JP2017085039A - Method of manufacturing wavelength conversion element and wavelength conversion element and light-emitting device - Google Patents

Method of manufacturing wavelength conversion element and wavelength conversion element and light-emitting device Download PDF

Info

Publication number
JP2017085039A
JP2017085039A JP2015214240A JP2015214240A JP2017085039A JP 2017085039 A JP2017085039 A JP 2017085039A JP 2015214240 A JP2015214240 A JP 2015214240A JP 2015214240 A JP2015214240 A JP 2015214240A JP 2017085039 A JP2017085039 A JP 2017085039A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
hole
conversion element
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015214240A
Other languages
Japanese (ja)
Other versions
JP6561777B2 (en
Inventor
忠仁 古山
Tadahito Furuyama
忠仁 古山
藤田 直樹
Naoki Fujita
直樹 藤田
俊輔 藤田
Shunsuke Fujita
俊輔 藤田
寛之 清水
Hiroyuki Shimizu
寛之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015214240A priority Critical patent/JP6561777B2/en
Publication of JP2017085039A publication Critical patent/JP2017085039A/en
Application granted granted Critical
Publication of JP6561777B2 publication Critical patent/JP6561777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a wavelength conversion element capable of transmitting heat from a wavelength conversion member efficiently to a heat dissipation member, and to provide a wavelength conversion element and a light-emitting device.SOLUTION: A method of manufacturing a wavelength conversion element 10 including a heat dissipation member 2 having a through hole 3, and a wavelength conversion member 1 placed in the through hole 3, includes a step of placing the wavelength conversion member 1 in the through hole 3, and mounting a glass material 4 on the wavelength conversion member 1, and a step of pressing the glass material 4 to the wavelength conversion member 1 side while heating, and fusing and fixing the wavelength conversion member 1 in the through hole 3 by the glass material 4.SELECTED DRAWING: Figure 1

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換素子の製造方法並びに波長変換素子及び発光装置に関するものである。   The present invention relates to a method of manufacturing a wavelength conversion element that converts the wavelength of light emitted from a light emitting diode (LED) or a laser diode (LD) to another wavelength, and a wavelength conversion element and a light emitting device. It is.

近年、蛍光ランプや白熱灯に代わる次世代の発光装置として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた発光装置に対する注目が高まってきている。そのような次世代発光装置の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された発光装置が開示されている。この発光装置は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。   In recent years, as a next-generation light-emitting device that replaces fluorescent lamps and incandescent lamps, attention has been focused on light-emitting devices using LEDs and LDs from the viewpoint of low power consumption, small size and light weight, and easy light quantity adjustment. As an example of such a next-generation light-emitting device, for example, in Patent Document 1, a wavelength conversion member that absorbs part of light from the LED and converts it into yellow light is disposed on the LED that emits blue light. A light emitting device is disclosed. This light emitting device emits white light that is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.

波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粉末を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、発光装置の輝度が低くなりやすいという問題がある。特に、LEDが発する熱や高エネルギーの短波長(青色〜紫外)光によってモールド樹脂が劣化し、変色や変形を起こすという問題がある。   As the wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, when the wavelength conversion member is used, there is a problem that the resin is deteriorated by the light from the LED and the luminance of the light emitting device tends to be lowered. In particular, there is a problem that the mold resin deteriorates due to heat generated by the LED or high energy short wavelength (blue to ultraviolet) light, causing discoloration or deformation.

そこで、樹脂に代えてガラスマトリクス中に蛍光体を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3を参照)。当該波長変換部材は、母材となるガラスがLEDの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。   Therefore, a wavelength conversion member made of a completely inorganic solid in which a phosphor is dispersed and fixed in a glass matrix instead of a resin has been proposed (see, for example, Patent Documents 2 and 3). The wavelength conversion member has a feature that glass as a base material is not easily deteriorated by the heat of LED or irradiation light, and problems such as discoloration and deformation hardly occur.

近年、ハイパワー化を目的として、光源として用いるLEDやLDの出力が上昇している。それに伴い、光源の熱や、励起光を照射された蛍光体から発せられる熱により波長変換部材の温度が上昇し、その結果、発光強度が経時的に低下する(温度消光)という問題がある。また、場合によっては、波長変換部材の温度上昇が顕著となり、構成材料(ガラスマトリクス等)が溶解するおそれがある。   In recent years, the output of LEDs and LDs used as light sources has increased for the purpose of increasing power. Accordingly, there is a problem that the temperature of the wavelength conversion member rises due to the heat of the light source or the heat emitted from the phosphor irradiated with the excitation light, and as a result, the emission intensity decreases with time (temperature quenching). In some cases, the temperature rise of the wavelength conversion member becomes significant, and the constituent material (glass matrix or the like) may be dissolved.

そこで、波長変換部材からの熱を放熱するため、波長変換部材の周辺部に、当該波長変換部材より高い熱伝導率を有する放熱部材が設けられた波長変換素子が提案されている(例えば、特許文献4を参照)。特許文献4では、波長変換部材をステンレス製の放熱部材に取り付ける方法として、貫通孔を有する放熱部材の嵌合部に切り込みまたは穴部を形成し、切り込みまたは穴部に低融点ガラスを充填することにより取り付ける方法が挙げられている。   Therefore, in order to dissipate heat from the wavelength conversion member, there has been proposed a wavelength conversion element in which a heat dissipation member having a higher thermal conductivity than the wavelength conversion member is provided in the periphery of the wavelength conversion member (for example, a patent) (Ref. 4). In Patent Document 4, as a method of attaching the wavelength conversion member to the heat radiating member made of stainless steel, a notch or a hole is formed in the fitting portion of the heat radiating member having a through hole, and the notch or the hole is filled with a low melting point glass. The method of attachment is mentioned.

特開2000−208815号公報JP 2000-208815 A 特開2003−258308号公報JP 2003-258308 A 特開2007−016171号公報JP 2007-016171 A 特開2007−323861号公報JP 2007-323861 A

しかしながら、特許文献4に記載の方法では、波長変換部材と放熱部材との間に隙間が形成され、波長変換部材からの熱が放熱部材に伝達されにくい。   However, in the method described in Patent Document 4, a gap is formed between the wavelength conversion member and the heat dissipation member, and heat from the wavelength conversion member is difficult to be transmitted to the heat dissipation member.

本発明の目的は、波長変換部材からの熱を効率良く放熱部材に伝達することができる波長変換素子の製造方法並びに波長変換素子及び発光装置を提供することにある。   The objective of this invention is providing the manufacturing method of the wavelength conversion element which can transfer the heat | fever from a wavelength conversion member to a thermal radiation member efficiently, a wavelength conversion element, and a light-emitting device.

本発明の製造方法は、貫通孔を有する放熱部材と、貫通孔内に配置される波長変換部材とを備える波長変換素子を製造する方法であって、貫通孔内に波長変換部材を配置し、ガラス材を波長変換部材の上に載置する工程と、ガラス材を加熱しながら波長変換部材側にプレスし、ガラス材によって波長変換部材を貫通孔内に融着固定する工程とを備えることを特徴としている。   The production method of the present invention is a method of producing a wavelength conversion element comprising a heat dissipation member having a through hole and a wavelength conversion member arranged in the through hole, the wavelength conversion member being arranged in the through hole, A step of placing the glass material on the wavelength conversion member and a step of pressing the glass material toward the wavelength conversion member while heating the glass material, and fusing and fixing the wavelength conversion member in the through hole by the glass material. It is a feature.

本発明においては、ガラス材をプレスする際、軟化流動したガラス材を、波長変換部材と貫通孔の間に浸透させることが好ましい。   In the present invention, when the glass material is pressed, the softened and fluidized glass material is preferably permeated between the wavelength conversion member and the through hole.

ガラス材は、低融点ガラスであることが好ましい。   The glass material is preferably low-melting glass.

ガラス材としては、ケイ酸塩ガラス、ホウケイ酸塩ガラス、スズリン酸塩ガラス、ビスマス酸塩ガラス及びホウケイ酸鉛ガラスから選択される少なくとも1種が挙げられる。   Examples of the glass material include at least one selected from silicate glass, borosilicate glass, tin phosphate glass, bismuth glass, and lead borosilicate glass.

