JP2017090140A - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
JP2017090140A
JP2017090140A JP2015218188A JP2015218188A JP2017090140A JP 2017090140 A JP2017090140 A JP 2017090140A JP 2015218188 A JP2015218188 A JP 2015218188A JP 2015218188 A JP2015218188 A JP 2015218188A JP 2017090140 A JP2017090140 A JP 2017090140A
Authority
JP
Japan
Prior art keywords
light receiving
optical system
receiving element
support means
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015218188A
Other languages
Japanese (ja)
Inventor
佐藤 隆史
Takashi Sato
隆史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015218188A priority Critical patent/JP2017090140A/en
Publication of JP2017090140A publication Critical patent/JP2017090140A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device that is advantageous to measurement accuracy and cost.SOLUTION: A measurement device for measuring the shape of a measurement target object comprises: a projection optical system 2 for projecting light to the measurement target object; a light receiving element 5; an image formation optical system 3 for forming an image of the measurement target object on the light receiving element 5; light receiving element support means 6 for supporting the light receiving element 5; and optical system support means 4 for supporting the projection optical system 2 and the image formation optical system 3. The light receiving element support means 6 is attached to the optical system support means 4, and the optical system support means 4 supports the projection optical system 2 as well as the light receiving element support means 6 supports the light receiving element 5 so that displacement of the light receiving element due to deformation of the light receiving element support means 6 caused by temperature change is generated in the same direction as that of positional displacement of image formation of the image on a light receiving surface of the light receiving element 5 due to deformation of the optical system support means 4 caused by temperature change.SELECTED DRAWING: Figure 1

Description

本発明は、計測装置に関する。   The present invention relates to a measuring device.

被計測物にパターン光等を投影する投影手段と該被計測物を撮像する撮像手段とを備え、撮像画像から、三角測量の原理を用いて被計測物の形状を求める計測装置がある。この計測装置は、三角測量の原理を用いるため、投影手段と撮像手段との間の距離が想定していた値から変化すると、計測誤差が発生する。距離の変化は、例えば、使用環境や装置内の発熱源の温度変化によって、投影手段および撮像手段またはそれらを支持する支持体が熱変形することで起こる。   There is a measuring apparatus that includes a projecting unit that projects pattern light or the like on an object to be measured and an image capturing unit that images the object to be measured, and obtains the shape of the object to be measured from the captured image using the principle of triangulation. Since this measuring device uses the principle of triangulation, a measurement error occurs when the distance between the projection unit and the imaging unit changes from an assumed value. The change in the distance occurs, for example, due to thermal deformation of the projection unit and the imaging unit or the support that supports them due to a change in the temperature of a heat source in the use environment or the apparatus.

特許文献1の装置は、支持体の温度を計測し、計測された温度と支持体の線膨張率とに基づいて、その温度での投影手段と撮像手段との間の距離を算出して、算出値を被計測物の計測に用いている。特許文献2の装置は、投影手段と撮像手段との間を線膨張率が低い部材で繋ぐことで装置周囲の温度変化および装置の自己発熱による温度変化の影響を低減している。   The apparatus of Patent Document 1 measures the temperature of the support, calculates the distance between the projection means and the imaging means at that temperature based on the measured temperature and the linear expansion coefficient of the support, The calculated value is used for measuring the object to be measured. The apparatus of Patent Literature 2 reduces the influence of temperature change due to temperature change around the apparatus and self-heating of the apparatus by connecting the projection unit and the imaging unit with a member having a low linear expansion coefficient.

特開2007−17394号公報JP 2007-17394 A 特開2012−37276号公報JP 2012-37276 A

しかしながら、特許文献1に記載の装置は、温度計測手段、距離算出手段等を備える必要があり、例えば、コストの点で不利となりうる。特許文献2に記載の装置は、線膨張率が低い部材を用いているが、そのような材料の多くは高密度であり装置重量の点で不利となりうる。また、線膨張率が低くかつ低密度の材料は、高価または加工性が悪く、コストの点で不利となりうる。   However, the apparatus described in Patent Document 1 needs to include a temperature measurement unit, a distance calculation unit, and the like, which can be disadvantageous in terms of cost, for example. The device described in Patent Document 2 uses a member having a low linear expansion coefficient, but many of such materials are high in density and can be disadvantageous in terms of the weight of the device. In addition, a material having a low linear expansion coefficient and a low density is expensive or poor in workability, and may be disadvantageous in terms of cost.

