JP2017100893A - Manufacturing method of nickel lithium metal composite oxide - Google Patents

Manufacturing method of nickel lithium metal composite oxide Download PDF

Info

Publication number
JP2017100893A
JP2017100893A JP2015233365A JP2015233365A JP2017100893A JP 2017100893 A JP2017100893 A JP 2017100893A JP 2015233365 A JP2015233365 A JP 2015233365A JP 2015233365 A JP2015233365 A JP 2015233365A JP 2017100893 A JP2017100893 A JP 2017100893A
Authority
JP
Japan
Prior art keywords
nickel
lithium
composite oxide
lithium metal
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015233365A
Other languages
Japanese (ja)
Other versions
JP6479633B2 (en
Inventor
弘顕 石塚
Hiroaki Ishizuka
弘顕 石塚
知巳 福浦
Tomomi Fukuura
知巳 福浦
三和子 西村
Miwako Nishimura
三和子 西村
弘規 石黒
Hiroki Ishiguro
弘規 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cs Energy Mat Ltd
CS Energy Materials Ltd
Original Assignee
Cs Energy Mat Ltd
CS Energy Materials Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59017791&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017100893(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cs Energy Mat Ltd, CS Energy Materials Ltd filed Critical Cs Energy Mat Ltd
Priority to JP2015233365A priority Critical patent/JP6479633B2/en
Publication of JP2017100893A publication Critical patent/JP2017100893A/en
Application granted granted Critical
Publication of JP6479633B2 publication Critical patent/JP6479633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a lithium ion battery cathode active material high performance and low cost.SOLUTION: There is provided a manufacturing method of a lithium ion metal composite oxide represented by the formula LiNiCoMOby using lithium carbonate as a lithium raw material and jetting oxidizable gas to a surface of a material burned in a burning process.SELECTED DRAWING: Figure 1

Description

本発明は、ニッケルリチウム金属複合酸化物の製造方法、該製造方法により得られるニッケルリチウム金属複合酸化物、これからなる正極活物質、該正極活物質を用いたリチウムイオン電池正極及びリチウムイオン電池に関する。   The present invention relates to a method for producing a nickel lithium metal composite oxide, a nickel lithium metal composite oxide obtained by the production method, a positive electrode active material comprising the same, a lithium ion battery positive electrode using the positive electrode active material, and a lithium ion battery.

パーソナルコンピュータ、携帯電話などの屋外で携帯使用できる情報端末機器の普及は、小型で軽量かつ高容量の電池の導入に因るところが大きい。ハイブリッド車の普及によって、高性能で安全性や耐久性の高い車両搭載用電池の需要も増している。更に搭載する電池の小型化と高容量化により電気自動車も実現されている。既に多くの企業・研究機関が情報端末機器や車輛に搭載される電池、特にリチウムイオン電池の技術開発に参入し、激しい競争が繰り広げられており、情報端末機器やハイブリッド車、EV車の市場競争の激化に伴い、現在、より低コストのリチウムイオン電池が強く求められており、品質とコストのバランスが課題となっている。   The spread of information terminal devices such as personal computers and mobile phones that can be used outdoors is largely due to the introduction of small, lightweight and high-capacity batteries. With the spread of hybrid vehicles, demand for high-performance, safe and durable batteries for vehicles is increasing. In addition, electric vehicles have also been realized by reducing the size and capacity of batteries. Many companies and research institutes have already entered the technological development of batteries installed in information terminal equipment and vehicles, especially lithium ion batteries, and fierce competition has been taking place. Market competition for information terminal equipment, hybrid cars, and EV cars In recent years, there has been a strong demand for lower-cost lithium-ion batteries, and the balance between quality and cost has become an issue.

最終的な工業製品の製造コストを下げるための手段としては、製品を構成する部材や材料の低コスト化がまず挙げられる。リチウムイオン電池においても、その必須構成部材である正極、負極、電解質、セパレータそれぞれの低コスト化が検討されている。このうち正極は正極活物質と呼ばれるリチウム含有金属酸化物を電極上に配置した部材である。正極活物質の低コスト化は、正極の低コスト化、さらに電池の低コスト化に欠かせない。   As a means for reducing the manufacturing cost of the final industrial product, firstly, cost reduction of members and materials constituting the product can be mentioned. Also in the lithium ion battery, cost reduction of the positive electrode, the negative electrode, the electrolyte, and the separator, which are essential components, is being studied. The positive electrode is a member in which a lithium-containing metal oxide called a positive electrode active material is disposed on the electrode. Lowering the cost of the positive electrode active material is indispensable for lowering the cost of the positive electrode and further reducing the cost of the battery.

現在、リチウムイオン電池の正極活物質として高容量が期待できるニッケル系活物質に注目が集まっている。典型的なニッケル系活物質の一つが、リチウムとニッケルの他にコバルトとアルミニウムを含む複合金属酸化物(LNCAO)である。LNCAOをはじめとするニッケル系活物質のリチウム源としては、水酸化リチウムが用いられている。   At present, a nickel-based active material that can be expected to have a high capacity as a positive electrode active material of a lithium ion battery is attracting attention. One typical nickel-based active material is a mixed metal oxide (LNCAO) containing cobalt and aluminum in addition to lithium and nickel. Lithium hydroxide is used as a lithium source for nickel-based active materials such as LNCAO.

本発明者は既に特願2014−174149号、2014−174150号、特願2014−174151号にて水酸化リチウムを原料とするLNCAO系リチウムイオン電池正極活物質とその製造方法を提案している(特許文献1,2,3)。上記製造方法の焼成工程では、主原料の水酸化ニッケルと水酸化リチウムとが以下の式で表される反応でリチウムとニッケルとの複合酸化物(LNO)が生成する。   The present inventor has already proposed an LNCAO-based lithium ion battery positive electrode active material using lithium hydroxide as a raw material and a method for producing the same in Japanese Patent Application Nos. 2014-174149, 2014-174150, and 2014-174151 ( Patent Documents 1, 2, 3). In the firing step of the above production method, a composite oxide (LNO) of lithium and nickel is generated by a reaction in which nickel hydroxide and lithium hydroxide as main raw materials are represented by the following formula.

(水酸化ニッケルと水酸化リチウムを原料とするLNOの製造)
4Ni(OH) + 4LiOH + O → 4LiNiO + 6H
(Manufacture of LNO from nickel hydroxide and lithium hydroxide)
4Ni (OH) 2 + 4LiOH + O 2 → 4LiNiO 2 + 6H 2 O

ところで、LNCAOを代表とするニッケル系活物質は、水酸化リチウムをリチウム源として製造されている(非特許文献1)。水酸化リチウムとしては、以下の式で表される反応で炭酸リチウムを原料として工業的に合成されたものが専ら用いられている(非特許文献2)。当然に、水酸化リチウムの価格はその原料である炭酸リチウムの価格よりも高い。   By the way, a nickel-based active material typified by LNCAO is manufactured using lithium hydroxide as a lithium source (Non-patent Document 1). As lithium hydroxide, what is industrially synthesized from lithium carbonate as a raw material by a reaction represented by the following formula is exclusively used (Non-patent Document 2). Naturally, the price of lithium hydroxide is higher than the price of lithium carbonate, which is the raw material.

(炭酸リチウムを原料とする水酸化リチウムの製造)
LiCO(水溶液) + Ca(OH)(水溶液) → 2LiOH(水溶液) + CaCO(固体)
(Production of lithium hydroxide from lithium carbonate)
Li 2 CO 3 (aqueous solution) + Ca (OH) 2 (aqueous solution) → 2LiOH (aqueous solution) + CaCO 3 (solid)

上述のように、リチウムイオン電池の高性能化と低コスト化への要求はますます高まっており、リチウムイオン電池の各部材、各部材を構成する材料の高性能化と低コスト化が必要とされている。LNOを含む正極活物質についても同様に、高品質化と低コスト化が求められている。   As described above, there is an increasing demand for higher performance and lower cost of lithium ion batteries, and it is necessary to improve the performance and cost of each component of the lithium ion battery and the materials constituting each member. Has been. Similarly, a positive electrode active material containing LNO is also required to have high quality and low cost.

より低価格の炭酸リチウム(LiCO)から出発してLNOを合成すれば、LNOを含む正極活物質の製造コストが低減できると予想される。炭酸リチウムの酸化リチウム及び/又は水酸化リチウムへの分解反応と、酸化リチウム及び/又は水酸化リチウムとニッケル化合物との反応とを一貫して行うことは、理論上は可能である。炭酸リチウムの酸化リチウム及び/又は水酸化リチウムへの分解反応が可能なより高い温度で一連の反応を行えばよい。 If LNO is synthesized starting from lower cost lithium carbonate (Li 2 CO 3 ), it is expected that the production cost of the positive electrode active material containing LNO can be reduced. It is theoretically possible to consistently perform the decomposition reaction of lithium carbonate into lithium oxide and / or lithium hydroxide and the reaction of lithium oxide and / or lithium hydroxide with a nickel compound. A series of reactions may be performed at a higher temperature at which the decomposition reaction of lithium carbonate into lithium oxide and / or lithium hydroxide is possible.

しかし、リチウムイオン電池用の正極活物質の製造では、コバルト系、マンガン系、ニッケル−コバルト−マンガン三元系(NCM)の活物質に限り、リチウム源として炭酸リチウムが用いられている(非特許文献1、特許文献4)。コバルト系正極活物質として典型的なコバルト酸リチウム(LCO)は、原料である炭酸リチウムと酸化コバルト及び/又は水酸化コバルトとを混合し、1000℃近傍の焼成温度で合成することにより製造することができる。この合成過程で、炭酸リチウムの酸化リチウム及び/又は水酸化リチウムへの分解反応が起こると考えられる。NCMの場合は、炭酸リチウムの分解温度近くまで焼成温度を昇温する必要があることから、900℃以上の高温焼成でNCMを製造している。   However, in the production of a positive electrode active material for a lithium ion battery, lithium carbonate is used as a lithium source only for cobalt-based, manganese-based, nickel-cobalt-manganese ternary (NCM) active materials (non-patented). Literature 1, Patent Literature 4). Lithium cobalt oxide (LCO), which is typical as a cobalt-based positive electrode active material, is manufactured by mixing lithium carbonate, which is a raw material, and cobalt oxide and / or cobalt hydroxide, and synthesizing at a firing temperature around 1000 ° C. Can do. It is considered that a decomposition reaction of lithium carbonate into lithium oxide and / or lithium hydroxide occurs during this synthesis process. In the case of NCM, since it is necessary to raise the firing temperature to near the decomposition temperature of lithium carbonate, NCM is produced by high-temperature firing at 900 ° C. or higher.

