JP2017083078A - Cooling device and electronic equipment mounting the same - Google Patents

Cooling device and electronic equipment mounting the same Download PDF

Info

Publication number
JP2017083078A
JP2017083078A JP2015211966A JP2015211966A JP2017083078A JP 2017083078 A JP2017083078 A JP 2017083078A JP 2015211966 A JP2015211966 A JP 2015211966A JP 2015211966 A JP2015211966 A JP 2015211966A JP 2017083078 A JP2017083078 A JP 2017083078A
Authority
JP
Japan
Prior art keywords
heat receiving
heat
refrigerant
path
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015211966A
Other languages
Japanese (ja)
Inventor
杉山 誠
Makoto Sugiyama
誠 杉山
若菜 野上
Wakana Nogami
若菜 野上
辰乙 郁
Shinitsu Iku
辰乙 郁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015211966A priority Critical patent/JP2017083078A/en
Publication of JP2017083078A publication Critical patent/JP2017083078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device which has high cooling performance.SOLUTION: In a cooling device 1 which cools by the phase change of a refrigerant, a heat receiving part 3 includes: a heat receiving plate on which a heat generator is installed on at least one of a front surface and a rear surface; a heat releasing internal path 25 at an upper part; a return internal path 24 at a lower part; and a fin part 2. At the fin part 2, flat tabular fins are provided so that flow passages of a refrigerant between fins become vertical. An inflow port 30 and an outflow port 31 are provided on the same side surface of the heat receiving part 3. In the cooling device 1, the heat receiving plate A15 has a heat generator non-installation part 46 on which the heat generator A28 is not installed on the most downstream of the a return path 6 side.SELECTED DRAWING: Figure 3

Description

本発明は、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)、ダイオード等の電子部品を搭載した電子機器の冷却装置およびこれを搭載した電子機器に関するものである。   The present invention relates to a cooling device for an electronic device in which electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate bipolar transistor (IGBT), and a diode are mounted, and an electronic device in which the electronic device is mounted. It is.

従来、この種の冷却装置は、以下のような構成となっていた。   Conventionally, this type of cooling device has the following configuration.

すなわち、図14に示すように、筐体112の管路部130に、発熱体であるインバータ108の熱によって冷媒が沸騰する蒸発器部132と、管路部130において蒸発器部132に隣接して設けられ、冷媒が流入口114から直接流出口116に向かって流通する流通部134とを備える。蒸発器部132には、底壁部120から流通部134の側に向かって突出する複数のフィン140が設けられ、複数のフィン140の間の隙間を冷媒が流通する構成となっていた(例えば特許文献1参照)。   That is, as shown in FIG. 14, the conduit portion 130 of the housing 112 is adjacent to the evaporator portion 132 where the refrigerant boils due to the heat of the inverter 108 that is a heating element, and the evaporator portion 132 in the conduit portion 130. And a circulation part 134 through which the refrigerant circulates directly from the inlet 114 toward the outlet 116. The evaporator part 132 is provided with a plurality of fins 140 that protrude from the bottom wall part 120 toward the circulation part 134, and the refrigerant flows through the gaps between the plurality of fins 140 (for example, Patent Document 1).

特開2013−016589号公報JP2013-016589A

特許文献1に示された冷却装置は、発熱体であるインバータ108が水平に設置されているため、筐体112の底壁部120は液相冷媒で満たされ、底壁部120から流通部134の側に向かって突出した複数のフィン140の間の隙間を冷媒が流通する。   In the cooling device disclosed in Patent Document 1, since the inverter 108 that is a heating element is installed horizontally, the bottom wall portion 120 of the housing 112 is filled with a liquid-phase refrigerant, and the circulation portion 134 extends from the bottom wall portion 120. The refrigerant circulates through the gaps between the plurality of fins 140 protruding toward the side.

インバータ108(発熱体)を冷却しようとした場合、流入口114から近い範囲、すなわち受熱部の冷媒の流れの上流において多くの液相冷媒が受熱し、受熱部の冷媒の流れの下流には液相冷媒が充分に供給されず、冷却することができない、いわゆるドライアウトの状態となり、インバータ108の温度が上昇してしまう。また、ドライアウトを抑制するためには、過剰な液相冷媒量を必要とし、結果として厚い液相冷媒層が熱抵抗となり、フィン140を薄い液相冷媒層が覆う理想的な状態を作り出すことができず、冷却性能が低くなる。   When the inverter 108 (heating element) is to be cooled, a large amount of liquid-phase refrigerant is received in a range close to the inlet 114, that is, upstream of the refrigerant flow in the heat receiving portion, and liquid refrigerant is received in the downstream of the refrigerant flow in the heat receiving portion. The phase refrigerant is not sufficiently supplied and cannot be cooled, so-called dry-out state occurs, and the temperature of the inverter 108 increases. Further, in order to suppress dryout, an excessive amount of liquid phase refrigerant is required, and as a result, a thick liquid phase refrigerant layer becomes a thermal resistance, and an ideal state in which the thin liquid phase refrigerant layer covers the fin 140 is created. Cannot be performed and cooling performance is lowered.

