JP2017104789A - Setting method of catalyst flow rate of catalyst feeder, and mixing device - Google Patents

Setting method of catalyst flow rate of catalyst feeder, and mixing device Download PDF

Info

Publication number
JP2017104789A
JP2017104789A JP2015239401A JP2015239401A JP2017104789A JP 2017104789 A JP2017104789 A JP 2017104789A JP 2015239401 A JP2015239401 A JP 2015239401A JP 2015239401 A JP2015239401 A JP 2015239401A JP 2017104789 A JP2017104789 A JP 2017104789A
Authority
JP
Japan
Prior art keywords
catalyst
flow rate
inner diameter
moving bed
layer forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015239401A
Other languages
Japanese (ja)
Other versions
JP6556041B2 (en
Inventor
真理絵 岩間
Marie Iwama
真理絵 岩間
秀樹 尾野
Hideki Ono
秀樹 尾野
太 大内
Futoshi Ouchi
太 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2015239401A priority Critical patent/JP6556041B2/en
Publication of JP2017104789A publication Critical patent/JP2017104789A/en
Application granted granted Critical
Publication of JP6556041B2 publication Critical patent/JP6556041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a setting method of a catalyst flow rate of a catalyst feeder that can improve stability of operation.SOLUTION: By setting a catalyst flow rate of a catalyst feeder 30 so as to satisfy a formula (1), as a condition of a mass flow rate of transition flux or smaller or a condition of neighborhood of the transition flux, a pressure imbalance in a system can be suppressed, thus, the catalyst supplied to a mobile layer forming part 20 can be rapidly and uniformly flowed out to a lower side. 500≥Q/√(gW)(1), here, 0.4≤W/D≤0.9,Q(kg/m/s):a mass flow rate per unit area of a mobile layer M, g(m/s): gravitational acceleration, W(m): a difference between an outer diameter and an inner diameter of the mobile layer forming part 20, D(m): an inner diameter of a part extending in an up-and-down direction on a downstream side of the mobile layer forming part 20.SELECTED DRAWING: Figure 2

Description

本発明は、触媒供給装置の触媒流量設定方法、及び混合装置に関する。   The present invention relates to a catalyst flow rate setting method for a catalyst supply device and a mixing device.

従来の触媒供給装置して、特許文献1に記載されるものが知られている。この触媒供給装置は、触媒と原料とを混合する混合装置に用いられるものである。触媒を連続的に落下させることで移動層を形成する移動層形成部を備えており、下流側において、移動層に対して原料を供給して混合している。   As a conventional catalyst supply apparatus, one described in Patent Document 1 is known. This catalyst supply device is used in a mixing device for mixing a catalyst and a raw material. A moving bed forming unit is provided that forms a moving bed by continuously dropping the catalyst, and on the downstream side, raw materials are supplied to and mixed with the moving bed.

特開2013−231093号公報JP 2013-231093 A

ここで、特許文献1に開示された触媒供給装置においては、触媒の供給量によっては、系内の圧力バランスが変動する場合がある。このような系内の圧力のバランスが変動する場合、移動層形成部にて触媒の詰まりが発生することによって、触媒供給装置の運転の安定性に影響が及ぼされる場合があった。従って、適切な触媒流量を設定して系内の圧力バランスを調整することで、触媒供給装置の運転の安全性を向上することが要請されていた。   Here, in the catalyst supply apparatus disclosed in Patent Document 1, the pressure balance in the system may vary depending on the supply amount of the catalyst. When the pressure balance in the system fluctuates, clogging of the catalyst occurs in the moving bed forming unit, which may affect the operation stability of the catalyst supply device. Therefore, it has been required to improve the safety of the operation of the catalyst supply device by setting an appropriate catalyst flow rate and adjusting the pressure balance in the system.

そこで、本発明は、運転の安定性を向上できる触媒供給装置の触媒流量設定方法、及び混合装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a catalyst flow rate setting method for a catalyst supply device and a mixing device that can improve the stability of operation.

本発明に係る触媒供給装置の触媒流量設定方法は、触媒を連続的に落下させることで移動層を形成する移動層形成部を備え、触媒を下流側へ供給する触媒供給装置の触媒流量設定方法であって、移動層の単位面積あたりの質量流量をQとし、移動層形成部の外径と内径の差をWとし、重力加速度をgとし、移動層形成部よりも下流側において上下方向に延びる部分の内径をDとした場合、以下の式(1)を満たすように触媒流量を設定する設定工程を有する。

500≧Q/√(gW) …(1)
ただし、0.4≦W/D≦0.9
A catalyst flow rate setting method for a catalyst supply apparatus according to the present invention includes a moving bed forming unit that forms a moving bed by continuously dropping a catalyst, and supplies the catalyst downstream. Where Q is the mass flow rate per unit area of the moving layer, W is the difference between the outer diameter and inner diameter of the moving layer forming portion, g is the gravitational acceleration, and the vertical direction on the downstream side of the moving layer forming portion. When the inner diameter of the extending portion is D, it has a setting step for setting the catalyst flow rate so as to satisfy the following formula (1).

500 ≧ Q / √ (gW) (1)
However, 0.4 ≦ W / D ≦ 0.9

また、本発明に係る混合装置は、触媒を連続的に落下させることで移動層を形成する移動層形成部と、移動層形成部から落下した移動層に原料を供給する原料供給部と、原料供給部への触媒の触媒流量を設定する制御部と、を備える混合装置であって、移動層の単位面積あたりの質量流量をQとし、移動層形成部の外径と内径の差をWとし、重力加速度をgとし、移動層形成部よりも下流側において上下方向に延びる部分の内径をDとした場合、前記制御部は、以下の式(1)を満たすように触媒流量を設定する。

500≧Q/√(gW) …(1)
ただし、0.4≦W/D≦0.9
In addition, the mixing apparatus according to the present invention includes a moving bed forming unit that forms a moving bed by continuously dropping the catalyst, a raw material supply unit that supplies a raw material to the moving bed dropped from the moving bed forming unit, and a raw material And a control unit for setting the catalyst flow rate of the catalyst to the supply unit, where Q is the mass flow rate per unit area of the moving bed, and W is the difference between the outer diameter and inner diameter of the moving bed forming unit. When the gravitational acceleration is g and the inner diameter of the portion extending in the vertical direction on the downstream side of the moving bed forming portion is D, the control portion sets the catalyst flow rate so as to satisfy the following expression (1).

500 ≧ Q / √ (gW) (1)
However, 0.4 ≦ W / D ≦ 0.9

本発明に係る触媒供給装置の触媒流量設定方法及び混合装置によれば、式(1)を満たす触媒流量を設定することにより、質量流量が遷移流束以下の条件、又は遷移流束付近の条件にて運転を行うことができる。当該条件にて運転を行う場合、系内の圧力バランスが崩れることを抑制し、触媒が移動層形成部で詰まることを抑制しながら触媒を供給することができる。従って、混合装置の運転の安全性を向上できる。   According to the catalyst flow rate setting method and the mixing device of the catalyst supply device according to the present invention, by setting the catalyst flow rate satisfying the equation (1), the condition where the mass flow rate is lower than the transition flux or the condition near the transition flux. You can drive at. When the operation is performed under the conditions, it is possible to supply the catalyst while suppressing the pressure balance in the system from being lost and suppressing the catalyst from being clogged at the moving bed forming portion. Therefore, the safety of the operation of the mixing device can be improved.