また特許文献5には、リチウム源として水酸化リチウムと炭酸リチウムを併用する例が記載されている。特許文献5に記載された製造方法は、マンガン化合物、コバルト化合物、ニッケル化合物、及びリチウム化合物を含有するスラリーを噴霧乾燥し、次いで焼成してリチウム遷移金属複合酸化物を製造する方法である。この方法は、リチウム化合物が水酸化リチウム及び炭酸リチウムを含み、全Li原子に対する炭酸リチウムに由来するLi原子の割合が5〜95モル%であって、前記スラリーの噴霧乾燥後、600℃以上、炭酸リチウムの融点(723℃)未満の温度で保持した後、引き続き炭酸リチウムの融点以上の温度で焼成することを特徴とする。   Patent Document 5 describes an example in which lithium hydroxide and lithium carbonate are used in combination as a lithium source. The production method described in Patent Document 5 is a method of producing a lithium transition metal composite oxide by spray drying a slurry containing a manganese compound, a cobalt compound, a nickel compound, and a lithium compound, and then firing the slurry. In this method, the lithium compound contains lithium hydroxide and lithium carbonate, the ratio of Li atoms derived from lithium carbonate to all Li atoms is 5 to 95 mol%, and after spray drying of the slurry, 600 ° C or higher, After holding at a temperature lower than the melting point (723 ° C.) of lithium carbonate, it is subsequently fired at a temperature higher than the melting point of lithium carbonate.

このように、炭酸リチウムを唯一のリチウム源として用いるニッケル系活物質(典型的にはLNO)の製造例は知られていない。このような製造方法が困難と言われる原因は、LNO型複合酸化物の層状構造がコバルト系等他のリチウムイオン電池用正極活物質の層状構造に比べて不安定であることと考えられる。高温下の反応では反応系の熱力学的エネルギーが増大するために、生成する各種複合酸化物の結晶構造が乱れると考えられる。具体的には、LNOの層状構造の3aサイト(リチウムイオンの層)と3bサイト(ニッケルイオンの層)が高温での熱振動によりイオン交換しリチウム層にニッケルが侵入するとともにニッケル層にリチウムが侵入する状態、いわゆるカチオンミックスが惹起される。それゆえ得られる正極活物質の性能が低下し、総合的には実用性の低い正極活物質しか得られないと予想されてきた。このような予想は当業者にとって説得力があったため、リチウムイオン電池正極活物質用LNO型複合酸化物の炭酸リチウムを原料とした製造法は、これまでほとんど検討されていなかった。   Thus, there is no known production example of a nickel-based active material (typically LNO) using lithium carbonate as the only lithium source. The reason why such a manufacturing method is said to be difficult is considered that the layered structure of the LNO type composite oxide is unstable compared to the layered structure of other positive electrode active materials for lithium ion batteries such as cobalt. In the reaction at high temperature, the thermodynamic energy of the reaction system is increased, so that it is considered that the crystal structures of various composite oxides to be generated are disturbed. Specifically, the 3a site (lithium ion layer) and the 3b site (nickel ion layer) of the layered structure of LNO are ion-exchanged by thermal vibration at a high temperature, and nickel enters the lithium layer and lithium enters the nickel layer. An invading state, so-called cation mix, is induced. Therefore, it has been expected that the performance of the obtained positive electrode active material is lowered, and that only a positive active material with low practicality can be obtained. Since such a prediction was persuasive to those skilled in the art, a method for producing LNO type composite oxide for lithium ion battery positive electrode active material using lithium carbonate as a raw material has been hardly studied so far.

出願人は、このような従来技術の限界に挑戦して、従来不可能と考えられてきた炭酸リチウムのみをリチウム源とするLNO系正極活物質の製造方法を探求した。その結果、焼成工程を高温焼成工程とこれに続く低温焼成工程の2段階で行うことにより要求に見合う性能のリチウムイオン電池用正極活物質を製造できることを発見し、既に特許出願を行っている(特許文献6)。   The applicant has challenged the limitations of the prior art and has sought a method for producing an LNO-based positive electrode active material using only lithium carbonate as a lithium source, which has been considered impossible in the past. As a result, it was discovered that a positive electrode active material for a lithium ion battery having a performance meeting the requirements can be produced by performing the firing step in two stages, a high temperature firing step and a subsequent low temperature firing step, and a patent application has already been filed ( Patent Document 6).

しかしながら、特許文献6に開示した製造方法では、比較的大規模な焼成を行う場合、例えば数キロから数十キロの原料をローラーハースキルン(RHK)内で焼成した場合に、相当量の炭酸リチウムが未反応のまま残存するという問題があった。焼成温度を上げて非常に長い時間かけて焼成すれば炭酸リチウムの消費効率は上がるものの、焼成に要するエネルギーが増大して生産コストの面では不利益が生じる。しかも得られたニッケルリチウム金属複合酸化物の正極活物質としての性能が低下するという問題も見出される。   However, in the manufacturing method disclosed in Patent Document 6, when a relatively large-scale firing is performed, for example, when a raw material of several kilos to several tens kilos is fired in a roller hearth kiln (RHK), a considerable amount of lithium carbonate Has remained unreacted. If the firing temperature is raised and firing for a very long time, the consumption efficiency of lithium carbonate increases, but the energy required for firing increases, resulting in a disadvantage in terms of production cost. In addition, there is also a problem that the performance of the obtained nickel lithium metal composite oxide as a positive electrode active material is lowered.

特願2014−174149号明細書Japanese Patent Application No. 2014-174149 特願2014−174150号明細書Japanese Patent Application No. 2014-174150 特願2014−174151号明細書Japanese Patent Application No. 2014-174151 国際公開2009/060603号公報International Publication No. 2009/060603 特開2005−324973号公報JP-A-2005-324973 特願2014−244059号明細書Japanese Patent Application No. 2014-244059

独立行政法人 石油天然ガス・金属鉱物資源機構 2012年報告書 148−154頁Japan Oil, Gas and Metals National Corporation 2012 Report 148-154 「月刊ファインケミカル」2009年11月号 81−82頁、シーエムシー出版"Monthly Fine Chemical" November 2009, pages 81-82, CM Publishing

このように、炭酸リチウムを唯一のリチウム源とするリチウムイオン電池用ニッケル系正極活物質の製造方法は十分な検討がなされておらず、多くの改良の余地がある。そこで、本発明者は引き続き、リチウムイオン電池正極活物質の高性能化と低コスト化を目指して炭酸リチウムを原料とするニッケル系正極材活物質とその製造方法の一層の改良を行った。   Thus, the manufacturing method of the nickel-type positive electrode active material for lithium ion batteries which uses lithium carbonate as the only lithium source is not examined enough, and there exists room for improvement. Accordingly, the present inventor has continued to further improve the nickel-based positive electrode active material using lithium carbonate as a raw material and a method for producing the same, aiming at higher performance and lower cost of the lithium ion battery positive electrode active material.

すなわち、リチウム源として炭酸リチウムを使用して比較的大量の原料を焼成する場合でも、正極活物質としての性能に優れるニッケルリチウム金属複合酸化物を高収率で製造する方法を求めて鋭意検討した。   That is, even when a relatively large amount of raw material is fired using lithium carbonate as a lithium source, the inventors have eagerly studied for a method for producing a nickel-lithium metal composite oxide having excellent performance as a positive electrode active material in a high yield. .

その結果、焼成工程における焼成雰囲気ガスの流れと組成を制御することによって、小スケールに限らず比較的大スケールでも正極活物質としての性能に優れるニッケルリチウム金属複合酸化物を高収率で製造することに成功した。   As a result, by controlling the flow and composition of the firing atmosphere gas in the firing process, a nickel-lithium metal composite oxide having excellent performance as a positive electrode active material is produced in a high yield not only in a small scale but also in a relatively large scale. Succeeded.

すなわち本発明は以下のものである。
(発明1)リチウム源として炭酸リチウムを使用し、以下の工程1及び/又は工程1’と、工程2とを含む、以下の式(1)で表されるニッケルリチウム金属複合酸化物の製造方法。
(工程1)ニッケル水酸化物及び/又はニッケル酸化物と、コバルト水酸化物及び/又はコバルト酸化物とを含む前駆体に、金属Mの水酸化物及び/又は金属Mの酸化物と、炭酸リチウムを混合する、混合工程。
(工程1’)ニッケル水酸化物及び/又はニッケル酸化物と、コバルト水酸化物及び/又はコバルト酸化物と、金属Mの水酸化物及び/又は金属Mの酸化物とを含む前駆体に、炭酸リチウムを混合する、混合工程。
(工程2)工程1及び/又は工程1’で得られた混合物を焼成する工程。ただし工程2において、焼成炉外から焼成炉内に酸化性ガスが導入され、焼成炉内では厘鉢に敷設された状態の上記混合物の表面に向かって上記酸化性ガスが噴射され、焼成炉内から焼成炉外に焼成雰囲気ガスが排出される。
That is, the present invention is as follows.
(Invention 1) A method for producing a nickel lithium metal composite oxide represented by the following formula (1), wherein lithium carbonate is used as the lithium source and includes the following step 1 and / or step 1 ′ and step 2 .
(Step 1) A precursor containing nickel hydroxide and / or nickel oxide, cobalt hydroxide and / or cobalt oxide, metal M hydroxide and / or metal M oxide, and carbonic acid Mixing step of mixing lithium.
(Step 1 ′) a precursor containing nickel hydroxide and / or nickel oxide, cobalt hydroxide and / or cobalt oxide, and metal M hydroxide and / or metal M oxide, Mixing step of mixing lithium carbonate.
(Step 2) A step of firing the mixture obtained in Step 1 and / or Step 1 ′. However, in step 2, an oxidizing gas is introduced from the outside of the firing furnace into the firing furnace, and the oxidizing gas is jetted toward the surface of the mixture in a state laid in a sagger in the firing furnace. The firing atmosphere gas is discharged out of the firing furnace.