本発明は、例えば、計測精度およびコストの点で有利な計測装置を提供することを目的とする。   An object of the present invention is to provide a measurement device that is advantageous in terms of measurement accuracy and cost, for example.

上記課題を解決するために、本発明は、被計測物の形状を計測する計測装置であって、
被計測物に光を投影する投影光学系と、受光素子と、光が投影された被計測物の像を受光素子に結像させる結像光学系と、受光素子を支持する受光素子支持手段と、投影光学系と結像光学系とを支持する光学系支持手段と、を備え、受光素子支持手段は光学系支持手段に取り付けられ、温度変化によって生じる光学系支持手段の変形に伴う受光素子の受光面上の像の結像位置のずれと同じ方向に、温度変化によって生じる受光素子支持手段の変形による受光素子のずれが生じるように、光学系支持手段が結像光学系を支持し、受光素子支持手段が受光素子を支持していることを特徴とする。
In order to solve the above problems, the present invention is a measuring device for measuring the shape of an object to be measured,
A projection optical system that projects light onto the object to be measured; a light receiving element; an imaging optical system that forms an image of the object to be measured on which the light is projected on the light receiving element; and a light receiving element support means that supports the light receiving element; An optical system support means for supporting the projection optical system and the imaging optical system. The light receiving element support means is attached to the optical system support means, and the light receiving element of the light receiving element accompanying deformation of the optical system support means caused by a temperature change is provided. The optical system support means supports the imaging optical system so that the light receiving element shifts due to deformation of the light receiving element support means caused by temperature change in the same direction as the image formation position shift of the image on the light receiving surface. The element support means supports the light receiving element.

本発明によれば、例えば、計測精度およびコストの点で有利な計測装置を提供することができる。   According to the present invention, for example, it is possible to provide a measurement device that is advantageous in terms of measurement accuracy and cost.

第1実施形態に係る計測装置の構成を示す概略図である。It is the schematic which shows the structure of the measuring device which concerns on 1st Embodiment. 受光素子に入射する光線の位置のずれを示す図である。It is a figure which shows shift | offset | difference of the position of the light ray which injects into a light receiving element. 第2実施形態に係る計測装置の構成を示す概略図である。It is the schematic which shows the structure of the measuring device which concerns on 2nd Embodiment.

以下、本発明を実施するための形態について図面などを参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(第1実施形態)
図1(A)および(B)は本実施形態に係る計測装置の構成を示す概略図である。被計測物が載置された平面内に互いに直交するX軸およびY軸を取り、このXY平面(被検面)に直交する方向にZ軸を取る。図1(A)は、Y方向からみた概略図であり、図1(B)は、Z軸方向からみた概略図である。本実施形態に係る計測装置は、光源1と、投影光学系2と、結像光学系3と、光学系支持手段4と、受光素子5と、受光素子支持手段6とを有する。この計測装置は、三角測量の原理を用いて光学系と被計測物との間の距離を計測して、その形状を求める装置である。
(First embodiment)
1A and 1B are schematic views illustrating the configuration of a measurement apparatus according to the present embodiment. An X axis and a Y axis perpendicular to each other are taken in a plane on which the object to be measured is placed, and a Z axis is taken in a direction perpendicular to the XY plane (test surface). 1A is a schematic diagram viewed from the Y direction, and FIG. 1B is a schematic diagram viewed from the Z-axis direction. The measurement apparatus according to this embodiment includes a light source 1, a projection optical system 2, an imaging optical system 3, an optical system support unit 4, a light receiving element 5, and a light receiving element support unit 6. This measuring device is a device that measures the distance between the optical system and the object to be measured by using the principle of triangulation, and obtains its shape.