本発明に係る触媒供給装置の触媒流量設定方法では、設定工程において、以下の式(2)を満たすように触媒流量を設定してよい。式(2)を満たす触媒流量を設定することにより、質量流量が遷移流束以下の条件にて運転を行うことができる。当該条件にて運転を行う場合、系内の圧力バランスが崩れることを更に抑制し、触媒が移動層形成部で詰まることを抑制しながら触媒を供給することができる。従って、触媒供給装置の運転の安全性を向上できる。

400≧Q/√(gW) …(2)
In the catalyst flow rate setting method of the catalyst supply apparatus according to the present invention, the catalyst flow rate may be set so as to satisfy the following expression (2) in the setting step. By setting the catalyst flow rate satisfying the equation (2), the operation can be performed under the condition that the mass flow rate is equal to or lower than the transition flux. When the operation is performed under such conditions, the catalyst can be supplied while further suppressing the collapse of the pressure balance in the system and suppressing the clogging of the catalyst at the moving bed forming portion. Therefore, the safety of operation of the catalyst supply device can be improved.

400 ≧ Q / √ (gW) (2)

本発明によれば、運転の安定性を向上できる。   According to the present invention, driving stability can be improved.

本発明の実施形態に係る触媒流量の設定方法に用いられる触媒供給装置の概略構成図である。It is a schematic block diagram of the catalyst supply apparatus used for the setting method of the catalyst flow volume which concerns on embodiment of this invention. 図2に示す触媒供給装置の概略断面図である。It is a schematic sectional drawing of the catalyst supply apparatus shown in FIG. 触媒の遷移流束について説明するためのグラフである。It is a graph for demonstrating the transition flux of a catalyst. 変形例に係る触媒供給装置の概略構成図である。It is a schematic block diagram of the catalyst supply apparatus which concerns on a modification. 実施例及び比較例に係る触媒流量の設定方法の結果を示す表である。It is a table | surface which shows the result of the setting method of the catalyst flow volume which concerns on an Example and a comparative example.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当部分には同一符号を付し、重複する説明を省略する場合がある。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted.

本発明の実施形態を、図1を参照しながら説明する。図1は、流動接触分解装置の下降流型移動層反応器である混合装置(触媒供給装置)10の概略断面図である。なお、本実施形態に係る混合装置10は、下流側へ触媒を供給する触媒供給装置30としての機能も有している。混合装置10は、主に、鉛直方向(重力方向)の中心軸Xを有する円筒状の反応容器5と、反応容器5の外部から内部に原料を供給する外部原料供給器6と、反応容器5の内部の中央に設置されて触媒Sを整流する触媒整流体7と、触媒整流体7の上流側に位置して触媒Sを均一に落下させるための分散板8を備える。図1において、反応容器5内部の上方(上流)から下方(下流)に向かって触媒Sが流動する(便宜上この方向を「流動方向」とも呼ぶ)。なお、触媒は図示しない流量調節バルブから供給される。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of a mixing device (catalyst supply device) 10 which is a downflow type moving bed reactor of a fluid catalytic cracking device. In addition, the mixing apparatus 10 which concerns on this embodiment also has a function as the catalyst supply apparatus 30 which supplies a catalyst to a downstream. The mixing apparatus 10 mainly includes a cylindrical reaction vessel 5 having a central axis X in the vertical direction (gravity direction), an external raw material supplier 6 for supplying raw materials from the outside of the reaction vessel 5 to the inside, and the reaction vessel 5. The catalyst rectifier 7 that rectifies the catalyst S is installed in the center of the catalyst, and the dispersion plate 8 that is located upstream of the catalyst rectifier 7 and drops the catalyst S uniformly. In FIG. 1, the catalyst S flows from the upper (upstream) to the lower (downstream) inside the reaction vessel 5 (this direction is also referred to as “flow direction” for convenience). The catalyst is supplied from a flow control valve (not shown).

図1に示すように、反応容器5は、主に、上流側部分5cと、その下流に位置して外径及び内径が上流側部分5cよりも大きい拡張部5aと、さらにその下流に位置する絞り部5bと、その下流に位置して外形及び内径が絞り部5bよりも大きい拡張部5dと、を有する。図面においては、絞り部5bと上流側部分5cとが略同じ内径及び外径に設定されているが、異なる内径及び外径に設定されてよい。また、拡張部5aと拡張部5dが略同じ内径及び外径に設定されているが、異なる内径及び外径に設定されてよい。拡張部5aの内壁5auに分散板8が支持されている。分散板8は、格子板が多重に重なった構造の規則充填物であり、触媒の流れ、すなわち、触媒流動層を反応容器5内で均等に分散するために設けられている。分散板8は、例えば、金属板にセラミックスをライニングしたような耐摩耗耐火性材料から形成されている。   As shown in FIG. 1, the reaction vessel 5 is mainly located at the upstream portion 5c, the expansion portion 5a that is located downstream and larger in outer diameter and inner diameter than the upstream portion 5c, and further downstream thereof. The throttle part 5b and the expansion part 5d which is located downstream and has an outer shape and an inner diameter larger than the throttle part 5b. In the drawing, the throttle portion 5b and the upstream portion 5c are set to have substantially the same inner diameter and outer diameter, but may be set to different inner diameters and outer diameters. Moreover, although the expansion part 5a and the expansion part 5d are set to substantially the same inner diameter and outer diameter, they may be set to different inner diameters and outer diameters. The dispersion plate 8 is supported on the inner wall 5au of the extended portion 5a. The dispersion plate 8 is a regular packing having a structure in which lattice plates are overlapped in multiple layers, and is provided in order to uniformly disperse the flow of the catalyst, that is, the catalyst fluidized bed in the reaction vessel 5. The dispersion plate 8 is made of, for example, a wear and fire resistant material such as a metal plate lined with ceramics.