貫通孔は、一方端から他方端に向かって拡がるテーパー状に形成されていることが好ましい。この場合、貫通孔に対応した形状を有する波長変換部材を、他方端側から貫通孔内に配置することが好ましい。   The through-hole is preferably formed in a tapered shape that expands from one end to the other end. In this case, it is preferable that the wavelength conversion member having a shape corresponding to the through hole is disposed in the through hole from the other end side.

波長変換部材は、無機バインダー中に蛍光体の粉末を分散して形成されたものであることが好ましい。   The wavelength conversion member is preferably formed by dispersing phosphor powder in an inorganic binder.

波長変換部材は、多結晶セラミック蛍光体または単結晶セラミック蛍光体からなるものであってもよい。   The wavelength conversion member may be made of a polycrystalline ceramic phosphor or a single crystal ceramic phosphor.

波長変換部材は、蛍光体層と、蛍光体層より高い熱伝導率を有する透光性放熱層とを交互に積層させた積層体であってもよい。この場合、透光性放熱層が、透光性セラミックからなることが好ましい。   The wavelength conversion member may be a laminate in which phosphor layers and translucent heat radiation layers having higher thermal conductivity than the phosphor layers are alternately laminated. In this case, it is preferable that the translucent heat radiation layer is made of a translucent ceramic.

本発明において、放熱部材は、金属またはセラミックから形成されていることが好ましい。   In this invention, it is preferable that the heat radiating member is formed from the metal or the ceramic.

本発明の波長変換素子は、貫通孔を有する放熱部材と、貫通孔内に配置される波長変換部材と、貫通孔内に配置され、波長変換部材の上に設けられる低融点ガラスからなるガラス材とを備え、ガラス材によって波長変換部材が貫通孔内に融着固定されていることを特徴としている。   The wavelength conversion element of the present invention includes a heat dissipation member having a through hole, a wavelength conversion member disposed in the through hole, and a glass material made of low-melting glass disposed in the through hole and provided on the wavelength conversion member. The wavelength conversion member is fused and fixed in the through hole by a glass material.

本発明の波長変換素子は、貫通孔と波長変換部材の間に設けられる低融点ガラスからなるガラス層をさらに備えることが好ましい。   The wavelength conversion element of the present invention preferably further includes a glass layer made of low melting point glass provided between the through hole and the wavelength conversion member.

本発明の発光装置は、上記本発明の波長変換素子と、波長変換素子に励起光を照射する光源とを備えることを特徴している。   The light emitting device of the present invention includes the wavelength conversion element of the present invention and a light source that irradiates the wavelength conversion element with excitation light.

光源としては、レーザーダイオードが挙げられる。   A laser diode is mentioned as a light source.

本発明によれば、波長変換部材からの熱を効率良く放熱部材に伝達することができる波長変換素子を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wavelength conversion element which can transfer the heat | fever from the wavelength conversion member to a thermal radiation member efficiently can be manufactured.

本発明の第1の実施形態の製造方法で製造される波長変換素子を示す模式的断面図である。It is typical sectional drawing which shows the wavelength conversion element manufactured with the manufacturing method of the 1st Embodiment of this invention. 本発明の第1の実施形態の製造方法を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the 1st Embodiment of this invention. 本発明の第2の実施形態の製造方法を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the 2nd Embodiment of this invention. 本発明の第2の実施形態の製造方法で製造される波長変換素子を示す模式的断面図である。It is typical sectional drawing which shows the wavelength conversion element manufactured with the manufacturing method of the 2nd Embodiment of this invention. 本発明の第3の実施形態における波長変換部材を示す模式的断面図である。It is typical sectional drawing which shows the wavelength conversion member in the 3rd Embodiment of this invention. 本発明の第1の実施形態の波長変換素子を用いた発光装置の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the light-emitting device using the wavelength conversion element of the 1st Embodiment of this invention.

以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。   Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.

(第1の実施形態)
図1は、本発明の第1の実施形態の製造方法で製造される波長変換素子を示す模式的断面図である。図1に示すように、本実施形態の波長変換素子10は、貫通孔3を有する放熱部材2と、貫通孔3内に配置される波長変換部材1と、貫通孔3内に配置され、波長変換部材1の上に設けられるガラス材4とを備えている。波長変換部材1は、ガラス材4によって貫通孔3内に融着固定されている。本実施形態において、ガラス材4は低融点ガラスから形成されている。また、本実施形態において、波長変換部材1と貫通孔3の間には、ガラス層4aが設けられている。ガラス層4aは、後述するように、軟化流動したガラス材4を、波長変換部材1と貫通孔3の間に浸透させることにより形成することができる。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing a wavelength conversion element manufactured by the manufacturing method of the first embodiment of the present invention. As shown in FIG. 1, the wavelength conversion element 10 of the present embodiment is disposed in the heat dissipation member 2 having the through-hole 3, the wavelength conversion member 1 disposed in the through-hole 3, the through-hole 3, and the wavelength And a glass material 4 provided on the conversion member 1. The wavelength conversion member 1 is fused and fixed in the through hole 3 with a glass material 4. In this embodiment, the glass material 4 is formed from low melting glass. In the present embodiment, a glass layer 4 a is provided between the wavelength conversion member 1 and the through hole 3. As will be described later, the glass layer 4 a can be formed by allowing the softened and flowable glass material 4 to penetrate between the wavelength conversion member 1 and the through hole 3.

波長変換部材1としては、光源から発せられた励起光により蛍光を発する蛍光体を含むものが挙げられる。このような波長変換部材1としては、無機バインダー中に蛍光体の粉末を分散して形成されたものが挙げられる。無機バインダー中に分散させることにより、蛍光体を均一に分散することができる。無機バインダーとしては、ガラスやポリシラザン等が挙げられる。ガラスとしては、蛍光体の耐熱性を考慮し、軟化点が250℃〜1000℃、さらには300℃〜850℃であるものを用いることが好ましい。ガラスの具体例としては、ホウケイ酸塩系ガラス、リン酸塩系ガラス等が挙げられる。   Examples of the wavelength conversion member 1 include those containing a phosphor that emits fluorescence by excitation light emitted from a light source. Examples of such a wavelength conversion member 1 include those formed by dispersing phosphor powder in an inorganic binder. By dispersing in the inorganic binder, the phosphor can be uniformly dispersed. Examples of the inorganic binder include glass and polysilazane. In consideration of the heat resistance of the phosphor, it is preferable to use glass having a softening point of 250 ° C. to 1000 ° C., more preferably 300 ° C. to 850 ° C. Specific examples of the glass include borosilicate glass and phosphate glass.

蛍光体は、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体の具体例としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、ガーネット系化合物蛍光体から選ばれた少なくとも1種が挙げられる。励起光として青色光を用いる場合、例えば、緑色光、黄色光または赤色光を蛍光として出射する蛍光体を用いることができる。   The phosphor is not particularly limited as long as it emits fluorescence upon incidence of excitation light. Specific examples of the phosphor include, for example, an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, an acid chloride phosphor, a sulfide phosphor, an oxysulfide phosphor, and a halide. Examples thereof include at least one selected from phosphors, chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, and garnet compound phosphors. When blue light is used as the excitation light, for example, a phosphor that emits green light, yellow light, or red light as fluorescence can be used.

蛍光体の平均粒子径(D50)は、1〜50μmであることが好ましく、5〜25μmであることがより好ましい。蛍光体の平均粒子径が小さすぎると、発光強度が低下しやすくなる。一方、蛍光体の平均粒子径が大きすぎると、発光色が不均一になる傾向がある。 The average particle diameter (D 50 ) of the phosphor is preferably 1 to 50 μm, and more preferably 5 to 25 μm. If the average particle size of the phosphor is too small, the emission intensity tends to decrease. On the other hand, if the average particle diameter of the phosphor is too large, the emission color tends to be non-uniform.

