4 as starting materials, these were weighed to a molar ratio of 0.65: 0.15: 1.7: 3, and water was added. After wet mixing with a ball mill as a solvent for 16 hours, it was dehydrated and dried. The obtained powder was calcined in air at 800 ° C. for 2 hours. The calcined product was coarsely pulverized, wet pulverized with a ball mill for 24 hours using water as a solvent, and then dehydrated and dried to obtain a solid electrolyte powder. It was confirmed using an X-ray diffractometer that the composition of the produced powder was Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 .

次いで、この粉末100部に、溶媒としてエタノール100部、トルエン200部をボールミルで加えて湿式混合した。その後ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質ペーストを調製した。この固体電解質ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ15μmの固体電解質シートを得た。   Next, 100 parts of ethanol and 200 parts of toluene were added to 100 parts of the powder by a ball mill and wet mixed. Thereafter, 16 parts of polyvinyl butyral binder and 4.8 parts of benzylbutyl phthalate were further added and mixed to prepare a solid electrolyte paste. This solid electrolyte paste was formed into a sheet by a doctor blade method using a PET film as a base material to obtain a solid electrolyte sheet having a thickness of 15 μm.

(集電体ペーストの作製)
集電体としてCuとLi(POとを体積比率で6:4となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて三本ロールで混練・分散して集電体ペーストを作製した。
(Preparation of current collector paste)
After mixing Cu and Li 3 V 2 (PO 4 ) 3 as a current collector so as to have a volume ratio of 6: 4, 10 parts of ethyl cellulose as a binder and 50 parts of dihydroterpineol as a solvent are added to form a three-roll. A current collector paste was prepared by kneading and dispersing.

(端子電極ペーストの作製)
銀粉末とエポキシ樹脂、溶剤とを三本ロールで混錬・分散し、熱硬化型の導電ペーストを作製した。
(Preparation of terminal electrode paste)
Silver powder, epoxy resin, and solvent were kneaded and dispersed with three rolls to produce a thermosetting conductive paste.

(活物質ユニットのグリーンシートの作製)
上記の固体電解質シート上に、スクリーン印刷により厚さ5μmで活物質ペーストを印刷した。次に、印刷した活物質ペーストを80℃で5分間乾燥し、その上に、スクリーン印刷により厚さ5μmで集電体ペーストを印刷した。次に、印刷した集電体ペーストを80℃で5分間乾燥し、更にその上に、スクリーン印刷により厚さ5μmで活物質ペーストを再度印刷した。印刷した活物質ペーストを80℃で5分間乾燥し、次いでPETフィルムを剥離した。このようにして、固体電解質シート上に、活物質ペースト、集電体ペースト、活物質ペーストがこの順に印刷・乾燥された活物質ユニットのグリーンシートを得た。
(Production of green sheets for active material units)
An active material paste was printed on the solid electrolyte sheet with a thickness of 5 μm by screen printing. Next, the printed active material paste was dried at 80 ° C. for 5 minutes, and a current collector paste was printed thereon with a thickness of 5 μm by screen printing. Next, the printed current collector paste was dried at 80 ° C. for 5 minutes, and further, the active material paste was printed again at a thickness of 5 μm by screen printing. The printed active material paste was dried at 80 ° C. for 5 minutes, and then the PET film was peeled off. In this way, an active material unit green sheet was obtained in which the active material paste, the current collector paste, and the active material paste were printed and dried in this order on the solid electrolyte sheet.

(積層体の作製)
活物質ユニットのグリーンシート二枚を、活物質層の間に固体電解質を介するようにして積み重ねた。このとき、一枚目の活物質ユニットの集電体ペースト層が一の端面にのみ延出し、二枚目の活物質ユニットの集電体ペースト層が他の面にのみ延出するように、各活物質ユニットのグリーンシートをずらして積み重ねた。この積み重ねられた活物質ユニットのグリーンシートの両面に、積層したグリーンシートの合計の厚さが500μmとなるように固体電解質シートを重ねた。その後、これを温度80℃で圧力1000kgf/cm〔98MPa〕で一軸プレスを用いて成形した。次いで切断して積層ブロックを作製し、その後、積層ブロックを同時焼成して積層体を得た。同時焼成は、窒素中で昇温速度200℃/時間で焼成温度840℃まで昇温して、その温度に2時間保持し、焼成後は自然冷却した。同時焼成後の積層体のサイズは3.2mm×2.5mm×0.4mmであった。
(Production of laminate)
Two green sheets of the active material unit were stacked with the solid electrolyte interposed between the active material layers. At this time, the current collector paste layer of the first active material unit extends only to one end surface, and the current collector paste layer of the second active material unit extends only to the other surface, The green sheets of each active material unit were stacked and stacked. Solid electrolyte sheets were stacked on both sides of the green sheets of the stacked active material units so that the total thickness of the stacked green sheets was 500 μm. Thereafter, this was molded using a uniaxial press at a temperature of 80 ° C. and a pressure of 1000 kgf / cm 2 [98 MPa]. Next, the laminate block was produced by cutting, and then the laminate block was simultaneously fired to obtain a laminate. In the simultaneous firing, the temperature was increased to a firing temperature of 840 ° C. at a temperature rise rate of 200 ° C./hour in nitrogen, maintained at that temperature for 2 hours, and naturally cooled after firing. The size of the laminate after co-firing was 3.2 mm × 2.5 mm × 0.4 mm.