そこで本発明は、受熱部の帰還経路側の最下流まで液相冷媒を供給することにより、受熱部の帰還経路側の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   Therefore, the present invention prevents the dry-out downstream of the heat receiving portion on the return path side by supplying the liquid refrigerant to the most downstream side of the heat receiving portion on the return path side, and fills the heat receiving portion with an excessive amount of liquid phase refrigerant. There is no need, and it is possible to provide a cooling device with high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving part.

そして、この目的を達成するために、本発明は、冷媒の相変化によって冷却する冷却装置において、受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、前記受熱部は、前面および後面を備え、前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、前記受熱部の上部に放熱内部経路と、前記受熱部の下部に帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間にフィン部と、前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口と、を有し、前記流入口と前記流出口とを、前記受熱部の同一の側面に設け、前記フィン部は、前記受熱板から内部に突出する複数の平板状のフィンを、フィン間の隙間により構成される冷媒の流路が上下方向となるように設け、前記受熱板は、前記帰還経路側の最下流に前記発熱体を設置しない発熱体非設置部を有することを特徴とする冷却装置であり、これにより所期の目的を達成するものである。   And in order to achieve this object, the present invention, in the cooling device that cools by the phase change of the refrigerant, in order to connect the heat receiving portion, the heat radiation path, the heat radiation portion, the return path, to form a circulation path of the refrigerant, The heat receiving unit includes a front surface and a rear surface, a heat receiving plate in which a heating element is installed on at least one of the front surface or the rear surface, a heat dissipation internal path above the heat receiving part, and a return internal path below the heat receiving part. A fin portion between the heat dissipation internal path and the feedback internal path, an outlet connecting the heat dissipation path and the heat dissipation internal path, an inlet connecting the feedback path and the feedback internal path, The inlet and the outlet are provided on the same side surface of the heat receiving portion, and the fin portion includes a plurality of plate-like fins protruding from the heat receiving plate into the gaps between the fins. Constructed refrigerant flow The heat receiving plate is a cooling device characterized in that it has a heating element non-installation part that does not install the heating element at the most downstream side on the return path side, thereby It achieves its purpose.

以上のように本発明は、冷媒の相変化によって冷却する冷却装置において、受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、前記受熱部は、前面および後面を備え、前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、前記受熱部の上部に放熱内部経路と、前記受熱部の下部に帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間にフィン部と、前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口と、を有し、前記流入口と前記流出口とを、前記受熱部の同一の側面に設け、前記フィン部は、前記受熱板から内部に突出する複数の平板状のフィンを、フィン間の隙間により構成される冷媒の流路が上下方向となるように設け、前記受熱板は、前記帰還経路側の最下流に前記発熱体を設置しない発熱体非設置部を有することを特徴とする冷却装置であり、受熱部の帰還経路側の最下流まで液相冷媒を供給することにより、受熱部の帰還経路側の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   As described above, in the cooling device that cools by phase change of the refrigerant, the present invention forms the circulation path of the refrigerant by sequentially connecting the heat receiving portion, the heat radiating path, the heat radiating portion, and the return path. A heat receiving plate provided with a heating element on at least one of the front surface or the rear surface, a heat dissipating internal path above the heat receiving part, a return internal path below the heat receiving part, and the heat dissipating internal path A fin portion between the return internal path, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the return path and the return internal path; The inlet and the outlet are provided on the same side surface of the heat receiving portion, and the fin portion includes a plurality of plate-like fins projecting inward from the heat receiving plate, and a refrigerant flow comprising gaps between the fins. So that the road is vertical The heat receiving plate is a cooling device characterized in that it has a heating element non-installation part in which the heating element is not installed at the most downstream side on the return path side, and the liquid phase reaches the most downstream side on the return path side of the heat receiving part. By supplying the refrigerant, dryout on the downstream side of the heat receiving unit on the return path side is prevented, and there is no need to fill the heat receiving unit with an excessive amount of liquid phase refrigerant, and a thin liquid phase refrigerant layer is formed in the heat receiving unit. Therefore, it is possible to provide a cooling device with high cooling performance.