波長変換部材1中における蛍光体の含有量は、5〜80体積%であることが好ましく、10〜75体積%であることがより好ましく、20〜70体積%であることがさらに好ましい。蛍光体の含有量が少なすぎると、所望の発光強度が得られにくくなる。一方、蛍光体の含有量が多すぎると、波長変換部材1の機械的強度が低下しやすくなる。   The phosphor content in the wavelength conversion member 1 is preferably 5 to 80% by volume, more preferably 10 to 75% by volume, and still more preferably 20 to 70% by volume. When there is too little content of fluorescent substance, it becomes difficult to obtain desired luminescence intensity. On the other hand, when there is too much content of fluorescent substance, the mechanical strength of the wavelength conversion member 1 will fall easily.

波長変換部材1は、無機バインダー等を含まない、実質的に蛍光体のみから構成されたものであってもよい。このようなものとして、具体的には多結晶セラミック蛍光体及び単結晶セラミック蛍光体が挙げられる。これらのセラミック蛍光体は耐熱性に非常に優れるため、励起光の出力が大きくなって高温になった場合であっても、溶解等の不具合が発生しにくい。多結晶セラミック蛍光体及び単結晶セラミック蛍光体としては、例えばYAGセラミック蛍光体等のガーネット系セラミック蛍光体が挙げられる。   The wavelength conversion member 1 may be composed substantially only of a phosphor that does not contain an inorganic binder or the like. Specific examples of such materials include polycrystalline ceramic phosphors and single crystal ceramic phosphors. Since these ceramic phosphors are extremely excellent in heat resistance, problems such as dissolution are unlikely to occur even when the output of excitation light is increased to a high temperature. Examples of the polycrystalline ceramic phosphor and the single crystal ceramic phosphor include garnet ceramic phosphors such as YAG ceramic phosphors.

波長変換部材1の厚みは、励起光が確実に蛍光体に吸収されるような厚みである範囲において、薄い方が好ましい。その理由としては、波長変換部材1が厚すぎると、波長変換部材1における光の散乱や吸収が大きくなりすぎ、蛍光の出射効率が低下する傾向があること、及び、波長変換部材1の温度が高くなって、経時的な発光強度の低下や構成材料の溶解が発生しやすくなることが挙げられる。そのため、波長変換部材1の厚みは、2mm以下であることが好ましく、1mm以下であることがより好ましく、0.8mm以下であることがさらに好ましい。波長変換部材1の厚みの下限値は、通常、0.03mm程度である。また、出射光として白色を得る目的の場合は、励起光と蛍光が適切な割合になるように、波長変換部材1の厚みを制御すればよい。   The thickness of the wavelength conversion member 1 is preferably thinner as long as the excitation light is reliably absorbed by the phosphor. The reason is that if the wavelength conversion member 1 is too thick, light scattering and absorption in the wavelength conversion member 1 become too large, and the emission efficiency of fluorescence tends to decrease, and the temperature of the wavelength conversion member 1 is low. It becomes high and it becomes easy to generate | occur | produce the fall of emitted light intensity with time, and the melt | dissolution of a constituent material. Therefore, the thickness of the wavelength conversion member 1 is preferably 2 mm or less, more preferably 1 mm or less, and even more preferably 0.8 mm or less. The lower limit of the thickness of the wavelength conversion member 1 is usually about 0.03 mm. For the purpose of obtaining white as the emitted light, the thickness of the wavelength conversion member 1 may be controlled so that the excitation light and the fluorescence are in an appropriate ratio.

放熱部材2は、波長変換部材1で生じた熱を放熱するため設けられている。したがって、放熱部材2は、高い熱伝導率を有する材質から形成されていることが好ましい。このような観点から、放熱部材2は、金属またはセラミックなどから形成されていることが好ましい。金属としては、例えば、アルミニウムやステンレス等が挙げられる。セラミックとしては、高熱伝導性セラミックを用いることができる。高熱伝導性セラミックとしては、酸化アルミニウム系セラミック、窒化アルミニウム系セラミック、炭化ケイ素系セラミック、窒化ホウ素系セラミック、酸化マグネシウム系セラミック、酸化チタン系セラミック、酸化ニオビウム系セラミック、酸化亜鉛系セラミック、酸化イットリウム系セラミックなどが挙げられる。   The heat radiating member 2 is provided to radiate heat generated by the wavelength conversion member 1. Therefore, the heat radiating member 2 is preferably formed of a material having high thermal conductivity. From such a viewpoint, it is preferable that the heat dissipating member 2 is formed of metal, ceramic, or the like. Examples of the metal include aluminum and stainless steel. As the ceramic, a high thermal conductive ceramic can be used. High thermal conductive ceramics include aluminum oxide ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, niobium oxide ceramics, zinc oxide ceramics, yttrium oxide ceramics A ceramic etc. are mentioned.

本実施形態における放熱部材2の貫通孔3は、一方端3bから他方端3cに向かって拡がるテーパー状に形成されている。また、波長変換部材1は貫通孔3に対応した形状を有している。具体的には、波長変換部材1の側面1aは、貫通孔3のテーパー状の表面3aに対応した形状を有している。波長変換部材1の側面1a及び貫通孔3の表面3aが上記形状を有することにより、図2を参照して後述する波長変換素子10の製造工程において、波長変換部材1の側面1aを、貫通孔3の表面3aに均一に圧着させやすくなる。本実施形態において、波長変換部材1の側面1a及び貫通孔3の表面3aは、円錐台形のテーパー状に形成されているが、これに限定されるものではなく、例えば角錐台形のテーパー状に形成されていてもよい。   The through hole 3 of the heat radiating member 2 in the present embodiment is formed in a tapered shape that expands from the one end 3b toward the other end 3c. The wavelength conversion member 1 has a shape corresponding to the through hole 3. Specifically, the side surface 1 a of the wavelength conversion member 1 has a shape corresponding to the tapered surface 3 a of the through hole 3. When the side surface 1a of the wavelength conversion member 1 and the surface 3a of the through hole 3 have the above-described shape, the side surface 1a of the wavelength conversion member 1 is replaced with the through hole in the manufacturing process of the wavelength conversion element 10 described later with reference to FIG. It becomes easy to make it press-fit to the surface 3a of 3 uniformly. In the present embodiment, the side surface 1a of the wavelength conversion member 1 and the surface 3a of the through hole 3 are formed in a truncated cone-shaped taper shape. However, the present invention is not limited to this, and for example, formed in a truncated pyramid-shaped taper shape. May be.

本実施形態の波長変換素子10においては、例えば、一方端3b側から、貫通孔3内の波長変換部材1に励起光を照射し、波長変換部材1で波長変換して、蛍光を他方端3c側から出射させることができる。   In the wavelength conversion element 10 of the present embodiment, for example, the wavelength conversion member 1 in the through hole 3 is irradiated with excitation light from the one end 3b side, the wavelength conversion member 1 converts the wavelength, and the fluorescence is converted to the other end 3c. The light can be emitted from the side.

波長変換部材1から外部に励起光及び蛍光が漏れるのを防止するため、波長変換部材1の側面1a及び/または貫通孔3の表面3aの上に、反射層を設けてもよい。反射層としては、Ag、Al、Pt、Cu等からなる金属層や、アルミナやチタニア等を含むセラミック層が挙げられる。なお、放熱部材2が金属から形成される場合、貫通孔3の表面3aを反射層として機能させることもできる。   In order to prevent the excitation light and fluorescence from leaking outside from the wavelength conversion member 1, a reflective layer may be provided on the side surface 1 a of the wavelength conversion member 1 and / or the surface 3 a of the through hole 3. Examples of the reflective layer include a metal layer made of Ag, Al, Pt, Cu, or the like, or a ceramic layer containing alumina, titania, or the like. In addition, when the heat radiating member 2 is formed from a metal, the surface 3a of the through hole 3 can also function as a reflective layer.

波長変換部材1の励起光入射側表面に、蛍光の前方取り出し向上を目的として、バンドパスフィルターを設けてもよい。また、波長変換部材1の励起光及び蛍光の出射側表面に、励起光及び蛍光の反射損失低減を目的として反射防止膜を設けてもよい。   A band pass filter may be provided on the excitation light incident side surface of the wavelength conversion member 1 for the purpose of improving the forward extraction of fluorescence. Further, an antireflection film may be provided on the excitation light and fluorescence emission side surface of the wavelength conversion member 1 for the purpose of reducing reflection loss of excitation light and fluorescence.

