JP2017103436A - Organic electroluminescent element, display device, illuminating device and aromatic heterocyclic derivative - Google Patents

Organic electroluminescent element, display device, illuminating device and aromatic heterocyclic derivative Download PDF

Info

Publication number
JP2017103436A
JP2017103436A JP2015237945A JP2015237945A JP2017103436A JP 2017103436 A JP2017103436 A JP 2017103436A JP 2015237945 A JP2015237945 A JP 2015237945A JP 2015237945 A JP2015237945 A JP 2015237945A JP 2017103436 A JP2017103436 A JP 2017103436A
Authority
JP
Japan
Prior art keywords
group
organic
layer
ring
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015237945A
Other languages
Japanese (ja)
Other versions
JP6641947B2 (en
Inventor
杉田 修一
Shuichi Sugita
修一 杉田
加藤 栄作
Eisaku Kato
栄作 加藤
杉野 元昭
Motoaki Sugino
元昭 杉野
継吾 玉木
Keigo Tamaki
継吾 玉木
幸宏 牧島
Yukihiro Makishima
幸宏 牧島
公彦 大久保
Kimihiko Okubo
公彦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2015237945A priority Critical patent/JP6641947B2/en
Publication of JP2017103436A publication Critical patent/JP2017103436A/en
Application granted granted Critical
Publication of JP6641947B2 publication Critical patent/JP6641947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: an organic EL element which is arranged by use of a novel aromatic heterocyclic derivative for an organic EL element, and which has a high light emission efficiency and a long emission lifetime, and suffers a small aging even in use under a high-temperature condition; a display device and an illuminating device, each including the organic EL element; and a novel aromatic heterocyclic derivative for an organic EL element.SOLUTION: An organic electroluminescent element comprises: an anode; a cathode; and at least one organic layer held between the anode and cathode and including a luminescent layer. Of the at least one organic layer, at least one layer includes an aromatic heterocyclic derivative having a structure expressed by the general formula (1) below.SELECTED DRAWING: None

Description

本発明は、有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体に関する。   The present invention relates to an organic electroluminescence element, a display device, a lighting device, and an aromatic heterocyclic derivative.

有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう)は、陽極と陰極の間を、有機発光物質が含有された有機薄膜層(単層部又は多層部)で構成する薄膜型の全固体素子である。この様な有機EL素子に電圧を印加すると、有機薄膜層に陰極から電子が、陽極から正孔が注入され、これらが発光層(有機発光物質含有層)において再結合して励起子が生じる。有機EL素子はこれら励起子からの光の放出(蛍光・リン光)を利用した発光素子であり、次世代の平面ディスプレイや照明として期待されている技術である。   An organic electroluminescence element (hereinafter also referred to as “organic EL element”) is a thin-film type all-solid structure in which an organic thin film layer (single layer portion or multilayer portion) containing an organic light-emitting substance is formed between an anode and a cathode. It is an element. When a voltage is applied to such an organic EL element, electrons are injected from the cathode into the organic thin film layer and holes are injected from the anode, and these are recombined in the light emitting layer (organic light emitting substance-containing layer) to generate excitons. The organic EL element is a light-emitting element using light emission (fluorescence / phosphorescence) from these excitons, and is a technology expected as a next-generation flat display and illumination.

更に、蛍光発光を利用する有機EL素子に比べ、原理的に約4倍の発光効率が実現可能である励起三重項からのリン光発光を利用する有機EL素子がプリンストン大学から報告されて以来、室温でリン光を示す材料の開発を始めとし、発光素子の層構成や電極の研究開発が世界中で行われている。   Furthermore, since Princeton University reported an organic EL device that utilizes phosphorescence emission from an excited triplet, which in principle can achieve a luminous efficiency of about four times that of an organic EL device that utilizes fluorescence. Starting with the development of materials that exhibit phosphorescence at room temperature, research and development of light-emitting element layer configurations and electrodes are being carried out around the world.

このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用するそれとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を高める上で重要な技術的問題となっている。   As described above, the phosphorescence emission method is a method having a very high potential. However, in an organic EL device using phosphorescence emission, a method for controlling the position of the emission center is significantly different from that using fluorescence emission. How to recombine within the light emitting layer to stabilize light emission is an important technical problem for increasing the efficiency and life of the device.

そこで、近年は発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層や、発光層の陰極側に位置する電子輸送層等を備えた多層積層型の素子が良く知られている。また、発光層には発光ドーパントとしてのリン光発光性化合物とホスト化合物とを用いた混合層が多く用いられている。   Therefore, in recent years, multilayer stacked devices having a hole transport layer located on the anode side of the light-emitting layer and an electron transport layer located on the cathode side of the light-emitting layer in a form adjacent to the light-emitting layer are well known. ing. In addition, a mixed layer using a phosphorescent compound as a light emitting dopant and a host compound is often used for the light emitting layer.

一方、材料の観点からは、素子性能向上に対する新規材料創出の期待が大きい。特にリン光発光性化合物のホスト化合物として、含窒素多縮環化合物を用いた有機EL用材料が報告されている(例えば、特許文献1、2参照)。   On the other hand, from the viewpoint of materials, there is a great expectation for creating new materials for improving device performance. In particular, organic EL materials using nitrogen-containing polycondensed compounds as host compounds of phosphorescent compounds have been reported (see, for example, Patent Documents 1 and 2).

しかし、これら特許文献1、2に記載の化合物では、有機EL素子材料として用いるにあたり、素子の寿命、発光効率はある程度改良されているが、十分とはいえず、さらなる改良が求められていた。また、これらの化合物を用いた有機EL素子は熱安定性に劣るという欠点、すなわち、高温下での使用において経時変化が大きいという欠点を有していることが分かった。   However, in the compounds described in Patent Documents 1 and 2, when used as an organic EL device material, the lifetime and luminous efficiency of the device have been improved to some extent, but it has not been sufficient, and further improvement has been demanded. Moreover, it turned out that the organic EL element using these compounds has the fault that it is inferior to thermal stability, ie, the fault that a time-dependent change is large at the time of use under high temperature.

国際公開第2015/14435号International Publication No. 2015/14435 国際公開第2013/35275号International Publication No. 2013/35275

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、有機EL素子用の新規な芳香族複素環誘導体を用いた、発光効率が高く、発光寿命が長く、高温下での使用においても経時変化が小さい有機EL素子を提供することである。また、当該有機EL素子が具備された表示装置及び照明装置を提供することである。更に、有機EL素子用の新規な芳香族複素環誘導体を提供することである。   The present invention has been made in view of the above-described problems and situations, and the problem to be solved is that the use of a novel aromatic heterocyclic derivative for an organic EL device has high luminous efficiency, long luminous lifetime, and high temperature. It is an object to provide an organic EL device having a small change with time even when used in the above. Moreover, it is providing the display apparatus and illuminating device with which the said organic EL element was comprised. Furthermore, it is providing the novel aromatic heterocyclic derivative for organic EL elements.

本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、特定構造を有する芳香族複素環誘導体が、上記課題の解決に有効であることを見出し本発明に至った。   As a result of studying the cause of the above-mentioned problem in order to solve the above-mentioned problems, the present inventors have found that an aromatic heterocyclic derivative having a specific structure is effective in solving the above-mentioned problems, and have reached the present invention.

すなわち、本発明に係る上記課題は、以下の手段により解決される。   That is, the said subject which concerns on this invention is solved by the following means.

1.陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子であって、前記有機層のうち少なくとも1層に、下記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする有機エレクトロルミネッセンス素子。   1. An organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, wherein at least one of the organic layers has a structure represented by the following general formula (1) An organic electroluminescent device comprising an aromatic heterocyclic derivative having

Figure 2017103436
Figure 2017103436

(一般式(1)中、
、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し、Y、Y及びYの少なくとも一つは窒素原子である。
R′、Ar及びArは、それぞれ独立に、
水素原子、
置換若しくは無置換の炭素数1〜12のアルキル基、又は、
置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。
R′、Ar及びArが全て同時に水素原子であることはない。
及びLは、それぞれ独立に、
単結合、
置換若しくは無置換の炭素数1〜12のアルキレン基、
置換若しくは無置換の環形成炭素数6〜30のアリーレン基、
置換若しくは無置換の環形成原子数5〜30のヘテロアリーレン基又は
これらの組み合わせからなる2価の連結基を表す。
〜Rは、それぞれ独立に、置換基を表す。
及びRは、それぞれ独立に、
水素原子、
置換若しくは無置換の炭素数1〜12のアルキル基、又は、
置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。
及びRが同時に水素原子であることはない。
、n及びnは、それぞれ独立に、0〜3の整数を表す。
は、0〜4の整数を表す。
なお、n〜nがそれぞれ2以上の場合、R〜Rは、それぞれ同一でも異なっていてもよく、R〜Rが隣接する場合、環を形成してもよい。
Xは、酸素原子、硫黄原子、又は窒素原子を表す。)
(In general formula (1),
Y 1 , Y 2 and Y 3 each independently represent CR ′ or a nitrogen atom, and at least one of Y 1 , Y 2 and Y 3 is a nitrogen atom.
R ′, Ar 1 and Ar 2 are each independently
Hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or
A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms is represented.
R ′, Ar 1 and Ar 2 are not all hydrogen atoms at the same time.
L 1 and L 2 are each independently
Single bond,
A substituted or unsubstituted alkylene group having 1 to 12 carbon atoms,
A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms,
It represents a divalent linking group consisting of a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms or a combination thereof.
R 1 to R 4 each independently represents a substituent.
R 5 and R 6 are each independently
Hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or
A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms is represented.
R 5 and R 6 are not simultaneously hydrogen atoms.
n 1, n 3 and n 4 each independently represent an integer of 0 to 3.
n 2 represents an integer of 0-4.
When n 1 to n 4 are each 2 or more, R 1 to R 4 may be the same or different from each other, and when R 1 to R 4 are adjacent to each other, a ring may be formed.
X represents an oxygen atom, a sulfur atom, or a nitrogen atom. )

2.前記一般式(1)で表される化合物が下記一般式(2)で表されることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。   2. 2. The organic electroluminescence device according to 1 above, wherein the compound represented by the general formula (1) is represented by the following general formula (2).

Figure 2017103436
Figure 2017103436

3.前記一般式(1)で表される化合物が下記一般式(3)で表されることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。   3. 2. The organic electroluminescence device according to 1 above, wherein the compound represented by the general formula (1) is represented by the following general formula (3).

Figure 2017103436
Figure 2017103436

4.前記一般式(1)で表される化合物が下記一般式(4)で表されることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。   4). 2. The organic electroluminescence device according to 1 above, wherein the compound represented by the general formula (1) is represented by the following general formula (4).

Figure 2017103436
Figure 2017103436

5.前記一般式(1)〜(4)において、Y〜Yが、全て窒素原子を表すことを特徴とする前記1から前記4のいずれか一項に記載の有機エレクトロルミネッセンス素子。 5). In said general formula (1)-(4), Y < 1 > -Y < 3 > represents all nitrogen atoms, The organic electroluminescent element as described in any one of said 1 to 4 characterized by the above-mentioned.

6.前記一般式(1)〜(4)において、Ar及びArが、置換若しくは無置換の環形成炭素数6〜30のアリール基を表すことを特徴とする前記1から前記5のいずれか一項に記載の有機エレクトロルミネッセンス素子。 6). In the general formulas (1) to (4), Ar 1 and Ar 2 each represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. The organic electroluminescent element of the item.

7.前記発光層が、前記芳香族複素環誘導体を含有することを特徴とする前記1から前記6のいずれか一項に記載の有機エレクトロルミネッセンス素子。   7). 7. The organic electroluminescence device according to any one of 1 to 6, wherein the light emitting layer contains the aromatic heterocyclic derivative.

8.前記発光層が、前記芳香族複素環誘導体をホスト化合物として含有することを特徴とする前記1から前記7のいずれか一項に記載の有機エレクトロルミネッセンス素子。   8). 8. The organic electroluminescence device according to any one of 1 to 7, wherein the light emitting layer contains the aromatic heterocyclic derivative as a host compound.

9.前記発光層が、リン光発光性ドーパントを含有することを特徴とする前記1から前記8のいずれか一項に記載の有機エレクトロルミネッセンス素子。   9. 9. The organic electroluminescent element according to any one of 1 to 8, wherein the light emitting layer contains a phosphorescent dopant.

10.前記発光層が、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物を更に含有することを特徴とする前記1から前記9のいずれか一項に記載の有機エレクトロルミネッセンス素子。   10. 10. The organic electroluminescence device according to any one of 1 to 9, wherein the light emitting layer further contains a host compound having a structure different from that of the aromatic heterocyclic derivative.