すなわち、帰還経路の液相冷媒は、流入口から帰還内部経路に流入し、帰還内部経路よりフィン部に流出し、フィン部に流出した液相冷媒は、発熱体から発生した熱をフィンから受熱して気相と液相の二相の冷媒となり、圧力が高い状態となる。冷媒が液相から気相に変化するときに体積が膨張するためである。   That is, the liquid phase refrigerant in the return path flows into the return internal path from the inlet, flows out to the fin portion from the return internal path, and the liquid phase refrigerant that flows out to the fin portion receives heat generated from the heating element from the fin. Thus, the refrigerant becomes a two-phase refrigerant of a gas phase and a liquid phase, and the pressure becomes high. This is because the volume expands when the refrigerant changes from the liquid phase to the gas phase.

受熱板は、帰還経路側の最下流に発熱体を設置しない発熱体非設置部を有する構成とするため、発熱体を設置しない発熱体非設置部を設けた受熱部の最下流の温度は、発熱体非設置部の上流側の受熱板を設けた受熱部の上流の温度より低温となる。そのため、受熱部の最下流においては、受熱部の上流より受熱する熱量が少ないため、液相冷媒が気相冷媒に変化し膨張する量も少ない。従って、受熱部内の最下流の圧力は、受熱部内の上流の圧力より低くなる。冷媒は、圧力の低い方に流れやすくなるため、帰還経路側の受熱部の下流において、液相の冷媒の供給量が少なくなり、発熱体から発生する熱を冷媒で受熱することができず、温度が上昇してしまうドライアウトの状態が発生することを抑制することができる。   Since the heat receiving plate is configured to have a heating element non-installing portion in which the heating element is not installed at the most downstream side on the return path side, the temperature at the most downstream side of the heat receiving unit provided with the heating element non-installing portion in which the heating element is not installed is The temperature is lower than the temperature upstream of the heat receiving part provided with the heat receiving plate on the upstream side of the heating element non-installation part. For this reason, since the amount of heat received from the upstream side of the heat receiving unit is small at the most downstream side of the heat receiving unit, the amount of liquid phase refrigerant changing to a gas phase refrigerant and expanding is small. Accordingly, the most downstream pressure in the heat receiving portion is lower than the upstream pressure in the heat receiving portion. Since the refrigerant tends to flow toward the lower pressure side, the supply amount of the liquid-phase refrigerant is reduced downstream of the heat receiving part on the return path side, and the heat generated from the heating element cannot be received by the refrigerant, Occurrence of a dry-out state in which the temperature rises can be suppressed.

結果として、受熱板は、帰還経路側の最下流に発熱体を設置しない発熱体非設置部を有する構成とすることにより、帰還経路側の受熱部の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   As a result, the heat receiving plate has a heating element non-installing portion that does not install a heating element at the most downstream side on the return path side, thereby preventing dryout downstream of the heat receiving section on the return path side and excessive liquid phase. It is not necessary to fill the heat receiving portion with the amount of refrigerant, and a cooling device with high cooling performance that can form a thin liquid phase refrigerant layer in the heat receiving portion can be provided.

本発明の実施の形態1の冷却装置を搭載した電子機器の概略図Schematic of an electronic device equipped with the cooling device of Embodiment 1 of the present invention 同冷却装置の受熱部の外観を示す図The figure which shows the external appearance of the heat receiving part of the cooling device 同冷却装置の受熱部の分解斜視図An exploded perspective view of the heat receiving part of the cooling device 同冷却装置の受熱部の分解斜視図An exploded perspective view of the heat receiving part of the cooling device 同冷却装置の受熱部のX−X´断面を示す図The figure which shows the XX 'cross section of the heat receiving part of the cooling device 本発明の実施の形態2の冷却装置の受熱部の分解斜視図The disassembled perspective view of the heat receiving part of the cooling device of Embodiment 2 of this invention. 同冷却装置の受熱部のX−X´断面を示す図The figure which shows the XX 'cross section of the heat receiving part of the cooling device 発明の実施の形態3の冷却装置の受熱部の外観を示す図The figure which shows the external appearance of the heat receiving part of the cooling device of Embodiment 3 of invention. 同冷却装置の受熱部の分解斜視図An exploded perspective view of the heat receiving part of the cooling device 同冷却装置の受熱部の分解斜視図An exploded perspective view of the heat receiving part of the cooling device 同冷却装置の受熱部のY−Y´断面を示す図The figure which shows the YY 'cross section of the heat receiving part of the cooling device 本発明の実施の形態4の冷却装置の受熱部の分解斜視図The disassembled perspective view of the heat receiving part of the cooling device of Embodiment 4 of this invention. 同冷却装置の受熱部のY−Y´断面を示す図The figure which shows the YY 'cross section of the heat receiving part of the cooling device 従来の冷却装置を示す概略図Schematic showing a conventional cooling device