(端子電極形成工程)
積層体の端面に端子電極ペーストを塗布した。150℃で30分間の熱硬化を行い、一対の端子電極を形成した。
(Terminal electrode formation process)
A terminal electrode paste was applied to the end face of the laminate. Heat curing was performed at 150 ° C. for 30 minutes to form a pair of terminal electrodes.

(実装のための端子電極仕上げ)
端子電極以外の面にマスクを施し、端子電極上にNi、Cu、Sn、の順に被膜を形成し、蓄電素子を得た。
(Terminal electrode finish for mounting)
A mask was applied to the surface other than the terminal electrode, and a film was formed on the terminal electrode in the order of Ni, Cu, and Sn to obtain a storage element.

(実施例1の可撓性基板)
5本の導線を備えた図1に示した可撓性基板を使用した。可撓性基板の大きさは2cm×8cmで、導線の太さは全て1.2mmとした。隣り合う2本の内側導線の間隔は1.2mm、外側導線と外側導線に隣り合う内側導線との間隔は、1.7mmで、導線の長さはいずれも7.5cmで、可撓性基板の長辺に平行になるようそれぞれ配置され、真ん中に備えられた導線の重心は可撓性基板の重心と一致するようにした。
(Flexible substrate of Example 1)
The flexible substrate shown in FIG. 1 provided with five conducting wires was used. The size of the flexible substrate was 2 cm × 8 cm, and the thickness of the conductor was all 1.2 mm. The distance between the two adjacent inner conductors is 1.2 mm, the distance between the outer conductor and the inner conductor adjacent to the outer conductor is 1.7 mm, and the length of each conductor is 7.5 cm. The centroids of the conductors arranged in the middle of each of the wires are arranged so as to be parallel to the long sides of the slab, so that the centroid of the flexible substrate coincides with the centroid of the flexible substrate.

(実装工程)
可撓性基板上に蓄電素子を配置し、ハンダ付けをした。具体的には、可撓性基板の主面上の導線上に形成されたランドに合わせて設計されたメタルマスクを用いて、鉛フリーハンダペーストをランド上に印刷した。さらに、印刷されたランド上に蓄電素子を配置し、それを窒素雰囲気に置換したリフロー炉に通した。リフロー炉には温度の異なる3つの領域があり、基板とその上に配置された蓄電素子を順番に通過させた。一つ目の予熱ゾーンでは150℃から200℃の炉内を300秒かけて通過させ、二つ目のメインヒートゾーンでは240℃から270℃であり、ここを60秒で通過させた。3つ目の冷却ゾーンは600秒かけて通過させ、室温付近までの温度を下げた。
(Mounting process)
A power storage element was placed on a flexible substrate and soldered. Specifically, the lead-free solder paste was printed on the lands using a metal mask designed for the lands formed on the conductors on the main surface of the flexible substrate. Further, the storage element was placed on the printed land, and passed through a reflow furnace in which it was replaced with a nitrogen atmosphere. The reflow furnace has three regions having different temperatures, and the substrate and the power storage element disposed thereon are sequentially passed. The first preheating zone was passed through a furnace at 150 ° C. to 200 ° C. over 300 seconds, and the second main heat zone was 240 ° C. to 270 ° C., which was passed in 60 seconds. The third cooling zone was passed over 600 seconds to lower the temperature to near room temperature.

第一電池群は、9個の蓄電素子から構成した。第一電池群を構成する各蓄電素子の正極側の端部電極を外側配線と接続し、蓄電素子の配列が外側配線と平行になるよう配置した。このとき、各蓄電素子の対向する外部電極とを結ぶ直線が配線に対し垂直となるようにした。   The first battery group was composed of nine power storage elements. The end electrode on the positive electrode side of each power storage element constituting the first battery group was connected to the outer wiring, and the power storage elements were arranged in parallel with the outer wiring. At this time, the straight line connecting the opposing external electrodes of each power storage element was set to be perpendicular to the wiring.