11.前記1から前記10のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。   11. 11. A display device comprising the organic electroluminescence element according to any one of 1 to 10 above.

12.前記1から前記10のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。   12 11. An illuminating device comprising the organic electroluminescent element according to any one of 1 to 10 above.

13.下記一般式(1)で表される構造を有することを特徴とする芳香族複素環誘導体。   13. An aromatic heterocyclic derivative having a structure represented by the following general formula (1):

Figure 2017103436
Figure 2017103436

(一般式(1)中、
、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し、Y、Y及びYの少なくとも一つは窒素原子である。
R′、Ar及びArは、それぞれ独立に、
水素原子、
置換若しくは無置換の炭素数1〜12のアルキル基、又は、
置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。
R′、Ar及びArが全て同時に水素原子であることはない。
及びLは、それぞれ独立に、
単結合、
置換若しくは無置換の炭素数1〜12のアルキレン基、
置換若しくは無置換の環形成炭素数6〜30のアリーレン基、
置換若しくは無置換の環形成原子数5〜30のヘテロアリーレン基又は
これらの組み合わせからなる2価の連結基を表す。
〜Rは、それぞれ独立に、置換基を表す。
及びRは、それぞれ独立に、
水素原子、
置換若しくは無置換の炭素数1〜12のアルキル基、又は、
置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。
及びRが同時に水素原子であることはない。
、n及びnは、それぞれ独立に、0〜3の整数を表す。
は、0〜4の整数を表す。
なお、n〜nがそれぞれ2以上の場合、R〜Rは、それぞれ同一でも異なっていてもよく、R〜Rが隣接する場合、環を形成してもよい。
Xは、酸素原子、硫黄原子、又は窒素原子を表す。)
(In general formula (1),
Y 1 , Y 2 and Y 3 each independently represent CR ′ or a nitrogen atom, and at least one of Y 1 , Y 2 and Y 3 is a nitrogen atom.
R ′, Ar 1 and Ar 2 are each independently
Hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or
A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms is represented.
R ′, Ar 1 and Ar 2 are not all hydrogen atoms at the same time.
L 1 and L 2 are each independently
Single bond,
A substituted or unsubstituted alkylene group having 1 to 12 carbon atoms,
A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms,
It represents a divalent linking group consisting of a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms or a combination thereof.
R 1 to R 4 each independently represents a substituent.
R 5 and R 6 are each independently
Hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or
A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms is represented.
R 5 and R 6 are not simultaneously hydrogen atoms.
n 1, n 3 and n 4 each independently represent an integer of 0 to 3.
n 2 represents an integer of 0-4.
When n 1 to n 4 are each 2 or more, R 1 to R 4 may be the same or different from each other, and when R 1 to R 4 are adjacent to each other, a ring may be formed.
X represents an oxygen atom, a sulfur atom, or a nitrogen atom. )

本発明の上記手段により、有機EL素子用の新規な芳香族複素環誘導体を用いた、発光効率が高く、発光寿命が長く、高温下での使用においても経時変化が小さい有機EL素子を提供することができる。また、当該有機EL素子が具備された表示装置及び照明装置を提供することができる。更に、有機EL素子用の新規な芳香族複素環誘導体を提供することができる。   By the above means of the present invention, there is provided an organic EL device using a novel aromatic heterocyclic derivative for an organic EL device, having a high light emission efficiency, a long light emission lifetime, and a small change with time even when used at a high temperature. be able to. In addition, a display device and a lighting device including the organic EL element can be provided. Furthermore, a novel aromatic heterocyclic derivative for an organic EL device can be provided.

本発明の表示装置の構成の一例を示した概略斜視図である。It is the schematic perspective view which showed an example of the structure of the display apparatus of this invention. 図1に示す表示部Aの構成の一例を示した概略斜視図である。It is the schematic perspective view which showed an example of the structure of the display part A shown in FIG. 本発明の有機EL素子を用いた照明装置の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the illuminating device using the organic EL element of this invention. 本発明の有機EL素子を用いた照明装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the illuminating device using the organic EL element of this invention.

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
以下に本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In addition, in this application, "-" is used in the meaning which includes the numerical value described before and behind that as a lower limit and an upper limit.
Although the form for implementing this invention is demonstrated in detail below, this invention is not limited to these.

《本発明の効果の発現機構ないし作用機構》
まず、本発明の効果の発現機構ないし作用機構について説明する。本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
<< Mechanism of expression or action of the effect of the present invention >>
First, the expression mechanism or action mechanism of the effect of the present invention will be described. The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.

一般に分子の励起状態と基底状態との構造変化が大きいと、分子が不安定化することが知られており、有機EL素子の膜中においては状態変化が起こりやすくなる可能性がある。有機EL素子の発光寿命と発光効率の観点からは、励起状態と基底状態との構造変化は小さい方が好ましいと考えられる。
構造変化を小さくする一つの方法として分子に剛直性を付与することが知られている。そこで、本発明の芳香族複素環誘導体においては、本発明の一般式(1)で示したカルバゾール基に置換基R及びRを導入した。この基の導入により置換基R及びRを置換したカルバゾール基と、Xを含有する複素環部と、の間により大きな二面角をもたせることが可能となった。
例えば、国際公開第2015/14435号の明細書に記載されている下記化合物(R5,R6=H)における太い線で描いたカルバゾール環とベンゼン環との角度である二面角は65度となる。これに対して本発明の一般式(1)の化合物(R,R=メチル基)の二面角は76度となる(分子軌道計算Gaussian)。
In general, it is known that when a structural change between an excited state and a ground state of a molecule is large, the molecule becomes unstable, and there is a possibility that a state change is likely to occur in the film of the organic EL element. From the viewpoint of the light emission lifetime and the light emission efficiency of the organic EL element, it is considered preferable that the structural change between the excited state and the ground state is small.
It is known to impart rigidity to a molecule as one method for reducing the structural change. Therefore, in the aromatic heterocyclic derivative of the present invention, substituents R 5 and R 6 were introduced into the carbazole group represented by the general formula (1) of the present invention. By introducing this group, it was possible to give a larger dihedral angle between the carbazole group substituted with the substituents R 5 and R 6 and the heterocyclic portion containing X.
For example, in the following compound (R5, R6 = H) described in the specification of International Publication No. 2015/14435, the dihedral angle that is the angle between the carbazole ring and the benzene ring drawn with a thick line is 65 degrees. . On the other hand, the dihedral angle of the compound of the general formula (1) of the present invention (R 5 , R 6 = methyl group) is 76 degrees (molecular orbital calculation Gaussian).

Figure 2017103436
Figure 2017103436

本発明の一般式(1)の化合物のように、カルバゾール基に置換基R及びRを導入することによって分子に剛直性が増し、励起状態と基底状態との構造変化を抑えることが可能となり、素子寿命が向上したと推測している。
また、一般にカルバゾール環のような環が多環縮環構造に置換し平面構造をとった場合、Tg(ガラス転移点)が上昇するとともに、結晶化しやすくなるという傾向が見られる。前述した置換基R及びRをカルバゾール環の特定の位置に導入して分子間相互作用をコントロールすることによってTgを下げずに凝集及び結晶化が抑制できるようになる。その結果、膜質の熱安定性が向上し、高温下での使用においても経時変化が小さい安定した素子性能を発揮することが可能になったと推測している。
Like the compound of the general formula (1) of the present invention, by introducing substituents R 5 and R 6 into the carbazole group, it is possible to increase the rigidity of the molecule and suppress the structural change between the excited state and the ground state. Thus, it is estimated that the device life has been improved.
In general, when a ring such as a carbazole ring is substituted with a polycyclic condensed ring structure to have a planar structure, Tg (glass transition point) tends to increase and crystallization tends to occur. By introducing the substituents R 5 and R 6 described above into specific positions of the carbazole ring and controlling the intermolecular interaction, aggregation and crystallization can be suppressed without lowering Tg. As a result, it is presumed that the thermal stability of the film quality is improved, and stable device performance with little change with time can be exhibited even when used at high temperatures.

《有機エレクトロルミネッセンス素子》
次に、本発明の有機エレクトロルミネッセンス素子について説明する。
本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子であって、前記有機層のうち少なくとも1層に、下記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする。この特徴は、請求項1から請求項12までの請求項に係る発明に共通する技術的特徴である。
《Organic electroluminescence device》
Next, the organic electroluminescence element of the present invention will be described.
The organic electroluminescence device of the present invention is an organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, and at least one of the organic layers includes It contains an aromatic heterocyclic derivative having a structure represented by the formula (1). This feature is a technical feature common to the inventions according to claims 1 to 12.

Figure 2017103436
Figure 2017103436

一般式(1)中、Y、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し、Y、Y及びYの少なくとも一つは窒素原子である。 In general formula (1), Y 1 , Y 2 and Y 3 each independently represent CR ′ or a nitrogen atom, and at least one of Y 1 , Y 2 and Y 3 is a nitrogen atom.

より好ましくはY、Y及びYの内、二つ又は三つが窒素原子であり、より好ましくはY、Y及びYが全て窒素原子である。 More preferably, two or three of Y 1 , Y 2 and Y 3 are nitrogen atoms, and more preferably Y 1 , Y 2 and Y 3 are all nitrogen atoms.

R′、Ar及びArは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜12のアルキル基、又は、置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。但し、R′、Ar及びArが全て同時に水素原子であることはない。 R ′, Ar 1 and Ar 2 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. . However, R ′, Ar 1 and Ar 2 are not all hydrogen atoms at the same time.

R′、Ar又はArで表される炭素数1〜12のアルキル基は、本発明の化合物の機能を阻害しない範囲であれば、直鎖状であっても分岐構造を有していてもよく、また、シクロアルキル基のように環状構造であってもよい。 The alkyl group having 1 to 12 carbon atoms represented by R ′, Ar 1 or Ar 2 has a branched structure even if it is linear as long as it does not inhibit the function of the compound of the present invention. It may also be a cyclic structure such as a cycloalkyl group.

R′、Ar又はArで表される炭素数1〜12のアルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、ネオペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。 Examples of the alkyl group having 1 to 12 carbon atoms represented by R ′, Ar 1 or Ar 2 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group and nonyl. Group, decyl group, undecyl group, dodecyl group, isopropyl group, neopentyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group and the like.

R′、Ar又はArで表される環形成炭素数6〜30のアリール基(芳香族炭化水素環基ともいう)としては、非縮合であっても縮合環であってもよく、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基、トリフェニレニル基、フルオレニル基、アズレニル基、アセナフテニル基、インデニル基、インデノフルオレニル基等が挙げられる。 The aryl group having 6 to 30 ring carbon atoms (also referred to as an aromatic hydrocarbon ring group) represented by R ′, Ar 1 or Ar 2 may be non-condensed or condensed, for example, , Phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, chrysenyl group, biphenyl group, terphenyl group, quarterphenyl group, fluoranthenyl group, triphenylenyl group, fluorenyl group, azulenyl group, acenaphthenyl group, indenyl group, Indenofluorenyl group and the like can be mentioned.

本発明の化合物の励起三重項エネルギー準位(Tエネルギー準位)を適度に保つ目的から、R′、Ar又はArで表される環形成炭素数6〜30のアリール基としては、フェニル基、ナフチル基、フェナントリル基、ビフェニル基、ターフェニル基、クォーターフェニル基、トリフェニレニル基、フルオレニル基が好ましい。 For the purpose of appropriately maintaining the excited triplet energy level (T 1 energy level) of the compound of the present invention, as the aryl group having 6 to 30 ring carbon atoms represented by R ′, Ar 1 or Ar 2 , A phenyl group, a naphthyl group, a phenanthryl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a triphenylenyl group, and a fluorenyl group are preferred.

R′、Ar又はArで表される上記のアルキル基及びアリール基は、本発明の化合物の機能を阻害しない範囲で各々更に置換基を有していてもよく、そのような置換基の具体例としては、後述のR〜Rで表される置換基と同様の基が挙げられる。 The above alkyl group and aryl group represented by R ′, Ar 1 or Ar 2 may each further have a substituent as long as the function of the compound of the present invention is not impaired. Specific examples include the same groups as the substituents represented by R 1 to R 4 described later.

好ましくは、R′は水素原子又はアルキル基であり、より好ましくは水素原子である。   R ′ is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom.

好ましくは、Ar及びArは、炭素数1〜12のアルキル基又は環形成炭素数6〜30のアリール基であり、より好ましくは、炭素数4以下のアルキル基又は環形成炭素数6〜12のアリール基である。 Preferably, Ar 1 and Ar 2 are an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 30 ring carbon atoms, more preferably an alkyl group having 4 or less carbon atoms or 6 to 6 ring forming carbon atoms. 12 aryl groups.