Figure 2017100893
(式(1)中、0.90<a<1.10、1.7<b<2.2、0.01<x<0.15、かつ0.005<y<0.10であり、MはAlを必須元素として含み、Mn、W、Nb、Mg、Zr、及びZnから選ばれる元素を含んでもよい金属である。)
Figure 2017100893
(In formula (1), 0.90 <a <1.10, 1.7 <b <2.2, 0.01 <x <0.15, and 0.005 <y <0.10, M is a metal that contains Al as an essential element and may contain an element selected from Mn, W, Nb, Mg, Zr, and Zn.)

(発明2)工程2の昇温時に上記混合物の表面温度が500℃に達した時点での焼成雰囲気の二酸化炭素濃度が0.1体積%以下となるように焼成温度と焼成雰囲気ガスを調節する、発明1のニッケルリチウム金属複合酸化物の製造方法。   (Invention 2) The firing temperature and firing atmosphere gas are adjusted so that the carbon dioxide concentration in the firing atmosphere at the time when the surface temperature of the mixture reaches 500 ° C. at the time of temperature rise in Step 2 is 0.1% by volume or less. The manufacturing method of the nickel lithium metal complex oxide of invention 1.

(発明3)工程2で連続式炉あるいはバッチ式炉を用いる、発明1又は発明2のニッケルリチウム金属複合酸化物の製造方法。   (Invention 3) The method for producing a nickel-lithium metal composite oxide of Invention 1 or Invention 2, wherein a continuous furnace or a batch furnace is used in Step 2.

(発明4)工程2でロータリーキルン、ローラーハースキルン、マッフル炉から選ばれる焼成炉を用いる、発明1〜3のいずれか1の発明のニッケルリチウム金属複合酸化物の製造方法。   (Invention 4) The method for producing a nickel-lithium metal composite oxide according to any one of Inventions 1 to 3, wherein a firing furnace selected from a rotary kiln, a roller hearth kiln, and a muffle furnace is used in Step 2.

(発明5)工程2を経て炭酸リチウムの残留量が0.5重量%以下(ただし工程2で得られた焼成物全量を100重量部とする)であるニッケルリチウム金属複合酸化物焼成物が得られる、発明1〜4のいずれか1の発明のニッケルリチウム金属複合酸化物の製造方法。   (Invention 5) A nickel lithium metal composite oxide fired product having a residual amount of lithium carbonate of 0.5% by weight or less (provided that the total amount of the fired product obtained in Step 2 is 100 parts by weight) is obtained through Step 2. A method for producing a nickel lithium metal composite oxide according to any one of inventions 1 to 4.

(発明6)工程2の後に、工程2で得られた焼成物を解砕する工程及び/又は工程2を経た焼成物を篩掛する工程をさらに含む、発明1〜5のいずれか1の発明のニッケルリチウム金属複合酸化物の製造方法。   (Invention 6) The invention according to any one of Inventions 1 to 5, further comprising, after Step 2, a step of crushing the fired product obtained in Step 2 and / or a step of sieving the fired product after Step 2 Method for producing a nickel lithium metal composite oxide.

(発明7)以下の式(1)で表されるニッケルリチウム金属複合酸化物であって、   (Invention 7) A nickel lithium metal composite oxide represented by the following formula (1):

Figure 2017100893
(式(1)中、0.90<a<1.10、1.7<b<2.2、0.01<x<0.15、かつ0.005<y<0.10であり、MはAlを必須元素として含み、Mn、W、Nb、Mg、Zr、及びZnから選ばれる元素を含んでもよい金属である。)
炭酸リチウムの残留量が0.5重量%以下(ただしニッケルリチウム金属複合酸化物全量を100重量部とする)であり、
さらに、
該ニッケルリチウム金属複合酸化物とカーボンブラックとバインダーとを含む正極活物質合剤の塗膜乾燥物を備える正極と、リチウム金属からなる負極とを備えるリチウムイオン電池の0.1C放電容量が180mAh/g以上であり、かつ、
該ニッケルリチウム金属複合酸化物とカーボンブラックとバインダーとを含む正極活物質合剤の塗膜乾燥物を備える正極と、リチウム金属からなる負極とを備えるリチウムイオン電池の初回の充放電効率が83%以上であるリチウムイオン電池正極活物質として機能する、
ニッケルリチウム金属複合酸化物。
Figure 2017100893
(In formula (1), 0.90 <a <1.10, 1.7 <b <2.2, 0.01 <x <0.15, and 0.005 <y <0.10, M is a metal that contains Al as an essential element and may contain an element selected from Mn, W, Nb, Mg, Zr, and Zn.)
The residual amount of lithium carbonate is 0.5% by weight or less (however, the total amount of nickel lithium metal composite oxide is 100 parts by weight),
further,
A 0.1 C discharge capacity of a lithium ion battery comprising a positive electrode provided with a dried film of a positive electrode active material mixture containing the nickel lithium metal composite oxide, carbon black, and a binder, and a negative electrode made of lithium metal is 180 mAh / g or more, and
The initial charge / discharge efficiency of a lithium ion battery comprising a positive electrode provided with a dried coating film of a positive electrode active material mixture containing the nickel lithium metal composite oxide, carbon black, and a binder, and a negative electrode made of lithium metal is 83%. It functions as a lithium ion battery positive electrode active material,
Nickel lithium metal composite oxide.

(発明8)発明1〜6のいずれか1の発明のニッケルリチウム金属複合酸化物の製造方法で得られたものである、発明7のニッケルリチウム金属複合酸化物。   (Invention 8) The nickel-lithium metal composite oxide of Invention 7, which is obtained by the method for producing a nickel-lithium metal composite oxide of any one of Inventions 1-6.

(発明9)発明7又は8のニッケルリチウム金属複合酸化物を含む正極活物質。   (Invention 9) A positive electrode active material comprising the nickel lithium metal composite oxide of Invention 7 or 8.

(発明10)発明9の正極活物質を含むリチウムイオン電池用正極合剤。   (Invention 10) A positive electrode mixture for a lithium ion battery comprising the positive electrode active material of Invention 9.

(発明11)発明10のリチウムイオン電池用正極合剤を用いたリチウムイオン電池用正極。   (Invention 11) A positive electrode for a lithium ion battery using the positive electrode mixture for a lithium ion battery according to Invention 10.

(発明12)発明11のリチウムイオン電池用正極を備えるリチウムイオン電池。   (Invention 12) A lithium ion battery comprising the positive electrode for a lithium ion battery according to Invention 11.

(発明13)発明1〜6のいずれか1の発明のニッケルリチウム金属複合酸化物の製造方法に用いる焼成炉であって、
焼成雰囲気に焼成される材料を収納した容器が置かれ、
上記容器は焼成雰囲気に開口しており、
酸化性ガスを焼成雰囲気中に導入するための管が焼成炉外から上記容器の開口部に至って設置され、
上記管の端部は上記容器に収納された焼成される原料の表面に酸化性ガスの噴射流が直接接触する位置にあり、
焼成雰囲気内部のガスを排出するための上記酸化性ガスの導入管とは異なる流路が設けられている、焼成炉。
(Invention 13) A firing furnace used in the method for producing a nickel lithium metal composite oxide according to any one of Inventions 1 to 6,
A container containing the material to be fired is placed in the firing atmosphere,
The container is open to the firing atmosphere,
A tube for introducing the oxidizing gas into the firing atmosphere is installed from the outside of the firing furnace to the opening of the container,
The end of the tube is in a position where the jet of oxidizing gas directly contacts the surface of the raw material to be baked stored in the container,
A firing furnace provided with a flow path different from the oxidizing gas introduction pipe for discharging the gas inside the firing atmosphere.

本発明のニッケルリチウム金属複合酸化物の製造方法を用いれば、リチウム源として炭酸リチウムを用いて比較的大きなスケールでニッケルリチウム金属複合酸化物を製造する際の炭酸リチウムの消費効率を向上し、得られるニッケルリチウム金属複合酸化物の正極活物質としての性能を向上することができる。   By using the method for producing a nickel-lithium metal composite oxide of the present invention, it is possible to improve the consumption efficiency of lithium carbonate when producing nickel-lithium metal composite oxide on a relatively large scale using lithium carbonate as a lithium source. The performance as a positive electrode active material of the nickel lithium metal composite oxide obtained can be improved.

実施例1で用いた焼成炉の1例を模式的に示す。An example of the firing furnace used in Example 1 is schematically shown. 本発明の工程2で用いる焼成炉の他の1例を模式的に示す。酸化性ガス導入管の端部が焼成される原料を収納した容器の上部で拡張開口しており、原料の表面全体に向かって酸化性ガスが噴射される様子を示す。Another example of a firing furnace used in step 2 of the present invention is schematically shown. An end of the oxidizing gas introduction pipe is expanded at the upper part of the container containing the raw material to be fired, and the state where the oxidizing gas is injected toward the entire surface of the raw material is shown. 比較例1で用いた焼成炉を模式的に示す。The firing furnace used in Comparative Example 1 is schematically shown.

本発明の製造方法によって、以下の式(1)で表されるニッケルリチウム金属複合酸化物が得られる。式(1)中のMはAlを必須元素として含み、Mn、W、Nb、Mg、Zr、およびZnから選ばれる金属を含んでもよい金属元素である。任意の構成元素である上記Mn、W、Nb、Mg、Zr、Znから選ばれる1種類以上の金属の量は、式(1)で表されるニッケルリチウム金属複合酸化物のニッケル系正極活物質としての機能を損なわない範囲であれば如何様であってもよい。   By the production method of the present invention, a nickel lithium metal composite oxide represented by the following formula (1) is obtained. M in the formula (1) is a metal element that contains Al as an essential element and may contain a metal selected from Mn, W, Nb, Mg, Zr, and Zn. The amount of one or more kinds of metals selected from Mn, W, Nb, Mg, Zr and Zn, which are optional constituent elements, is a nickel-based positive electrode active material of a nickel-lithium metal composite oxide represented by the formula (1) As long as it does not impair the function, any method may be used.