ガラス材4は、低融点ガラスであることが好ましい。ここで、低融点ガラスは、その軟化点が850℃以下であることが好ましく、700℃以下であることがより好ましく、650℃以下であることが特に好ましい。低融点ガラスの軟化点の下限は特に限定されないが、現実的には150℃以上である。なお、低融点ガラスの軟化点はファイバーエロンゲーション法により得られた値を言う。本実施形態において、ガラス材4は低融点ガラスから形成されている。ガラス材4は、例えば、ケイ酸塩ガラス、ホウケイ酸塩ガラス、スズリン酸塩ガラス、ビスマス酸塩ガラス及びホウケイ酸鉛ガラスから選択される少なくとも1種であることが好ましい。これらの中でも、ホウケイ酸塩系ガラス、スズリン酸塩系ガラスは軟化点が比較的低く低温焼結が可能であり、焼成時における蛍光体の劣化を抑制できるため、特に好ましく用いられる。   The glass material 4 is preferably low-melting glass. Here, the low melting point glass preferably has a softening point of 850 ° C. or less, more preferably 700 ° C. or less, and particularly preferably 650 ° C. or less. The lower limit of the softening point of the low-melting glass is not particularly limited, but is practically 150 ° C. or higher. The softening point of the low melting point glass is a value obtained by the fiber elongation method. In this embodiment, the glass material 4 is formed from low melting glass. The glass material 4 is preferably at least one selected from, for example, silicate glass, borosilicate glass, tin phosphate glass, bismuth glass, and lead borosilicate glass. Among these, borosilicate glass and tin phosphate glass are particularly preferably used because they have a relatively low softening point and can be sintered at a low temperature, and can suppress phosphor deterioration during firing.

ガラス材4は、貫通孔3内に配置され、波長変換部材1の上に設けられている。ガラス材4も、波長変換部材1と同様に、貫通孔3のテーパー状の表面3aに対応した形状を有していることが好ましい。ガラス材4が、このような形状を有することにより、ガラス材4を貫通孔3に密着させることができ、ガラス材4を介して波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。   The glass material 4 is disposed in the through hole 3 and provided on the wavelength conversion member 1. Similarly to the wavelength conversion member 1, the glass material 4 preferably has a shape corresponding to the tapered surface 3 a of the through hole 3. Since the glass material 4 has such a shape, the glass material 4 can be brought into close contact with the through hole 3, and heat from the wavelength conversion member 1 is effectively transmitted to the heat dissipation member 2 through the glass material 4. Can be made.

本実施形態において、波長変換部材1と貫通孔3の間には、ガラス層4aが設けられている。ガラス層4aは、軟化流動したガラス材4を、波長変換部材1と貫通孔3の間に浸透させることにより形成することができる。したがって、ガラス層4aは、ガラス材4と同じ材質から形成されていることが好ましい。   In the present embodiment, a glass layer 4 a is provided between the wavelength conversion member 1 and the through hole 3. The glass layer 4 a can be formed by infiltrating the softened and flowable glass material 4 between the wavelength conversion member 1 and the through hole 3. Therefore, the glass layer 4 a is preferably formed from the same material as the glass material 4.

ガラス層4aが形成されていない場合には、波長変換部材1の側面1aが、貫通孔3の表面3aに密着していることが好ましい。波長変換部材1の側面1aを貫通孔3の表面3aに密着させることにより、波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。しかしながら、波長変換部材1の側面1aまたは貫通孔3の表面3aに微小な凹凸が形成されている場合や、波長変換部材1の側面1aの形状と貫通孔3の表面3aの形状が完全には対応していない場合などには、波長変換部材1の側面1aと貫通孔3の表面3aの間に隙間が形成されてしまう。このような場合には、波長変換部材1の側面1aと貫通孔3の表面3aの間に、ガラス層4aを形成して、隙間をガラス層4aで埋めることにより、波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。   When the glass layer 4 a is not formed, the side surface 1 a of the wavelength conversion member 1 is preferably in close contact with the surface 3 a of the through hole 3. By bringing the side surface 1 a of the wavelength conversion member 1 into close contact with the surface 3 a of the through hole 3, the heat from the wavelength conversion member 1 can be effectively transmitted to the heat dissipation member 2. However, when a minute unevenness is formed on the side surface 1a of the wavelength conversion member 1 or the surface 3a of the through hole 3, or the shape of the side surface 1a of the wavelength conversion member 1 and the shape of the surface 3a of the through hole 3 are completely In the case of not corresponding, a gap is formed between the side surface 1 a of the wavelength conversion member 1 and the surface 3 a of the through hole 3. In such a case, the glass layer 4a is formed between the side surface 1a of the wavelength conversion member 1 and the surface 3a of the through hole 3, and the gap is filled with the glass layer 4a. Can be effectively transmitted to the heat dissipation member 2.

図2は、本発明の第1の実施形態の製造方法を説明するための模式的断面図である。図2に示すように、放熱部材2の貫通孔3内に波長変換部材1を配置し、ガラス材4を波長変換部材1の上に載置する。図2に示す状態では、波長変換部材1及びガラス材4と、貫通孔3との間に隙間が存在しているが、波長変換部材1及びガラス材4は、貫通孔3と接するような状態で貫通孔3内に配置されていてもよい。   FIG. 2 is a schematic cross-sectional view for explaining the manufacturing method according to the first embodiment of the present invention. As shown in FIG. 2, the wavelength conversion member 1 is disposed in the through hole 3 of the heat dissipation member 2, and the glass material 4 is placed on the wavelength conversion member 1. In the state shown in FIG. 2, there are gaps between the wavelength conversion member 1 and the glass material 4 and the through hole 3, but the wavelength conversion member 1 and the glass material 4 are in contact with the through hole 3. It may be arranged in the through hole 3.

次に、図2に示すように、ガラス材4の上に加熱プレス部材5を配置し、ガラス材4を加熱しながら、ガラス材4を矢印A方向にプレスする。加熱温度は、ガラス材4の軟化点より高い温度であることが好ましい。また、加熱温度は、波長変換部材1における蛍光体に熱による劣化が生じないような温度であることが好ましい。加熱温度は、具体的には、軟化点℃〜軟化点+200℃の範囲内であることが好ましく、軟化点+10℃〜軟化点+150℃の範囲内であることが好ましい。   Next, as shown in FIG. 2, the heating press member 5 is disposed on the glass material 4, and the glass material 4 is pressed in the direction of arrow A while the glass material 4 is heated. The heating temperature is preferably higher than the softening point of the glass material 4. The heating temperature is preferably such that the phosphor in the wavelength conversion member 1 is not deteriorated by heat. Specifically, the heating temperature is preferably in the range of softening point ° C. to softening point + 200 ° C., and preferably in the range of softening point + 10 ° C. to softening point + 150 ° C.

ガラス材4を加熱しながらプレスすることにより、ガラス材4の下方に配置された波長変換部材1の側面1aを、貫通孔3の表面3aに圧着させることができる。これにより、波長変換部材1の側面1aと貫通孔3の表面3aの間に形成される隙間を小さくすることができ、波長変換部材1からの熱を効果的に放熱部材2に伝達させることができるようになる。また、加熱プレスによりガラス材4を軟化流動させ、図1に示すように、軟化流動したガラス材4を、波長変換部材1と貫通孔3の間に浸透させてガラス層4aを形成してもよい。ガラス層4aを形成することにより、波長変換部材1と貫通孔3の間の空隙部分を減少させ、波長変換部材1からの熱をさらに効果的に放熱部材2に伝達させることができる。   By pressing while heating the glass material 4, the side surface 1 a of the wavelength conversion member 1 disposed below the glass material 4 can be pressure-bonded to the surface 3 a of the through hole 3. Thereby, the clearance gap formed between the side surface 1a of the wavelength conversion member 1 and the surface 3a of the through-hole 3 can be made small, and the heat from the wavelength conversion member 1 can be effectively transmitted to the heat radiating member 2. become able to. Alternatively, the glass material 4 is softened and flowed by a hot press, and the softened and flown glass material 4 is infiltrated between the wavelength conversion member 1 and the through hole 3 to form the glass layer 4a as shown in FIG. Good. By forming the glass layer 4a, the space | gap part between the wavelength conversion member 1 and the through-hole 3 can be decreased, and the heat from the wavelength conversion member 1 can be more effectively transmitted to the heat radiating member 2. FIG.