〜Rは、それぞれ独立に、置換基を表す。R〜Rで表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピラジル基、ピリミジニル基、トリアジル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、アザカルバゾリル基(前記カルバゾリル基のカルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。 R 1 to R 4 each independently represents a substituent. Examples of the substituent represented by R 1 to R 4 include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, Tridecyl group, tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.) , Aromatic hydrocarbon groups (also called aromatic hydrocarbon ring groups, aromatic carbocyclic groups, aryl groups, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group , Azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group Biphenylyl group, etc.), aromatic heterocyclic group (for example, pyridyl group, pyrazyl group, pyrimidinyl group, triazyl group, furyl group, pyrrolyl group, imidazolyl group, benzoimidazolyl group, pyrazolyl group, pyrazinyl group, triazolyl group (for example, 1, 2,4-triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, A quinolyl group, a benzofuryl group, a dibenzofuryl group, a benzothienyl group, a dibenzothienyl group, an indolyl group, a carbazolyl group, an azacarbazolyl group (any one or more of the carbon atoms constituting the carbazole ring of the carbazolyl group is replaced by a nitrogen atom) Quinoxalinyl group, Ridazinyl group, triazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyl) Oxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (Eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, For example, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, Phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group) , Dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, aceto Group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group ( For example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonyl) Amino group, propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcal Nylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexyl) Aminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido) Group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyri Diylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group) Group), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenyl) Sulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino) Group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom), fluorinated hydrocarbon Group (for example, fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, Triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group and the like.

これらの置換基は、上記の置換基によって更に置換されていてもよく、更に、これらの置換基は複数が互いに結合して環構造を形成してもよい。   These substituents may be further substituted with the above-mentioned substituents, and a plurality of these substituents may be bonded to each other to form a ring structure.

一般式(1)中、n、n及びnは、それぞれ独立に、0〜3の整数を表し、nは、0〜4の整数を表す。n〜nがそれぞれ2以上の場合、すなわち、R〜Rがそれぞれ複数存在する場合、R〜Rは、それぞれ同一でも異なっていてもよく、R〜Rが隣接する場合、互いに結合し、環を形成してもよい。 In the general formula (1), n 1, n 3 and n 4 each independently represent an integer of 0 to 3, n 2 represents an integer of 0-4. n 1 if ~n 4 each represents 2 or more, i.e., if R 1 to R 4 is present in plural, R 1 to R 4 may each be the same or different, R 1 to R 4 are adjacent In some cases, they may be bonded to each other to form a ring.

及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1〜12のアルキル基、又は、置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。但し、R及びRが同時に水素原子であることはない。 R 5 and R 6 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. However, R 5 and R 6 are not simultaneously hydrogen atoms.

及びRで表されるアルキル基及びアリール基としては、R〜Rで表される基と同様の基を表わす。これらの内で好ましいものはアルキル基である。また、R及びRで表される上記のアルキル基及びアリール基は、本発明の化合物の機能を阻害しない範囲で各々更に置換基を有していてもよく、そのような置換基の具体例としては、前述のR〜Rで表される置換基と同様の基が挙げられる。 The alkyl group and aryl group represented by R 5 and R 6 represent the same groups as the groups represented by R 1 to R 4 . Of these, preferred is an alkyl group. In addition, each of the alkyl group and aryl group represented by R 5 and R 6 may further have a substituent as long as the function of the compound of the present invention is not impaired. Examples include the same groups as the substituents represented by R 1 to R 4 described above.

及びLは、それぞれ独立に、単結合、置換若しくは無置換の炭素数1〜12のアルキレン基、置換若しくは無置換の環形成炭素数6〜30のアリーレン基、置換若しくは無置換の環形成原子数5〜30のヘテロアリーレン基又はこれらの組み合わせからなる2価の連結基を表す。 L 1 and L 2 are each independently a single bond, a substituted or unsubstituted alkylene group having 1 to 12 carbon atoms, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring It represents a divalent linking group consisting of a heteroarylene group having 5 to 30 atoms or a combination thereof.

及びLで表される炭素数1〜12のアルキレン基は、直鎖状であっても分岐構造を有していてもよく、また、シクロアルキレン基のように環状構造であってもよい。 The alkylene group having 1 to 12 carbon atoms represented by L 1 and L 2 may be linear or branched, and may be a cyclic structure such as a cycloalkylene group. Good.

炭素数1〜12のアルキレン基の具体例としては、前述のR′、Ar又はArで示した炭素数1〜12のアルキル基から、水素原子を一つ除くことにより導かれる2価の基が挙げられる。 Specific examples of the alkylene group having 1 to 12 carbon atoms include divalent derivatives derived by removing one hydrogen atom from the alkyl group having 1 to 12 carbon atoms represented by R ′, Ar 1 or Ar 2 described above. Groups.

及びLで表される環形成炭素数6〜30のアリーレン基は、非縮合であっても縮合環であってもよく、環形成炭素数6〜30のアリーレン基の具体例としては、前述のR′、Ar又はArで示した環形成炭素数6〜30のアリール基から、水素原子を一つ除くことにより導かれる2価の基が挙げられる。 The arylene group having 6 to 30 ring carbon atoms represented by L 1 and L 2 may be non-condensed or condensed, and specific examples of the arylene group having 6 to 30 ring carbon atoms are as follows. And a divalent group derived by removing one hydrogen atom from the aryl group having 6 to 30 ring carbon atoms represented by R ′, Ar 1 or Ar 2 described above.

本発明の化合物のTエネルギー準位を適度に保つ目的から、L及びLで表される環形成炭素数6〜30のアリーレン基としては、o−フェニレン基、m−フェニレン基、p−フェニレン基、ナフタレンジイル基、フェナントレンジイル基、ビフェニレン基、ターフェニレン基、クォーターフェニレン基、トリフェニレンジイル基、フルオレンジイル基が好ましい。 For the purpose of appropriately maintaining the T 1 energy level of the compound of the present invention, the arylene group having 6 to 30 ring carbon atoms represented by L 1 and L 2 includes an o-phenylene group, an m-phenylene group, p -A phenylene group, naphthalenediyl group, phenanthrene diyl group, biphenylene group, terphenylene group, quarterphenylene group, triphenylenediyl group and fluorenediyl group are preferred.

及びLで表される環形成原子数5〜30のヘテロアリーレン基の例としては、ピリジン環、ピラジン環、ピリミジン環、ピペリジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、インドール環、イソインドール環、ベンゾイミダゾール環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、シロール環、ベンゾシロール環、ジベンゾシロール環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、フェナントロリン環、アクリジン環、フェナジン環、フェノキサジン環、フェノチアジン環、フェノキサチイン環、ピリダジン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、ベンゾジフラン環、チエノチオフェン環、ジベンゾチオフェン環、ベンゾジチオフェン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ナフトチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルバゾール環を構成する炭素原子の任意の二つ以上が窒素原子で置き換わったものを表す)、アザジベンゾフラン環(ジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、アザジベンゾチオフェン環(ジベンゾチオフェン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、インドロカルバゾール環、インデノインドール環等から水素原子を二つ除くことにより導かれる2価の基が挙げられる。 Examples of the heteroarylene group having 5 to 30 ring atoms represented by L 1 and L 2 include pyridine ring, pyrazine ring, pyrimidine ring, piperidine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole Ring, indole ring, isoindole ring, benzimidazole ring, furan ring, benzofuran ring, isobenzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, silole ring, benzosilole ring, dibenzosilole ring, quinoline ring, isoquinoline ring, quinoxaline Ring, phenanthridine ring, phenanthroline ring, acridine ring, phenazine ring, phenoxazine ring, phenothiazine ring, phenoxathiin ring, pyridazine ring, oxazole ring, oxadiazole ring, benzoxazole ring, thiazole ring, thiadia Ring, benzothiazole ring, benzodifuran ring, thienothiophene ring, dibenzothiophene ring, benzodithiophene ring, cyclazine ring, kindlin ring, tepenidine ring, quinindrine ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine Ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, benzodithiophene ring, naphthodifuran ring, naphthodithiophene ring, anthracfuran ring, anthradifuran ring, anthrathiophene ring, anthradithiophene ring, thianthrene ring, phenoxy Satiin ring, naphthothiophene ring, carbazole ring, carboline ring, diazacarbazole ring (representing any two or more of the carbon atoms constituting the carbazole ring replaced by a nitrogen atom), azadibenzofuran ring (Represents any one or more carbon atoms constituting the dibenzofuran ring replaced with a nitrogen atom), azadibenzothiophene ring (any one or more carbon atoms constituting the dibenzothiophene ring replaced with a nitrogen atom) A divalent group derived by removing two hydrogen atoms from an indolocarbazole ring, an indenoindole ring, or the like.

及びLで表される環形成原子数5〜30のヘテロアリーレン基としては、より好ましくは、ピリジン環、ピラジン環、ピリミジン環、ピペリジン環、トリアジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環等から水素原子を二つ除くことにより導かれる2価の基が挙げられる。 The heteroarylene group having 5 to 30 ring atoms represented by L 1 and L 2 is more preferably a pyridine ring, pyrazine ring, pyrimidine ring, piperidine ring, triazine ring, dibenzofuran ring, dibenzothiophene ring, carbazole. And divalent groups derived by removing two hydrogen atoms from a ring, carboline ring, diazacarbazole ring, and the like.

及びLで表される上記のアルキレン基、アリーレン基及びヘテロアリーレン基は、本発明の化合物の機能を阻害しない範囲で各々更に置換基を有していてもよく、そのような置換基としては、前述のR′、Ar又はArで示した置換基と同様の基が挙げられる。
及びLのうち好ましいものは単結合又はアリーレン基であり、特に単結合が好ましい。アリーレン基の場合は、環形成炭素数6〜12であるのが好ましい。
The alkylene group, arylene group and heteroarylene group represented by L 1 and L 2 may each further have a substituent within the range not inhibiting the function of the compound of the present invention. Examples of the substituent include the same groups as the substituents represented by R ′, Ar 1 or Ar 2 described above.
Preferred among L 1 and L 2 is a single bond or an arylene group, and a single bond is particularly preferred. In the case of an arylene group, it preferably has 6 to 12 ring carbon atoms.

また、一般式(1)中、Xは、酸素原子、硫黄原子、又は窒素原子を表す。Xが窒素原子である場合、当該窒素原子は前記したLにより、Y、Y及びYを含む基と結合されていてもよい。 Moreover, in General formula (1), X represents an oxygen atom, a sulfur atom, or a nitrogen atom. When X is a nitrogen atom, the nitrogen atom may be bonded to the group containing Y 1 , Y 2, and Y 3 through L 2 described above.

一般式(1)で表される芳香族複素環誘導体は、より好ましくは下記一般式(2)、(3)、及び(4)で表される。なお、一般式(2)、(3)、及び(4)における、Y〜Y、L、L、R〜R、n〜n、Ar及びArは、前述の一般式(1)におけるY〜Y、L、L、R〜R、n〜n、Ar及びArと同義である。 The aromatic heterocyclic derivative represented by the general formula (1) is more preferably represented by the following general formulas (2), (3), and (4). In general formulas (2), (3), and (4), Y 1 to Y 3 , L 1 , L 2 , R 1 to R 6 , n 1 to n 4 , Ar 1, and Ar 2 are the same as those described above. Are the same as Y 1 to Y 3 , L 1 , L 2 , R 1 to R 6 , n 1 to n 4 , Ar 1 and Ar 2 in the general formula (1).

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

一般式(1)〜(4)で表される構造を有する化合物の具体例を下記に示すが、これらに限定されない。   Although the specific example of the compound which has a structure represented by General formula (1)-(4) is shown below, it is not limited to these.

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

本発明の化合物は、公知の合成法、例えば、J.Org.Chem.,42,1821(1977)、J.Am.Chem.Soc.,101,4992(1977)、Chem.Rev.,95,2457(1995)、J.Org.Chem.,53,918(1988)等に記載の炭素―炭素結合を形成するPdを用いたクロスカップリング反応、Angew.Chem.Int.Ed.1998,37,2046等に記載のPdを用いた炭素―窒素結合を形成するクロスカップリング反応、Angew.Chem.Int.Ed.2003,42,5400に記載のCuを用いた炭素―窒素結合形成反応を用いることにより合成することができる。
以下に具体的な合成例として例示化合物(21)の合成を示す。
The compounds of the present invention can be synthesized by known synthetic methods such as those described in J. Org. Org. Chem. 42, 1821 (1977), J. MoI. Am. Chem. Soc. 101, 4992 (1977), Chem. Rev. 95, 2457 (1995); Org. Chem. , 53, 918 (1988), etc., a cross-coupling reaction using Pd that forms a carbon-carbon bond, Angew. Chem. Int. Ed. 1998, 37, 2046, etc., a cross-coupling reaction that forms a carbon-nitrogen bond using Pd, Angew. Chem. Int. Ed. It can be synthesized by using the carbon-nitrogen bond forming reaction using Cu described in 2003, 42, 5400.
The synthesis | combination of exemplary compound (21) is shown as a specific synthesis example below.