上記Mn、W、Nb、Mg、Zr、Znから選ばれる1種類以上の金属が上記ニッケルリチウム金属複合酸化物に供給される時点は、本発明の製造方法のいずれの工程であっても良い。例えば原料に含まれる不純物として供給されてもよく、必須の工程である後述の工程1あるいは工程1’に副成分として供給されてもよく、あるいは、任意の工程で供給されてもよい。   The time when one or more kinds of metals selected from Mn, W, Nb, Mg, Zr, and Zn are supplied to the nickel-lithium metal composite oxide may be any step of the production method of the present invention. For example, it may be supplied as an impurity contained in the raw material, may be supplied as a sub-component in the below-described step 1 or step 1 ′ which is an essential step, or may be supplied in an arbitrary step.

LiNi1−x−y Co ・・・(1)
(ただし式(1)中、0.90<a<1.10、1.7<b<2.2、0.01<x<0.15、0.005<y<0.10であり、Mは、Alであるか、あるいは、Mn、W、Nb、Mg、Zr、Znから選ばれる1種類以上の微量の金属を含むAlである。)
Li a Ni 1-x-y Co x M y O b ··· (1)
(In the formula (1), 0.90 <a <1.10, 1.7 <b <2.2, 0.01 <x <0.15, 0.005 <y <0.10, M is Al or Al containing one or more trace amounts of metals selected from Mn, W, Nb, Mg, Zr, and Zn.)

本発明ではまず、工程1及び/又は工程1’でニッケルリチウム金属複合酸化物を構成する金属の原料を混合する。得られた混合物を後述の工程2で焼成して目的のニッケルリチウム金属複合酸化物を得る。以下に本発明の製造方法の各工程について説明する。各工程の操作と各工程で起こる化学反応を簡潔に説明するために、式(1)中のMがAlである例について記載する。式(1)中のMがAl以外の金属を含む場合の製造方法はこの例に準じる。   In the present invention, first, in step 1 and / or step 1 ', the metal raw materials constituting the nickel lithium metal composite oxide are mixed. The obtained mixture is fired in Step 2 described later to obtain the target nickel lithium metal composite oxide. Below, each process of the manufacturing method of this invention is demonstrated. In order to briefly explain the operation of each step and the chemical reaction occurring in each step, an example in which M in formula (1) is Al will be described. The production method in the case where M in formula (1) contains a metal other than Al follows this example.

(工程1)ニッケル水酸化物及び/又はニッケル酸化物と、コバルト水酸化物及び/又はコバルト酸化物とを含む前駆体に、金属Mの水酸化物及び/又は金属Mの酸化物と、炭酸リチウムを混合する混合工程である。炭酸リチウムは水酸化リチウム(通常は水酸化リチウム1水和物)の原料である。前述の通り、従来技術ではニッケルリチウム金属複合酸化物の原料として水酸化リチウムが用いられてきた。単位重量あたりの価格で比較すると炭酸リチウムは水酸化リチウムより安価である点、単位重量あたりのリチウム含有量で比べると炭酸リチウムは水酸化リチウム1水和物に比べてより高濃度のリチウムを含有する点で、炭酸リチウムの使用は有利である。混合は各種ミキサーを用い、せん断力をかけて行う。   (Step 1) A precursor containing nickel hydroxide and / or nickel oxide, cobalt hydroxide and / or cobalt oxide, metal M hydroxide and / or metal M oxide, and carbonic acid It is a mixing step of mixing lithium. Lithium carbonate is a raw material for lithium hydroxide (usually lithium hydroxide monohydrate). As described above, in the prior art, lithium hydroxide has been used as a raw material for the nickel lithium metal composite oxide. Compared with price per unit weight, lithium carbonate is cheaper than lithium hydroxide. Compared with lithium content per unit weight, lithium carbonate contains a higher concentration of lithium than lithium hydroxide monohydrate. Thus, the use of lithium carbonate is advantageous. Mixing is performed using various mixers and applying a shearing force.

(工程1’)ニッケル水酸化物及び/又はニッケル酸化物と、コバルト水酸化物及び/又はコバルト酸化物と、金属Mの水酸化物及び/又は金属Mの酸化物とを含む前駆体に、炭酸リチウムを混合する混合工程である。工程1で説明したように炭酸リチウムの使用は製造コストの面で有利である。混合は各種ミキサーを用い、せん断力をかけて行う。   (Step 1 ′) a precursor containing nickel hydroxide and / or nickel oxide, cobalt hydroxide and / or cobalt oxide, and metal M hydroxide and / or metal M oxide, It is a mixing process of mixing lithium carbonate. As described in Step 1, the use of lithium carbonate is advantageous in terms of production cost. Mixing is performed using various mixers and applying a shearing force.

本発明の混合工程で得られた原料混合物を後述の工程2に用いる。工程2に用いる焼成材料は、工程1で準備された混合物のみであっても、工程1’で準備された混合物のみであっても、工程1で準備された混合物と工程1’で準備された混合物をさらに混合したものであっても良い。   The raw material mixture obtained in the mixing step of the present invention is used in Step 2 described later. The firing material used in Step 2 was prepared in Step 1 ′ with the mixture prepared in Step 1, whether it was only the mixture prepared in Step 1 or only the mixture prepared in Step 1 ′. A mixture obtained by further mixing the mixture may be used.

(工程2) 工程1及び/又は工程1’で得られた混合物を500℃〜850℃の温度域で3〜40時間焼成する工程である。工程2では焼成雰囲気ガスの流入と排出を制御する。すなわち工程2において、ただし工程2において、上記混合物は焼成雰囲気に開口して設置された容器に敷設されており、焼成雰囲気外から焼成雰囲気内に酸化性ガスが導入され、上記混合物の表面に向かって上記酸化性ガスが噴射され、焼成雰囲気内のガスが上記酸化性ガスの流路とは異なる流路によって焼成雰囲気外に排出される。このように工程2は焼成雰囲気のガスの流れと組成を制御しながら行われる。 (Step 2) In this step, the mixture obtained in Step 1 and / or Step 1 'is baked in a temperature range of 500 ° C to 850 ° C for 3 to 40 hours. In step 2, the inflow and discharge of the firing atmosphere gas are controlled. That is, in Step 2, however, in Step 2, the mixture is laid in a container that is opened in the firing atmosphere, and an oxidizing gas is introduced from the outside of the firing atmosphere into the firing atmosphere toward the surface of the mixture. The oxidizing gas is injected, and the gas in the firing atmosphere is discharged out of the firing atmosphere through a flow path different from the flow path of the oxidizing gas. Thus, step 2 is performed while controlling the gas flow and composition in the firing atmosphere.

上記焼成炉の焼成雰囲気には上記混合物を敷設するための容器が置かれる。この容器は焼成雰囲気に開口している。通常、このような容器として耐熱性セラミック製の平皿、鉢、槽が用いられる。容器の容積や形状は焼成に用いる混合物の量や、焼成炉の構造に応じて自在に適宜設計できる。上記混合物は上記容器に均一に敷設される。   A container for laying the mixture is placed in the firing atmosphere of the firing furnace. This container is open to the firing atmosphere. Usually, a flat plate, a bowl, and a tank made of heat-resistant ceramic are used as such a container. The volume and shape of the container can be appropriately designed according to the amount of the mixture used for firing and the structure of the firing furnace. The mixture is laid uniformly on the container.

酸化性ガスが、焼成雰囲気外から焼成雰囲気内に供給される。酸化性ガスは上記混合物に含まれる金属の酸化反応を促進する組成であればよく、好ましくは酸素含有気体であり、さらに好ましくは純酸素、空気、空気に酸素を加えた混合気体、もしくは窒素、アルゴン、ヘリウム等の不活性ガスに酸素を加えたガスである。   An oxidizing gas is supplied from outside the firing atmosphere into the firing atmosphere. The oxidizing gas may be any composition that promotes the oxidation reaction of the metal contained in the mixture, preferably an oxygen-containing gas, more preferably pure oxygen, air, a mixed gas obtained by adding oxygen to air, or nitrogen, A gas obtained by adding oxygen to an inert gas such as argon or helium.

上記酸化性ガスは、焼成炉外から上記容器の開口部に至る管によって焼成雰囲気中に導入される。酸化性ガスの流量は焼成炉外のガスタンク、管に設けられたセンサーによって自在に調節できる。上記容器の開口部に位置する上記管の端部から酸化性ガスが噴出する。酸化性ガスは容器の開口部に広がる上記混合物の表面に流圧を伴って接触する。この「流圧を伴って」は、一旦焼成雰囲気中に流入した酸化性ガスが拡散によって上記混合物表面に接触するのではなく、酸化性ガス自体の流れが上記管の端部から上記混合物の表面に達するという意味である。上記管の端部の位置は、このような状態で酸化性ガスが混合物表面に接触するような位置に決められる。より広い表面に酸化性ガス流を均一に到達させるために管の端部を拡張することもできる。   The oxidizing gas is introduced into the firing atmosphere through a tube extending from the outside of the firing furnace to the opening of the container. The flow rate of the oxidizing gas can be freely adjusted by a sensor provided in a gas tank or pipe outside the firing furnace. Oxidizing gas is ejected from the end of the tube located at the opening of the container. The oxidizing gas contacts the surface of the mixture spreading at the opening of the container with a fluid pressure. This “with flow pressure” means that the oxidizing gas once flowing into the firing atmosphere does not come into contact with the surface of the mixture by diffusion, but the flow of the oxidizing gas itself from the end of the tube to the surface of the mixture. It means to reach. The position of the end of the tube is determined such that the oxidizing gas contacts the surface of the mixture in such a state. The end of the tube can also be expanded to allow the oxidizing gas flow to reach a wider surface uniformly.

焼成雰囲気内部のガスは、上記酸化性ガスの導入管とは異なる流路で焼成炉外に排出される。通常は焼成部位の上部の排気口を経て焼成雰囲気内部のガスが排出される。   The gas inside the firing atmosphere is discharged out of the firing furnace through a flow path different from the oxidizing gas introduction pipe. Usually, the gas inside the firing atmosphere is discharged through the exhaust port at the top of the firing site.

工程2では、容器に敷設された混合物の表面温度が昇温開始後500℃に達した時点で焼成雰囲気ガスの炭酸ガス濃度が0.1体積%以下となるように、上記酸化性ガスの流入量、排気量を調節する。この調節のため、容器に敷設された混合物の表面温度と焼成雰囲気ガス組成を測定する。   In step 2, when the surface temperature of the mixture laid on the container reaches 500 ° C. after the start of temperature increase, the oxidizing gas flows in such a manner that the carbon dioxide concentration of the firing atmosphere gas becomes 0.1% by volume or less. Adjust the volume and displacement. For this adjustment, the surface temperature and the firing atmosphere gas composition of the mixture laid on the container are measured.