光源1は、投影光学系2を介して被検面にスリット光(パターン光)を投影する。本実施形態では、発熱の問題および装置の小型化を考慮して、光ファイバ7により外部から光源1に光が導かれている。光源1としては、小型の半導体レーザ光源など種々市販されているものを用いてもよい。投影光学系2はレンズL1を含み、レンズL1は鏡筒8により保持されている。結像光学系3はレンズL2を含み、レンズL2は鏡筒9により保持されている。鏡筒8および鏡筒9は、加工性、耐食性、コストおよび重量等を考慮して、アルミ合金(JIS規格A5056Bに準拠したもの等)を用いている。結像光学系3は、さらにCMOSセンサ等の受光素子(光電変換素子)5を有する。結像光学系3は、被検面で反射された光を投影光学系2の光の照射方向とは別の方向から観察する。また、結像光学系3は、被検面に投影されたスリット光が撮像素子の撮像面に結像する両側テレセンの光学系となっている。   The light source 1 projects slit light (pattern light) on the test surface via the projection optical system 2. In the present embodiment, in consideration of the problem of heat generation and downsizing of the apparatus, light is guided from the outside to the light source 1 by the optical fiber 7. As the light source 1, various commercially available ones such as a small semiconductor laser light source may be used. The projection optical system 2 includes a lens L 1, and the lens L 1 is held by a lens barrel 8. The imaging optical system 3 includes a lens L2, and the lens L2 is held by a lens barrel 9. The lens barrel 8 and the lens barrel 9 are made of an aluminum alloy (such as that conforming to JIS standard A5056B) in consideration of workability, corrosion resistance, cost, weight, and the like. The imaging optical system 3 further includes a light receiving element (photoelectric conversion element) 5 such as a CMOS sensor. The imaging optical system 3 observes the light reflected by the test surface from a direction different from the light irradiation direction of the projection optical system 2. The imaging optical system 3 is a double-sided telecentric optical system in which the slit light projected on the surface to be examined forms an image on the imaging surface of the imaging device.

光学系支持手段4には、鏡筒8および鏡筒9と同様のアルミ合金(JIS規格A5056Bに準拠したもの等)を用いている。光学系支持手段4は、投影光学系2および結像光学系3を支持する。このとき、投影光学系2の光軸と結像光学系3の光軸とのなす角θ1(以下、輻輳角という)は、一般的に大きいほど計測精度上有利となるが、被計測物の形状等によっては死角が生じ、測定不可能な箇所が発生する(測定カバー率が減少する)。本実施形態では、輻輳角を10°としている。受光素子支持手段6は、支持点11の取り付け部分にて光学系支持手段4に取り付けられ、受光素子5を支持している。受光素子支持手段6の材質としては、線膨張率が低い材質、例えば、線膨張率1ppmの鉄とニッケルの合金(インバー)を用いる。形状は熱の影響を鑑み、棒状としている。   The optical system support means 4 is made of an aluminum alloy similar to that of the lens barrel 8 and the lens barrel 9 (such as that conforming to JIS standard A5056B). The optical system support unit 4 supports the projection optical system 2 and the imaging optical system 3. At this time, an angle θ1 (hereinafter referred to as a convergence angle) formed by the optical axis of the projection optical system 2 and the optical axis of the imaging optical system 3 is generally more advantageous in terms of measurement accuracy. Depending on the shape or the like, a blind spot occurs, and a portion that cannot be measured is generated (measurement coverage is reduced). In this embodiment, the convergence angle is 10 °. The light receiving element support means 6 is attached to the optical system support means 4 at the attachment portion of the support point 11 and supports the light receiving element 5. As a material of the light receiving element support means 6, a material having a low linear expansion coefficient, for example, an alloy of iron and nickel (invar) having a linear expansion coefficient of 1 ppm is used. The shape is a rod shape in consideration of the influence of heat.