本実施形態によれば、ガラス材4が波長変換部材1及び貫通孔3に密着しているので、ガラス材4を介して波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。また、波長変換部材1と貫通孔3の間の空隙部分を減少することができるので、波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。そのため、波長変換素子10の放熱性を高めることができる。   According to the present embodiment, since the glass material 4 is in close contact with the wavelength conversion member 1 and the through hole 3, heat from the wavelength conversion member 1 is effectively transmitted to the heat dissipation member 2 through the glass material 4. Can do. Moreover, since the space | gap part between the wavelength conversion member 1 and the through-hole 3 can be reduced, the heat from the wavelength conversion member 1 can be effectively transmitted to the heat radiating member 2. Therefore, the heat dissipation of the wavelength conversion element 10 can be improved.

(第2の実施形態)
図3は、本発明の第2の実施形態の製造方法を説明するための模式的断面図である。本実施形態においては、貫通孔3が円柱状に形成されている。したがって、波長変換部材1も円柱状に形成されている。本発明における貫通孔3は、必ずしも第1及び第2の実施形態のようにテーパー状に形成されている必要はなく、本実施形態のように柱状の形状を有していてもよい。また、貫通孔3及び波長変換部材1の形状は、角柱状の形状であってもよい。本実施形態の波長変換部材1及び放熱部材2におけるその他の構成は、第1の実施形態と同様である。
(Second Embodiment)
FIG. 3 is a schematic cross-sectional view for explaining the manufacturing method according to the second embodiment of the present invention. In the present embodiment, the through hole 3 is formed in a columnar shape. Therefore, the wavelength conversion member 1 is also formed in a cylindrical shape. The through hole 3 in the present invention is not necessarily formed in a tapered shape as in the first and second embodiments, and may have a columnar shape as in the present embodiment. Moreover, the shape of the through-hole 3 and the wavelength conversion member 1 may be a prismatic shape. Other configurations of the wavelength conversion member 1 and the heat dissipation member 2 of the present embodiment are the same as those of the first embodiment.

図3に示すように、本実施形態においては、波長変換部材1の側面1aと貫通孔3の表面3aの間にわずかな隙間が形成されている。本実施形態においては、放熱部材2は、台6の上に載せられている。   As shown in FIG. 3, in the present embodiment, a slight gap is formed between the side surface 1 a of the wavelength conversion member 1 and the surface 3 a of the through hole 3. In the present embodiment, the heat radiating member 2 is placed on the base 6.

本実施形態においても、第1の実施形態と同様に、ガラス材4を波長変換部材1の上に載置し、ガラス材4の上に加熱プレス部材5を配置してガラス材4を加熱しながら、ガラス材4を矢印A方向にプレスする。ガラス材4は、第1の実施形態と同様のものを用いることができる。ガラス材4を加熱しながらプレスすることにより、ガラス材4を軟化流動させ、軟化流動したガラス材4を、波長変換部材1の側面1aと貫通孔3の表面3aの間の隙間に浸透させる。   Also in this embodiment, similarly to the first embodiment, the glass material 4 is placed on the wavelength conversion member 1, and the heating press member 5 is disposed on the glass material 4 to heat the glass material 4. Then, the glass material 4 is pressed in the direction of arrow A. The glass material 4 can be the same as in the first embodiment. By pressing while heating the glass material 4, the glass material 4 is softened and fluidized, and the softened and fluidized glass material 4 is permeated into the gap between the side surface 1 a of the wavelength conversion member 1 and the surface 3 a of the through hole 3.

図4は、本発明の第2の実施形態の製造方法で製造される波長変換素子を示す模式的断面図である。図4に示すように、軟化流動したガラス材4が、波長変換部材1の側面1aと貫通孔3の表面3aの間の隙間に浸透することにより、波長変換部材1と貫通孔3の間にガラス層4aが形成される。ガラス層4aが形成されることにより、波長変換部材1と貫通孔3との間の隙間がガラス層4aで埋められる。これにより、波長変換部材1と貫通孔3の間の空隙部分が減少し、波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。   FIG. 4 is a schematic cross-sectional view showing a wavelength conversion element manufactured by the manufacturing method of the second embodiment of the present invention. As shown in FIG. 4, the softened and fluidized glass material 4 penetrates into the gap between the side surface 1 a of the wavelength conversion member 1 and the surface 3 a of the through hole 3, so that the gap between the wavelength conversion member 1 and the through hole 3 is obtained. A glass layer 4a is formed. By forming the glass layer 4a, the gap between the wavelength conversion member 1 and the through hole 3 is filled with the glass layer 4a. Thereby, the space | gap part between the wavelength conversion member 1 and the through-hole 3 reduces, and the heat | fever from the wavelength conversion member 1 can be effectively transmitted to the thermal radiation member 2. FIG.

第1の実施形態で製造される波長変換素子10と同様に、波長変換部材1から外部に励起光及び蛍光が漏れるのを防止するため、波長変換部材1の側面1a及び/または貫通孔3の表面3aの上に、反射層を設けてもよい。また、波長変換部材1の励起光入射側表面に、蛍光の前方取り出し向上を目的として、バンドパスフィルターを設けてもよい。さらに、波長変換部材1の励起光及び蛍光の出射側表面に、励起光及び蛍光の反射損失低減を目的として反射防止膜を設けてもよい。   Similarly to the wavelength conversion element 10 manufactured in the first embodiment, in order to prevent excitation light and fluorescence from leaking from the wavelength conversion member 1 to the outside, the side surface 1a of the wavelength conversion member 1 and / or the through hole 3 A reflective layer may be provided on the surface 3a. In addition, a band pass filter may be provided on the excitation light incident side surface of the wavelength conversion member 1 for the purpose of improving the forward extraction of fluorescence. Further, an antireflection film may be provided on the excitation light and fluorescence emission side surface of the wavelength conversion member 1 for the purpose of reducing reflection loss of excitation light and fluorescence.

本実施形態においては、ガラス材4が波長変換部材1及び貫通孔3に密着しているので、ガラス材4を介して波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。また、波長変換部材1と貫通孔3の間の空隙部分を減少することができるので、波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。そのため、波長変換素子10の放熱性を高めることができる。   In the present embodiment, since the glass material 4 is in close contact with the wavelength conversion member 1 and the through hole 3, heat from the wavelength conversion member 1 can be effectively transmitted to the heat dissipation member 2 through the glass material 4. it can. Moreover, since the space | gap part between the wavelength conversion member 1 and the through-hole 3 can be reduced, the heat from the wavelength conversion member 1 can be effectively transmitted to the heat radiating member 2. Therefore, the heat dissipation of the wavelength conversion element 10 can be improved.

(第3の実施形態)
図5は、本発明の第3の実施形態における波長変換部材を示す模式的断面図である。本発明における波長変換部材は、図5に示す波長変換部材20のように、蛍光体層21と、蛍光体層21より高い熱伝導率を有する透光性放熱層22とを交互に積層させた積層体から構成されていてもよい。具体的には、本実施形態の波長変換部材20は、蛍光体層21と、その両面に形成された透光性放熱層22とを備えた積層体からなる。本実施形態では、蛍光体層21に励起光が照射されることにより発生した熱は、各透光性放熱層22を通じて外部に効率良く放出される。よって、蛍光体層21の温度が過度に上昇することを抑制することができる。
(Third embodiment)
FIG. 5 is a schematic cross-sectional view showing a wavelength conversion member in the third embodiment of the present invention. The wavelength conversion member in the present invention is formed by alternately laminating phosphor layers 21 and translucent heat radiation layers 22 having higher thermal conductivity than the phosphor layers 21 as in the wavelength conversion member 20 shown in FIG. You may be comprised from the laminated body. Specifically, the wavelength conversion member 20 of the present embodiment is formed of a laminate including a phosphor layer 21 and a light transmissive heat dissipation layer 22 formed on both surfaces thereof. In the present embodiment, the heat generated by irradiating the phosphor layer 21 with the excitation light is efficiently released to the outside through each light transmissive heat radiation layer 22. Therefore, it can suppress that the temperature of the fluorescent substance layer 21 rises excessively.