昇温開始後は、500℃〜850℃の温度域、好ましくは500℃〜850℃の温度域で焼成する。焼成温度が500℃未満では未反応の炭酸リチウムが多量に残存しニッケルリチウム金属複合酸化物の生産効率が低下する。しかもこのような低すぎる温度で焼成して製造されたニッケルリチウム金属複合酸化物のリチウムイオン電池用正極活物質に利用すると、十分な電池性能が得られない。焼成温度が850℃を超えると未反応の炭酸リチウムは減少するが、製造されたニッケルリチウム金属複合酸化物のリチウムイオン電池用正極活物質に利用すると、十分な電池性能が得られない。このような高すぎる温度で焼成した場合にはいわゆるカチオンミックス現象が生じると考えられる。   After the start of temperature increase, firing is performed in a temperature range of 500 ° C to 850 ° C, preferably in a temperature range of 500 ° C to 850 ° C. When the firing temperature is less than 500 ° C., a large amount of unreacted lithium carbonate remains and the production efficiency of the nickel lithium metal composite oxide is lowered. In addition, when the nickel-lithium metal composite oxide produced by firing at such a low temperature is used as a positive electrode active material for a lithium ion battery, sufficient battery performance cannot be obtained. When the firing temperature exceeds 850 ° C., the unreacted lithium carbonate decreases, but when the produced nickel-lithium metal composite oxide is used as a positive electrode active material for a lithium ion battery, sufficient battery performance cannot be obtained. When firing at such a high temperature, a so-called cation mix phenomenon is considered to occur.

工程2では上記焼成温度で3〜40時間、好ましくは5〜35時間かけて焼成する。焼成時間が3時間より短いと未反応の炭酸リチウムが多量に残存しニッケルリチウム金属複合酸化物の生産効率が低下する。しかもこのような低すぎる温度で焼成して製造されたニッケルリチウム金属複合酸化物のリチウムイオン電池用正極活物質に利用すると、十分な電池性能が得られない。焼成時間が40時間より長いと炭酸リチウムの消費率はもはや上がらないから経済的に好ましくない。   In step 2, the calcination is performed at the above calcination temperature for 3 to 40 hours, preferably 5 to 35 hours. When the firing time is shorter than 3 hours, a large amount of unreacted lithium carbonate remains and the production efficiency of the nickel lithium metal composite oxide is lowered. In addition, when the nickel-lithium metal composite oxide produced by firing at such a low temperature is used as a positive electrode active material for a lithium ion battery, sufficient battery performance cannot be obtained. If the firing time is longer than 40 hours, the consumption rate of lithium carbonate no longer increases, which is economically undesirable.

工程2で用いる焼成炉は、上述のような焼成雰囲気ガスの流入と排出が可能な構造であれば制限されない。好ましい焼成炉は商業生産を想定した比較的大量の原料混合物を焼成することができる連続式あるいはバッチ式炉である。例えば、ロータリーキルン、ローラーハースキルン、マッフル炉などを使用することができる。効率よく酸化性ガスを導入するためには焼成雰囲気ガスの供給口と排出口が容器開口部に接近した構造のものが好ましい。容器内の混合物を攪拌しながら焼成できる構造のものは、混合物が均一に焼成できるという点で好ましい。   The firing furnace used in step 2 is not limited as long as it has a structure capable of inflow and exhaust of the firing atmosphere gas as described above. A preferred firing furnace is a continuous or batch furnace capable of firing a relatively large amount of a raw material mixture intended for commercial production. For example, a rotary kiln, a roller hearth kiln, a muffle furnace, etc. can be used. In order to efficiently introduce the oxidizing gas, a structure in which the supply port and the discharge port of the firing atmosphere gas are close to the container opening is preferable. A structure that can be fired while stirring the mixture in the container is preferable in that the mixture can be fired uniformly.

工程2の終了時に炭酸リチウムはほぼ完全に消費されてニッケルリチウム金属複合酸化物を形成している。その結果、正極活物質としての性能に優れるニッケルリチウム金属複合酸化物が得られる。このような本発明のニッケルリチウム金属複合酸化物の性能は、以下の評価によって確認することができる。   At the end of step 2, lithium carbonate is almost completely consumed to form a nickel lithium metal composite oxide. As a result, a nickel lithium metal composite oxide having excellent performance as a positive electrode active material can be obtained. The performance of the nickel lithium metal composite oxide of the present invention can be confirmed by the following evaluation.

(炭酸リチウムの溶出量の定量)
得られたニッケルリチウム金属複合酸化物2gを25℃100mlの水に分散した上澄みの炭酸リチウムの溶出量は0.5重量%以下を示す。
(Quantification of elution amount of lithium carbonate)
The elution amount of supernatant lithium carbonate obtained by dispersing 2 g of the obtained nickel lithium metal composite oxide in 100 ml of water at 25 ° C. is 0.5% by weight or less.

(放電容量)
本発明のニッケルリチウム金属複合酸化物にカーボンブラック及びバインダーを配合した正極活物質を含む合剤が塗布された正極とリチウム金属からなる負極とを備えるリチウムイオン電池の0.1C放電容量は180mAh/g以上である。
(Discharge capacity)
A 0.1 C discharge capacity of a lithium ion battery including a positive electrode in which a mixture containing a positive electrode active material in which carbon black and a binder are mixed with the nickel lithium metal composite oxide of the present invention and a negative electrode made of lithium metal is 180 mAh / g or more.

(充放電特性)
本発明のニッケルリチウム金属複合酸化物にカーボンブラック及びバインダーを配合した正極活物質を含む合剤が塗布された正極とリチウム金属からなる負極とを備えるリチウムイオン電池の初回充放電効率は83%以上である。
(Charge / discharge characteristics)
The initial charge / discharge efficiency of a lithium ion battery comprising a positive electrode in which a mixture containing a positive electrode active material in which carbon black and a binder are mixed with the nickel lithium metal composite oxide of the present invention and a negative electrode made of lithium metal is 83% or more It is.

工程2の後に、工程2で得られた焼成物をボールミル、ジェットミル、乳鉢など用いて解砕する工程を設けることができる。またさらに工程2の後に、工程2で得られた焼成物粒子を篩う工程を設けることもできる。このような解砕工程、篩工程の両方を行っても良い。このような解砕工程及び/又は篩工程によって、充填性や粒度分布が調整された微細粒子状のニッケルリチウム金属複合酸化物を製造することができる。本発明のニッケルリチウム金属複合酸化物は、最終的にはメジアン径が好ましくは20μm以下、さらに好ましくは3〜15μmの範囲に調整される。   After step 2, a step of crushing the fired product obtained in step 2 using a ball mill, jet mill, mortar, or the like can be provided. Further, after step 2, a step of sieving the fired product particles obtained in step 2 may be provided. You may perform both such a crushing process and a sieving process. By such a pulverization step and / or a sieving step, a fine-particle nickel-lithium metal composite oxide with adjusted fillability and particle size distribution can be produced. The nickel lithium metal composite oxide of the present invention is finally adjusted to have a median diameter of preferably 20 μm or less, more preferably 3 to 15 μm.

本発明により炭酸リチウムを原料に用いて比較的大スケールで効率よく、リチウムイオン電池の正極活物質として好適なニッケルリチウム金属複合酸化物が提供される。本発明のニッケルリチウム金属複合酸化物粉体のみでリチウムイオン電池の正極活物質を構成してもよいし、本発明のニッケルリチウム金属複合酸化物粉体に他のリチウムイオン二次電池用正極活物質を混合してもよい。例えば、本発明のニッケルリチウム金属複合酸化物粉体50重量部と、本発明以外のリチウムイオン二次電池用正極活物質50重量部とを混合したものを正極活物質として用いることもできる。リチウムイオン二次電池の正極を製造する場合には、上述の本発明のニッケルリチウム金属複合酸化物粉体を含む正極活物質、導電助剤、バインダー、分散用有機溶媒を加えて正極用合剤スラリーを調製し、電極に塗布し、リチウムイオン二次電池用正極を製造する。   According to the present invention, there is provided a nickel-lithium metal composite oxide suitable for use as a positive electrode active material of a lithium ion battery, efficiently using lithium carbonate as a raw material on a relatively large scale. The positive electrode active material of the lithium ion battery may be constituted only by the nickel lithium metal composite oxide powder of the present invention, or the positive electrode active material for other lithium ion secondary batteries may be added to the nickel lithium metal composite oxide powder of the present invention. Substances may be mixed. For example, a mixture of 50 parts by weight of the nickel lithium metal composite oxide powder of the present invention and 50 parts by weight of a positive electrode active material for a lithium ion secondary battery other than the present invention can be used as the positive electrode active material. When manufacturing a positive electrode of a lithium ion secondary battery, a positive electrode active material containing the above-described nickel lithium metal composite oxide powder of the present invention, a conductive additive, a binder, and an organic solvent for dispersion are added to mix the positive electrode. A slurry is prepared and applied to an electrode to produce a positive electrode for a lithium ion secondary battery.

(実施例1)
以下の工程1、工程2を経て本発明のニッケルリチウム金属複合酸化物を製造した。
(工程1)硫酸ニッケルと硫酸コバルトの水溶液から調製した水酸化ニッケルおよび水酸化コバルトで構成される平均粒径13.6μmの前駆体に水酸化アルミニウムと炭酸リチウムをミキサーでせん断をかけて混合した。なお、水酸化アルミニウムは前駆体量に対してアルミニウムが2モル%となるように、炭酸リチウムはニッケル−コバルト−アルミニウムの合計に対するモル比が1.025となるように各々調製した。
Example 1
The nickel lithium metal composite oxide of the present invention was manufactured through the following steps 1 and 2.
(Process 1) Aluminum hydroxide and lithium carbonate were mixed with a precursor having an average particle diameter of 13.6 μm composed of nickel hydroxide and cobalt hydroxide prepared from an aqueous solution of nickel sulfate and cobalt sulfate by shearing with a mixer. . The aluminum hydroxide was prepared so that the aluminum content was 2 mol% with respect to the precursor amount, and the lithium carbonate was prepared so that the molar ratio with respect to the total of nickel-cobalt-aluminum was 1.025.