本実施形態の計測装置は、被計測物に対し移動可能なように多軸の駆動装置(不図示)により支持位置(基準位置)10において支持されている。基準位置10は、投影光学系2の光軸が通るように設けられている。この構成により、使用環境や装置内の発熱源の温度変化によって、光学系支持手段4などが変形しても、被計測物に照射される光の位置は変化しない。図1(A)および(B)の2点鎖線で示したものは、光学系支持手段4が熱変形した後の鏡筒9である。本実施形態の計測装置は、図1(B)に示すように、光源1の光軸(投影光学系2の光軸)と、結像光学系3の光軸と、支持点11と、は同一平面内に配置される。この配置によれば、光学系支持手段4の熱変形による、受光素子5の受光面における被計測物の像の結像位置のずれ量は、x方向成分のみになる。   The measurement apparatus of the present embodiment is supported at a support position (reference position) 10 by a multi-axis drive device (not shown) so as to be movable with respect to the object to be measured. The reference position 10 is provided so that the optical axis of the projection optical system 2 passes. With this configuration, even if the optical system support unit 4 or the like is deformed due to the use environment or the temperature change of the heat source in the apparatus, the position of the light irradiated to the object to be measured does not change. What is indicated by a two-dot chain line in FIGS. 1A and 1B is a lens barrel 9 after the optical system support means 4 is thermally deformed. As shown in FIG. 1B, the measuring apparatus of this embodiment includes an optical axis of the light source 1 (an optical axis of the projection optical system 2), an optical axis of the imaging optical system 3, and a support point 11. Arranged in the same plane. According to this arrangement, the shift amount of the image forming position of the image of the object to be measured on the light receiving surface of the light receiving element 5 due to the thermal deformation of the optical system supporting means 4 is only the x direction component.

図2は、熱変形による鏡筒9(結像光学系3)の位置ずれに伴う受光素子5の受光面に入射する光線の位置のずれを示す図である。実線は位置がずれる前の鏡筒9を示し、2点鎖線は、ずれた後の鏡筒9を示す。ここで、投影光学系2(図2にて不図示)の光軸と結像光学系3の光軸とのなす角をθ1、受光素子5の受光面と結像光学系3の光軸とのなす角をθ2とする。また、温度変化による鏡筒9(結像光学系3)の基準位置からのずれ量をδu、結像光学系3の倍率をβ、受光素子支持手段6の長さをX、線膨張率をαbとする。θ1と、θ2は、シャインプルーフ条件よりtanθ1=βtanθ2となるように設定される。これより、被計測物側の投影光学系2の光軸方向の距離と、受光面上の距離との比βyは、結像光学系3の倍率をβとすると、βy=β・(sinθ1/sinθ2)となる。温度変化によるδuの偏芯に伴う、受光素子5に入射する光線の相対的な位置のずれδx(m/T−1)は、βy・δu/cosθ1となる。また、受光素子支持手段6も熱の影響により変形する。したがって、δxと、受光素子支持手段6の伸縮量X・αb(図2にて不図示)との差分δx−X・αbが、受光素子5と結像光学系3の光軸とのずれ(受光素子5の受光面における結像光学系3によって結像した像のシフト(像シフト))となる。 FIG. 2 is a diagram showing a shift in the position of light rays incident on the light receiving surface of the light receiving element 5 due to a position shift of the lens barrel 9 (imaging optical system 3) due to thermal deformation. A solid line indicates the lens barrel 9 before the position is shifted, and a two-dot chain line indicates the lens barrel 9 after being displaced. Here, the angle formed by the optical axis of the projection optical system 2 (not shown in FIG. 2) and the optical axis of the imaging optical system 3 is θ1, and the light receiving surface of the light receiving element 5 and the optical axis of the imaging optical system 3 are Let θ2 be the angle formed by. Further, the deviation from the reference position of the lens barrel 9 (imaging optical system 3) due to temperature change is δu, the magnification of the imaging optical system 3 is β, the length of the light receiving element support means 6 is X, and the linear expansion coefficient is Let αb. θ1 and θ2 are set so that tan θ1 = β tan θ2 from the Shine proof condition. Accordingly, the ratio βy between the distance in the optical axis direction of the projection optical system 2 on the object-to-be-measured side and the distance on the light receiving surface is βy = β · (sin θ1 / sin θ2). The relative positional deviation δx (m / T −1 ) of the light incident on the light receiving element 5 due to the eccentricity of δu due to the temperature change is βy · δu / cos θ1. The light receiving element support means 6 is also deformed by the influence of heat. Therefore, the difference δx−X · αb between δx and the expansion / contraction amount X · αb (not shown in FIG. 2) of the light receiving element support means 6 is shifted between the light receiving element 5 and the optical axis of the imaging optical system 3 ( This is a shift of an image formed by the imaging optical system 3 on the light receiving surface of the light receiving element 5 (image shift).