反応容器5の拡張部5aから絞り部5bの内部には触媒整流体7が収容されている。触媒整流体7は、反応容器5の中心軸Xと同軸に延在する中実の円柱体であり、その上部が分散板8により支持されている。触媒整流体7は、触媒流動抵抗を低減するように、表面に凹凸がなく、反応容器5の流動方向に沿って設けられている。触媒整流体7の流動方向の最下部7a(底部)は、反応容器5の拡張部5dの内部に位置する。ただし、最下部7aの位置は特に限定されず、絞り部5bの内部、または絞り部5bと拡張部5dの境界部分に位置してもよい。触媒整流体7は原料供給機能を有しないので、内部原料供給部に必要なメンテナンスが不要であり、反応容器5から取り出す必要もない。   A catalyst rectifier 7 is accommodated inside the expansion portion 5a to the throttle portion 5b of the reaction vessel 5. The catalyst rectifier 7 is a solid cylindrical body extending coaxially with the central axis X of the reaction vessel 5, and the upper portion thereof is supported by the dispersion plate 8. The catalyst rectifier 7 is provided along the flow direction of the reaction vessel 5 with no irregularities on the surface so as to reduce the catalyst flow resistance. The lowermost part 7 a (bottom part) in the flow direction of the catalyst rectifier 7 is located inside the expansion part 5 d of the reaction vessel 5. However, the position of the lowermost part 7a is not particularly limited, and may be located inside the throttle part 5b or at the boundary between the throttle part 5b and the extended part 5d. Since the catalyst rectifier 7 does not have a raw material supply function, the maintenance required for the internal raw material supply unit is unnecessary, and it is not necessary to take out from the reaction vessel 5.

触媒整流体7の水平方向(流動方向と直交する方向)の断面積は、絞り部5bにおける反応容器5の水平方向の断面積に対して0.3〜85%が好ましく、より好ましくは10〜50%である。前記触媒整流体7の前記断面積の割合が小さいと触媒整流体7を設置する効果が期待できず、前記触媒整流体7の前記断面積の割合が大きいと原料と触媒が流れる流路が小さくなり混合状態が悪化するととともに反応収率が低下する。また、触媒整流体7は、前述のように反応容器内部の中心部に同軸上に設置されることで、原料と触媒が流れる流路、特に、燃料が噴射される反応領域12(ノズル噴射口近傍)において反応容器5と同軸の中空柱状(ドーナツ状)となり、流路の断面(同心環)のいずれの場所においても同じ速度で均一に流れることができるため好ましい。   The cross-sectional area in the horizontal direction (direction orthogonal to the flow direction) of the catalyst rectifier 7 is preferably 0.3 to 85%, more preferably 10 to 10% with respect to the cross-sectional area in the horizontal direction of the reaction vessel 5 in the throttle portion 5b. 50%. If the ratio of the cross-sectional area of the catalyst rectifier 7 is small, the effect of installing the catalyst rectifier 7 cannot be expected. If the ratio of the cross-sectional area of the catalyst rectifier 7 is large, the flow path through which the raw material and the catalyst flow is small. As the mixed state deteriorates, the reaction yield decreases. Further, the catalyst rectifier 7 is coaxially installed in the central portion inside the reaction vessel as described above, so that the flow path through which the raw material and the catalyst flow, particularly the reaction region 12 (nozzle injection port) where fuel is injected. In the vicinity), a hollow columnar shape (doughnut shape) coaxial with the reaction vessel 5 is obtained, and it can flow uniformly at the same speed anywhere in the cross section (concentric ring) of the flow path.

外部原料供給器(原料供給部)6は、反応容器5の絞り部5bの外周上に均等間隔で配置された複数の原料噴射ノズル6aを有する。原料噴射ノズル6aは、反応容器5の中心軸に対して回転対称位置に3〜12本、好ましくは4〜10本設けることができる。原料噴射ノズル6aが3本未満であると原料と触媒の混合が不均一となり易い。また、原料噴射ノズル6aの角度θとしては、水平面(流動方向と直交する方向)に対して30°〜60°、好ましくは40°〜50°である。原料噴射ノズル6aの角度が水平面に対して30°より小さいと原料と触媒が反応器にスムーズに入ることが困難となり、原料噴射ノズル6aの角度が60°より大きいと原料と触媒の混合が不均一となる。各原料噴射ノズル6aの噴射口60は、下流側部分5bの内壁5buに開口している。なお、本実施形態で示されている外部原料供給器6の原料噴射ノズル6aの構成は、触媒の移動層に原料を供給するための一態様にすぎず、原料と触媒を混合できる限り、どのような構成を採用してもよい。   The external raw material supplier (raw material supply part) 6 has a plurality of raw material injection nozzles 6 a arranged at equal intervals on the outer periphery of the throttle part 5 b of the reaction vessel 5. The raw material injection nozzles 6 a can be provided at 3 to 12, preferably 4 to 10 at rotationally symmetric positions with respect to the central axis of the reaction vessel 5. When the number of raw material injection nozzles 6a is less than 3, the mixing of the raw material and the catalyst tends to be uneven. Further, the angle θ of the raw material injection nozzle 6a is 30 ° to 60 °, preferably 40 ° to 50 °, with respect to the horizontal plane (direction perpendicular to the flow direction). If the angle of the raw material injection nozzle 6a is smaller than 30 ° with respect to the horizontal plane, it will be difficult for the raw material and the catalyst to enter the reactor smoothly, and if the angle of the raw material injection nozzle 6a is larger than 60 °, mixing of the raw material and the catalyst will be difficult. It becomes uniform. The injection port 60 of each raw material injection nozzle 6a opens to the inner wall 5bu of the downstream portion 5b. In addition, the structure of the raw material injection nozzle 6a of the external raw material supplier 6 shown in the present embodiment is only one aspect for supplying the raw material to the moving bed of the catalyst, as long as the raw material and the catalyst can be mixed. Such a configuration may be adopted.

触媒整流体7は、触媒の流れを中空柱状に整流できるならば任意の形状及び構造にすることができる。この実施形態では、中実の柱状の構造体を用いたが、中空柱状の構造体であってもよい。また、触媒整流体7は、図4に示すように移動層反応器1の内壁面に支持部19を介して結合された円盤状の構造体17であってもよい。この場合、支持部19は、触媒の流動を阻害しないように水平面内の面積をできるだけ小さくするように内壁面の回転対称位置に複数設けるのが望ましい。あるいは、多数の貫通孔が形成された円盤状の多孔板を用いてもよい。円盤状の多孔板は、その外周が移動層反応器1の内壁面(内周面)に固着されるように設けられる。この円盤状の多孔板の中央部には、複数の貫通孔が形成されておらず、当該中央部が特に触媒整流体7として作用する。貫通孔の孔径は、例えば、0.5cm〜5cmにすることができる。   The catalyst rectifier 7 can have any shape and structure as long as the flow of the catalyst can be rectified into a hollow column shape. In this embodiment, a solid columnar structure is used, but a hollow columnar structure may be used. Further, the catalyst rectifier 7 may be a disc-like structure 17 coupled to the inner wall surface of the moving bed reactor 1 via a support portion 19 as shown in FIG. In this case, it is desirable to provide a plurality of support portions 19 at rotationally symmetric positions on the inner wall surface so as to minimize the area in the horizontal plane so as not to hinder the flow of the catalyst. Or you may use the disk shaped perforated plate in which many through-holes were formed. The disc-shaped perforated plate is provided so that the outer periphery thereof is fixed to the inner wall surface (inner peripheral surface) of the moving bed reactor 1. A plurality of through holes are not formed in the central portion of the disk-shaped perforated plate, and the central portion particularly acts as the catalyst rectifier 7. The hole diameter of the through hole can be set to 0.5 cm to 5 cm, for example.