(工程2)図1に示すセラミック製焼成鉢を搭載した焼成炉を用いて工程1で得られた前駆体混合物を焼成した。焼成炉には、焼成雰囲気を水平方向に貫通する純酸素の導入管が設けられている。セラミック容器開口部には焼成雰囲気ガスサンプリング用ステンレス管が設置されている。サンプリングの際にはステンレス管から5秒間吸引して集められた焼成雰囲気ガスの炭酸ガス濃度をガス検知管にて測定する。またセラミック容器内部には温度センサーが置かれる。混合物の表面に温度センサーを密着させた。工程1で得られた混合物400gを焼成容器に入れ、セラミック容器に敷設された。導入管から毎時2000リットルの純酸素を供給し、純酸素を上記混合物の表面に直接吹き付け、容器の上部から排気しながら、昇温を開始した。混合物の表面温度が500℃に達した時点で焼成雰囲気ガスサンプルの炭酸ガス濃度は0.05体積%を示した。昇温して810℃で10時間維持した。その後温度を780℃に下げて5時間維持した。こうして本発明のニッケルリチウム金属複合酸化物が得られた。   (Step 2) The precursor mixture obtained in Step 1 was fired using a firing furnace equipped with a ceramic firing pot shown in FIG. The firing furnace is provided with a pure oxygen introduction tube penetrating the firing atmosphere in the horizontal direction. A firing atmosphere gas sampling stainless steel tube is installed in the opening of the ceramic container. At the time of sampling, the carbon dioxide concentration of the firing atmosphere gas collected by sucking from the stainless steel tube for 5 seconds is measured with a gas detector tube. A temperature sensor is placed inside the ceramic container. A temperature sensor was adhered to the surface of the mixture. 400 g of the mixture obtained in step 1 was put in a firing container and laid in a ceramic container. 2000 liters of pure oxygen was supplied from the introduction pipe every hour, and the temperature was increased while pure oxygen was sprayed directly on the surface of the mixture and exhausted from the top of the container. When the surface temperature of the mixture reached 500 ° C., the carbon dioxide concentration of the firing atmosphere gas sample was 0.05% by volume. The temperature was raised and maintained at 810 ° C. for 10 hours. Thereafter, the temperature was lowered to 780 ° C. and maintained for 5 hours. Thus, the nickel lithium metal composite oxide of the present invention was obtained.

(実施例2)
実施例1と同じ焼成設備を用いた。工程1で得られた混合物400gを容器に入れて昇温を開始した。導入管から毎時2000リットルの純酸素を供給し、純酸素を上記混合物の表面に直接吹き付け、容器の上部から排気しながら、昇温を開始した。混合物の表面温度が500℃に達した時点で焼成雰囲気ガスサンプルの炭酸ガス濃度は0.05体積%を示した。昇温して690℃で35時間維持し、さらに昇温して810℃で10時間維持した。こうして本発明のニッケルリチウム金属複合酸化物が得られた。
(Example 2)
The same firing equipment as in Example 1 was used. 400 g of the mixture obtained in step 1 was put in a container, and the temperature increase was started. 2000 liters of pure oxygen was supplied from the introduction pipe every hour, and the temperature was increased while pure oxygen was sprayed directly on the surface of the mixture and exhausted from the top of the container. When the surface temperature of the mixture reached 500 ° C., the carbon dioxide concentration of the firing atmosphere gas sample was 0.05% by volume. The temperature was raised and maintained at 690 ° C. for 35 hours, and the temperature was further raised and maintained at 810 ° C. for 10 hours. Thus, the nickel lithium metal composite oxide of the present invention was obtained.

(実施例3)
実施例1と同じ焼成設備を用いた。工程1で得られた混合物800gを焼成容器に入れ、セラミック容器に敷設された。導入管から毎時4000リットルの純酸素を供給し、純酸素を上記混合物の表面に直接吹き付け、容器の上部から排気しながら、昇温を開始した。混合物の表面温度が500℃に達した時点で焼成雰囲気ガスサンプルの炭酸ガス濃度は0.03体積%を示した。昇温して690℃で10時間維持し、さらに昇温して810℃で10時間維持した。こうして本発明のニッケルリチウム金属複合酸化物が得られた。
(Example 3)
The same firing equipment as in Example 1 was used. 800 g of the mixture obtained in step 1 was put in a firing container and laid in a ceramic container. 4,000 liters of pure oxygen was supplied from the introduction pipe per hour, and the temperature was raised while spraying pure oxygen directly onto the surface of the mixture and exhausting from the top of the container. When the surface temperature of the mixture reached 500 ° C., the carbon dioxide concentration of the firing atmosphere gas sample was 0.03% by volume. The temperature was raised and maintained at 690 ° C. for 10 hours, and the temperature was further raised and maintained at 810 ° C. for 10 hours. Thus, the nickel lithium metal composite oxide of the present invention was obtained.

(実施例4)
実施例1と同じ焼成設備を用いた。工程1で得られた混合物1600gを焼成容器に入れ、セラミック容器に敷設された。導入管から毎時8000リットルの純酸素を供給し、純酸素を上記混合物の表面に直接吹き付け、容器の上部から排気しながら、昇温を開始した。混合物の表面温度が500℃に達した時点で焼成雰囲気ガスサンプルの炭酸ガス濃度は0.01体積%を示した。昇温して690℃で10時間維持し、さらに昇温して810℃で10時間維持した。こうして本発明のニッケルリチウム金属複合酸化物が得られた。
Example 4
The same firing equipment as in Example 1 was used. 1600 g of the mixture obtained in step 1 was put in a firing container and laid in a ceramic container. 8000 liters of pure oxygen was supplied from the introduction pipe per hour, the pure oxygen was sprayed directly on the surface of the mixture, and the temperature was raised while exhausting from the upper part of the container. When the surface temperature of the mixture reached 500 ° C., the carbon dioxide concentration of the firing atmosphere gas sample was 0.01% by volume. The temperature was raised and maintained at 690 ° C. for 10 hours, and the temperature was further raised and maintained at 810 ° C. for 10 hours. Thus, the nickel lithium metal composite oxide of the present invention was obtained.

(比較例1)
焼成時に酸化性ガスを原料表面に向けて直接噴射しなかった例である。この時の焼成炉内の様子を図3に模式的に示す。図3に示すように、比較例1では焼成容器開口部に至る純酸素の導入管を設置しなかった。比較例1の装置では純酸素が焼成容器の下から焼成炉内に入り、焼成雰囲気内に拡散する。焼成容器の下から毎時2000リットルの純酸素を供給しながら昇温を開始した。混合物の表面温度が500℃に達した時点で焼成雰囲気ガスサンプルの炭酸ガス濃度は2.5体積%を示した。焼成温度は実施例1と同じに設定した。すなわち昇温して810℃で10時間維持し、その後温度を780℃に下げて5時間維持した。こうして比較用のニッケルリチウム金属複合酸化物を製造した。
(Comparative Example 1)
In this example, the oxidizing gas was not directly injected toward the surface of the raw material during firing. FIG. 3 schematically shows the inside of the firing furnace at this time. As shown in FIG. 3, in Comparative Example 1, no pure oxygen introduction pipe reaching the baking container opening was installed. In the apparatus of Comparative Example 1, pure oxygen enters the firing furnace from under the firing container and diffuses into the firing atmosphere. The temperature increase was started while supplying 2000 liters of pure oxygen per hour from the bottom of the baking vessel. When the surface temperature of the mixture reached 500 ° C., the carbon dioxide concentration of the firing atmosphere gas sample was 2.5% by volume. The firing temperature was set the same as in Example 1. That is, the temperature was raised and maintained at 810 ° C. for 10 hours, and then the temperature was lowered to 780 ° C. and maintained for 5 hours. Thus, a nickel-lithium metal composite oxide for comparison was manufactured.

(比較例2)
比較例1と同じ焼成設備を用いた。焼成容器の下から毎時10000リットルの純酸素を供給しながら昇温を開始した。混合物の表面温度が500℃に達した時点で焼成雰囲気ガスサンプルの炭酸ガス濃度は0.5体積%を示した。焼成温度は比較例1と同じに設定した。こうして比較用のニッケルリチウム金属複合酸化物を製造した。
(Comparative Example 2)
The same baking equipment as Comparative Example 1 was used. The temperature increase was started while supplying 10,000 liters of pure oxygen per hour from the bottom of the baking vessel. When the surface temperature of the mixture reached 500 ° C., the carbon dioxide concentration of the firing atmosphere gas sample was 0.5% by volume. The firing temperature was set the same as in Comparative Example 1. Thus, a nickel-lithium metal composite oxide for comparison was manufactured.

実施例、比較例で得られたニッケルリチウム金属複合酸化物を以下の点で評価した。評価結果を表1に示す。
(25℃におけるpH)
得られたニッケルリチウム金属複合酸化物2gを25℃100mlの水に分散し、3分間マグネチックスターラー上で攪拌させた後、吸引濾過した。濾液の水素イオン濃度(pH)を測定した。
The nickel lithium metal composite oxides obtained in the examples and comparative examples were evaluated in the following points. The evaluation results are shown in Table 1.
(PH at 25 ° C.)
2 g of the obtained nickel-lithium metal composite oxide was dispersed in 100 ml of water at 25 ° C., stirred for 3 minutes on a magnetic stirrer, and then suction filtered. The hydrogen ion concentration (pH) of the filtrate was measured.

(水酸化リチウム及び炭酸リチウムの溶出量)
得られたニッケルリチウム金属複合酸化物2gを25℃100mlの水に分散し、3分間マグネチックスターラー上で攪拌させた後、吸引濾過した。濾液の一部を取り、Warder法により水酸化リチウム及び炭酸リチウムの溶出量を測定した。溶出量を元のニッケルリチウム金属複合酸化物中の重量パーセントで表す。
(Elution amount of lithium hydroxide and lithium carbonate)
2 g of the obtained nickel-lithium metal composite oxide was dispersed in 100 ml of water at 25 ° C., stirred for 3 minutes on a magnetic stirrer, and then suction filtered. A part of the filtrate was taken, and the elution amounts of lithium hydroxide and lithium carbonate were measured by the Warder method. The amount of elution is expressed as a weight percent in the original nickel lithium metal composite oxide.