蛍光体層21としては、第1の実施形態の波長変換部材1と同様のものを用いることができる。具体的には、無機バインダー中に蛍光体を分散して形成されたものや、多結晶セラミック蛍光体及び単結晶セラミック蛍光体などを用いることができる。   As the fluorescent substance layer 21, the thing similar to the wavelength conversion member 1 of 1st Embodiment can be used. Specifically, a phosphor formed by dispersing a phosphor in an inorganic binder, a polycrystalline ceramic phosphor, a single crystal ceramic phosphor, or the like can be used.

透光性放熱層22は、蛍光体層21より高い熱伝導率を有している。具体的には、5W/m・K以上であることが好ましく、10W/m・K以上であることがより好ましく、20W/m・K以上であることがさらに好ましい。また、励起光、及び蛍光体層21から発せられる蛍光を透過させる。具体的には、透光性放熱層22の波長400〜800nmにおける全光線透過率は10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましく、40%以上であることが特に好ましく、50%以上であることが最も好ましい。   The translucent heat dissipation layer 22 has a higher thermal conductivity than the phosphor layer 21. Specifically, it is preferably 5 W / m · K or more, more preferably 10 W / m · K or more, and further preferably 20 W / m · K or more. Further, the excitation light and the fluorescence emitted from the phosphor layer 21 are transmitted. Specifically, the total light transmittance at a wavelength of 400 to 800 nm of the translucent heat radiation layer 22 is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more. 40% or more is particularly preferable, and 50% or more is most preferable.

透光性放熱層22としては、酸化アルミニウム系セラミックス、酸化ジルコニア系セラミックス、窒化アルミニウム系セラミックス、炭化ケイ素系セラミックス、窒化ホウ素系セラミックス、酸化マグネシウム系セラミックス、酸化チタン系セラミックス、酸化ニオビウム系セラミックス、酸化亜鉛系セラミックス、酸化イットリウム系セラミックス等の透光性セラミック基板が挙げられる。   The translucent heat dissipation layer 22 includes aluminum oxide ceramics, zirconia oxide ceramics, aluminum nitride ceramics, silicon carbide ceramics, boron nitride ceramics, magnesium oxide ceramics, titanium oxide ceramics, niobium oxide ceramics, oxidation Examples thereof include translucent ceramic substrates such as zinc-based ceramics and yttrium oxide-based ceramics.

透光性放熱層22の厚みは、0.05〜1mmであることが好ましく、0.07〜0.8mmであることがより好ましく、0.1〜0.5mmであることがさらに好ましい。透光性放熱層22の厚みが小さすぎると、機械的強度が低下する傾向がある。一方、透光性放熱層22の厚みが大きすぎると、波長変換素子が大型化する傾向がある。   The thickness of the light transmissive heat radiation layer 22 is preferably 0.05 to 1 mm, more preferably 0.07 to 0.8 mm, and still more preferably 0.1 to 0.5 mm. When the thickness of the translucent heat radiation layer 22 is too small, the mechanical strength tends to decrease. On the other hand, when the thickness of the translucent heat radiation layer 22 is too large, the wavelength conversion element tends to be enlarged.

なお、蛍光体層21の両面に設けられた2つの透光性放熱層22の厚みは同じであってもよいし、異なっていてもよい。例えば、一方の透光性放熱層22の厚みを比較的大きく(例えば0.2mm以上、さらには0.5mm以上)することにより、波長変換部材20としての機械的強度が担保される場合は、他方の透光性放熱層22の厚みを比較的小さく(例えば0.2mm未満、さらには0.1mm以下)してもよい。   In addition, the thickness of the two translucent heat radiation layers 22 provided on both surfaces of the phosphor layer 21 may be the same or different. For example, when the mechanical strength as the wavelength conversion member 20 is ensured by relatively increasing the thickness of one light transmissive heat radiation layer 22 (for example, 0.2 mm or more, and further 0.5 mm or more), The thickness of the other light transmissive heat radiation layer 22 may be relatively small (for example, less than 0.2 mm, or even 0.1 mm or less).

第1の実施形態で製造される波長変換素子10と同様に、透光性放熱層22の励起光入射側表面に、励起光の反射損失低減や蛍光の前方取り出し向上を目的として、反射防止膜やバンドパスフィルターを設けてもよい。また、透光性放熱層22の励起光及び蛍光の出射側表面に、励起光及び蛍光の反射損失低減を目的として反射防止膜を設けてもよい。さらに、蛍光体層21及び透光性放熱層22から外部に励起光及び蛍光が漏れるのを防止するため、各層の側面に反射層を設けてもよい。   Similar to the wavelength conversion element 10 manufactured in the first embodiment, an antireflection film is formed on the excitation light incident side surface of the translucent heat radiation layer 22 for the purpose of reducing reflection loss of excitation light and improving forward extraction of fluorescence. A band pass filter may be provided. In addition, an antireflection film may be provided on the excitation light and fluorescence emission side surface of the translucent heat radiation layer 22 for the purpose of reducing reflection loss of excitation light and fluorescence. Furthermore, in order to prevent the excitation light and the fluorescence from leaking outside from the phosphor layer 21 and the translucent heat radiation layer 22, a reflective layer may be provided on the side surface of each layer.

本実施形態の波長変換部材20は、例えば以下のようにして作製することができる。   The wavelength conversion member 20 of this embodiment can be produced as follows, for example.

ガラス粉末と、蛍光体と、バインダー樹脂や溶剤等の有機成分とを含むスラリーを、ポリエチレンテレフタレート等の樹脂フィルム上にドクターブレード法等により塗布し、加熱乾燥することにより、蛍光体層21用のグリーンシートを作製する。グリーンシートを焼成することにより蛍光体層21を得る。   A slurry containing glass powder, a phosphor, and an organic component such as a binder resin or a solvent is applied on a resin film such as polyethylene terephthalate by a doctor blade method or the like, and is heated and dried to obtain a slurry for the phosphor layer 21. Make a green sheet. The phosphor layer 21 is obtained by firing the green sheet.

蛍光体層21の両面に透光性放熱層22を積層し、加熱圧着することにより波長変換部材20が得られる。あるいは、ポリシラザン等の無機接着剤を介して蛍光体層21と透光性放熱層22を接合してもよい。また、蛍光体層21がセラミック蛍光体からなり、透光性放熱層22が透光性セラミックからなる場合には、蛍光体層21と透光性放熱層22とを放電プラズマ焼結法により接合してもよい。このようにすれば、蛍光体層21と透光性放熱層22の密着性が良好となり、蛍光体層21で発生した熱が透光性放熱層22に伝達しやすくなる。   The wavelength conversion member 20 is obtained by laminating the translucent heat radiation layer 22 on both surfaces of the phosphor layer 21 and thermocompression bonding. Alternatively, the phosphor layer 21 and the translucent heat radiation layer 22 may be joined via an inorganic adhesive such as polysilazane. Further, when the phosphor layer 21 is made of a ceramic phosphor and the light-transmitting heat dissipation layer 22 is made of a light-transmitting ceramic, the phosphor layer 21 and the light-transmitting heat dissipation layer 22 are joined by a discharge plasma sintering method. May be. In this way, the adhesion between the phosphor layer 21 and the light transmissive heat radiation layer 22 becomes good, and the heat generated in the phosphor layer 21 is easily transferred to the light transmissive heat radiation layer 22.