触媒整流体7の材質は、流動接触分解装置中で通常400〜700℃程度の反応が起こり、また、粒状の触媒が高速で流れることから、高温で安定でありかつ耐摩耗性のある材質、例えば、セラミックスのような耐摩耗耐火性材料などが好ましい。   The material of the catalyst rectifier 7 is a material that normally undergoes a reaction of about 400 to 700 ° C. in the fluid catalytic cracking apparatus, and that the granular catalyst flows at a high speed, so that it is stable at high temperatures and wear resistant. For example, wear and fire resistant materials such as ceramics are preferred.

本実施形態の流動接触分解装置用の混合装置10に供給される原料油は、流動接触分解に使用される原料油であれば任意の原料油を使用することができる。一般的に使用される原料油とは、例えば脱硫減圧軽油、未脱硫減圧軽油、脱硫直留軽油、未脱硫直留軽油、脱硫分解軽油、未脱硫分解軽油、脱硫常圧残油、未脱硫常圧残油、脱硫減圧残油、未脱硫減圧残油、脱硫脱れき油、未脱硫脱れき油等が挙げられ、これら以外の原料油でも構わない。   As the raw material oil supplied to the mixing device 10 for the fluid catalytic cracking apparatus of the present embodiment, any raw material oil can be used as long as it is a raw material oil used for fluid catalytic cracking. Commonly used feedstock oils are, for example, desulfurized vacuum gas oil, non-desulfurized vacuum gas oil, desulfurized straight-run gas oil, non-desulfurized straight-run gas oil, desulfurized cracked light oil, non-desulfurized cracked gas oil, desulfurized atmospheric residual oil, non-desulfurized normal oil Examples include pressure residue, desulfurized vacuum residue, non-desulfurized vacuum residue, desulfurized debris oil, and non-desulfurized debris oil, and other raw oils may be used.

本実施形態の流動接触分解装置用の混合装置10に供給する触媒は、流動接触分解装置に一般的に使用される任意の触媒を使用可能である。一般的に使用される触媒として、例えば粒子径が1〜400μmであり、シリカおよびアルミナを主成分とする触媒が例示できる。   As the catalyst to be supplied to the mixing device 10 for the fluid catalytic cracking apparatus of the present embodiment, any catalyst generally used for the fluid catalytic cracking apparatus can be used. As a catalyst generally used, for example, a catalyst having a particle diameter of 1 to 400 μm and mainly composed of silica and alumina can be exemplified.

次に、図2及び図3を参照して、本実施形態に係る触媒供給装置30の触媒流量設定方法について説明する。   Next, a catalyst flow rate setting method of the catalyst supply device 30 according to the present embodiment will be described with reference to FIGS.

図2に示すように、触媒供給装置30は、触媒Sを連続的に落下させることで移動層Mを形成する移動層形成部20を有している。移動層形成部20は、反応容器5の下端側(ここでは拡張部5aよりも下側の領域)のうち、最も内径が絞られた部分によって構成される。すなわち、移動層形成部20は、触媒Sの流れを絞ることにより、移動層Mの外径を設定する部分によって構成される。本実施形態では、絞り部5bが移動層形成部20に該当する。移動層形成部20においては、反応容器5の内周面が円筒形をなしており、触媒整流体7の外周面が円柱形をなしている。従って、図2(b)に示すように、移動層Mは、横断面視において円環状をなしている。移動層形成部20の外径と内径の差(移動層Mの厚さとなる)をW(m)とする。ここでは、移動層形成部20に対応する部分の反応容器5の内径と、触媒整流体7の外径の差が、Wに該当する。反応容器5と触媒整流体7との間に形成される触媒流路の幅はW/2で定められる。反応容器5のうち、移動層形成部20よりも下流側において上下方向に延びる部分(本実施形態では、拡張部5d)の内径をD(m)とする。Dの上限値は、4(m)であってよく、より好ましくは2(m)であってよい。Dの下限値は、0.5(m)であってよく、より好ましくは1(m)であってよい。W/Dの上限値は、0.9であってよく、より好ましくは0.8であってよい。W/Dの下限値は、0.4であってよい。また、W/Dは0.45より大きくてよい。また、より好ましくはW/Dの下限値は0.5であってよい。このような構成において、移動層Mの単位面積あたりの質量流量をQ(kg/m/s)とする。質量流量Qの上限値は、2000(kg/m/s)であってよく、より好ましくは1000(kg/m/s)であってよい。質量流量Qの下限値は、300(kg/m/s)であってよく、より好ましくは600(kg/m/s)であってよい。 As shown in FIG. 2, the catalyst supply device 30 includes a moving bed forming unit 20 that forms the moving bed M by dropping the catalyst S continuously. The moving layer forming unit 20 is configured by a portion with the inner diameter being most narrowed in the lower end side of the reaction vessel 5 (here, the region below the expanded portion 5a). That is, the moving bed forming unit 20 is configured by a portion that sets the outer diameter of the moving bed M by narrowing the flow of the catalyst S. In the present embodiment, the narrowed portion 5 b corresponds to the moving layer forming unit 20. In the moving bed forming unit 20, the inner peripheral surface of the reaction vessel 5 has a cylindrical shape, and the outer peripheral surface of the catalyst rectifier 7 has a cylindrical shape. Therefore, as shown in FIG. 2B, the moving layer M has an annular shape in a cross sectional view. The difference between the outer diameter and the inner diameter of the moving layer forming unit 20 (which is the thickness of the moving layer M) is defined as W (m). Here, the difference between the inner diameter of the reaction vessel 5 corresponding to the moving bed forming unit 20 and the outer diameter of the catalyst rectifier 7 corresponds to W. The width of the catalyst flow path formed between the reaction vessel 5 and the catalyst rectifier 7 is determined by W / 2. An inner diameter of a portion (in this embodiment, the expanded portion 5d) extending in the vertical direction on the downstream side of the moving bed forming portion 20 in the reaction vessel 5 is defined as D (m). The upper limit value of D may be 4 (m), more preferably 2 (m). The lower limit of D may be 0.5 (m), more preferably 1 (m). The upper limit value of W / D may be 0.9, more preferably 0.8. The lower limit value of W / D may be 0.4. W / D may be larger than 0.45. More preferably, the lower limit of W / D may be 0.5. In such a configuration, the mass flow rate per unit area of the moving layer M is defined as Q (kg / m 2 / s). The upper limit value of the mass flow rate Q may be 2000 (kg / m 2 / s), and more preferably 1000 (kg / m 2 / s). The lower limit value of the mass flow rate Q may be 300 (kg / m 2 / s), and more preferably 600 (kg / m 2 / s).