このずれと同じ方向に受光素子5の位置をシフトすれば、受光素子5の受光面上での像シフトが小さくなり、計測誤差を低減することができる。より好ましくは、このずれと同じ方向に同じ量だけ受光素子5の位置をシフトすれば、受光素子5の受光面上での像シフトがキャンセルされ、計測誤差を抑えることができる。これは、受光素子支持手段6を線膨張率αbとは異なる線膨張率αsの材料とすることで達成される。即ち、受光素子5と鏡筒9の光軸とのずれδx−X・αbが、熱膨張係数がαsの材料に置き換えた受光素子支持手段6の伸縮量X・αsと等しくすることで達成される。言い換えると、像シフト量と受光素子支持手段6の変形による受光素子5のずれ量を等しくすることで、受光素子5の受光面上における像シフトをキャンセルすることができる。数式で表すと、δx−X・αb=X・αsとなる。また、この関係は、温度に対する熱膨張係数が一定である範囲において、どの温度でも成り立つ。   If the position of the light receiving element 5 is shifted in the same direction as this shift, the image shift on the light receiving surface of the light receiving element 5 becomes small, and the measurement error can be reduced. More preferably, if the position of the light receiving element 5 is shifted by the same amount in the same direction as this shift, the image shift on the light receiving surface of the light receiving element 5 is canceled, and the measurement error can be suppressed. This is achieved by making the light receiving element support means 6 a material having a linear expansion coefficient αs different from the linear expansion coefficient αb. That is, the deviation δx−X · αb between the light receiving element 5 and the optical axis of the lens barrel 9 is made equal to the expansion / contraction amount X · αs of the light receiving element support means 6 replaced with a material having a thermal expansion coefficient αs. The In other words, by making the image shift amount equal to the shift amount of the light receiving element 5 due to the deformation of the light receiving element support means 6, the image shift on the light receiving surface of the light receiving element 5 can be canceled. When expressed by a mathematical formula, δx−X · αb = X · αs. This relationship holds at any temperature within a range where the thermal expansion coefficient with respect to the temperature is constant.

例えば、図1で示す投影光学系2と結像光学系3とのX方向の距離dを30mm、光学系支持手段4、鏡筒8および鏡筒9の線膨張率を23ppm、結像光学系3の倍率βを0.5、θ1を10度とした場合を考える。この場合は、受光素子支持手段6の線膨張率を1ppm、長さXを8.2mmとすることで像シフトと受光素子位置のズレ分をキャンセルする条件が達成される。なお、仮に温度が1℃上昇した場合に、像シフトと受光素子位置のズレ分のキャンセルが無いと、距離dは0.69μm伸び、被計測物の高さ方向に換算すると3.9μmの計測誤差が発生する。上記のように受光素子支持手段6の線膨張率と長さを所定の値に規定した計測装置は、計測誤差をほぼ無視できる程度に抑えることができる。   For example, the distance d in the X direction between the projection optical system 2 and the imaging optical system 3 shown in FIG. 1 is 30 mm, the linear expansion coefficients of the optical system support means 4, the lens barrel 8 and the lens barrel 9 are 23 ppm, and the imaging optical system Suppose that the magnification β of 3 is 0.5 and θ1 is 10 degrees. In this case, by setting the linear expansion coefficient of the light receiving element supporting means 6 to 1 ppm and the length X to 8.2 mm, the condition for canceling the shift between the image shift and the position of the light receiving element is achieved. If the temperature rises by 1 ° C. and the image shift and the light receiving element position are not canceled, the distance d increases by 0.69 μm, and when measured in the height direction of the object to be measured, the measurement is 3.9 μm. An error occurs. As described above, the measuring apparatus in which the linear expansion coefficient and the length of the light receiving element supporting means 6 are defined to predetermined values can suppress the measurement error to a level that can be almost ignored.