(実施例1の配置)
実施例1では、図1に示す通り、第二電池群を第一電池群に対して、第一電池群の配列方向に3.5mm、配列と垂直方向に2.25mmずらして配置し、第一電池群と第二電池群の近接する蓄電素子間の距離は1mmとした。第一電池群を構成する蓄電素子の間隔及び第二電池群を構成する蓄電素子の間隔はそれぞれ4.5mmとした。メタルマスクはその蓄電素子の配置に基づいて設計したものを使用した。第一電池群及び第二電池群を構成する電池の数はそれぞれ9個とし、第一電池群と第二電池群を交互にそれぞれ2回繰り返して、基板上に合計36個の蓄電素子を実装した。これにより蓄電装置を得た。
(Arrangement of Example 1)
In Example 1, as shown in FIG. 1, the second battery group is arranged 3.5 mm away from the first battery group in the arrangement direction of the first battery group and 2.25 mm in the direction perpendicular to the arrangement, The distance between the power storage elements adjacent to one battery group and the second battery group was 1 mm. The interval between the electricity storage elements constituting the first battery group and the interval between the electricity storage elements constituting the second battery group were each 4.5 mm. The metal mask designed based on the arrangement of the electricity storage elements was used. The number of batteries constituting each of the first battery group and the second battery group is nine, and the first battery group and the second battery group are alternately repeated twice to mount a total of 36 power storage elements on the substrate. did. This obtained the electrical storage apparatus.

(実施例2)
実施例2は図2に示す通り、外側導線の太さを0.9mm、内側導線の太さを1.2mmとした。隣り合う2本の内側導線の間隔は1.2mm、外側導線と外側導線に隣り合う内側導線との間隔は、1.7mmとした。それ以外は実施例1と同様に作製した。
(Example 2)
In Example 2, as shown in FIG. 2, the thickness of the outer conductor was 0.9 mm, and the thickness of the inner conductor was 1.2 mm. The distance between the two adjacent inner conductors was 1.2 mm, and the distance between the outer conductor and the inner conductor adjacent to the outer conductor was 1.7 mm. Other than that was produced similarly to Example 1.

(実施例3)
実施例3は図3に示す通り、外側導線の太さを1.4mm、内側導線の太さを1.0mmとした。隣り合う2本の内側導線の間隔は1.2mm、外側導線と外側導線に隣り合う内側導線との間隔は、1.6mmとした。それ以外は実施例1と同様に作製した。
(Example 3)
In Example 3, as shown in FIG. 3, the thickness of the outer conductor was 1.4 mm, and the thickness of the inner conductor was 1.0 mm. The distance between two adjacent inner conductors was 1.2 mm, and the distance between the outer conductor and the inner conductor adjacent to the outer conductor was 1.6 mm. Other than that was produced similarly to Example 1.

(実施例4)
実施例4は図4に示す通り、可撓性基板上の導線の形状以外は実施例1と同様の条件で作製した。外側導線の太さを0.9mm、内側導線の太さを1.4mmとした。隣り合う2本の内側導線の間隔は1.0mm、外側導線と外側導線に隣り合う内側導線との間隔は、2.4mmとした。蓄電素子が隣り合う2本の導線と電気的接続が得られるように、外側導線から、隣り合う内側導線の蓄電素子が配置されている箇所に向かい、第一電池群もしくは第二電池群の配列方向に直交する向きに、幅0.9mm、長さ1.0mmの導線を配置し、それ以外は実施例1と同様にし、実施例4を得た。
Example 4
Example 4 was produced under the same conditions as Example 1 except for the shape of the conductive wire on the flexible substrate, as shown in FIG. The thickness of the outer conductor was 0.9 mm, and the thickness of the inner conductor was 1.4 mm. The interval between the two adjacent inner conductors was 1.0 mm, and the interval between the outer conductor and the inner conductor adjacent to the outer conductor was 2.4 mm. Arrangement of the first battery group or the second battery group from the outer conductive wire to the location where the electric storage device of the adjacent inner conductive wire is arranged so that the electric storage element can be electrically connected to the two adjacent conductive wires. A conductive wire having a width of 0.9 mm and a length of 1.0 mm was arranged in a direction orthogonal to the direction, and the other example was performed in the same manner as in Example 1, and Example 4 was obtained.