また、本実施形態に係る混合装置10は、外部原料供給器6への触媒の触媒流量を設定する制御部100を備えている。制御部100は、反応容器5の上方から当該反応容器5内へ触媒を供給する供給量調整装置50に接続されている。供給量調整装置50は、制御部100によって設定された触媒流量に従って、触媒を反応容器5へ供給する。   In addition, the mixing apparatus 10 according to this embodiment includes a control unit 100 that sets the catalyst flow rate of the catalyst to the external raw material supplier 6. The control unit 100 is connected to a supply amount adjusting device 50 that supplies a catalyst from above the reaction vessel 5 into the reaction vessel 5. The supply amount adjusting device 50 supplies the catalyst to the reaction vessel 5 according to the catalyst flow rate set by the control unit 100.

本実施形態に係る触媒供給装置30の触媒流量設定方法は、以下の式(1)を満たすように触媒流量を設定する設定工程を有している。当該工程では、制御部100は以下の式(1)を満たすように触媒流量を設定する。当該工程の後、制御部100は供給量調整装置50へ制御信号を送信する。供給量調整装置50は、当該制御信号に基づいた量の触媒を反応容器5へ供給する。これによって、触媒供給装置30は、触媒流量設定工程で設定された触媒流量に基づいて触媒を供給する触媒供給工程を実行する。

500≧Q/√(gW) …(1)
ただし、0.4≦W/D≦0.9


Q(kg/m/s):移動層Mの単位面積あたりの質量流量
g(m/s):重力加速度
W(m):移動層形成部20の外径と内径の差
D(m):移動層形成部20よりも下流側において上下方向に延びる部分の内径
The catalyst flow rate setting method of the catalyst supply device 30 according to the present embodiment includes a setting step of setting the catalyst flow rate so as to satisfy the following formula (1). In this process, the control unit 100 sets the catalyst flow rate so as to satisfy the following formula (1). After the process, the control unit 100 transmits a control signal to the supply amount adjusting device 50. The supply amount adjusting device 50 supplies an amount of catalyst based on the control signal to the reaction vessel 5. Thereby, the catalyst supply device 30 executes a catalyst supply step of supplying a catalyst based on the catalyst flow rate set in the catalyst flow rate setting step.

500 ≧ Q / √ (gW) (1)
However, 0.4 ≦ W / D ≦ 0.9


Q (kg / m 2 / s): Mass flow rate per unit area of moving layer M g (m / s 2 ): Gravitational acceleration W (m): Difference between outer diameter and inner diameter of moving layer forming unit 20 D (m ): Inner diameter of the portion extending in the vertical direction on the downstream side of the moving layer forming portion 20

また、触媒供給装置30の触媒流量設定方法は、以下の式(2)を満たすように触媒流量を設定する設定工程を有していてよい。すなわち、制御部100は以下の式(2)を満たすように触媒流量を設定してよい。
この場合、式(1)よりも更に安定した条件にて触媒Sを供給することができる。

400≧Q/√(gW) …(2)
In addition, the catalyst flow rate setting method of the catalyst supply device 30 may include a setting step for setting the catalyst flow rate so as to satisfy the following expression (2). That is, the control unit 100 may set the catalyst flow rate so as to satisfy the following formula (2).
In this case, the catalyst S can be supplied under more stable conditions than the formula (1).

400 ≧ Q / √ (gW) (2)

また、触媒供給装置30の触媒流量設定方法は、以下の式(3)を満たすように触媒流量を設定する設定工程を有していてよい。すなわち、制御部100は以下の式(3)を満たすように触媒流量を設定してよい。この場合、装置サイズを小さくし、コストを抑えられるという効果を得ることができる。また、Q/√(gW)の下限値として更に100よりも大きい200という値を設定してもよい。

100≦Q/√(gW) …(3)
Moreover, the catalyst flow rate setting method of the catalyst supply device 30 may include a setting step for setting the catalyst flow rate so as to satisfy the following expression (3). That is, the control unit 100 may set the catalyst flow rate so as to satisfy the following expression (3). In this case, it is possible to obtain an effect that the apparatus size can be reduced and the cost can be suppressed. Further, a value of 200, which is larger than 100, may be set as the lower limit value of Q / √ (gW).

100 ≦ Q / √ (gW) (3)

次に、図3を参照して、上述の式(1),(2),(3)を導き出す流れについて説明する。まず、内径D=0.6m、移動層形成部の内径(ここでは触媒整流体は設けられていない)d=0.33mとして、触媒Sの質量流量Qを変化させながら移動層形成部20の上流側と下流側の差圧ΔPを測定した。図3(a)においては縦軸の下方へ向かう程差圧ΔPの絶対値が大きくなることを示している。差圧ΔPの絶対値が大きいほど移動層Mが下流側へ流れる勢いが大きくなり、移動層Mが移動層形成部20で詰まりにくく、スムーズに流れる。測定結果を図3(a)に示す。図3(a)に示すように、質量流量Qが増加するに従って差圧ΔPの絶対値が大きくなる。質量流量Qが増加してゆくと、質量流量Q=700(kg/m/s)付近の境界Lを境にして、差圧ΔPの絶対値が減少してゆく。このような境界Lを形成するときの質量流量Qを遷移流束Qtと称する。図3(b)に示すように、質量流量Qが遷移流束Qtよりも大きい領域では、「デンス相」が形成される。デンス相での運転は、移動層Mが移動層形成部20で詰まりやすくなる。一方、質量流量Qが遷移流束Qt以下の領域は、「安全運転相」が形成される。安全運転相での運転は、移動層Mが詰まりにくく安全に運転を行うことができる。 Next, a flow for deriving the above-described equations (1), (2), and (3) will be described with reference to FIG. First, assuming that the inner diameter D = 0.6 m, the inner diameter of the moving bed forming portion (here, no catalyst rectifier is provided) d = 0.33 m, the moving bed forming portion 20 of the moving bed forming portion 20 is changed while changing the mass flow rate Q of the catalyst S. The differential pressure ΔP between the upstream side and the downstream side was measured. FIG. 3A shows that the absolute value of the differential pressure ΔP increases as it goes downward along the vertical axis. The greater the absolute value of the differential pressure ΔP, the greater the momentum that the moving layer M flows to the downstream side, and the moving layer M is less likely to be clogged by the moving layer forming unit 20 and flows smoothly. The measurement results are shown in FIG. As shown in FIG. 3A, the absolute value of the differential pressure ΔP increases as the mass flow rate Q increases. As the mass flow rate Q increases, the absolute value of the differential pressure ΔP decreases at the boundary L in the vicinity of the mass flow rate Q = 700 (kg / m 2 / s). The mass flow rate Q when such a boundary L is formed is referred to as a transition flux Qt. As shown in FIG. 3B, a “dense phase” is formed in a region where the mass flow rate Q is larger than the transition flux Qt. In the operation in the dense phase, the moving bed M is easily clogged with the moving bed forming unit 20. On the other hand, in the region where the mass flow rate Q is equal to or less than the transition flux Qt, a “safe operation phase” is formed. In the safe driving phase, the moving bed M is not easily clogged and can be operated safely.