Figure 2017103436
Figure 2017103436

(中間体3の合成)
窒素雰囲気下、中間体1を1.95g(10mmol)、中間体2を3.26gとり、ジメチルスルホキシド30mlに溶解し、更に酸化第一銅を0.29g、ジピバロイルメタンを0.74g、リン酸カリウムを4.24g加え、160℃で8時間撹拌した。次に、不溶分を濾別し、酢酸エチルを加えて抽出、水洗した。有機層を減圧濃縮し、カラムクロマトグラフィー(シリカゲル、展開液トルエン/ヘプタン)で精製した。このようにして、中間体3を2.42g得た(収率55%)。当該中間体3に対してNMR、マススペクトル等を用いて構造を確認した。
(Synthesis of Intermediate 3)
Under a nitrogen atmosphere, 1.95 g (10 mmol) of intermediate 1 and 3.26 g of intermediate 2 were dissolved in 30 ml of dimethyl sulfoxide, 0.29 g of cuprous oxide and 0.74 g of dipivaloylmethane. Then, 4.24 g of potassium phosphate was added and stirred at 160 ° C. for 8 hours. Next, insoluble matters were separated by filtration, extracted with ethyl acetate, and washed with water. The organic layer was concentrated under reduced pressure and purified by column chromatography (silica gel, developing solution toluene / heptane). Thus, 2.42 g of Intermediate 3 was obtained (yield 55%). The structure of the intermediate 3 was confirmed using NMR, mass spectrum and the like.

(例示化合物(21)の合成)
窒素雰囲気下、中間体3を1.28g(2.9mmol)とり、無水テトラヒドロフラン30mlに溶解し、ドライアイス/アセトン浴で−70℃に冷却した。n-ブチルリチウムヘキサン溶液(1.6M)を2.4ml加え、1時間撹拌した。次に、ホウ酸トリメチルを0.39g加え、室温で1時間撹拌した。反応液に純水を3ml、テトラキス(トリフェニルホスフィン)パラジウムを0.34g、炭酸カリウムを1.2g、化合物4を0.85g加え、3時間還流した。次に、トルエン50mlを加え、抽出、水洗し、有機層を減圧濃縮し、カラムクロマトグラフィー(シリカゲル、展開液トルエン/ヘプタン)で精製した。このようにして、例示化合物(21)を1.2g(白色固体)得た(収率70%)。当該例示化合物(21)に対してNMR、マススペクトル等を用いて構造を確認した。
その他の本発明の化合物も同様の方法で合成することができる。
(Synthesis of Exemplified Compound (21))
Under a nitrogen atmosphere, 1.28 g (2.9 mmol) of Intermediate 3 was taken, dissolved in 30 ml of anhydrous tetrahydrofuran, and cooled to −70 ° C. in a dry ice / acetone bath. 2.4 ml of n-butyllithium hexane solution (1.6 M) was added and stirred for 1 hour. Next, 0.39 g of trimethyl borate was added and stirred at room temperature for 1 hour. To the reaction solution, 3 ml of pure water, 0.34 g of tetrakis (triphenylphosphine) palladium, 1.2 g of potassium carbonate, and 0.85 g of compound 4 were added and refluxed for 3 hours. Next, 50 ml of toluene was added, extracted, washed with water, the organic layer was concentrated under reduced pressure, and purified by column chromatography (silica gel, developing solution toluene / heptane). Thus, 1.2g (white solid) of exemplary compound (21) was obtained (yield 70%). The structure of the exemplified compound (21) was confirmed using NMR, mass spectrum and the like.
Other compounds of the present invention can be synthesized in the same manner.

本発明においては、発光層が一般式(1)で表される構造を有する芳香族複素環誘導体を含有することが好ましい。また、発光層が、一般式(1)で表される構造を有する芳香族複素環誘導体をホスト化合物として含有することが好ましい。なお、発光層が、リン光発光性ドーパントを含有することが好ましい。また、発光層が、一般式(1)で表される構造を有する芳香族複素環誘導体とは異なる構造を有するホスト化合物(すなわち、公知のホスト化合物)を更に含有することが好ましい。発光層の詳しい構成、リン光発光性ドーパント、及び一般式(1)で表される構造を有する芳香族複素環誘導体とは異なる構造を有するホスト化合物については後述する。   In the present invention, the light emitting layer preferably contains an aromatic heterocyclic derivative having a structure represented by the general formula (1). Moreover, it is preferable that a light emitting layer contains the aromatic heterocyclic derivative which has a structure represented by General formula (1) as a host compound. In addition, it is preferable that a light emitting layer contains a phosphorescent dopant. Moreover, it is preferable that a light emitting layer further contains the host compound (namely, well-known host compound) which has a structure different from the aromatic heterocyclic derivative which has a structure represented by General formula (1). A detailed structure of the light emitting layer, a phosphorescent dopant, and a host compound having a structure different from the aromatic heterocyclic derivative having the structure represented by the general formula (1) will be described later.

《芳香族複素環誘導体》
本発明の芳香族複素環誘導体は、一般式(1)で表される構造を有する。一般式(1)で表される構造を有する芳香族複素環誘導体については、前記した有機エレクトロルミネッセンス素子で説明したとおりである。
《Aromatic heterocycle derivative》
The aromatic heterocyclic derivative of the present invention has a structure represented by the general formula (1). About the aromatic heterocyclic derivative which has a structure represented by General formula (1), it is as having demonstrated with the above-mentioned organic electroluminescent element.

《有機EL素子の構成層》
本発明の有機EL素子における代表的な素子構成としては、以下の構成を上げることができるが、これらに限定されるものではない。
<< Constituent layers of organic EL elements >>
As typical element structures in the organic EL element of the present invention, the following structures can be raised, but are not limited thereto.

(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
(1) Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) luminescent layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode Among the above, the configuration of (7) is preferable. Although used, it is not limited to this.

本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。   The light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.

必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。   If necessary, a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. An electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided therebetween.

本発明に用いられる電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。   The electron transport layer used in the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.

本発明に用いられる正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。   The hole transport layer used in the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.

上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。   In the above-described typical element configuration, the layer excluding the anode and the cathode is also referred to as “organic layer”.

(タンデム構造)
また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
(Tandem structure)
The organic EL element of the present invention may be a so-called tandem element in which a plurality of light emitting units including at least one light emitting layer are stacked.

タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。   As typical element configurations of the tandem structure, for example, the following configurations can be given.

陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
Anode / first light emitting unit / second light emitting unit / third light emitting unit / cathode Anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode Here, the first light emitting unit The second light emitting unit and the third light emitting unit may all be the same or different. Two light emitting units may be the same, and the remaining one may be different.

また、第3発光ユニットはなくてもよく、一方で第3発光ユニットと電極の間に更に発光ユニットや中間層を設けてもよい。   Further, the third light emitting unit may not be provided, and on the other hand, a light emitting unit or an intermediate layer may be further provided between the third light emitting unit and the electrode.

複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料及び構成を用いることができる。   A plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer. Known materials and structures can be used as long as they are also called insulating layers and have a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.

中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。 Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2. , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al, etc., conductive inorganic compound layers, Au / Bi 2 O 3, etc., two-layer films, SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayer films, C 60 and other fullerenes, conductive organic layers such as oligothiophene , Conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, metal-free porphyrins, etc. The present invention is not limited to these.

発光ユニット内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)〜(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。   Examples of a preferable configuration in the light emitting unit include those obtained by removing the anode and the cathode from the configurations (1) to (7) described in the above representative element configurations, but the present invention is not limited thereto. Not.

タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006−228712号公報、特開2006−24791号公報、特開2006−49393号公報、特開2006−49394号公報、特開2006−49396号公報、特開2011−96679号公報、特開2005−340187号公報、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010−192719号公報、特開2009−076929号公報、特開2008−078414号公報、特開2007−059848号公報、特開2003−272860号公報、特開2003−045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。   Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, US Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-49393, JP-A 2006-49394 JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-3496868, JP-A-3884564, JP-A-42131169, JP-A-2010-192719. Publication, JP 2009-076 29, JP 2008-078414, JP 2007-059848, JP 2003-272860, JP 2003-045676, WO 2005/094130, etc. Examples include constituent materials, but the present invention is not limited to these.

以下、本発明の有機EL素子を構成する各層について説明する。   Hereinafter, each layer which comprises the organic EL element of this invention is demonstrated.

《発光層》
本発明に用いられる発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に用いられる発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
<Light emitting layer>
The light-emitting layer used in the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light-emitting portion is the light-emitting layer. Even in the layer, it may be the interface between the light emitting layer and the adjacent layer. If the light emitting layer used for this invention satisfy | fills the requirements prescribed | regulated by this invention, there will be no restriction | limiting in particular in the structure.

発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、より好ましくは2〜500nmの範囲に調整され、更に好ましくは5〜200nmの範囲に調整される。   The total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. From a viewpoint, it is preferable to adjust to the range of 2 nm-5 micrometers, More preferably, it adjusts to the range of 2-500 nm, More preferably, it adjusts to the range of 5-200 nm.

また、本発明において個々の発光層の層厚としては、2nm〜1μmの範囲に調整することが好ましく、より好ましくは2〜200nmの範囲に調整され、更に好ましくは3〜150nmの範囲に調整される。   In the present invention, the thickness of each light emitting layer is preferably adjusted to a range of 2 nm to 1 μm, more preferably adjusted to a range of 2 to 200 nm, and further preferably adjusted to a range of 3 to 150 nm. The

本発明に用いられる発光層は、発光ドーパント(単にドーパントともいう)と、ホスト化合物(発光ホスト、単にホストともいう)とを含有することが好ましい。   The light emitting layer used in the present invention preferably contains a light emitting dopant (also simply referred to as a dopant) and a host compound (light emitting host, also simply referred to as a host).

(1)発光ドーパント
本発明に用いられる発光ドーパントについて説明する。
(1) Luminescent dopant The luminescent dopant used for this invention is demonstrated.

発光ドーパントとしては、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)と、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)が好ましく用いられる。本発明においては、少なくとも1層の発光層がリン光発光性ドーパントを含有することが好ましい。   As the light-emitting dopant, a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound) and a fluorescent light-emitting dopant (also referred to as a fluorescent dopant or a fluorescent compound) are preferably used. In the present invention, it is preferable that at least one light emitting layer contains a phosphorescent dopant.

発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。   The concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the thickness direction of the luminescent layer. It may also have an arbitrary concentration distribution.

また、本発明に用いられる発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。   Moreover, the light emission dopant used for this invention may be used in combination of multiple types, and may combine and use the combination of the dopants from which a structure differs, and the fluorescence emission dopant and a phosphorescence emission dopant. Thereby, arbitrary luminescent colors can be obtained.

本発明の有機EL素子や本発明の化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。   The color emitted by the organic EL device of the present invention and the compound of the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.

本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。   In the present invention, it is also preferable that the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different emission colors and emits white light.

白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。   There are no particular limitations on the combination of the light-emitting dopants that exhibit white, and examples include blue and orange, and a combination of blue, green, and red.

本発明の有機EL素子における白色とは、特に限定はなく、橙色寄りの白色であっても青色寄りの白色であってもよいが、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。 The white color in the organic EL device of the present invention is not particularly limited, and may be white near orange or white near blue, but when the 2 ° viewing angle front luminance is measured by the method described above. The chromaticity in the CIE 1931 color system at 1000 cd / m 2 is preferably in the region of x = 0.39 ± 0.09 and y = 0.38 ± 0.08.

(1.1)リン光発光性ドーパント
本発明に用いられるリン光発光性ドーパント(以下、「リン光ドーパント」ともいう)について説明する。
(1.1) Phosphorescent dopant The phosphorescent dopant used in the present invention (hereinafter also referred to as “phosphorescent dopant”) will be described.

本発明に用いられるリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。   The phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is Although defined as a compound of 0.01 or more at 25 ° C., a preferred phosphorescence quantum yield is 0.1 or more.

上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。   The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant used in the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. Just do it.