(平均粒径)
得られたニッケルリチウム金属複合酸化物をJIS Z 8801−1:2006に規定される公称目開き53μmの標準篩を通過させた。ただし、粒子の凝集がない場合はそのまま篩にかけ、粒子の凝集が見られた場合には乳鉢による解砕を行ってから篩にかけた。篩を通過したニッケルリチウム金属複合酸化物粒子の平均粒子径(D50)を堀場製作所製レーザー散乱型粒度分布測定装置LA−950を用いて測定した。
(Average particle size)
The obtained nickel lithium metal composite oxide was passed through a standard sieve having a nominal aperture of 53 μm as defined in JIS Z 8801-1: 2006. However, when there was no aggregation of particles, it was sieved as it was, and when aggregation of particles was observed, it was sieved after pulverization with a mortar. The average particle diameter (D50) of the nickel lithium metal composite oxide particles that passed through the sieve was measured using a laser scattering type particle size distribution measuring apparatus LA-950 manufactured by Horiba.

(電池性能)
得られたニッケルリチウム金属複合酸化物100重量部に対し、デンカ製アセチレンブラック1重量部、日本黒鉛製グラファイトカーボン5重量部、クレハ製ポリフッ化ビニリデン4重量部となるように調製し、N−メチルピロリドンを分散溶媒としてスラリーを調製した。このスラリーを集電体であるアルミニウム箔に塗工し、乾燥、プレスを行ったものを正極、対極にリチウム金属箔を負極として2032型コイン電池を作成した。この電池の0.1Cでの放電容量及び初回効率を測定した。
(Battery performance)
N-methyl is prepared by adding 1 part by weight of acetylene black made by Denka, 5 parts by weight of graphite carbon made by Nippon Graphite, and 4 parts by weight of polyvinylidene fluoride made by Kureha with respect to 100 parts by weight of the obtained nickel lithium metal composite oxide. A slurry was prepared using pyrrolidone as a dispersion solvent. This slurry was applied to an aluminum foil as a current collector, dried and pressed to form a positive electrode, and a lithium metal foil as a negative electrode as a counter electrode to form a 2032 type coin battery. The discharge capacity and initial efficiency at 0.1 C of this battery were measured.

Figure 2017100893
Figure 2017100893

比較例1では焼成時の純酸素ガス流入量は実施例1と同じであったが、純酸素ガスを工程1で得られた混合物表面に向かって直接噴射しなかったため、500℃に昇温した時点の焼成雰囲気ガスの炭酸ガス濃度が0.1体積%を超えた。比較例1で得られたニッケルリチウム金属複合酸化物は多量の未反応炭酸リチウムを含み、正極活物質に用いた場合の電池性能が劣る。   In Comparative Example 1, the pure oxygen gas inflow during firing was the same as in Example 1, but the temperature was raised to 500 ° C. because pure oxygen gas was not directly injected toward the surface of the mixture obtained in Step 1. The carbon dioxide concentration of the firing atmosphere gas at that time exceeded 0.1% by volume. The nickel lithium metal composite oxide obtained in Comparative Example 1 contains a large amount of unreacted lithium carbonate, and the battery performance when used as the positive electrode active material is inferior.

比較例2では比較例1の5倍量もの純酸素を流したものの、ガス交換の効率が悪く500℃に昇温した時点の焼成雰囲気ガスの炭酸ガス濃度が0.1体積%を超えた。比較例2で得られたニッケルリチウム金属複合酸化物は多量の未反応炭酸リチウムを含み、正極活物質に用いた場合の電池性能が劣る。   In Comparative Example 2, although 5 times the amount of pure oxygen was flowed as in Comparative Example 1, the gas exchange efficiency was poor and the carbon dioxide concentration of the firing atmosphere gas at the time when the temperature was raised to 500 ° C. exceeded 0.1% by volume. The nickel lithium metal composite oxide obtained in Comparative Example 2 contains a large amount of unreacted lithium carbonate, and battery performance when used as a positive electrode active material is inferior.

このように本発明のニッケルリチウム金属複合酸化物の製造方法では、原料である低価格の炭酸リチウムを効率よく反応させて、正極活物質としての性能に優れるニッケルリチウム金属複合酸化物を製造することができる。   Thus, in the method for producing a nickel lithium metal composite oxide of the present invention, a nickel lithium metal composite oxide having excellent performance as a positive electrode active material is produced by efficiently reacting low-cost lithium carbonate as a raw material. Can do.

本発明は、低コストで高性能のリチウムイオン電池を供給する手段として有益である。本発明で得られたニッケルリチウム金属複合酸化物とこれを利用したリチウムイオン電池は、携帯情報端末や電池搭載車両の一層の低コスト化に貢献する。   The present invention is useful as a means for supplying a high-performance lithium ion battery at a low cost. The nickel lithium metal composite oxide obtained in the present invention and a lithium ion battery using the same contribute to further cost reduction of a portable information terminal and a battery-equipped vehicle.

1 酸化性ガスの流路
2 焼成雰囲気ガスの排出路
3 ヒーター
4 セラミック容器
5 工程1で得られた混合物
6 温度センサー
7 サンプリング管
8 酸化性ガスの噴出方向
DESCRIPTION OF SYMBOLS 1 Oxidizing gas flow path 2 Firing atmosphere gas discharge path 3 Heater 4 Ceramic container 5 Mixture obtained in step 1 Temperature sensor 7 Sampling tube 8 Oxidizing gas ejection direction

Claims (13)