ここで、遷移流束Qtは、式(4)に示すように、移動層Mが流れる管径dの平方根に比例することが知られている。従って、横軸を管径dとし、縦軸を質量流量Qとした場合、遷移流束Qtは図3(b)に示すような曲線を描く。式(4)における定数は、実験結果より遷移流束Qt=700(kg/m/s)、重力加速度g=9.8(m/s)、管径d=0.33(m)を式(4)に代入することで、A=389≒400と算出される。安全運転相で運転するためには、質量流量Qが遷移流束Qt以下であればよいため、式(5)の関係が成り立つ。
Qt=A×√(gd)…(4)

Q≦Qt=A×√(gd)…(5)
Here, it is known that the transition flux Qt is proportional to the square root of the tube diameter d through which the moving layer M flows, as shown in Expression (4). Therefore, when the horizontal axis is the tube diameter d and the vertical axis is the mass flow rate Q, the transition flux Qt draws a curve as shown in FIG. The constants in the equation (4) are as follows from the experimental results: transition flux Qt = 700 (kg / m 2 / s), gravitational acceleration g = 9.8 (m / s 2 ), tube diameter d = 0.33 (m) Is substituted into the equation (4) to calculate A = 389≈400. In order to operate in the safe operation phase, the mass flow rate Q only needs to be equal to or less than the transition flux Qt, so the relationship of Expression (5) is established.
Qt = A × √ (gd) (4)

Q ≦ Qt = A × √ (gd) (5)

ここで、実験における移動層形成部の管径dは移動層形成部20の外径と内径の差W(内径が0となることで円形となってもよく、円環形となってもよい)と同等であるため、式(5)にA=400を代入すると共に式(5)を変形することによって、(2)が求められる。また、デンス相であっても遷移流束Qtに近い領域であれば、差圧ΔPの絶対値が増加傾向になりつつも、運転可能である。本発明者らは、鋭意研究の結果、式(1)を満たしていれば、運転可能であることを見出している。

400≧Q/√(gW) …(2)

500≧Q/√(gW) …(1)
Here, the tube diameter d of the moving layer forming portion in the experiment is the difference W between the outer diameter and the inner diameter of the moving layer forming portion 20 (the inner diameter may be 0 or may be circular or annular). Therefore, (2) is obtained by substituting A = 400 into equation (5) and modifying equation (5). Further, even in the dense phase, if the region is close to the transition flux Qt, the operation is possible while the absolute value of the differential pressure ΔP tends to increase. As a result of intensive studies, the present inventors have found that operation is possible if the expression (1) is satisfied.

400 ≧ Q / √ (gW) (2)

500 ≧ Q / √ (gW) (1)

次に、本実施形態に係る触媒供給装置30の作用・効果について説明する。   Next, the operation and effect of the catalyst supply device 30 according to this embodiment will be described.

まず、比較例として、Q/√(gW)が500より大きくなるように触媒流量が設定された場合について説明する。この場合、系内の圧力のバランスが変動してしまい、移動層形成部20の上流側と下流側との間の差圧ΔPが小さくなる、あるいは逆転することによって、系内の圧力バランスが崩れてしまう。この場合、移動層形成部20から下方へ排出される触媒の流量よりも、移動層形成部20へ上部から供給される触媒の方が多くなってしまう。この場合、触媒が移動層形成部20にて詰まった状態となり、触媒の界面F(図2(a)参照)が上昇していまい、安定した運転を行うことができなくなる。   First, as a comparative example, a case where the catalyst flow rate is set so that Q / √ (gW) is larger than 500 will be described. In this case, the balance of the pressure in the system fluctuates, and the pressure balance in the system is destroyed by reducing or reversing the differential pressure ΔP between the upstream side and the downstream side of the moving layer forming unit 20. End up. In this case, the amount of the catalyst supplied from the upper part to the moving bed forming unit 20 is larger than the flow rate of the catalyst discharged downward from the moving bed forming unit 20. In this case, the catalyst becomes clogged at the moving bed forming unit 20, and the interface F (see FIG. 2A) of the catalyst rises, so that stable operation cannot be performed.

一方、本実施形態に係る触媒供給装置30の触媒流量設定方法によれば、式(1)を満たす触媒流量を設定することにより、質量流量が遷移流束以下の条件、又は遷移流束付近の条件にて運転を行うことができる。当該条件にて運転を行う場合、系内の圧力のバランスが崩れることを抑制し、触媒が移動層形成部で詰まることを抑制しながら触媒を供給することができる。従って、移動層形成部20に供給された触媒は速やかに且つ、均一に下方側へ流出する。触媒供給装置30の運転の安全性を向上できる。   On the other hand, according to the catalyst flow rate setting method of the catalyst supply device 30 according to the present embodiment, by setting the catalyst flow rate satisfying the expression (1), the mass flow rate is less than or equal to the transition flux, or near the transition flux. Operation can be performed under conditions. When the operation is performed under such conditions, it is possible to supply the catalyst while suppressing the balance of pressure in the system from being lost and suppressing the clogging of the catalyst at the moving bed forming portion. Therefore, the catalyst supplied to the moving bed forming unit 20 flows out quickly and uniformly downward. The safety of the operation of the catalyst supply device 30 can be improved.

本実施形態に係る触媒供給装置30の触媒流量設定方法では、設定工程において、式(2)を満たすように触媒流量を設定してよい。式(2)を満たす触媒流量を設定することにより、質量流量が遷移流束以下の条件にて運転を行うことができる。当該条件にて運転を行う場合、系内の圧力バランスが崩れることを更に抑制し、触媒が移動層形成部で詰まることを抑制しながら触媒を供給することができる。従って、触媒供給装置30の運転の安全性を向上できる。   In the catalyst flow rate setting method of the catalyst supply device 30 according to the present embodiment, the catalyst flow rate may be set so as to satisfy Expression (2) in the setting step. By setting the catalyst flow rate satisfying the equation (2), the operation can be performed under the condition that the mass flow rate is equal to or lower than the transition flux. When the operation is performed under such conditions, the catalyst can be supplied while further suppressing the collapse of the pressure balance in the system and suppressing the clogging of the catalyst at the moving bed forming portion. Therefore, the safety of operation of the catalyst supply device 30 can be improved.

本発明は、上述の実施形態に限定されるものではない。例えば、混合装置(触媒供給装置)の形状や寸法関係は実施形態に例示されたものに限定されず、適宜変更してもよい。   The present invention is not limited to the embodiment described above. For example, the shape and dimensional relationship of the mixing device (catalyst supply device) are not limited to those illustrated in the embodiment, and may be changed as appropriate.

また、上述の実施形態では、流動接触分解(FCC)装置に用いられる触媒供給装置を例示して説明したが、用途は特に限定されない。触媒供給装置は、例えば、酸化、水素化、塩素化等の化学反応等に用いられてもよい。   Moreover, although the above-mentioned embodiment illustrated and demonstrated the catalyst supply apparatus used for a fluid catalytic cracking (FCC) apparatus, a use is not specifically limited. The catalyst supply device may be used for chemical reactions such as oxidation, hydrogenation, and chlorination.