リン光ドーパントの発光は原理としては二種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。   There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type to obtain light emission from a phosphorescent dopant. The other is a carrier trap type in which a phosphorescent dopant serves as a carrier trap, and carrier recombination occurs on the phosphorescent dopant to emit light from the phosphorescent dopant. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.

本発明において使用できるリン光ドーパントとしては、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。   As a phosphorescence dopant which can be used in this invention, it can select from the well-known thing used for the light emitting layer of an organic EL element suitably, and can use it.

本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。   Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.

Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012−069737号公報、特開2012−195554号公報、特開2009−114086号公報、特開2003−81988号公報、特開2002−302671号公報、特開2002−363552号公報等である。   Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. US Patent Application Publication No. 2009/0108737, US Patent Application Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Application Publication No. 2007/0190359. Specification, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Patent No. 7250226, US Patent No. No. 7396598 , U.S. Patent Application Publication No. 2006/0263635, U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. Description, US Pat. No. 7,534,505, US Pat. No. 7,445,855, US Patent Application Publication No. 2007/0190359, US Patent Application Publication No. 2008/0297033, US Pat. No. 7,338,722 , US special Published Patent Application No. 2002/0134984, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/098120, U.S. Patent Application Publication No. 2006/103874, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, US Patent Application Publication No. 2012/228583, USA No. 2012/212126, JP 2012-069737, JP 2012-195554, JP 2009-114086, JP 2003-81988, JP 2002-302671. Japanese Patent Laid-Open No. 2002-363552.

中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。更に好ましくは、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。   Among these, a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, or a metal-sulfur bond is preferable.

(1.2)蛍光発光性ドーパント
本発明に用いられる蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう)について説明する。
(1.2) Fluorescent luminescent dopant The fluorescent luminescent dopant (hereinafter also referred to as “fluorescent dopant”) used in the present invention will be described.

本発明に用いられる蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。   The fluorescent dopant used in the present invention is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.

本発明に用いられる蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。   Examples of the fluorescent dopant used in the present invention include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarins. Derivatives, pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.

また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。   In recent years, light emitting dopants utilizing delayed fluorescence have been developed, and these may be used.

遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011−213643号公報、特開2010−93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。   Specific examples of the luminescent dopant using delayed fluorescence include, for example, the compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.

(2)ホスト化合物
本発明に用いられるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
(2) Host compound The host compound used in the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL device.

好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、更に好ましくはリン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。   Preferably, it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.

また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。   Moreover, it is preferable that the excited state energy of a host compound is higher than the excited state energy of the light emission dopant contained in the same layer.

ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子の発光を高効率化することができる。   A host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of electric charge, and the light emission of the organic EL element can be made highly efficient.

本発明で用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。   There is no restriction | limiting in particular as a host compound which can be used by this invention, The compound conventionally used with an organic EL element can be used. It may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.

公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、更に、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。   As a known host compound, while having a hole transporting ability or an electron transporting ability, the emission of light is prevented from being increased in wavelength, and further, the organic EL element is stable against heat generated during high temperature driving or during element driving. From the viewpoint of operating, it is preferable to have a high glass transition temperature (Tg). Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.

ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS−K−7121に準拠した方法により求められる値(温度)である。   Here, the glass transition point (Tg) is a value (temperature) determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).

本発明の有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。   Specific examples of known host compounds used in the organic EL device of the present invention include compounds described in the following documents, but are not limited thereto.

特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報、米国特許出願公開第2003/0175553号明細書、米国特許出願公開第2006/0280965号明細書、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0017330号明細書、米国特許出願公開第2009/0030202号明細書、米国特許公開第2005/0238919号明細書、国際公開第2001/039234号、国際出願公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008−074939号公報、特開2007−254297号公報、欧州特許第2034538号明細書等である。   JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, US Patent Application Publication No. 2003/0175553, US Patent Application Publication No. 2006/0280965, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0017330, US Patent Application Publication No. 2009/0030202, US Patent Publication No. 2005/0238919, International Publication No. 20 1/039234, International Application Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007/063796, International Publication No. 2007. No. 063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898, International Publication No. 2012/023947. No. 2008-074939, JP-A 2007-254297, European Patent No. 2034538, and the like.

《電子輸送層》
本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
《Electron transport layer》
In the present invention, the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.

本発明に用いられる電子輸送層の総層厚については特に制限はないが、通常は2nm〜5μmの範囲であり、より好ましくは2〜500nmであり、更に好ましくは5〜200nmである。   Although there is no restriction | limiting in particular about the total layer thickness of the electron carrying layer used for this invention, Usually, it is the range of 2 nm-5 micrometers, More preferably, it is 2-500 nm, More preferably, it is 5-200 nm.

また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を5nm〜1μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。   Further, in the organic EL element, when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between 5 nm and 1 μm.

一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10−5cm/Vs以上であることが好ましい。 On the other hand, when the layer thickness of the electron transport layer is increased, the voltage is likely to increase. Therefore, particularly when the layer thickness is thick, the electron mobility of the electron transport layer is preferably 10 −5 cm 2 / Vs or more. .

電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。   The material used for the electron transport layer (hereinafter referred to as an electron transport material) may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.

例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。   For example, nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.).

また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。   In addition, a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand, for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq) and the like, and their metal complexes A metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.

その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。   In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. In addition, the distyrylpyrazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.

また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。   Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.

本発明に用いられる電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。   In the electron transport layer used in the present invention, the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich). Examples of the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.

本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。   Specific examples of known preferable electron transport materials used in the organic EL device of the present invention include, but are not limited to, compounds described in the following documents.

米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010−251675号公報、特開2009−209133号公報、特開2009−124114号公報、特開2008−277810号公報、特開2006−156445号公報、特開2005−340122号公報、特開2003−45662号公報、特開2003−31367号公報、特開2003−282270号公報、国際公開第2012/115034号等である。   US Pat. No. 6,528,187, US Pat. No. 7,230,107, US Patent Application Publication No. 2005/0025993, US Patent Application Publication No. 2004/0036077, US Patent Application Publication No. 2009/0115316 U.S. Patent Application Publication No. 2009/0101870, U.S. Patent Application Publication No. 2009/0179554, International Publication No. 2003/060956, International Publication No. 2008/120855, Appl. Phys. Lett. 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), U.S. Patent No. 7964293, U.S. Patent Application Publication No. 2009/030202, International Publication No. 2004/080975, International Publication No. 2004/063159, International Publication No. 2005/085387. , International Publication No. 2006/067931, International Publication No. 2007/085652, International Publication No. 2008/114690, International Publication No. 2009/066942, International Publication No. 2009/066779, International Publication No. 2009/054253, International Publication No. Japanese Patent Publication No. 2011-086935, International Publication No. 2010/150593, International Publication No. 2010/047707, European Patent No. 2311826, Japanese Unexamined Patent Publication No. 2010-251675, Japanese Unexamined Patent Publication No. 2009-209133, Japanese Unexamined Patent Publication No. 2009. -1241 No. 4, JP 2008-277810 A, JP 2006-156445 A, JP 2005-340122 A, JP 2003-45662 A, JP 2003-31367 A, JP 2003-282270 A. Gazette, International Publication No. 2012/115034, and the like.

本発明におけるより好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。   More preferable electron transport materials in the present invention include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.

電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。   The electron transport material may be used alone or in combination of two or more.

《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
《Hole blocking layer》
The hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.

また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。   Moreover, the structure of the electron carrying layer mentioned above can be used as a hole-blocking layer concerning this invention as needed.

本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。   The hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.

本発明に用いられる正孔阻止層の層厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。   The layer thickness of the hole blocking layer used in the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.

正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。   As the material used for the hole blocking layer, the material used for the above-described electron transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the hole blocking layer.

《電子注入層》
本発明に用いられる電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
《Electron injection layer》
The electron injection layer (also referred to as “cathode buffer layer”) used in the present invention is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. It is described in detail in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second edition of “The Forefront of Industrialization” (issued by NTT Corporation on November 30, 1998).

本発明において電子注入層は必要に応じて設け、上記の如く陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。   In the present invention, the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.

電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1〜5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。   The electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm, although it depends on the material. Moreover, the nonuniform film | membrane in which a constituent material exists intermittently may be sufficient.

電子注入層は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8−ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。   The details of the electron injection layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used.

また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。   Moreover, the material used for said electron injection layer may be used independently, and may be used in combination of multiple types.

《正孔輸送層》
本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
《Hole transport layer》
In the present invention, the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.

本発明に用いられる正孔輸送層の総層厚については特に制限はないが、通常は5nm〜5μmの範囲であり、より好ましくは2〜500nmであり、更に好ましくは5nm〜200nmである。   Although there is no restriction | limiting in particular about the total layer thickness of the positive hole transport layer used for this invention, Usually, it is the range of 5 nm-5 micrometers, More preferably, it is 2-500 nm, More preferably, it is 5 nm-200 nm.

正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。   As a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.

例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。   For example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.).

トリアリールアミン誘導体としては、αNPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。   Examples of the triarylamine derivative include a benzidine type typified by αNPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.

また、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。   In addition, hexaazatriphenylene derivatives such as those described in JP-A-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.

更に不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。   Furthermore, a hole transport layer having a high p property doped with impurities can also be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.

また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型−Si、p型−SiC等の無機化合物を用いることもできる。更にIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。 JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as a central metal as typified by Ir (ppy) 3 are also preferably used.

正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。   Although the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain. The polymer materials or oligomers used are preferably used.

本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。   Specific examples of known preferable hole transport materials used in the organic EL device of the present invention include, but are not limited to, the compounds described in the following documents in addition to the documents listed above.

例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72−74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003−519432号公報、特開2006−135145号公報、米国特許出願番号13/585981号等である。   For example, Appl. Phys. Lett. 69, 2160 (1996), J. MoI. Lumin. 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater. Chem. 3,319 (1993), Adv. Mater. 6, 677 (1994), Chem. Mater. 15, 3148 (2003), U.S. Patent Application Publication No. 2003/0162053, U.S. Patent Application Publication No. 2002/0158242, U.S. Patent Application Publication No. 2006/0240279, U.S. Patent Application Publication No. 2008/2008. No. 0220265, US Pat. No. 5,061,569, WO 2007/002683, WO 2009/018009, EP 650955, US Patent Application Publication No. 2008/0124572, US Japanese Patent Application Publication No. 2007/0278938, US Patent Application Publication No. 2008/0106190, US Patent Application Publication No. 2008/0018221, International Publication No. 2012/115034, and Japanese Translation of PCT International Publication No. 2003-519432. , JP 2006-2006 35145 JP is US Patent Application No. 13/585981 Patent like.

正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。   The hole transport material may be used alone or in combination of two or more.

《電子阻止層》
電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
《Electron blocking layer》
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.

また、前述する正孔輸送層の構成を必要に応じて、本発明に用いられる電子阻止層として用いることができる。   Moreover, the structure of the positive hole transport layer mentioned above can be used as an electron blocking layer used for this invention as needed.

本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。   The electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.

本発明に用いられる電子阻止層の層厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。   The layer thickness of the electron blocking layer used in the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.

電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。   As the material used for the electron blocking layer, the material used for the above-described hole transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the electron blocking layer.

《正孔注入層》
本発明に用いられる正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
《Hole injection layer》
The hole injection layer (also referred to as “anode buffer layer”) used in the present invention is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. 2 and Chapter 2 “Electrode Materials” (pages 123 to 166) of the 2nd edition of “The Forefront of Industrialization” (issued by NTT Corporation on November 30, 1998).

本発明において正孔注入層は必要に応じて設け、上記の如く陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。   In the present invention, the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.

正孔注入層は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。   The details of the hole injection layer are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of the material used for the hole injection layer include: Examples thereof include materials used for the above-described hole transport layer.

中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。   Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432 and JP-A-2006-135145, metal oxides typified by vanadium oxide, amorphous carbon Preferred are conductive polymers such as polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives.

前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。   The materials used for the hole injection layer described above may be used alone or in combination of two or more.

《含有物》
前述した本発明における有機層は、更に他の含有物が含まれていてもよい。
<Contents>
The organic layer in the present invention described above may further contain other inclusions.

含有物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。   Examples of the inclusion include halogen elements such as bromine, iodine, and chlorine, halogenated compounds, alkali metals such as Pd, Ca, and Na, alkaline earth metals, transition metal compounds, complexes, and salts.

含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、更に好ましくは50ppm以下である。   The content of the inclusions can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less with respect to the total mass% of the contained layer. .

ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的等によってはこの範囲内ではない。   However, it is not within this range depending on the purpose of improving the transportability of electrons and holes, the purpose of making the energy transfer of excitons advantageous.