(実施例5)
実施例5は図9に示す通り、第二電池群を第一電池群に対して、第一電池群の配列方向に3.5mm、配列と垂直方向に3.4mmずらして配置し、第一電池群と第二電池群の近接する蓄電素子間の距離は1.02mmとした。外側導線の太さを0.9mm、内側導線の太さを1.2mmとし、隣り合う2本の内側導線の間隔は1.8mm、外側導線と外側導線に隣り合う内側導線との間隔は2.6mmとした。
(Example 5)
In Example 5, as shown in FIG. 9, the second battery group is arranged with a shift of 3.5 mm in the arrangement direction of the first battery group and 3.4 mm in the vertical direction with respect to the first battery group. The distance between the battery elements adjacent to the battery group and the second battery group was 1.02 mm. The thickness of the outer conductor is 0.9 mm, the inner conductor is 1.2 mm, the distance between two adjacent inner conductors is 1.8 mm, and the distance between the outer conductor and the inner conductor adjacent to the outer conductor is 2. 6 mm.

(実施例6)
実施例6は図10に示す通り、蓄電素子の配置以外は実施例2と同様にして作製した。実施例6では、三列目および四列目に第一電池群および第二電池群と異なる第三電池群および第四電池群を配置し、第二電池群を第一電池群に対して、第一電池群の配列方向に3.5mm、配列と垂直方向に2.25mmずらして配置し、第三電池群を第二電池群に対して、第二電池群の配列方向に3.5mm、配列と垂直方向に2.25mmずらして配置し、第四電池群を第三電池群に対して、第三電池群の配列方向に3.5mm、配列と垂直方向に2.25mmずらして配置し、第一電池群乃至第四電池群の近接する蓄電素子間の距離は1mmとした。各電池群を構成する蓄電素子の間隔はそれぞれ4.5mmとした。
(Example 6)
Example 6 was produced in the same manner as Example 2 except for the arrangement of the electricity storage elements, as shown in FIG. In Example 6, the third battery group and the fourth battery group different from the first battery group and the second battery group are arranged in the third row and the fourth row, and the second battery group is set to the first battery group. Arranged by 3.5 mm in the arrangement direction of the first battery group and 2.25 mm in the vertical direction from the arrangement, the third battery group is 3.5 mm in the arrangement direction of the second battery group with respect to the second battery group, The fourth battery group is arranged with a deviation of 2.25 mm in the vertical direction from the arrangement, and the fourth battery group is arranged with a deviation of 3.5 mm in the arrangement direction of the third battery group and 2.25 mm in the vertical direction with respect to the third battery group. The distance between the power storage elements adjacent to the first battery group to the fourth battery group was 1 mm. The interval between the power storage elements constituting each battery group was 4.5 mm.

(比較例1)
比較例1は従来技術と同様に、縦方向に4個、横方向に9個の合計36個の蓄電素子を規則的に配置し格子状に実装した。第一電池群を構成する蓄電素子の間隔及び第二電池群を構成する蓄電素子の間隔はそれぞれ3.5mmとし、第二電池群を第一電池群に対して配列と垂直方向に4.2mmずらして配置し、第一電池群と第二電池群の近接する蓄電素子間の距離は1mmとした。導線の太さは全て1.2mmとし、隣り合う導線の間隔は全て3mmとした。つまり第一電池群も第二電池群も所定方向に延びる導線に沿って実装され、前記所定方向に直交する方向から投影したときに互いに重なり合う位置に実装されている。
(Comparative Example 1)
In Comparative Example 1, as in the prior art, a total of 36 power storage elements, 4 in the vertical direction and 9 in the horizontal direction, were regularly arranged and mounted in a grid pattern. The interval between the energy storage elements constituting the first battery group and the interval between the energy storage elements constituting the second battery group is 3.5 mm, and the second battery group is 4.2 mm perpendicular to the arrangement with respect to the first battery group. The distance between the power storage elements adjacent to each other in the first battery group and the second battery group was set to 1 mm. The thicknesses of the conductors were all 1.2 mm, and the distance between adjacent conductors was 3 mm. That is, both the first battery group and the second battery group are mounted along conductive wires extending in a predetermined direction, and are mounted at positions that overlap each other when projected from a direction orthogonal to the predetermined direction.

(比較例2)
比較例2は導線の配置以外は実施例1と同様にして作製した。隣り合う5本の導線間の距離は全て同じ1.2mmとし、比較例2を得た。
(Comparative Example 2)
Comparative Example 2 was produced in the same manner as Example 1 except for the arrangement of the conductive wires. The distances between the five adjacent conductors were all the same 1.2 mm, and Comparative Example 2 was obtained.

(比較例3)
比較例3は導線の配置以外は実施例2と同様にして作製した。隣り合う5本の導線間の距離は全て同じ1.2mmとし、比較例3を得た。
(Comparative Example 3)
Comparative Example 3 was produced in the same manner as Example 2 except for the arrangement of the conductive wires. The distances between the five adjacent conductors were all the same 1.2 mm, and Comparative Example 3 was obtained.