本実施形態の波長変換部材20は、3層の積層体であるが、これに限定されるものではなく、例えば、蛍光体層21と透光性放熱層22とを交互に積層させた4層以上の積層体であってもよい。   The wavelength conversion member 20 of the present embodiment is a three-layer laminate, but is not limited to this. For example, four layers in which phosphor layers 21 and light-transmitting heat dissipation layers 22 are alternately laminated. The above laminated body may be sufficient.

本実施形態の波長変換部材20は、第2の実施形態の波長変換部材1のように円柱状や角柱状であってもよい。   The wavelength conversion member 20 of this embodiment may be cylindrical or prismatic like the wavelength conversion member 1 of the second embodiment.

本実施形態の波長変換部材20を用いた波長変換素子においても、ガラス材4が波長変換部材1及び貫通孔3に密着しているので、ガラス材4を介して波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。また、波長変換部材1と貫通孔3の間の空隙部分を減少することができるので、波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。そのため、波長変換素子10の放熱性を高めることができる。   Also in the wavelength conversion element using the wavelength conversion member 20 of the present embodiment, since the glass material 4 is in close contact with the wavelength conversion member 1 and the through hole 3, heat from the wavelength conversion member 1 is transmitted through the glass material 4. The heat dissipation member 2 can be effectively transmitted. Moreover, since the space | gap part between the wavelength conversion member 1 and the through-hole 3 can be reduced, the heat from the wavelength conversion member 1 can be effectively transmitted to the heat radiating member 2. Therefore, the heat dissipation of the wavelength conversion element 10 can be improved.

(発光装置の実施形態)
図6は、本発明の第1の実施形態の波長変換素子を用いた発光装置の一例を示す模式的断面図である。本実施形態の発光装置30は、第1の実施形態の波長変換素子10を用いた発光装置である。本実施形態の発光装置30において、波長変換素子10は、透過型の波長変換素子として用いられている。
(Embodiment of light emitting device)
FIG. 6 is a schematic cross-sectional view showing an example of a light emitting device using the wavelength conversion element according to the first embodiment of the present invention. The light emitting device 30 of the present embodiment is a light emitting device using the wavelength conversion element 10 of the first embodiment. In the light emitting device 30 of the present embodiment, the wavelength conversion element 10 is used as a transmission type wavelength conversion element.

図6に示すように、発光装置30は、波長変換素子10と光源11を備えている。光源11から出射された励起光12は、貫通孔3の一方端3b側から波長変換素子10に入射する。波長変換素子10に入射した励起光12は、波長変換部材1により、励起光12よりも波長の長い蛍光13に波長変換される。また、励起光12の一部は、波長変換素子10を透過する。このため、波長変換素子10からは、励起光12と蛍光13との合成光14が出射する。例えば、励起光12が青色光であり、蛍光13が黄色光である場合、白色の合成光14を得ることができる。合成光14は、貫通孔3の他方端3c側から出射する。   As shown in FIG. 6, the light emitting device 30 includes a wavelength conversion element 10 and a light source 11. The excitation light 12 emitted from the light source 11 enters the wavelength conversion element 10 from the one end 3b side of the through hole 3. The excitation light 12 incident on the wavelength conversion element 10 is wavelength-converted by the wavelength conversion member 1 into fluorescence 13 having a longer wavelength than the excitation light 12. A part of the excitation light 12 is transmitted through the wavelength conversion element 10. For this reason, the combined light 14 of the excitation light 12 and the fluorescence 13 is emitted from the wavelength conversion element 10. For example, when the excitation light 12 is blue light and the fluorescence 13 is yellow light, white synthetic light 14 can be obtained. The combined light 14 is emitted from the other end 3 c side of the through hole 3.

発光装置30において、波長変換素子10は、ガラス材4が波長変換部材1及び貫通孔3に密着しているので、ガラス材4を介して波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。また、波長変換部材1と貫通孔3の間の空隙部分が減少しているので、波長変換部材1からの熱を効果的に放熱部材2に伝達させることができる。そのため、波長変換部材1に励起光12が照射されることにより発生した熱は、放熱部材2を通じて外部に効率良く放出される。よって、波長変換部材1の温度上昇を抑制することができる。   In the light emitting device 30, the wavelength conversion element 10 has the glass material 4 in close contact with the wavelength conversion member 1 and the through hole 3, so that the heat from the wavelength conversion member 1 is effectively dissipated through the glass material 4. Can be transmitted. Moreover, since the space | gap part between the wavelength conversion member 1 and the through-hole 3 is reducing, the heat from the wavelength conversion member 1 can be effectively transmitted to the thermal radiation member 2. FIG. Therefore, the heat generated when the wavelength conversion member 1 is irradiated with the excitation light 12 is efficiently released to the outside through the heat dissipation member 2. Therefore, the temperature rise of the wavelength conversion member 1 can be suppressed.

光源11としては、LEDやLDが挙げられる。発光装置30の発光強度を高める観点からは、光源11は高強度の光を出射できるLDを用いることが好ましい。   Examples of the light source 11 include an LED and an LD. From the viewpoint of increasing the light emission intensity of the light emitting device 30, the light source 11 is preferably an LD capable of emitting high intensity light.

なお、本実施形態の発光装置において、第1の実施形態の波長変換素子10に代えて、第2及び第3の実施形態の波長変換素子を用いてもよい。   In the light emitting device of this embodiment, the wavelength conversion elements of the second and third embodiments may be used instead of the wavelength conversion element 10 of the first embodiment.

1…波長変換部材
1a…側面
2…放熱部材
3…貫通孔
3a…表面
3b…一方端
3c…他方端
4…ガラス材
4a…ガラス層
5…加熱プレス部材
6…台
10…波長変換素子
11…光源
12…励起光
13…蛍光
14…合成光
20…波長変換部材
21…蛍光体層
22…透光性放熱層
30…発光装置
DESCRIPTION OF SYMBOLS 1 ... Wavelength conversion member 1a ... Side surface 2 ... Radiation member 3 ... Through-hole 3a ... Surface 3b ... One end 3c ... The other end 4 ... Glass material 4a ... Glass layer 5 ... Heat press member 6 ... Base 10 ... Wavelength conversion element 11 ... Light source 12 ... excitation light 13 ... fluorescence 14 ... synthetic light 20 ... wavelength conversion member 21 ... phosphor layer 22 ... translucent heat radiation layer 30 ... light emitting device

Claims (15)