《有機層の形成方法》
本発明に用いられる有機層(正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
<Method for forming organic layer>
A method for forming an organic layer (hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) used in the present invention will be described.

本発明に用いられる有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。ここで、有機層が、ウェットプロセスで形成された層であることが好ましい。すなわち、ウェットプロセスで有機EL素子を作製することが好ましい。有機EL素子をウェットプロセスで作製することで、均質な膜(塗膜)が得られやすく、且つピンホールが生成しにくい等の効果を奏することができる。なお、ここでの膜(塗膜)とは、ウェットプロセスによる塗布後に乾燥させた状態のものである。   The formation method of the organic layer used in the present invention is not particularly limited, and a conventionally known formation method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used. Here, the organic layer is preferably a layer formed by a wet process. That is, it is preferable to produce an organic EL element by a wet process. By producing the organic EL element by a wet process, a uniform film (coating film) can be easily obtained, and effects such as the difficulty of generating pinholes can be achieved. In addition, a film | membrane (coating film) here is a thing of the state dried after application | coating by a wet process.

湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等があるが、均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・to・ロール方式に対して適性の高い方法が好ましい。   Examples of the wet method include spin coating, casting, ink jet, printing, die coating, blade coating, roll coating, spray coating, curtain coating, and LB (Langmuir-Blodgett). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable.

本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の有機溶媒を用いることができる。   Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) can be used.

また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。   Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.

更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、厚さ0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。 Further, different film forming methods may be applied for each layer. When employing a vapor deposition method for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 −6 to 10 −2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within a range of 50 nm / second, a substrate temperature of −50 to 300 ° C., and a thickness of 0.1 nm to 5 μm, preferably 5 to 200 nm.

本発明に用いられる有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。   The organic layer used in the present invention is preferably formed from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.

《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode in the organic EL element, those having a work function (4 eV or more, preferably 4.5 V or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.

陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。   For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not so required (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.

又は、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。   Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.

陽極の厚さは材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選ばれる。   The thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.

《陰極》
陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.

陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、厚さは通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。   The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.

なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。   In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.

また、陰極に上記金属を1〜20nmの厚さで作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。   In addition, after producing the above metal on the cathode with a thickness of 1 to 20 nm, a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode thereon. By applying the above, it is possible to manufacture a device in which both the anode and the cathode are transparent.

《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
As a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、又はポリアリレート類、アートン(商品名JSR社製)若しくはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。   Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyetherimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic, or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Etc.

樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10−3ml/(m・24h・atm)以下、水蒸気透過度が、10−5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 An inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987. A high barrier film having a permeability of 10 −3 ml / (m 2 · 24 h · atm) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.

バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。   As a material for forming the barrier film, any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.

バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。   The method for forming the barrier film is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.

不透明な支持基板としては、例えば、アルミニウム、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。   Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.

本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。   The external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.

ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。   Here, external extraction quantum efficiency (%) = number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element × 100.

また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。   In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor.

《封止》
本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
<Sealing>
Examples of the sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive. As a sealing member, it should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and it may be concave plate shape or flat plate shape. Moreover, transparency and electrical insulation are not particularly limited.

封止部材として具体的には、ガラス板、ポリマー板、金属板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。   Specific examples of the sealing member include a glass plate, a polymer plate, and a metal plate. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.

本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムはJIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24h・atm)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10−3g/(m・24h)以下のものであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned. Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · atm) or less, and a method according to JIS K 7129-1992. The measured water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably 1 × 10 −3 g / (m 2 · 24 h) or less.

封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。   For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.

接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。   Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.

なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。   In addition, since an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.

また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。   In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.

更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。   Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.

封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。   In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.

吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。   Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.

《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜又は前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜若しくは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板、金属板等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween. In particular, when sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, a glass plate, a polymer plate, a metal plate, and the like similar to those used for the sealing can be used. However, a polymer film is used because it is lightweight and thin. preferable.

《光取り出し向上技術》
有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率1.6〜2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないと一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし、素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
《Light extraction enhancement technology》
An organic electroluminescence element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and about 15% to 20% of light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (transparent substrate-air interface) at an angle θ greater than the critical angle causes total reflection and cannot be extracted outside the device. This is because the light undergoes total reflection between them, the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side of the device.

この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等が挙げられる。   As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, JP-A-63-314795), a method for forming a reflective surface on a side surface of an element (for example, JP-A-1-220394), a substrate, etc. A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Application Laid-Open No. 62-172691), lower refraction than the substrate between the substrate and the light emitter A method of introducing a flat layer having a refractive index (for example, Japanese Patent Application Laid-Open No. 2001-202827), and a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside world) ( JP-A-11 JP), etc. 283751 can be mentioned.

本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。   In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.

本発明は、これらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。   In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.

透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。   When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. Become.

低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。また更に1.35以下であることが好ましい。   Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.

また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む層厚になると、低屈折率層の効果が薄れるからである。   The thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.

全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。   The method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction. The light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.

導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。   The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.

しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。   However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.

回折格子を導入する位置としては、いずれかの層間、若しくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2〜3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。   The position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably within a range of about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.

《集光シート》
本発明の有機EL素子は、支持基板(基板)の光取り出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、又は、いわゆる集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
《Condensing sheet》
The organic EL element of the present invention can be processed in a specific direction, for example, an element by combining a so-called condensing sheet, for example, by processing so as to provide a structure on a microlens array on the light extraction side of a support substrate (substrate). Condensing light in the front direction with respect to the light emitting surface can increase the luminance in a specific direction.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10〜100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚さが厚くなり好ましくない。   As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 μm. If it is smaller than this, the effect of diffraction is generated and colored, and if it is too large, the thickness becomes too thick.

集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。   As the condensing sheet, for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, a substrate may be formed with a Δ-shaped stripe having an apex angle of 90 degrees and a pitch of 50 μm, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.

また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。   Moreover, in order to control the light emission angle from an organic EL element, you may use a light-diffusion plate and a film together with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.

《用途》
本発明の有機EL素子は、表示装置、ディスプレイ、各種発光光源として用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light sources.

発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではなく、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。   For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, it is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.

本発明の有機EL素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。   In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like at the time of film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.

《表示装置》
発明の有機EL素子を具備した、本発明の表示装置の一態様について説明する。以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
<Display device>
One embodiment of the display device of the present invention that includes the organic EL element of the present invention will be described. Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.

図1は、本発明の有機EL素子を具備した表示装置の構成の一例を示した概略斜視図であって、有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。図1に示すとおり、ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。   FIG. 1 is a schematic perspective view showing an example of a configuration of a display device including an organic EL element of the present invention, which displays image information by light emission of the organic EL element, for example, a display such as a mobile phone. It is a schematic diagram. As shown in FIG. 1, the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.

制御部Bは表示部Aと電気的に接続されている。制御部Bは、複数の画素それぞれに対し、外部からの画像情報に基づいて走査信号と画像データ信号を送る。その結果、各画素が走査信号により走査線毎に画像データ信号に応じて順次発光し、画像情報が表示部Aに表示される。   The control unit B is electrically connected to the display unit A. The control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. As a result, each pixel sequentially emits light according to the image data signal for each scanning line by the scanning signal, and the image information is displayed on the display unit A.

図2は、図1に記載の表示部Aの模式図である。   FIG. 2 is a schematic diagram of the display unit A shown in FIG.

表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と、複数の画素3等とを有する。   The display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.

表示部Aの主要な部材の説明を以下に行う。   The main members of the display unit A will be described below.

図2においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は互いに格子状に直交して、その直交する位置で画素3に接続されている(詳細は図示していない)。   FIG. 2 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward). Each of the scanning lines 5 and the plurality of data lines 6 in the wiring portion is made of a conductive material. The scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are not shown).

画素3は、走査線5から走査信号が送信されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。   When a scanning signal is transmitted from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.

発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並列配置することによって、フルカラー表示が可能となる。   Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region in the same substrate on the same substrate.

《照明装置》
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
《Lighting device》
One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.

本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて封止し、図3、図4に示すような照明装置を形成することができる。   The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, and as shown in FIG. 3 and FIG. Can be formed.

図3は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバー102での封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行う。)。   FIG. 3 is a schematic view of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in the sealing operation with the glass cover 102, the organic EL element 101 is brought into contact with the atmosphere. Without using a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more).

図4は、照明装置の断面図を示し、図4において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。   4 shows a cross-sectional view of the lighting device. In FIG. 4, reference numeral 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「体積%」を表す。また、表1及び表2の本発明の有機EL素子で使用したホスト化合物の番号は、前記した一般式(1)〜(4)で表される化合物の具体例の番号に対応する。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "volume%" is represented. Moreover, the number of the host compound used with the organic EL element of this invention of Table 1 and Table 2 respond | corresponds to the number of the specific example of a compound represented by above-described general formula (1)-(4).

《実施例に用いた化合物》   << Compound used in Examples >>

Figure 2017103436
Figure 2017103436

Figure 2017103436
Figure 2017103436

〔実施例1〕
《有機EL素子の作製》
(1)有機EL素子101の作製
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
[Example 1]
<< Production of organic EL element >>
(1) Preparation of organic EL element 101 After forming ITO (indium tin oxide) with a thickness of 150 nm as a positive electrode on a glass substrate of 50 mm × 50 mm and a thickness of 0.7 mm and performing patterning, The transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. .

真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。   Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The resistance heating boat was made of molybdenum or tungsten.

真空度1×10−4Paまで減圧した後、HI−1の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚15nmの正孔注入層を形成した。 After reducing the vacuum to 1 × 10 −4 Pa, the resistance heating boat containing HI-1 was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second. A hole injection layer was formed.

次いで、HT−1を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔輸送層を形成した。   Subsequently, HT-1 was deposited at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 30 nm.

次いで、比較のホスト化合物である比較化合物1とGD−1の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。   Next, the resistance heating boat containing comparative compound 1 and GD-1 as comparative host compounds was energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporation was performed to form a light emitting layer having a layer thickness of 40 nm.

次いで、HB−1を蒸着速度0.1nm/秒で蒸着し、層厚5nmの第一電子輸送層を形成した。   Subsequently, HB-1 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 5 nm.

更にその上に、ET―1を蒸着速度0.1nm/秒で蒸着し、層厚45nmの第二電子輸送層を形成した。   Further thereon, ET-1 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 45 nm.

その後、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子101を作製した。   Then, after vapor-depositing lithium fluoride so that it might become 0.5 nm in thickness, 100 nm of aluminum was vapor-deposited, the cathode was formed, and the organic EL element 101 was produced.

作製後、有機EL素子101の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成の照明装置を作製し、これをサンプルとした。   After the production, the non-light-emitting surface of the organic EL element 101 is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a 300 μm thick glass substrate is used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to be in close contact with the transparent support substrate, and irradiated with UV light from the glass substrate side, It hardened and sealed, and the illuminating device of a structure as shown in FIG.3 and FIG.4 was produced, and this was made into the sample.

《有機EL素子102〜116の作製》
有機EL素子101の作製において、ホスト化合物を表1に記載の化合物に変更した。それ以外は同様にして、有機EL素子102〜116を作製した。作製後、同様に図3及び図4に示すような構成の照明装置を作製し、これをサンプルとした。
<< Production of Organic EL Elements 102 to 116 >>
In the production of the organic EL device 101, the host compounds were changed to the compounds shown in Table 1. Other than that produced the organic EL elements 102-116 similarly. After the production, an illumination device having a configuration as shown in FIGS. 3 and 4 was produced in the same manner as a sample.

《有機EL素子101〜116の評価》
各サンプルについて下記の評価を行った。評価結果を表1に示す。
<< Evaluation of Organic EL Elements 101-116 >>
The following evaluation was performed for each sample. The evaluation results are shown in Table 1.

Figure 2017103436
Figure 2017103436

(1)外部取り出し量子効率
有機EL素子を室温(約23℃)、2.5mA/cmの定電流条件下による通電を行い、発光開始直後の発光輝度(L0)[cd/m]を測定することにより、外部取り出し量子効率(η)を算出した。
(1) External extraction quantum efficiency The organic EL element was energized under a constant current condition of room temperature (about 23 ° C.) and 2.5 mA / cm 2 , and the light emission luminance (L0) [cd / m 2 ] immediately after the start of light emission was obtained. The external extraction quantum efficiency (η) was calculated by measuring.

ここで、発光輝度の測定はCS−2000(コニカミノルタ(株)製)を用いて行い、外部取り出し量子効率は有機EL素子101を100とする相対値で表した。値が大きいほうが発光効率に優れていることを示す。   Here, the measurement of emission luminance was performed using CS-2000 (manufactured by Konica Minolta Co., Ltd.), and the external extraction quantum efficiency was expressed as a relative value with the organic EL element 101 as 100. Larger values indicate better luminous efficiency.