以上のように、本実施形態によれば、計測精度およびコストの点で有利な計測装置を提供することができる。   As described above, according to the present embodiment, it is possible to provide a measurement device that is advantageous in terms of measurement accuracy and cost.

(第2実施形態)
次に、本発明の第2実施形態に係る計測装置について説明する。図3は本発明の第2実施形態に係る計測装置を示す概略図である。なお、本実施形態では、第1実施形態ですでに説明された構成要素等と同一のものには同一の符号を付し、説明を省略する。本実施形態の光計測装置は、図3に示すように、受光素子5と直接、又は間接的に接続し、熱を授受する電気部品12と、受光素子5及び電気部品12の発熱量(または吸熱量)を制御する制御手段13を有することを特徴としている。制御手段13は、光学系支持手段4、鏡筒8および鏡筒9の温度に基づいて受光素子に与える熱量(または吸熱する熱量)を調節し、装置の構成部材全体の温度分布が一定になるように電気部品12を制御する。この構成を加えることで熱変形が抑えられ、計測誤差をほぼ無視できる程度に抑えることができる。
(Second Embodiment)
Next, a measuring apparatus according to the second embodiment of the present invention will be described. FIG. 3 is a schematic view showing a measuring apparatus according to the second embodiment of the present invention. In the present embodiment, the same components as those already described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 3, the optical measuring device of the present embodiment is connected directly or indirectly to the light receiving element 5 to transfer heat, and the amount of heat generated by the light receiving element 5 and the electric component 12 (or It is characterized by having a control means 13 for controlling the (heat absorption amount). The control means 13 adjusts the amount of heat (or the amount of heat absorbed) given to the light receiving element based on the temperatures of the optical system support means 4, the lens barrel 8 and the lens barrel 9, and the temperature distribution of the entire components of the apparatus becomes constant. Thus, the electric component 12 is controlled. By adding this configuration, thermal deformation can be suppressed, and the measurement error can be suppressed to an almost negligible level.

以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

1 光源
2 投影光学系
3 結像光学系
4 光学系支持手段
5 受光素子(光電変換素子)
6 受光素子支持手段
DESCRIPTION OF SYMBOLS 1 Light source 2 Projection optical system 3 Imaging optical system 4 Optical system support means 5 Light receiving element (photoelectric conversion element)
6 Light receiving element support means

Claims (5)