(比較例4)
比較例4は導線の配置以外は実施例3と同様に作製した。隣り合う2本の内側導線の間隔は1.2mm、外側導線と外側導線に隣り合う内側導線との間隔は1.0mmとし、比較例4を得た。
(Comparative Example 4)
Comparative Example 4 was produced in the same manner as Example 3 except for the arrangement of the conductive wires. The distance between two adjacent inner conductors was 1.2 mm, and the distance between the outer conductor and the inner conductor adjacent to the outer conductor was 1.0 mm, and Comparative Example 4 was obtained.

(充放電容量の確認)
実施例1〜6及び比較例1〜4の蓄電装置をそれぞれ充放電装置で充放電試験を行い、各蓄電装置の充放電容量を確認した。充放電条件は、電流値200μA、電圧は上限を7V、下限を0Vとした。測定の結果、充電容量の平均値は1.2mAh、放電容量の平均値は1.01mAhで、ばらつきはいずれも3%以内であった。
(Confirmation of charge / discharge capacity)
The power storage devices of Examples 1 to 6 and Comparative Examples 1 to 4 were each subjected to a charge / discharge test using the charge / discharge device, and the charge / discharge capacity of each power storage device was confirmed. Charging / discharging conditions were as follows: current value 200 μA, voltage upper limit 7V, lower limit 0V. As a result of the measurement, the average value of the charge capacity was 1.2 mAh, the average value of the discharge capacity was 1.01 mAh, and the variations were all within 3%.

(ねじれ対応の評価方法)
可撓性基板の短辺の片方を固定し、ねじれに対する耐久試験をおこなった。まず、固定した短辺に対し他方の短辺が90度を成すまでねじった。つぎに、ねじれをもとに戻し、先にねじった方とは逆の向きに、固定していない短辺を90度ひねった。一連の動作を1回とし、これを複数回繰り返した。少なくとも一つの端子電極が可撓性基板から外れた蓄電素子や割れやひび、欠けが生じた蓄電素子を不良とし、不良か否かを目視で判断した。
(Evaluation method for twisting)
One of the short sides of the flexible substrate was fixed, and a durability test against torsion was performed. First, it twisted until the other short side made 90 degree | times with respect to the fixed short side. Next, the twist was returned to the original, and the unfixed short side was twisted by 90 degrees in the opposite direction to the one twisted first. A series of operations was performed once, and this was repeated a plurality of times. A power storage element in which at least one terminal electrode was detached from the flexible substrate or a power storage element in which cracks, cracks, or chipping occurred was regarded as defective, and whether or not it was defective was visually determined.

(温度差評価法)
蓄電装置に電流計及び電圧計を接続し、サーモグラフィーで蓄電装置を撮影しながら充放電を50サイクル行った。充放電条件は電流値を200μA、電圧は上限を6.8V、下限を0Vとした。サーモグラフィーによる温度の測定結果から、蓄電装置内に生じる最高温度と最低温度の差を温度差として評価し、その結果を表2に示す。
(Temperature difference evaluation method)
An ammeter and a voltmeter were connected to the power storage device, and 50 cycles of charging and discharging were performed while photographing the power storage device with thermography. The charge / discharge conditions were such that the current value was 200 μA, the voltage had an upper limit of 6.8 V, and a lower limit of 0 V. From the measurement result of the temperature by thermography, the difference between the highest temperature and the lowest temperature generated in the power storage device was evaluated as a temperature difference, and the result is shown in Table 2.

(容量維持特性の評価法)
蓄電装置に電流計及び電圧計を接続し、容量維持特性の評価、つまりサイクル試験を行った。充放電条件は電流値を200μA、電圧は上限を6.8V、下限を0Vとした。容量維持特性は容量維持率として1サイクル目の放電容量を100%としたときの各サイクルにおける放電容量割合で定義する。本実施例では容量維持率80%まで放電容量が低下した時のサイクル数を評価し、その結果を表2に示した。
(Capacity maintenance characteristic evaluation method)
An ammeter and a voltmeter were connected to the power storage device, and capacity maintenance characteristics were evaluated, that is, a cycle test was performed. The charge / discharge conditions were such that the current value was 200 μA, the voltage had an upper limit of 6.8 V, and a lower limit of 0 V. The capacity maintenance characteristic is defined as the capacity maintenance rate by the discharge capacity ratio in each cycle when the discharge capacity at the first cycle is 100%. In this example, the number of cycles when the discharge capacity was reduced to a capacity retention rate of 80% was evaluated, and the results are shown in Table 2.