[実施例]
以下、実施例に基づいて本発明の一形態に係る物品を具体的に説明するが、物品の構成は下記の実施例に限定されるものではない。
[Example]
Hereinafter, although an article according to an embodiment of the present invention will be specifically described based on examples, the configuration of the article is not limited to the following examples.

触媒供給装置として、図2に示すような形状のものを準備した。また、移動層形成部の外径と内径の差Wと、移動層形成部よりも下流側の部分の内径Dと、移動層の単位面積あたりの質量流量Qを図5に示すような各値に設定することで、実施例1〜8を実施した。なお、実施例1では、移動層形成部の外径は0.5m、内径は0.1mであった。また、実施例2では、移動層形成部の外径は1.6m、内径は0.3mであった。実施例3では、移動層形成部の外径は1.5m、内径は0.1mであった。実施例4では、移動層形成部の外径は0.6m、内径は0.1mであった。実施例5では、移動層形成部の外径は0.8m、内径は0.05mであった。実施例6では、移動層形成部の外径は0.6m、内径は0.2mであった。実施例7では、移動層形成部の外径は1.5m、内径は0.1mであった。実施例8では、移動層形成部の外径は0.8m、内径は0.3mであった。なお、各実施例では、触媒として流動接触分解用触媒を用い、移動層形成部よりも上流側の部分(図2に示す拡張部5aに対応する部分)の内径は1.6mであり、移動層形成部の上下方向の長さは、0.3mであった。いずれの実施形態においても、Q/√(gW)は500以下であり、式(1)を満たしていた。また、実施例1,2,3,4,5については、Q/√(gW)が400以下であり、式(2)を満たしていた。各実施例における差圧ΔPを図5に示す。   A catalyst supply device having a shape as shown in FIG. 2 was prepared. Further, the difference W between the outer diameter and the inner diameter of the moving bed forming portion, the inner diameter D of the portion downstream from the moving bed forming portion, and the mass flow rate Q per unit area of the moving bed are shown in FIG. Example 1-8 was implemented by setting to. In Example 1, the outer diameter of the moving layer forming portion was 0.5 m, and the inner diameter was 0.1 m. In Example 2, the outer diameter of the moving layer forming part was 1.6 m, and the inner diameter was 0.3 m. In Example 3, the outer diameter of the moving layer forming portion was 1.5 m, and the inner diameter was 0.1 m. In Example 4, the outer diameter of the moving layer forming portion was 0.6 m, and the inner diameter was 0.1 m. In Example 5, the outer diameter of the moving layer forming portion was 0.8 m, and the inner diameter was 0.05 m. In Example 6, the outer diameter of the moving layer forming portion was 0.6 m, and the inner diameter was 0.2 m. In Example 7, the outer diameter of the moving layer forming part was 1.5 m, and the inner diameter was 0.1 m. In Example 8, the outer diameter of the moving layer forming portion was 0.8 m, and the inner diameter was 0.3 m. In each example, a fluid catalytic cracking catalyst is used as the catalyst, and the inner diameter of the portion upstream of the moving bed forming portion (the portion corresponding to the expanded portion 5a shown in FIG. 2) is 1.6 m. The length in the vertical direction of the layer forming portion was 0.3 m. In any of the embodiments, Q / √ (gW) was 500 or less, and the formula (1) was satisfied. In Examples 1, 2, 3, 4, and 5, Q / √ (gW) was 400 or less, and the formula (2) was satisfied. FIG. 5 shows the differential pressure ΔP in each example.

[比較例]
移動層形成部の外径と内径の差Wと、移動層形成部よりも下流側の部分の内径Dと、移動層の単位面積あたりの質量流量Qの条件を図5に示すものに設定することで、Q/√(gW)が500より大きくなったものを比較例1,2とした。各比較例における差圧ΔPを図5に示す。なお、比較例1では、移動層形成部の外径は0.5m、内径は0.1mであった。また、比較例2では、移動層形成部の外径は0.5m、内径は0.1mであった。なお、各実施例では、触媒として流動接触分解用触を用い、移動層形成部よりも上流側の部分(図2に示す拡張部5aに対応する部分)の内径は0.8mであり、移動層形成部の上下方向の長さは、0.3mであった。
[Comparative example]
The conditions of the difference W between the outer diameter and the inner diameter of the moving bed forming portion, the inner diameter D of the portion downstream from the moving bed forming portion, and the mass flow rate Q per unit area of the moving bed are set as shown in FIG. Thus, Q / √ (gW) larger than 500 was designated as Comparative Examples 1 and 2. FIG. 5 shows the differential pressure ΔP in each comparative example. In Comparative Example 1, the outer diameter of the moving layer forming portion was 0.5 m, and the inner diameter was 0.1 m. In Comparative Example 2, the outer diameter of the moving layer forming portion was 0.5 m, and the inner diameter was 0.1 m. In each example, the catalyst for fluid catalytic cracking is used as the catalyst, the inner diameter of the portion upstream of the moving bed forming portion (the portion corresponding to the expanded portion 5a shown in FIG. 2) is 0.8 m, and the moving The length in the vertical direction of the layer forming portion was 0.3 m.

[評価]
図5に示すように、比較例1及び比較例2においては、Q/√(gW)が500より大きくなり、差圧ΔPが負の値、又は0となっている。すなわち、触媒が移動層形成部で詰まり、差圧の逆転が生じて運転が難しい状態になっていることが理解される。一方、実施例1〜8はいずれもQ/√(gW)が500以下となることで、差圧ΔPが正の値となり、運転が困難となる程度の触媒の詰まりが生じることなく、運転可能であることが理解される。
[Evaluation]
As shown in FIG. 5, in Comparative Example 1 and Comparative Example 2, Q / √ (gW) is greater than 500, and the differential pressure ΔP is a negative value or 0. That is, it is understood that the catalyst is clogged in the moving bed forming part, and the reverse operation of the differential pressure occurs and the operation is difficult. On the other hand, in all of Examples 1 to 8, the Q / √ (gW) is 500 or less, so that the differential pressure ΔP becomes a positive value and can be operated without clogging the catalyst to the extent that the operation becomes difficult. It is understood that

ここで、実施例2,3はQ/√(gW)の値は150付近であり、実施例4,3,5のQ/√(gW)の値はそれらよりも大きく、300〜400の間の値となっている。実施例2,3の差圧ΔPが2〜3であるのに対して、実施例4,3,5の差圧ΔPは4以上の値となっている。このことより、Q/√(gW)が400以下の範囲であれば、Q/√(gW)が増加するほど良好な差圧ΔPが得られることが理解される。一方、400〜500の間にある実施例6,7,8の差圧ΔPは、実施例4,3,5の差圧ΔPよりも低く、2〜3の範囲の値となっている。このことより、Q/√(gW)が400〜500の間の値である場合より、Q/√(gW)を400以下にとどめておく方が良好な結果を得られることが理解される。   Here, in Examples 2 and 3, the value of Q / √ (gW) is around 150, and the values of Q / √ (gW) in Examples 4, 3 and 5 are larger than those and are between 300 and 400. It is the value of. The differential pressure ΔP in Examples 2 and 3 is 2 to 3, whereas the differential pressure ΔP in Examples 4, 3 and 5 is a value of 4 or more. From this, it is understood that when Q / √ (gW) is in a range of 400 or less, a better differential pressure ΔP can be obtained as Q / √ (gW) increases. On the other hand, the differential pressure ΔP of Examples 6, 7, and 8 between 400 and 500 is lower than the differential pressure ΔP of Examples 4, 3, and 5, and has a value in the range of 2-3. From this, it is understood that better results can be obtained when Q / √ (gW) is kept at 400 or less than when Q / √ (gW) is a value between 400 and 500.