(2)半減寿命
有機EL素子を初期輝度4000cd/mを与える電流で定電流駆動して、初期輝度の1/2になる時間を求め、これを半減寿命の尺度とした。なお、半減寿命は有機EL素子101を100とする相対値で表した。値が大きいほうが比較に対して耐久性に優れていることを示す。
(2) Half-life The organic EL device was driven at a constant current with a current giving an initial luminance of 4000 cd / m 2 to obtain a time that is half of the initial luminance, and this was used as a measure of the half-life. The half-life was expressed as a relative value with the organic EL element 101 as 100. Larger values indicate better durability for comparison.

(3)高温保存安定性
有機EL素子を高温条件下(約50±5℃)の恒温槽に入れ、上記(2)半減寿命の測定法と同条件で半減寿命の評価を行い、下記式を用いて耐熱性を算出した。
(3) High temperature storage stability The organic EL device is put in a thermostatic chamber under high temperature conditions (about 50 ± 5 ° C), and the half life is evaluated under the same conditions as in the above (2) half life measurement method. Using this, the heat resistance was calculated.

耐熱性(%)=(高温条件下での半減寿命)/(室温での半減寿命)×100
表1には有機EL素子101を100とする相対値で表した。耐熱性の値が大きいほうが比較に対して温度変化に対する耐久性が高い、つまり高温保存安定性が優れていることを示す。
Heat resistance (%) = (half life at high temperature) / (half life at room temperature) × 100
In Table 1, the organic EL element 101 is expressed as a relative value with 100. The larger the heat resistance value, the higher the durability against temperature change, that is, the high temperature storage stability is superior to the comparison.

表1より、本発明の有機EL素子103〜116は比較の有機EL素子101及び102に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かった。   From Table 1, it was found that the organic EL elements 103 to 116 of the present invention were superior in external extraction quantum efficiency, half-life, and high-temperature storage stability compared to the comparative organic EL elements 101 and 102.

〔実施例2〕
《有機EL素子の作製》
(1)有機EL素子201の作製
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を120nmの厚さで製膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
[Example 2]
<< Production of organic EL element >>
(1) Preparation of organic EL element 201 After depositing ITO (indium tin oxide) with a thickness of 120 nm as a positive electrode on a glass substrate of 50 mm × 50 mm and a thickness of 0.7 mm and performing patterning, The transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚20nmの正孔注入層を設けた。   On this transparent support substrate, using a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water, 3000 rpm, A thin film was formed by spin coating under conditions of 30 seconds and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a layer thickness of 20 nm.

次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。   Next, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.

真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。   Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The resistance heating boat for vapor deposition was made of molybdenum or tungsten.

真空度1×10−4Paまで減圧した後、HT−4の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚20nmの正孔輸送層を形成した。 After depressurizing to a vacuum degree of 1 × 10 −4 Pa, the resistance heating boat containing HT-4 was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second. A hole transport layer was formed.

次いで、比較のホスト化合物である比較化合物1とGD−2の入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。   Next, a resistance heating boat containing comparative compound 1 and GD-2 as comparative host compounds is energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporation was performed to form a light emitting layer having a layer thickness of 40 nm.

次いで、HB−1を蒸着速度0.1nm/秒で蒸着し、層厚5nmの第一電子輸送層を形成した。   Subsequently, HB-1 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 5 nm.

更にその上に、ET−3を蒸着速度0.1nm/秒で蒸着し、層厚30nmの第二電子輸送層を形成した。   Further thereon, ET-3 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 30 nm.

その後、フッ化リチウムを厚さ0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子201を作製した。   Then, after vapor-depositing lithium fluoride so that it might become 0.5 nm in thickness, 100 nm of aluminum was vapor-deposited, the cathode was formed, and the organic EL element 201 was produced.

作製後、有機EL素子201の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成の照明装置を作製し、これをサンプルとした。   After the production, the non-light-emitting surface of the organic EL element 201 is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a 300 μm thick glass substrate is used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material, and this is overlaid on the cathode to be in close contact with the transparent support substrate, and irradiated with UV light from the glass substrate side, It hardened and sealed, and the illuminating device of a structure as shown in FIG.3 and FIG.4 was produced, and this was made into the sample.

《有機EL素子202〜212の作製》
有機EL素子201の作製において、ホスト化合物を表2に記載のホスト化合物に変更した。それ以外は同様にして、有機EL素子202〜212を作製した。作製後、同様に図3及び図4に示すような構成からなる照明装置を作製し、これをサンプルとした。
<< Production of Organic EL Elements 202 to 212 >>
In the production of the organic EL element 201, the host compound was changed to the host compounds shown in Table 2. Other than that produced the organic EL elements 202-212 similarly. After the production, an illumination device having a configuration as shown in FIGS. 3 and 4 was produced in the same manner as a sample.

《有機EL素子201〜212の評価》
各サンプルについて下記の評価を行った。
<< Evaluation of Organic EL Elements 201-212 >>
The following evaluation was performed for each sample.

外部取り出し量子効率、半減寿命、高温保存安定性評価については、実施例1と同様の方法で評価し、有機EL素子201の各特性値を100とする相対値で表した。   About external extraction quantum efficiency, half life, and high temperature storage stability evaluation, it evaluated by the method similar to Example 1, and represented with each relative value which sets each characteristic value of the organic EL element 201 to 100.

評価結果を表2に示す。   The evaluation results are shown in Table 2.

Figure 2017103436
Figure 2017103436

表2より、本発明の有機EL素子203〜212は比較の有機EL素子201及び202に比べ、外部取り出し量子効率、半減寿命及び高温保存安定性に優れていることが分かる。   From Table 2, it can be seen that the organic EL elements 203 to 212 of the present invention are excellent in external extraction quantum efficiency, half-life and high-temperature storage stability as compared with the comparative organic EL elements 201 and 202.

〔実施例3〕
《フルカラー表示装置の作製》
(1)青色発光素子の作製
《有機EL素子301の作製》
100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を厚さ100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 3
<Production of full-color display device>
(1) Preparation of blue light emitting element << Preparation of organic EL element 301 >>
This ITO transparent electrode was formed by patterning a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) on which a 100 nm thick ITO (indium tin oxide) film was formed as an anode on a 100 mm × 100 mm × 1.1 mm glass substrate. The transparent support substrate provided with was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.

この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにHT−1を200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてmCP(1,3−ビス−Nカルバゾリルベンゼン)を200mg入れ、別のモリブデン製抵抗加熱ボートにHB−2を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパントとしてBD−1を100mg入れ、更に別のモリブデン製抵抗加熱ボートにET−2を200mg入れ、真空蒸着装置に取り付けた。   This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of HT-1 was placed in a molybdenum resistance heating boat, and mCP (1,3- 200 mg of bis-N carbazolylbenzene), 200 mg of HB-2 in a separate molybdenum resistance heating boat, 100 mg of BD-1 as a luminescent dopant in another molybdenum resistance heating boat, and further made of molybdenum 200 mg of ET-2 was put into a resistance heating boat and attached to a vacuum evaporation apparatus.

次に、真空槽を4×10−4Paまで減圧した後、HT−1の入った前記モリブデン製抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板上に蒸着し、層厚40nmの正孔輸送層を設けた。
更に、mCP(1,3−ビス−Nカルバゾリルベンゼン)とBD−1の入った前記モリブデン製抵抗加熱ボートを通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で、前記正孔輸送層上に共蒸着して、厚さ40nmの発光層を設けた。なお、蒸着時の基板温度は室温とした。
Next, after depressurizing the vacuum tank to 4 × 10 −4 Pa, the molybdenum resistance heating boat containing HT-1 is energized and heated, and deposited on the transparent support substrate at a deposition rate of 0.1 nm / second. Then, a hole transport layer having a layer thickness of 40 nm was provided.
Furthermore, the molybdenum resistance heating boat containing mCP (1,3-bis-N carbazolylbenzene) and BD-1 was energized and heated, and the deposition rates were 0.2 nm / second and 0.012 nm / second, respectively. Then, a 40 nm thick light emitting layer was provided by co-evaporation on the hole transport layer. The substrate temperature during vapor deposition was room temperature.

更に、HB−2の入った前記モリブデン製抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着して、厚さ10nmの正孔阻止層を設けた。   Furthermore, the molybdenum resistance heating boat containing HB-2 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 10 nm thick hole blocking layer. .

更に、ET−2の入った前記抵抗加熱ボートを通電して加熱し、蒸着速度0.1nm/秒で、前記正孔阻止層上に蒸着して、厚さ40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温とした。   Further, the resistance heating boat containing ET-2 was heated by energization, and deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to provide an electron transport layer having a thickness of 40 nm. The substrate temperature during vapor deposition was room temperature.

引き続きフッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子301を作製した。   Subsequently, 0.5 nm of lithium fluoride and 110 nm of aluminum were vapor-deposited to form a cathode, and an organic EL element 301 was produced.

作製後、有機EL素子301の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3及び図4に示すような構成の照明装置を構成し、これをサンプルとした。   After the production, the non-light emitting surface of the organic EL element 301 is covered with a glass case, a glass substrate having a thickness of 300 μm is used as a sealing substrate, and an epoxy-based photocurable adhesive (LUXE manufactured by Toagosei Co., Ltd.) is used as a sealant around the periphery. As shown in FIGS. 3 and 4, the track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, and sealed. A lighting device having a simple structure was constructed and used as a sample.

(2)緑色発光素子の作製
実施例2の有機EL素子208を緑色発光素子として用いた。
(2) Production of Green Light-Emitting Element The organic EL element 208 of Example 2 was used as a green light-emitting element.

(3)赤色発光素子の作製
《有機EL素子302の作製》
緑色発光素子である実施例2の有機EL素子208において、発光ドーパントをGD−2からRD−1に変更した。それ以外は青色発光素子301と同様にして、赤色発光素子である有機EL素子302を作製した。
(3) Preparation of red light emitting element << Preparation of organic EL element 302 >>
In the organic EL element 208 of Example 2 which is a green light emitting element, the light emitting dopant was changed from GD-2 to RD-1. Other than that was carried out similarly to the blue light emitting element 301, and produced the organic EL element 302 which is a red light emitting element.

(4)表示装置の作製
上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並列配置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。
(4) Production of Display Device The red, green, and blue light emitting organic EL elements produced above were arranged in parallel on the same substrate, and an active matrix type full color display device having a form as shown in FIG. 1 was produced.

図2には、作製した前記表示装置の表示部Aの模式図のみを示した。   In FIG. 2, only the schematic diagram of the display part A of the produced display device is shown.

図2に示すとおり、表示部Aは同一基板上に複数の走査線5及びデータ線6を含む配線部と並列配置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。   As shown in FIG. 2, the display unit A includes a plurality of pixels 3 (light emitting color pixels in the red region, green region pixels, Blue region pixels, etc.). Each of the scanning lines 5 and the plurality of data lines 6 in the wiring portion is made of a conductive material. The scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern, and are connected to the pixels 3 at the orthogonal positions (details are not shown).

複数の画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が送信されるとデータ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素3を適宜、並列配置することによって、フルカラー表示装置を作製した。   The plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is transmitted from the scanning line 5. The image data signal is received from the data line 6 and light is emitted according to the received image data. In this manner, a full color display device was manufactured by appropriately arranging the red, green, and blue pixels 3 in parallel.

得られたフルカラーの表示装置は、駆動することにより、輝度が高く、高耐久性を有し、且つ高温時での保存性に優れたフルカラー動画表示が得られることが確認できた。   It was confirmed that when the obtained full-color display device was driven, a full-color moving image display with high brightness, high durability, and excellent storage stability at high temperatures was obtained.