(蓄電装置としての容量の評価方法)
各蓄電装置における1蓄電素子当たりの可撓性基板の面積で評価した。可撓性基板上に配置された全ての蓄電素子を含む最小矩形領域の面積を配置された蓄電素子の個数で除した値を1蓄電素子当たりの可撓性基板の面積とし、この値が小さいほど、より高密度実装の高容量蓄電装置を形成できると判断した。実施例1〜6および比較例1〜4における1蓄電素子当たりの可撓性基板の面積を、表2に示す。
(Capacity evaluation method as a power storage device)
Evaluation was made based on the area of the flexible substrate per power storage element in each power storage device. The value obtained by dividing the area of the minimum rectangular area including all the electricity storage elements arranged on the flexible substrate by the number of the electricity storage elements arranged is defined as the area of the flexible substrate per electricity storage element, and this value is small. Thus, it was determined that a high-capacity power storage device with a higher density could be formed. Table 2 shows the area of the flexible substrate per power storage element in Examples 1 to 6 and Comparative Examples 1 to 4.

(試験結果)
実施例1、5、6及び比較例1に対し、ねじれに対する耐久試験および、実施例1乃至6および比較例1乃至4に対しサーモグラフィーによる温度差評価および容量維持特性の評価と、1蓄電素子当たりの可撓性基板の面積の算出を行った。表1には実施例1、5、6及び比較例1のねじり回数に対する不良の発生数を示す。表2には充放電を50サイクル行った際の蓄電装置の基板上の蓄電素子の最高温度、最低温度、最高温度と最低温度の温度差を示し、併せて上述した容量維持率80%まで放電容量が低下した時のサイクル数と、1蓄電素子当たりの可撓性基板の面積も併記した。サーモグラフィーによる温度差評価の結果、蓄電装置の中央付近程温度が高く、端部ほど温度が低い結果となった。表2には最高温度として基板中央の蓄電素子の温度、最低温度として基板の四隅に配置された4つの蓄電素子の平均値とし、最高温度と最低温度の差を温度差として記載した。

Figure 2017107858
Figure 2017107858
(Test results)
For Examples 1, 5, 6 and Comparative Example 1, a durability test against torsion, and for Examples 1 to 6 and Comparative Examples 1 to 4, evaluation of temperature difference and evaluation of capacity maintenance characteristics by thermography, and per storage element The area of the flexible substrate was calculated. Table 1 shows the number of defects with respect to the number of twists in Examples 1, 5, 6 and Comparative Example 1. Table 2 shows the maximum temperature, the minimum temperature, and the temperature difference between the maximum temperature and the minimum temperature of the power storage element on the substrate of the power storage device when 50 cycles of charge and discharge are performed. The number of cycles when the capacity is reduced and the area of the flexible substrate per storage element are also shown. As a result of the temperature difference evaluation by thermography, the temperature was higher near the center of the power storage device and lower at the end. Table 2 shows the temperature of the power storage element in the center of the substrate as the maximum temperature, the average value of the four power storage elements arranged at the four corners of the substrate as the minimum temperature, and the difference between the maximum temperature and the minimum temperature as the temperature difference.
Figure 2017107858
Figure 2017107858

表1より、実施例1および実施例5,6の蓄電装置の方が比較例1に比べてねじれに対する耐久性が高いことがわかる。これは、ねじれによって生じる端子電極と可撓性基板間の負荷が本実施形態の配置を取ることによって従来の配置に比べ軽減されたためだと考えられる。また表2より、1蓄電素子当たりの可撓性基板の面積は実施例5および6と比べて実施例1の方が小さく、蓄電素子をより高密度に配置できるため、実施例1の蓄電装置の方が、湾曲または屈曲及びねじれに対応するとともに、より効率的に高密度実装ができ、容量維持向上が可能であると考えられる。   From Table 1, it can be seen that the power storage devices of Example 1 and Examples 5 and 6 have higher durability against torsion than Comparative Example 1. This is thought to be because the load between the terminal electrode and the flexible substrate caused by twisting was reduced compared to the conventional arrangement by taking the arrangement of this embodiment. Further, from Table 2, the area of the flexible substrate per power storage element is smaller in Example 1 than in Examples 5 and 6, and the power storage elements can be arranged at higher density. It is considered that the method corresponds to bending, bending, and twisting, and more efficient high-density mounting is possible, and capacity maintenance can be improved.

比較例1〜6に比べ実施例1〜4の方が、最低温度が高く、基板内に生じる温度差は小さい傾向があった。これは外側導線と外側導線に隣接する内側導線の間隔を広くすることにより基板上の熱抵抗が大きくなり、熱流出が抑制され、蓄電装置内に蓄積されたためだと考えられる。   Compared with Comparative Examples 1 to 6, Examples 1 to 4 had a higher minimum temperature, and the temperature difference generated in the substrate tended to be smaller. This is presumably because the thermal resistance on the substrate is increased by increasing the distance between the outer conductor and the inner conductor adjacent to the outer conductor, heat outflow is suppressed, and accumulated in the power storage device.