被計測物の形状を計測する計測装置であって、
前記被計測物に光を投影する投影光学系と、
受光素子と、
前記光が投影された前記被計測物の像を前記受光素子に結像させる結像光学系と、
前記受光素子を支持する受光素子支持手段と、
前記投影光学系と前記結像光学系とを支持する光学系支持手段と、を備え、
前記受光素子支持手段は前記光学系支持手段に取り付けられ、
温度変化によって生じる前記光学系支持手段の変形に伴う前記受光素子の受光面上の前記像の結像位置のずれと同じ方向に、温度変化によって生じる前記受光素子支持手段の変形による前記受光素子のずれが生じるように、前記光学系支持手段が前記結像光学系を支持し、前記受光素子支持手段が前記受光素子を支持していることを特徴とする計測装置。
A measuring device for measuring the shape of an object to be measured,
A projection optical system that projects light onto the object to be measured;
A light receiving element;
An imaging optical system that forms an image of the measurement object onto which the light is projected on the light receiving element;
A light receiving element supporting means for supporting the light receiving element;
Optical system support means for supporting the projection optical system and the imaging optical system,
The light receiving element support means is attached to the optical system support means,
In the same direction as the shift of the image forming position of the image on the light receiving surface of the light receiving element due to the deformation of the optical system supporting means caused by the temperature change, A measuring apparatus, wherein the optical system support means supports the imaging optical system, and the light receiving element support means supports the light receiving element so that a shift occurs.
前記投影光学系の光軸と、前記結像光学系の光軸と、前記光学系支持手段における前記受光素子支持手段が取り付けられる部分とは、同一平面内にあることを特徴とする請求項1に記載の計測装置。   2. The optical axis of the projection optical system, the optical axis of the imaging optical system, and a portion of the optical system support means to which the light receiving element support means is attached are in the same plane. The measuring device described in 1. 温度変化によって生じる前記光学系支持手段の変形に伴う前記受光素子の受光面上の前記像の結像位置のずれと、温度変化によって生じる前記受光素子支持手段の変形による前記受光素子のずれとが、同じ量であることを特徴とする請求項1または2に記載の計測装置。   A shift in the image forming position of the image on the light receiving surface of the light receiving element due to the deformation of the optical system support means caused by a temperature change and a shift of the light receiving element due to the deformation of the light receiving element support means caused by a temperature change. The measuring device according to claim 1, wherein the same amount is used. 前記受光素子支持手段の線膨張率は、前記光学系支持手段の線膨張率よりも小さいことを特徴とする請求項1ないし3のいずれか1項に記載の計測装置。   4. The measuring apparatus according to claim 1, wherein a linear expansion coefficient of the light receiving element support means is smaller than a linear expansion coefficient of the optical system support means. 5. 前記受光素子に対し熱を授受する部品と、前記熱の量を制御する制御手段と、をさらに備え、
前記制御手段は、前記光学系支持手段の温度に基づいて、前記熱の量を制御することを特徴とする請求項1ないし4のいずれか1項に記載の計測装置。
A component for transferring heat to the light receiving element; and a control means for controlling the amount of the heat;
The measuring apparatus according to claim 1, wherein the control unit controls the amount of heat based on a temperature of the optical system support unit.
JP2015218188A 2015-11-06 2015-11-06 Measurement device Pending JP2017090140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218188A JP2017090140A (en) 2015-11-06 2015-11-06 Measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218188A JP2017090140A (en) 2015-11-06 2015-11-06 Measurement device

Publications (1)

Publication Number Publication Date
JP2017090140A true JP2017090140A (en) 2017-05-25

Family

ID=58769229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218188A Pending JP2017090140A (en) 2015-11-06 2015-11-06 Measurement device

Country Status (1)

Country Link
JP (1) JP2017090140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128934A (en) * 2019-02-08 2020-08-27 株式会社キーエンス Inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128934A (en) * 2019-02-08 2020-08-27 株式会社キーエンス Inspection device
JP7199243B2 (en) 2019-02-08 2023-01-05 株式会社キーエンス inspection equipment

Similar Documents

Publication Publication Date Title
US8405820B2 (en) Ranging device and ranging module and image-capturing device using the ranging device or the ranging module
US9477092B2 (en) Optical imaging arrangement with individually actively supported components
JP5584140B2 (en) Non-contact surface shape measuring method and apparatus
JP6328106B2 (en) Linear stage and metrology architecture for reflection electron beam lithography
US9207189B2 (en) Sample support apparatus
CN110834320B (en) Auxiliary measurement position coordinate determination system for use with a robot
JP6420802B2 (en) Lithographic apparatus
JP4591526B2 (en) Antenna device
JP2009250785A (en) Imaging device
JP2007093495A (en) Imaging device and optical apparatus measuring device
JP2017090140A (en) Measurement device
Kang et al. Calibration of fiber bundles for flow and combustion measurements
JP2007017394A (en) Light measurement system and method
JP7441621B2 (en) infrared measurement system
JP5217327B2 (en) Angle measuring method and angle measuring device
WO2015137320A1 (en) Lens unit, rear-side focus adjustment system for infrared camera
JP6715872B2 (en) Substrate shape measuring device
JP2018004860A (en) Alignment device, exposure device, and alignment method
JP2016008944A (en) Method of measuring position of imaging device and light projecting device for use in the same method
JP2012002573A (en) Non-contact shape measuring apparatus
JP6444029B2 (en) Detection device and imaging device including the same
KR20240063860A (en) Space Telescopes and How to Calibrate a Space Telescope in Space
KR20240065757A (en) Fine positioning device
Kroha et al. Monitoring of the Assembly of the BOS 98 Prototype MDT Chamber
JP2015169909A5 (en)