1 ディスプレイ
3 画素
5 走査線
6 データ線
A 表示部
B 制御部
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line A Display part B Control part 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with a transparent electrode 108 Nitrogen gas 109 Water trapping agent

Claims (13)

陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子であって、前記有機層のうち少なくとも1層に、下記一般式(1)で表される構造を有する芳香族複素環誘導体を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 2017103436
(一般式(1)中、
、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し、Y、Y及びYの少なくとも一つは窒素原子である。
R′、Ar及びArは、それぞれ独立に、
水素原子、
置換若しくは無置換の炭素数1〜12のアルキル基、又は、
置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。
R′、Ar及びArが全て同時に水素原子であることはない。
及びLは、それぞれ独立に、
単結合、
置換若しくは無置換の炭素数1〜12のアルキレン基、
置換若しくは無置換の環形成炭素数6〜30のアリーレン基、
置換若しくは無置換の環形成原子数5〜30のヘテロアリーレン基又は
これらの組み合わせからなる2価の連結基を表す。
〜Rは、それぞれ独立に、置換基を表す。
及びRは、それぞれ独立に、
水素原子、
置換若しくは無置換の炭素数1〜12のアルキル基、又は、
置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。
及びRが同時に水素原子であることはない。
、n及びnは、それぞれ独立に、0〜3の整数を表す。
は、0〜4の整数を表す。
なお、n〜nがそれぞれ2以上の場合、R〜Rは、それぞれ同一でも異なっていてもよく、R〜Rが隣接する場合、環を形成してもよい。
Xは、酸素原子、硫黄原子、又は窒素原子を表す。)
An organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between an anode and a cathode, wherein at least one of the organic layers has a structure represented by the following general formula (1) An organic electroluminescent device comprising an aromatic heterocyclic derivative having
Figure 2017103436
(In general formula (1),
Y 1 , Y 2 and Y 3 each independently represent CR ′ or a nitrogen atom, and at least one of Y 1 , Y 2 and Y 3 is a nitrogen atom.
R ′, Ar 1 and Ar 2 are each independently
Hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or
A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms is represented.
R ′, Ar 1 and Ar 2 are not all hydrogen atoms at the same time.
L 1 and L 2 are each independently
Single bond,
A substituted or unsubstituted alkylene group having 1 to 12 carbon atoms,
A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms,
It represents a divalent linking group consisting of a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms or a combination thereof.
R 1 to R 4 each independently represents a substituent.
R 5 and R 6 are each independently
Hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or
A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms is represented.
R 5 and R 6 are not simultaneously hydrogen atoms.
n 1, n 3 and n 4 each independently represent an integer of 0 to 3.
n 2 represents an integer of 0-4.
When n 1 to n 4 are each 2 or more, R 1 to R 4 may be the same or different from each other, and when R 1 to R 4 are adjacent to each other, a ring may be formed.
X represents an oxygen atom, a sulfur atom, or a nitrogen atom. )
前記一般式(1)で表される化合物が下記一般式(2)で表されることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
Figure 2017103436
The organic electroluminescent device according to claim 1, wherein the compound represented by the general formula (1) is represented by the following general formula (2).
Figure 2017103436
前記一般式(1)で表される化合物が下記一般式(3)で表されることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
Figure 2017103436
The organic electroluminescence device according to claim 1, wherein the compound represented by the general formula (1) is represented by the following general formula (3).
Figure 2017103436
前記一般式(1)で表される化合物が下記一般式(4)で表されることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
Figure 2017103436
The organic electroluminescent device according to claim 1, wherein the compound represented by the general formula (1) is represented by the following general formula (4).
Figure 2017103436
前記一般式(1)〜(4)において、Y〜Yが、全て窒素原子を表すことを特徴とする請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子。 In the general formula (1) ~ (4), Y 1 ~Y 3 The organic electroluminescent device according to any one of claims 1 to 4, characterized in that all represent nitrogen atom. 前記一般式(1)〜(4)において、Ar及びArが、置換若しくは無置換の環形成炭素数6〜30のアリール基を表すことを特徴とする請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The general formulas (1) to (4), wherein Ar 1 and Ar 2 each represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. The organic electroluminescent element according to claim 1. 前記発光層が、前記芳香族複素環誘導体を含有することを特徴とする請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子。   The organic light-emitting device according to any one of claims 1 to 6, wherein the light-emitting layer contains the aromatic heterocyclic derivative. 前記発光層が、前記芳香族複素環誘導体をホスト化合物として含有することを特徴とする請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子。   The organic light-emitting device according to any one of claims 1 to 7, wherein the light-emitting layer contains the aromatic heterocyclic derivative as a host compound. 前記発光層が、リン光発光性ドーパントを含有することを特徴とする請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子。   The organic light emitting device according to any one of claims 1 to 8, wherein the light emitting layer contains a phosphorescent dopant. 前記発光層が、前記芳香族複素環誘導体とは異なる構造を有するホスト化合物を更に含有することを特徴とする請求項1から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子。   10. The organic electroluminescent device according to claim 1, wherein the light emitting layer further contains a host compound having a structure different from that of the aromatic heterocyclic derivative. 請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする表示装置。   A display device comprising the organic electroluminescence element according to claim 1. 請求項1から請求項10のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備することを特徴とする照明装置。   An illuminating device comprising the organic electroluminescence element according to any one of claims 1 to 10. 下記一般式(1)で表される構造を有することを特徴とする芳香族複素環誘導体。
Figure 2017103436
(一般式(1)中、
、Y及びYは、それぞれ独立に、CR′又は窒素原子を表し、Y、Y及びYの少なくとも一つは窒素原子である。
R′、Ar及びArは、それぞれ独立に、
水素原子、
置換若しくは無置換の炭素数1〜12のアルキル基、又は、
置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。
R′、Ar及びArが全て同時に水素原子であることはない。
及びLは、それぞれ独立に、
単結合、
置換若しくは無置換の炭素数1〜12のアルキレン基、
置換若しくは無置換の環形成炭素数6〜30のアリーレン基、
置換若しくは無置換の環形成原子数5〜30のヘテロアリーレン基又は
これらの組み合わせからなる2価の連結基を表す。
〜Rは、それぞれ独立に、置換基を表す。
及びRは、それぞれ独立に、
水素原子、
置換若しくは無置換の炭素数1〜12のアルキル基、又は、
置換若しくは無置換の環形成炭素数6〜30のアリール基を表す。
及びRが同時に水素原子であることはない。
、n及びnは、それぞれ独立に、0〜3の整数を表す。
は、0〜4の整数を表す。
なお、n〜nがそれぞれ2以上の場合、R〜Rは、それぞれ同一でも異なっていてもよく、R〜Rが隣接する場合、環を形成してもよい。
Xは、酸素原子、硫黄原子、又は窒素原子を表す。)
An aromatic heterocyclic derivative having a structure represented by the following general formula (1):
Figure 2017103436
(In general formula (1),
Y 1 , Y 2 and Y 3 each independently represent CR ′ or a nitrogen atom, and at least one of Y 1 , Y 2 and Y 3 is a nitrogen atom.
R ′, Ar 1 and Ar 2 are each independently
Hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or
A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms is represented.
R ′, Ar 1 and Ar 2 are not all hydrogen atoms at the same time.
L 1 and L 2 are each independently
Single bond,
A substituted or unsubstituted alkylene group having 1 to 12 carbon atoms,
A substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms,
It represents a divalent linking group consisting of a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms or a combination thereof.
R 1 to R 4 each independently represents a substituent.
R 5 and R 6 are each independently
Hydrogen atom,
A substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or
A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms is represented.
R 5 and R 6 are not simultaneously hydrogen atoms.
n 1, n 3 and n 4 each independently represent an integer of 0 to 3.
n 2 represents an integer of 0-4.
When n 1 to n 4 are each 2 or more, R 1 to R 4 may be the same or different from each other, and when R 1 to R 4 are adjacent to each other, a ring may be formed.
X represents an oxygen atom, a sulfur atom, or a nitrogen atom. )
JP2015237945A 2015-12-04 2015-12-04 Organic electroluminescent element, display device, lighting device, and aromatic heterocyclic derivative Active JP6641947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237945A JP6641947B2 (en) 2015-12-04 2015-12-04 Organic electroluminescent element, display device, lighting device, and aromatic heterocyclic derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237945A JP6641947B2 (en) 2015-12-04 2015-12-04 Organic electroluminescent element, display device, lighting device, and aromatic heterocyclic derivative

Publications (2)

Publication Number Publication Date
JP2017103436A true JP2017103436A (en) 2017-06-08
JP6641947B2 JP6641947B2 (en) 2020-02-05

Family

ID=59018181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237945A Active JP6641947B2 (en) 2015-12-04 2015-12-04 Organic electroluminescent element, display device, lighting device, and aromatic heterocyclic derivative

Country Status (1)

Country Link
JP (1) JP6641947B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683599A (en) * 2020-12-24 2021-11-23 陕西莱特光电材料股份有限公司 Nitrogen-containing compound, electronic element comprising same and electronic device
WO2022075566A1 (en) * 2020-10-08 2022-04-14 엘티소재주식회사 Heterocyclic compound, organic light-emitting device comprising same, manufacturing method therefor, and composition for organic layer of organic light-emitting device
US11387418B2 (en) 2017-03-24 2022-07-12 Lt Materials Co., Ltd. Organic light emitting element and composition for organic material layer in organic light emitting element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010092A (en) * 2013-06-28 2015-01-19 ユニバーサル ディスプレイ コーポレイション Novel host materials for pholed
WO2015014435A1 (en) * 2013-07-30 2015-02-05 Merck Patent Gmbh Materials for electronic devices
US20150171342A1 (en) * 2013-11-28 2015-06-18 Samsung Electronics Co., Ltd. Carbazole compound and organic light-emitting device including the same
WO2015154843A1 (en) * 2014-04-11 2015-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010092A (en) * 2013-06-28 2015-01-19 ユニバーサル ディスプレイ コーポレイション Novel host materials for pholed
WO2015014435A1 (en) * 2013-07-30 2015-02-05 Merck Patent Gmbh Materials for electronic devices
US20150171342A1 (en) * 2013-11-28 2015-06-18 Samsung Electronics Co., Ltd. Carbazole compound and organic light-emitting device including the same
WO2015154843A1 (en) * 2014-04-11 2015-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387418B2 (en) 2017-03-24 2022-07-12 Lt Materials Co., Ltd. Organic light emitting element and composition for organic material layer in organic light emitting element
WO2022075566A1 (en) * 2020-10-08 2022-04-14 엘티소재주식회사 Heterocyclic compound, organic light-emitting device comprising same, manufacturing method therefor, and composition for organic layer of organic light-emitting device
CN113683599A (en) * 2020-12-24 2021-11-23 陕西莱特光电材料股份有限公司 Nitrogen-containing compound, electronic element comprising same and electronic device
CN113683599B (en) * 2020-12-24 2022-07-29 陕西莱特光电材料股份有限公司 Nitrogen-containing compound, electronic element comprising same and electronic device
US11849637B2 (en) 2020-12-24 2023-12-19 Shaanxi Lighte Optoelectronics Material Co., Ltd. Nitrogen-containing compound, electronic component comprising same, and electronic apparatus

Also Published As

Publication number Publication date
JP6641947B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP5831654B1 (en) Aromatic heterocycle derivative, organic electroluminescence device using the same, illumination device and display device
WO2017119203A1 (en) Thin film and organic electroluminescent element
KR102241439B1 (en) Organic electroluminescent element, method for manufacturing the same, display device, and lighting device
WO2018186462A1 (en) Fluorescent compound, organic material composition, light emitting film, organic electroluminescent element material, and organic electroluminescent element
WO2017170812A1 (en) Luminescent thin film and organic electroluminescent element
JP6657895B2 (en) Organic electroluminescence element, display device and lighting device
JP6128119B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2017107992A (en) Organic electroluminescent element, display device, lighting device and organic functional material for electronic device
WO2018008442A1 (en) Organic electroluminescent element, display device, illumination device, and π-conjugated compound
WO2016143508A1 (en) Organic electroluminescent element and organic electroluminescent element material
JP2016219487A (en) Organic electroluminescent element, display device, illuminating device, organic electroluminescent element material and novel compound
WO2018097156A1 (en) Organic electroluminescent element and composition for organic materials
JP2014044972A (en) Organic electroluminescent element, display device, lighting device, and method of manufacturing organic electroluminescent element
JP2018006700A (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND π-CONJUGATED COMPOUND
JP6593114B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND Aromatic Heterocyclic Derivative
JP2017079267A (en) Organic electroluminescent element, method of manufacturing organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
JP6319228B2 (en) Aromatic heterocycle derivative for organic electroluminescence device, organic electroluminescence device using the same, lighting device and display device
WO2018173600A1 (en) Organic electroluminescence element
JP5636630B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP6641947B2 (en) Organic electroluminescent element, display device, lighting device, and aromatic heterocyclic derivative
JP6641948B2 (en) Organic electroluminescent element, display device, lighting device, and aromatic heterocyclic derivative
WO2016194865A1 (en) Organic electroluminescent element
JP6606986B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND Aromatic Heterocyclic Derivative
JP6319231B2 (en) Aromatic heterocycle derivative for organic electroluminescence device, organic electroluminescence device using the same, lighting device and display device
JP6319230B2 (en) Aromatic heterocycle derivative for organic electroluminescence device, organic electroluminescence device using the same, lighting device and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6641947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250