容量維持率80%に到達した時のサイクル数は実施例1〜6に比べ比較例1〜4の方が少ない。蓄電素子内の電解質はその温度が高いほどイオン抵抗が低くなるため、温度が高い方がジュール損失は低減し、より良い特性を示したのだと考えられる。さらに、実施例1〜6の方が比較例1〜4に比べ基板内の温度差が少なかったため、そのため、基板上に生じた温度差に伴って生じる蓄電素子の特性の差を小さくすることができ、一部の蓄電素子への負荷の集中を抑制することができ、複数の蓄電素子を高密度に実装した高容量の蓄電装置であっても安定した特性を得ることができる   The number of cycles when the capacity retention ratio reaches 80% is smaller in Comparative Examples 1 to 4 than in Examples 1 to 6. Since the ionic resistance of the electrolyte in the electricity storage element decreases as the temperature rises, it is considered that the higher the temperature, the better the Joule loss and the better characteristics. Furthermore, since the temperature difference in the substrate in Examples 1 to 6 was smaller than that in Comparative Examples 1 to 4, the difference in the characteristics of the power storage elements caused by the temperature difference generated on the substrate could be reduced. It is possible to suppress the concentration of load on some of the power storage elements, and stable characteristics can be obtained even with a high capacity power storage device in which a plurality of power storage elements are mounted at high density.

本発明によれば熱の流出を抑制することで蓄電装置内に生じる温度分布を低減させることができるため、高密度実装により高容量化した場合でも長寿命な蓄電装置を得ることができる。   According to the present invention, since the temperature distribution generated in the power storage device can be reduced by suppressing the outflow of heat, a long-life power storage device can be obtained even when the capacity is increased by high-density mounting.

以上のように、本発明にかかる蓄電装置や蓄電ユニットは湾曲または屈曲及びねじれに対して効果があり、さらに、基板上の熱抵抗を上げることで、蓄電素子の電気特性を安定化することができ、蓄電素子の高密度実装による高容量化にも対応することができる。これらは湾曲または屈曲、及びねじれが予測される部分にも用いることができ、実装面積当たりの容量を最適化できるため、特にエレクトロニクスの分野で大きく寄与する。   As described above, the power storage device and the power storage unit according to the present invention are effective in bending, bending, and twisting, and can further stabilize the electrical characteristics of the power storage element by increasing the thermal resistance on the substrate. In addition, it is possible to cope with an increase in capacity due to high-density mounting of power storage elements. These can be used also in a portion where bending or bending and torsion are expected, and the capacity per mounting area can be optimized, so that it greatly contributes particularly in the field of electronics.

1 可撓性基板
2 第一電池群
3 第二電池群
4 導線
5 外側導線
6 内側導線
10 蓄電素子
11 正極層
12 負極層
13 固体電解質層
14 正極活物質層
15 正極集電体層
16 負極活物質層
17 負極集電体層
18 端子電極
19 積層体
30 蓄電装置
31 シート状太陽光発電素子
32 蓄電ユニット
DESCRIPTION OF SYMBOLS 1 Flexible substrate 2 1st battery group 3 2nd battery group 4 Conductor 5 Outer conductor 6 Inner conductor 10 Power storage element 11 Positive electrode layer 12 Negative electrode layer 13 Solid electrolyte layer 14 Positive electrode active material layer 15 Positive electrode collector layer 16 Negative electrode active Material layer 17 Negative electrode current collector layer 18 Terminal electrode 19 Laminate 30 Power storage device 31 Sheet-like solar power generation element 32 Power storage unit

Claims (6)