リチウム原料として炭酸リチウムを使用し、
以下の工程1及び/又は工程1’と、工程2とを含む、
以下の式(1)で表されるニッケルリチウム金属複合酸化物の製造方法。
(工程1)ニッケル水酸化物及び/又はニッケル酸化物と、コバルト水酸化物及び/又はコバルト酸化物とを含む前駆体に、金属Mの水酸化物及び/又は金属Mの酸化物と、炭酸リチウムを混合することにより混合物を得る、混合工程。
(工程1’)ニッケル水酸化物及び/又はニッケル酸化物と、コバルト水酸化物及び/又はコバルト酸化物と、金属Mの水酸化物及び/又は金属Mの酸化物とを含む前駆体に、炭酸リチウムを混合することにより混合物を得る、混合工程。
(工程2)工程1及び/又は工程1’で得られた混合物を500℃〜850℃の温度域で3〜40時間焼成することにより、焼成物を得る工程。ただし工程2において、上記混合物は焼成雰囲気に開口して設置された容器に敷設されており、焼成雰囲気外から焼成雰囲気内に酸化性ガスが導入され、上記混合物の表面に向かって上記酸化性ガスが噴射され、焼成雰囲気内のガスが上記酸化性ガスの流路とは異なる流路によって焼成雰囲気外に排出される。
Figure 2017100893
(式(1)中、0.90<a<1.10、1.7<b<2.2、0.01<x<0.15、かつ0.005<y<0.10であり、MはAlを必須元素として含み、Mn、W、Nb、Mg、Zr、及びZnから選ばれる元素を含んでもよい金属である。)
Lithium carbonate is used as a lithium raw material,
Including the following step 1 and / or step 1 ′ and step 2,
The manufacturing method of the nickel lithium metal complex oxide represented by the following formula | equation (1).
(Step 1) A precursor containing nickel hydroxide and / or nickel oxide, cobalt hydroxide and / or cobalt oxide, metal M hydroxide and / or metal M oxide, and carbonic acid A mixing step of obtaining a mixture by mixing lithium.
(Step 1 ′) a precursor containing nickel hydroxide and / or nickel oxide, cobalt hydroxide and / or cobalt oxide, and metal M hydroxide and / or metal M oxide, A mixing step in which a mixture is obtained by mixing lithium carbonate.
(Step 2) A step of obtaining a fired product by firing the mixture obtained in Step 1 and / or Step 1 ′ in a temperature range of 500 ° C. to 850 ° C. for 3 to 40 hours. However, in step 2, the mixture is laid in a container opened in a firing atmosphere, and an oxidizing gas is introduced from outside the firing atmosphere into the firing atmosphere, and the oxidizing gas is directed toward the surface of the mixture. And the gas in the firing atmosphere is discharged out of the firing atmosphere through a flow path different from the oxidizing gas flow path.
Figure 2017100893
(In formula (1), 0.90 <a <1.10, 1.7 <b <2.2, 0.01 <x <0.15, and 0.005 <y <0.10, M is a metal that contains Al as an essential element and may contain an element selected from Mn, W, Nb, Mg, Zr, and Zn.)
工程2の昇温時に上記混合物の表面温度が500℃に達した時点での焼成雰囲気の二酸化炭素濃度が0.1体積%以下となるように焼成温度と焼成雰囲気ガスを調節する、請求項1に記載のニッケルリチウム金属複合酸化物の製造方法。   The firing temperature and the firing atmosphere gas are adjusted so that the carbon dioxide concentration in the firing atmosphere at the time when the surface temperature of the mixture reaches 500 ° C. at the time of temperature increase in Step 2 is 0.1% by volume or less. The manufacturing method of the nickel lithium metal complex oxide as described in 2. 工程2で連続式炉あるいはバッチ式炉を用いる、請求項1又は2に記載のニッケルリチウム金属複合酸化物の製造方法。   The method for producing a nickel lithium metal composite oxide according to claim 1, wherein a continuous furnace or a batch furnace is used in step 2. 工程2でロータリーキルン、ローラーハースキルン、マッフル炉から選ばれる焼成炉を用いる、請求項1〜3のいずれか1項に記載のニッケルリチウム金属複合酸化物の製造方法。   The manufacturing method of the nickel lithium metal complex oxide according to any one of claims 1 to 3, wherein a firing furnace selected from a rotary kiln, a roller hearth kiln, and a muffle furnace is used in step 2. 工程2を経て炭酸リチウムの残留量が0.5重量%以下(ただし工程2で得られた焼成物全量を100重量部とする)であるニッケルリチウム金属複合酸化物焼成物が得られる、請求項1〜4のいずれか1項に記載のニッケルリチウム金属複合酸化物の製造方法。   A nickel-lithium metal composite oxide fired product in which the residual amount of lithium carbonate is 0.5% by weight or less (provided that the total amount of the fired product obtained in Step 2 is 100 parts by weight) after Step 2. The manufacturing method of the nickel lithium metal complex oxide of any one of 1-4. 工程2の後に、工程2で得られた焼成物を解砕する工程及び/又は工程2を経た焼成物を篩掛する工程をさらに含む、請求項1〜5のいずれか1項に記載のニッケルリチウム金属複合酸化物の製造方法。   The nickel according to any one of claims 1 to 5, further comprising a step of crushing the calcined product obtained in step 2 and / or a step of sieving the calcined product after step 2 after step 2. A method for producing a lithium metal composite oxide. 以下の式(1)で表されるニッケルリチウム金属複合酸化物であって、
Figure 2017100893
(式(1)中、0.90<a<1.10、1.7<b<2.2、0.01<x<0.15、かつ0.005<y<0.10であり、MはAlを必須元素として含み、Mn、W、Nb、Mg、Zr、及びZnから選ばれる元素を含んでもよい金属である。)
炭酸リチウムの残留量が0.5重量%以下(ただしニッケルリチウム金属複合酸化物全量を100重量部とする)であり、
さらに、
該ニッケルリチウム金属複合酸化物とカーボンブラックとバインダーとを含む正極活物質合剤の塗膜乾燥物を備える正極と、リチウム金属からなる負極とを備えるリチウムイオン電池の0.1C放電容量が180mAh/g以上であり、かつ、
該ニッケルリチウム金属複合酸化物とカーボンブラックとバインダーとを含む正極活物質合剤の塗膜乾燥物を備える正極と、リチウム金属からなる負極とを備えるリチウムイオン電池の初回の充放電効率が83%以上であるリチウムイオン電池正極活物質として機能する、
ニッケルリチウム金属複合酸化物。
It is a nickel lithium metal composite oxide represented by the following formula (1),
Figure 2017100893
(In formula (1), 0.90 <a <1.10, 1.7 <b <2.2, 0.01 <x <0.15, and 0.005 <y <0.10, M is a metal that contains Al as an essential element and may contain an element selected from Mn, W, Nb, Mg, Zr, and Zn.)
The residual amount of lithium carbonate is 0.5% by weight or less (however, the total amount of nickel lithium metal composite oxide is 100 parts by weight),
further,
A 0.1 C discharge capacity of a lithium ion battery comprising a positive electrode provided with a dried film of a positive electrode active material mixture containing the nickel lithium metal composite oxide, carbon black, and a binder, and a negative electrode made of lithium metal is 180 mAh / g or more, and
The initial charge / discharge efficiency of a lithium ion battery comprising a positive electrode provided with a dried coating film of a positive electrode active material mixture containing the nickel lithium metal composite oxide, carbon black, and a binder, and a negative electrode made of lithium metal is 83%. It functions as a lithium ion battery positive electrode active material,
Nickel lithium metal composite oxide.
請求項1〜6のいずれか1項に記載のニッケルリチウム金属複合酸化物の製造方法で得られたものである、請求項7に記載のニッケルリチウム金属複合酸化物。   The nickel lithium metal composite oxide according to claim 7, which is obtained by the method for producing a nickel lithium metal composite oxide according to any one of claims 1 to 6. 請求項7又は8に記載のニッケルリチウム金属複合酸化物を含む正極活物質。   A positive electrode active material comprising the nickel lithium metal composite oxide according to claim 7. 請求項9に記載の正極活物質を含むリチウムイオン電池用正極合剤。   A positive electrode mixture for a lithium ion battery, comprising the positive electrode active material according to claim 9. 請求項10に記載のリチウムイオン電池用正極合剤を用いたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries using the positive mix for lithium ion batteries of Claim 10. 請求項11に記載のリチウムイオン電池用正極を備えるリチウムイオン電池。   A lithium ion battery comprising the positive electrode for a lithium ion battery according to claim 11. 請求項1〜6のいずれか1項に記載のニッケルリチウム金属複合酸化物の製造方法に用いる焼成炉であって、
焼成雰囲気に焼成される材料を収納した容器が置かれ、
上記容器は焼成雰囲気に開口しており、
酸化性ガスを焼成雰囲気中に導入するための管が焼成炉外から上記容器の開口部に至って設置され、
上記管の端部は上記容器に収納された焼成される原料の表面に酸化性ガスの噴射流が直接接触する位置にあり、
焼成雰囲気内部のガスを排出するための上記酸化性ガスの導入管とは異なる流路が設けられている、
焼成炉。
A firing furnace used in the method for producing a nickel-lithium metal composite oxide according to any one of claims 1 to 6,
A container containing the material to be fired is placed in the firing atmosphere,
The container is open to the firing atmosphere,
A tube for introducing the oxidizing gas into the firing atmosphere is installed from the outside of the firing furnace to the opening of the container,
The end of the tube is in a position where the jet of oxidizing gas directly contacts the surface of the raw material to be baked stored in the container,
A flow path different from the oxidizing gas introduction pipe for discharging the gas inside the firing atmosphere is provided,
Firing furnace.
JP2015233365A 2015-11-30 2015-11-30 Method for producing nickel lithium metal composite oxide Active JP6479633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015233365A JP6479633B2 (en) 2015-11-30 2015-11-30 Method for producing nickel lithium metal composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015233365A JP6479633B2 (en) 2015-11-30 2015-11-30 Method for producing nickel lithium metal composite oxide

Publications (2)

Publication Number Publication Date
JP2017100893A true JP2017100893A (en) 2017-06-08
JP6479633B2 JP6479633B2 (en) 2019-03-06

Family

ID=59017791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015233365A Active JP6479633B2 (en) 2015-11-30 2015-11-30 Method for producing nickel lithium metal composite oxide

Country Status (1)

Country Link
JP (1) JP6479633B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075253A (en) * 2017-10-16 2019-05-16 日立金属株式会社 Method for manufacturing positive electrode active material for lithium secondary battery
JP2019096422A (en) * 2017-11-21 2019-06-20 日立金属株式会社 Production method of positive electrode active material for lithium ion secondary battery and heat treatment device
JP2019172510A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Molded body, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
KR20210127172A (en) * 2019-02-26 2021-10-21 린데 게엠베하 Method and apparatus for making ternary cathode material
WO2023099646A1 (en) * 2021-12-02 2023-06-08 Basf Se Coated particulate material for use in an electrode of an electrochemical cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116572A (en) * 1997-06-24 1999-01-22 Sumitomo Metal Mining Co Ltd Positive electrode material for lithium secondary battery, and preparation of precursor composition thereof
JP2006147591A (en) * 2005-12-26 2006-06-08 Seimi Chem Co Ltd Positive electrode substance for lithium secondary battery, and manufacturing method of the same
JP2010064907A (en) * 2008-09-09 2010-03-25 Sumitomo Metal Mining Co Ltd Lithium transition metal compound oxide, method for producing the same and lithium ion secondary battery using the same
WO2015008582A1 (en) * 2013-07-17 2015-01-22 住友金属鉱山株式会社 Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116572A (en) * 1997-06-24 1999-01-22 Sumitomo Metal Mining Co Ltd Positive electrode material for lithium secondary battery, and preparation of precursor composition thereof
JP2006147591A (en) * 2005-12-26 2006-06-08 Seimi Chem Co Ltd Positive electrode substance for lithium secondary battery, and manufacturing method of the same
JP2010064907A (en) * 2008-09-09 2010-03-25 Sumitomo Metal Mining Co Ltd Lithium transition metal compound oxide, method for producing the same and lithium ion secondary battery using the same
WO2015008582A1 (en) * 2013-07-17 2015-01-22 住友金属鉱山株式会社 Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075253A (en) * 2017-10-16 2019-05-16 日立金属株式会社 Method for manufacturing positive electrode active material for lithium secondary battery
JP2019096422A (en) * 2017-11-21 2019-06-20 日立金属株式会社 Production method of positive electrode active material for lithium ion secondary battery and heat treatment device
JP2019172510A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Molded body, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
KR20210127172A (en) * 2019-02-26 2021-10-21 린데 게엠베하 Method and apparatus for making ternary cathode material
CN113661590A (en) * 2019-02-26 2021-11-16 林德有限责任公司 Method and apparatus for preparing ternary cathode materials
JP2022529303A (en) * 2019-02-26 2022-06-21 リンデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Methods and equipment for manufacturing ternary cathode materials
KR102626851B1 (en) * 2019-02-26 2024-01-17 린데 게엠베하 Method and apparatus for producing ternary cathode materials
WO2023099646A1 (en) * 2021-12-02 2023-06-08 Basf Se Coated particulate material for use in an electrode of an electrochemical cell

Also Published As

Publication number Publication date
JP6479633B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
KR101989760B1 (en) Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery
JP4954451B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6766322B2 (en) Aluminum-coated nickel-cobalt composite hydroxide particles and their manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
TWI527298B (en) A positive electrode active material particle powder, a method for producing the same, and a nonaqueous electrolyte battery
JP6479633B2 (en) Method for producing nickel lithium metal composite oxide
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6479632B2 (en) Method for producing nickel lithium metal composite oxide
TW201247541A (en) Positive electrode active material for lithium ion batteries and method for producing same
KR100578447B1 (en) Process for manufacturing nano-crystalline cathode material for high rate lithum rechargeable battery by self-mixing method
JP6479634B2 (en) Method for producing nickel lithium metal composite oxide
JP6128303B2 (en) Lithium manganese composite oxide and method for producing the same
JP2019067529A (en) Positive electrode active material for lithium ion secondary battery, method of producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2014203509A (en) Positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2020205266A (en) Manufacturing method of small particle sized nickel-lithium metal composite oxide powder
JP2013073832A (en) Positive electrode active material for lithium ion secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
TWI460906B (en) Production method of positive electrode active material for lithium ion battery
JP6739981B2 (en) Method for producing nickel-lithium metal composite oxide
JP2021017397A (en) Monoclinic lithium nickel manganese-based complex oxide and its manufacturing method
JP7417675B1 (en) Metal composite hydroxide particles, method for producing metal composite compound, and method for producing positive electrode active material for lithium secondary batteries
JP7412485B1 (en) Method for producing metal composite hydroxide particles and positive electrode active material for lithium secondary batteries
JP2015182922A (en) Nickel-manganese compound oxide having cubic spinel structure and method for producing the same, and use thereof
JP2020070205A (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250