貫通孔を有する放熱部材と、前記貫通孔内に配置される波長変換部材とを備える波長変換素子を製造する方法であって、
前記貫通孔内に前記波長変換部材を配置し、ガラス材を前記波長変換部材の上に載置する工程と、
前記ガラス材を加熱しながら前記波長変換部材側にプレスし、前記ガラス材によって前記波長変換部材を前記貫通孔内に融着固定する工程とを備える、波長変換素子の製造方法。
A method for producing a wavelength conversion element comprising a heat dissipation member having a through hole and a wavelength conversion member disposed in the through hole,
Placing the wavelength conversion member in the through-hole, and placing a glass material on the wavelength conversion member;
A method of manufacturing a wavelength conversion element, comprising: pressing the wavelength conversion member while heating the glass material, and fusing and fixing the wavelength conversion member in the through hole with the glass material.
前記ガラス材をプレスする際、軟化流動した前記ガラス材を、前記波長変換部材と前記貫通孔の間に浸透させる、請求項1に記載の波長変換素子の製造方法。   The method for manufacturing a wavelength conversion element according to claim 1, wherein when the glass material is pressed, the softened and fluidized glass material is allowed to permeate between the wavelength conversion member and the through hole. 前記ガラス材が、低融点ガラスである、請求項1または2に記載の波長変換素子の製造方法。   The manufacturing method of the wavelength conversion element of Claim 1 or 2 whose said glass material is low melting glass. 前記ガラス材が、ケイ酸塩ガラス、ホウケイ酸塩ガラス、スズリン酸塩ガラス、ビスマス酸塩ガラス及びホウケイ酸鉛ガラスから選択される少なくとも1種である、請求項1〜3のいずれか一項に記載の波長変換素子の製造方法。   The said glass material is at least 1 sort (s) selected from silicate glass, borosilicate glass, tin phosphate glass, bismuth glass, and borosilicate lead glass as described in any one of Claims 1-3. The manufacturing method of the wavelength conversion element of description. 前記貫通孔は、一方端から他方端に向かって拡がるテーパー状に形成されている、請求項1〜4のいずれか一項に記載の波長変換素子の製造方法。   The said through-hole is a manufacturing method of the wavelength conversion element as described in any one of Claims 1-4 currently formed in the taper shape expanded toward the other end from one end. 前記貫通孔に対応した形状を有する前記波長変換部材を、前記他方端側から前記貫通孔内に配置する、請求項5に記載の波長変換素子の製造方法。   The method for manufacturing a wavelength conversion element according to claim 5, wherein the wavelength conversion member having a shape corresponding to the through hole is disposed in the through hole from the other end side. 前記波長変換部材が、無機バインダー中に蛍光体の粉末を分散して形成されたものである、請求項1〜6のいずれか一項に記載の波長変換素子の製造方法。   The method for producing a wavelength conversion element according to claim 1, wherein the wavelength conversion member is formed by dispersing phosphor powder in an inorganic binder. 前記波長変換部材が、多結晶セラミック蛍光体または単結晶セラミック蛍光体からなる、請求項1〜6のいずれか一項に記載の波長変換素子の製造方法。   The manufacturing method of the wavelength conversion element as described in any one of Claims 1-6 in which the said wavelength conversion member consists of a polycrystalline ceramic fluorescent substance or a single crystal ceramic fluorescent substance. 前記波長変換部材が、蛍光体層と、前記蛍光体層より高い熱伝導率を有する透光性放熱層とを交互に積層させた積層体である、請求項1〜8のいずれか一項に記載の波長変換素子の製造方法。   The said wavelength conversion member is a laminated body which laminated | stacked alternately the fluorescent substance layer and the translucent thermal radiation layer which has a higher thermal conductivity than the said fluorescent substance layer. The manufacturing method of the wavelength conversion element of description. 前記透光性放熱層が、透光性セラミックからなる、請求項9に記載の波長変換素子の製造方法。   The method for manufacturing a wavelength conversion element according to claim 9, wherein the light transmissive heat radiation layer is made of a light transmissive ceramic. 前記放熱部材が、金属またはセラミックから形成されている、請求項1〜10のいずれか一項に記載の波長変換素子の製造方法。   The manufacturing method of the wavelength conversion element as described in any one of Claims 1-10 in which the said heat radiating member is formed from the metal or the ceramic. 貫通孔を有する放熱部材と、前記貫通孔内に配置される波長変換部材と、前記貫通孔内に配置され、前記波長変換部材の上に設けられる低融点ガラスからなるガラス材とを備え、前記ガラス材によって前記波長変換部材が前記貫通孔内に融着固定されている、波長変換素子。   A heat dissipation member having a through-hole, a wavelength conversion member disposed in the through-hole, and a glass material made of low-melting glass disposed in the through-hole and provided on the wavelength conversion member, The wavelength conversion element, wherein the wavelength conversion member is fused and fixed in the through hole with a glass material. 前記貫通孔と前記波長変換部材の間に設けられる前記低融点ガラスからなるガラス層をさらに備える、請求項12に記載の波長変換素子。   The wavelength conversion element of Claim 12 further provided with the glass layer which consists of the said low melting glass provided between the said through-hole and the said wavelength conversion member. 請求項12または13に記載の波長変換素子と、前記波長変換素子に励起光を照射する光源とを備える、発光装置。   A light-emitting device comprising: the wavelength conversion element according to claim 12; and a light source that irradiates the wavelength conversion element with excitation light. 前記光源がレーザーダイオードである、請求項14に記載の発光装置。   The light-emitting device according to claim 14, wherein the light source is a laser diode.
JP2015214240A 2015-10-30 2015-10-30 Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device Active JP6561777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015214240A JP6561777B2 (en) 2015-10-30 2015-10-30 Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015214240A JP6561777B2 (en) 2015-10-30 2015-10-30 Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019129930A Division JP2019204104A (en) 2019-07-12 2019-07-12 Wavelength conversion element and light-emitting device

Publications (2)

Publication Number Publication Date
JP2017085039A true JP2017085039A (en) 2017-05-18
JP6561777B2 JP6561777B2 (en) 2019-08-21

Family

ID=58714328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015214240A Active JP6561777B2 (en) 2015-10-30 2015-10-30 Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device

Country Status (1)

Country Link
JP (1) JP6561777B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215231A (en) * 2004-01-29 2005-08-11 Nippon Sheet Glass Co Ltd Optical component and its manufacturing method
US7196354B1 (en) * 2005-09-29 2007-03-27 Luminus Devices, Inc. Wavelength-converting light-emitting devices
JP2007147841A (en) * 2005-11-25 2007-06-14 Nippon Electric Glass Co Ltd Manufacturing method of lens component
JP2008305936A (en) * 2007-06-07 2008-12-18 Nichia Corp Semiconductor light emitting device
JP2013539477A (en) * 2010-07-19 2013-10-24 レンセレイアー ポリテクニック インスティテュート Full spectrum semiconductor white light source, manufacturing method and application
JP2014204071A (en) * 2013-04-09 2014-10-27 シチズン電子株式会社 Lighting device
JP2015029034A (en) * 2013-07-03 2015-02-12 日亜化学工業株式会社 Light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215231A (en) * 2004-01-29 2005-08-11 Nippon Sheet Glass Co Ltd Optical component and its manufacturing method
US7196354B1 (en) * 2005-09-29 2007-03-27 Luminus Devices, Inc. Wavelength-converting light-emitting devices
JP2007147841A (en) * 2005-11-25 2007-06-14 Nippon Electric Glass Co Ltd Manufacturing method of lens component
JP2008305936A (en) * 2007-06-07 2008-12-18 Nichia Corp Semiconductor light emitting device
JP2013539477A (en) * 2010-07-19 2013-10-24 レンセレイアー ポリテクニック インスティテュート Full spectrum semiconductor white light source, manufacturing method and application
JP2014204071A (en) * 2013-04-09 2014-10-27 シチズン電子株式会社 Lighting device
JP2015029034A (en) * 2013-07-03 2015-02-12 日亜化学工業株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP6561777B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP6677680B2 (en) Wavelength conversion device, method of manufacturing the same, and related light emitting device
JP6879417B2 (en) Wavelength conversion member and light emitting device using it
WO2015178223A1 (en) Wavelength conversion member and light emitting device using same
CN108291987B (en) Wavelength conversion member, wavelength conversion element, and light-emitting device using same
US20180158995A1 (en) Wavelength coinventor, fluorescent color wheel, and light-emitting device
JP6512067B2 (en) Method of manufacturing wavelength conversion element
JP2016225581A (en) Wavelength conversion member and light-emitting device including the same
TW201114072A (en) Semiconductor light-emitting device and light source device using the same
CN110737085B (en) Wavelength conversion device
WO2018016357A1 (en) Wavelength conversion member and light-emitting device using same
JP6802983B2 (en) Wavelength conversion member and wavelength conversion element, and light emitting device using them
JP6575923B2 (en) Wavelength conversion member and light emitting device using the same
WO2017126440A1 (en) Wavelength conversion member and light-emitting device
JP2017107072A (en) Wavelength conversion member and wavelength conversion element, and light emitting device using the same
JP6500744B2 (en) Method of manufacturing wavelength conversion element
JP2016115877A (en) Wavelength conversion member and light-emitting device
JP6561777B2 (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
JP6582907B2 (en) Method for manufacturing wavelength conversion element, wavelength conversion element and light emitting device
JP2019204104A (en) Wavelength conversion element and light-emitting device
JP2017171706A (en) Red phosphor and light emitting module
JP2013105647A (en) Light source device, emission chromaticity adjusting method, and manufacturing method for light source device
JP2017111214A (en) Method for manufacturing wavelength conversion member
WO2021132212A1 (en) Wavelength conversion member, light-emitting element, and light-emitting device
JP2016115828A (en) Wavelength conversion member and light-emitting device
JP2018163947A (en) Wavelength conversion member and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6561777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150