可撓性を有する基板の少なくとも一方の主面に、所定方向に延びる導線と、複数の蓄電素子が前記所定方向に配列され並列接続した第一電池群と、複数の蓄電素子が前記所定方向に配列され並列接続した第二電池群と、を備え、前記所定方向、及びそれに直交する直交方向のいずれの方向から投影したときも第一電池群の蓄電素子と第二電池群の蓄電素子は互いに異なる位置に配置され、前記第一電池群と前記第二電池群は、互いに異なる極性を持った端子を同一の前記導線上に配置することで、直列接続され、前記導線は少なくとも4本有し、互いに所定間隔を持って配列するとともに、そのうち最も外側に配列される前記導線に隣接する間隔は、その内側に配列される間隔よりも広いことを特徴とする蓄電装置。   A conductive wire extending in a predetermined direction on at least one main surface of the flexible substrate, a first battery group in which a plurality of power storage elements are arranged in parallel in the predetermined direction, and a plurality of power storage elements in the predetermined direction A second battery group arranged and connected in parallel, and the storage element of the first battery group and the storage element of the second battery group are mutually connected when projected from any of the predetermined direction and the orthogonal direction orthogonal thereto Arranged in different positions, the first battery group and the second battery group are connected in series by arranging terminals having different polarities on the same conducting wire, and have at least four conducting wires. The power storage device is arranged with a predetermined interval between each other, and an interval adjacent to the conducting wires arranged on the outermost side is wider than an interval arranged on the inner side. 前記最も外側に配列される導線の幅は、その内側に配列される導線の幅よりも狭いことを特徴とする請求項1に記載の蓄電装置。   2. The power storage device according to claim 1, wherein a width of the conducting wires arranged on the outermost side is narrower than a width of the conducting wires arranged on the inner side thereof. 前記蓄電装置を前記所定方向から投影したときに、前記第一電池群の蓄電素子の一部と前記第二電池群の蓄電素子の一部とが互いに重なり合う位置で配置されていることを特徴とする請求項1または2に記載の蓄電装置。   When the power storage device is projected from the predetermined direction, a part of the power storage element of the first battery group and a part of the power storage element of the second battery group are arranged at positions that overlap each other. The power storage device according to claim 1 or 2. 前記第一電池群と前記第二電池群は、前記直交方向に交互に配列されていることを特徴とする請求項1乃至3のうちいずれかに記載の蓄電装置。   The power storage device according to any one of claims 1 to 3, wherein the first battery group and the second battery group are alternately arranged in the orthogonal direction. 請求項1乃至4のいずれか一項に記載の蓄電装置を搭載した電子機器。   An electronic device equipped with the power storage device according to claim 1. 前記主面とは反対側にシート状の太陽光発電素子を貼り合わせ、前記請求項1乃至5のいずれか一項に記載の蓄電装置と前記太陽光発電素子とを電気的に接続させた蓄電ユニット。


A power storage device in which a sheet-like photovoltaic power generation element is bonded to a side opposite to the main surface, and the power storage device according to any one of claims 1 to 5 and the photovoltaic power generation element are electrically connected. unit.


JP2016238330A 2015-12-08 2016-12-08 Power storage device, and electronic apparatus and power storage unit using the same Pending JP2017107858A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015239042 2015-12-08
JP2015239042 2015-12-08

Publications (1)

Publication Number Publication Date
JP2017107858A true JP2017107858A (en) 2017-06-15

Family

ID=59060108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016238330A Pending JP2017107858A (en) 2015-12-08 2016-12-08 Power storage device, and electronic apparatus and power storage unit using the same

Country Status (1)

Country Link
JP (1) JP2017107858A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513895A (en) * 2008-02-25 2011-04-28 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー Flexible thin film lithium ion battery
JP2013239435A (en) * 2012-04-17 2013-11-28 Semiconductor Energy Lab Co Ltd Power storage device and method of manufacturing the same
JP2015220110A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Power storage device
JP2015220103A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Power storage device, electronic equipment using the same and power storage unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513895A (en) * 2008-02-25 2011-04-28 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー Flexible thin film lithium ion battery
JP2013239435A (en) * 2012-04-17 2013-11-28 Semiconductor Energy Lab Co Ltd Power storage device and method of manufacturing the same
JP2015220110A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Power storage device
JP2015220103A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Power storage device, electronic equipment using the same and power storage unit

Similar Documents

Publication Publication Date Title
JP6575136B2 (en) Solid battery and assembled battery using the same
JP5122154B2 (en) All solid state secondary battery
JP6492959B2 (en) Solid battery
JP6264189B2 (en) Power storage device
JP6492958B2 (en) Solid battery and assembled battery using the same.
JP6693226B2 (en) All solid state secondary battery
JP6264188B2 (en) Power storage device, electronic device using the same, and power storage unit
JP5512293B2 (en) Lithium ion secondary battery
WO2019189311A1 (en) All-solid-state battery
US20210384550A1 (en) Solid-state battery
WO2020195381A1 (en) Solid-state battery
JP2017117672A (en) All-solid power storage device and method for manufacturing the same
JP2016001596A (en) Lithium ion secondary battery
US20220302506A1 (en) Solid-state battery
US20220140388A1 (en) Solid-state battery
JP6379659B2 (en) Power storage device
JP6299418B2 (en) Power storage device
JP2015220097A (en) Lithium ion secondary battery
WO2020202928A1 (en) Solid state battery
CN113169374B (en) All-solid battery
JP2020115450A (en) All-solid battery
US20220069347A1 (en) Solid-state battery
JP2017107858A (en) Power storage device, and electronic apparatus and power storage unit using the same
CN113474933A (en) All-solid-state secondary battery
US20230163434A1 (en) Solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110