5…反応容器、6…外部原料供給器、7…触媒整流体、10…混合装置、20…移動層形成部、30…触媒供給装置。   DESCRIPTION OF SYMBOLS 5 ... Reaction container, 6 ... External raw material supply device, 7 ... Catalyst rectifier, 10 ... Mixing device, 20 ... Moving bed formation part, 30 ... Catalyst supply device.

Claims (3)

触媒を連続的に落下させることで移動層を形成する移動層形成部を備え、前記触媒を下流側へ供給する触媒供給装置の触媒流量設定方法であって、
前記移動層の単位面積あたりの質量流量をQとし、前記移動層形成部の外径と内径の差をWとし、重力加速度をgとし、前記移動層形成部よりも下流側において上下方向に延びる部分の内径をDとした場合、以下の式(1)を満たすように触媒流量を設定する設定工程を有する、触媒供給装置の触媒流量設定方法。

500≧Q/√(gW) …(1)
ただし、0.4≦W/D≦0.9
A catalyst flow rate setting method for a catalyst supply device that includes a moving bed forming portion that forms a moving bed by continuously dropping a catalyst, and supplies the catalyst to the downstream side,
The mass flow rate per unit area of the moving layer is Q, the difference between the outer diameter and the inner diameter of the moving layer forming part is W, the gravitational acceleration is g, and extends in the vertical direction downstream from the moving layer forming part. A catalyst flow rate setting method for a catalyst supply apparatus, comprising a setting step of setting a catalyst flow rate so as to satisfy the following formula (1), where D is the inner diameter of the portion.

500 ≧ Q / √ (gW) (1)
However, 0.4 ≦ W / D ≦ 0.9
前記設定工程において、以下の式(2)を満たすように触媒流量を設定する、請求項1に記載の触媒供給装置の触媒流量設定方法。

400≧Q/√(gW) …(2)
The catalyst flow rate setting method for a catalyst supply device according to claim 1, wherein in the setting step, the catalyst flow rate is set so as to satisfy the following expression (2).

400 ≧ Q / √ (gW) (2)
触媒を連続的に落下させることで移動層を形成する移動層形成部と、
前記移動層形成部から落下した前記移動層に原料を供給する原料供給部と、
前記原料供給部への前記触媒の触媒流量を設定する制御部と、を備える混合装置であって、
前記移動層の単位面積あたりの質量流量をQとし、前記移動層形成部の外径と内径の差をWとし、重力加速度をgとし、前記移動層形成部よりも下流側において上下方向に延びる部分の内径をDとした場合、前記制御部は、以下の式(1)を満たすように触媒流量を設定する、混合装置。

500≧Q/√(gW) …(1)
ただし、0.4≦W/D≦0.9
A moving bed forming unit that forms a moving bed by continuously dropping the catalyst;
A raw material supply unit for supplying a raw material to the moving layer dropped from the moving layer forming unit;
A control unit that sets a catalyst flow rate of the catalyst to the raw material supply unit,
The mass flow rate per unit area of the moving layer is Q, the difference between the outer diameter and the inner diameter of the moving layer forming part is W, the gravitational acceleration is g, and extends in the vertical direction downstream from the moving layer forming part. When the inner diameter of the part is D, the control unit sets the catalyst flow rate so as to satisfy the following expression (1).

500 ≧ Q / √ (gW) (1)
However, 0.4 ≦ W / D ≦ 0.9
JP2015239401A 2015-12-08 2015-12-08 Catalyst flow rate setting method for catalyst supply device and mixing device Active JP6556041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015239401A JP6556041B2 (en) 2015-12-08 2015-12-08 Catalyst flow rate setting method for catalyst supply device and mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015239401A JP6556041B2 (en) 2015-12-08 2015-12-08 Catalyst flow rate setting method for catalyst supply device and mixing device

Publications (2)

Publication Number Publication Date
JP2017104789A true JP2017104789A (en) 2017-06-15
JP6556041B2 JP6556041B2 (en) 2019-08-07

Family

ID=59058855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015239401A Active JP6556041B2 (en) 2015-12-08 2015-12-08 Catalyst flow rate setting method for catalyst supply device and mixing device

Country Status (1)

Country Link
JP (1) JP6556041B2 (en)

Also Published As

Publication number Publication date
JP6556041B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP3792727B2 (en) Gas pocket distributor and method for hydrotreating a hydrocarbon feed stream
KR102614557B1 (en) Flowable fuel gas combustor unit for catalytic dehydrogenation process
JP5749775B2 (en) Process for cracking hydrocarbon feedstock
JP6089040B2 (en) Distributor plate for gas-liquid mixtures with a dispensing element that is less sensitive to lack of horizontality
RU2670066C2 (en) Fluid distribution device
RU2652195C1 (en) Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed
KR101689765B1 (en) Mixing device for mixing raw material and catalyst in fluid catalytic cracking device
CN105960278B (en) Gas distributor nozzle
JP6556041B2 (en) Catalyst flow rate setting method for catalyst supply device and mixing device
US10618022B2 (en) Inclined bed reactor permitting a small quantity of catalyst to be employed
KR20200004339A (en) Novel device for dispensing multiphase mixture in chamber containing fluidization medium
US2783898A (en) Solids withdrawal system
JP4628097B2 (en) Catalyst for conversion method
US20140231309A1 (en) Distribution tray for distributing a polyphasic mixture with inclined peripheral conduits
US2765265A (en) Method and apparatus for pneumatically lifting granular contact material
US2662796A (en) Apparatus for elevating granular material
JPH0216954B2 (en)
KR101941727B1 (en) Gas dispensing device for radial reactor
KR101672601B1 (en) Dehydogenation reactor
US8071047B2 (en) Centerpipe design for radial flow reactor
US2766186A (en) Conversion of fluid hydrocarbon in the presence of a moving mass of granular catalyst
US2647859A (en) Process and apparatus for the disen
KR101651756B1 (en) Catalyst screen with reinforced wires
KR101652597B1 (en) Catalyst screen with reinforced plates
US2813755A (en) Method and apparatus for feeding granular contact material into a dilute phase pneumatic lift

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R150 Certificate of patent or registration of utility model

Ref document number: 6556041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250