本発明の一実施形態に係る冷却装置は、冷媒の相変化によって冷却する冷却装置において、受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、前記受熱部は、前面および後面を備え、前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、前記受熱部の上部に放熱内部経路と、前記受熱部の下部に帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間にフィン部と、前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口とを有し、前記流入口と前記流出口とを、前記受熱部の同一の側面に設け、前記フィン部は、前記受熱板から内部に突出する複数の平板状のフィンを、フィン間の隙間により構成される冷媒の流路が上下方向となるように設け、前記受熱板は、前記帰還経路側の最下流に前記発熱体を設置しない発熱体非設置部を有することを特徴とする冷却装置であり、受熱部の帰還経路側の最下流まで液相冷媒を供給することにより、受熱部の帰還経路側の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   A cooling device according to an embodiment of the present invention is a cooling device that cools by a phase change of a refrigerant, and sequentially connects a heat receiving part, a heat radiation path, a heat radiation part, and a return path to form a circulation path for the refrigerant, and The unit includes a front surface and a rear surface, a heat receiving plate for installing a heating element on at least one of the front surface or the rear surface, a heat radiating internal path above the heat receiving section, a return internal path below the heat receiving section, Between the heat dissipation internal path and the feedback internal path, there is a fin portion, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the feedback path and the feedback internal path. The inflow port and the outflow port are provided on the same side surface of the heat receiving portion, and the fin portion includes a plurality of plate-like fins projecting inward from the heat receiving plate by gaps between the fins. Refrigerant flow path up and down The heat receiving plate has a heating element non-installation part in which the heating element is not installed at the most downstream side on the return path side. By supplying the liquid phase refrigerant to the downstream, it is possible to prevent the dry-out downstream of the heat receiving unit on the return path side, and it is not necessary to fill the heat receiving unit with an excessive amount of liquid phase refrigerant, and a thin liquid phase refrigerant layer is formed in the heat receiving unit. Therefore, it is possible to provide a cooling device with high cooling performance that can be formed.

すなわち、帰還経路の液相冷媒は、流入口から帰還内部経路に流入し、帰還内部経路よりフィン部に流出し、フィン部に流出した液相冷媒は、発熱体から発生した熱をフィンから受熱して気相と液相の二相の冷媒となり、圧力が高い状態となる。冷媒が液相から気相に変化するときに体積が膨張するためである。   That is, the liquid phase refrigerant in the return path flows into the return internal path from the inlet, flows out to the fin portion from the return internal path, and the liquid phase refrigerant that flows out to the fin portion receives heat generated from the heating element from the fin. Thus, the refrigerant becomes a two-phase refrigerant of a gas phase and a liquid phase, and the pressure becomes high. This is because the volume expands when the refrigerant changes from the liquid phase to the gas phase.

受熱板は、帰還経路側の最下流に発熱体を設置しない発熱体非設置部を有する構成とするため、発熱体を設置しない発熱体非設置部を設けた受熱部の最下流の温度は、発熱体非設置部の上流側の受熱板を設けた受熱部の上流の温度より低温となる。そのため、受熱部の最下流においては、受熱部の上流より受熱する熱量が少ないため、液相冷媒が気相冷媒に変化し膨張する量も少ない。従って、受熱部内の最下流の圧力は、受熱部内の上流の圧力より低くなる。冷媒は、圧力の低い方に流れやすくなるため、帰還経路側の受熱部の下流において、液相の冷媒の供給量が少なくなり、発熱体から発生する熱を冷媒で受熱することができず温度が上昇してしまうドライアウトの状態が発生することを抑制することができる。   Since the heat receiving plate is configured to have a heating element non-installing portion in which the heating element is not installed at the most downstream side on the return path side, the temperature at the most downstream side of the heat receiving unit provided with the heating element non-installing portion in which the heating element is not installed is The temperature is lower than the temperature upstream of the heat receiving part provided with the heat receiving plate on the upstream side of the heating element non-installation part. For this reason, since the amount of heat received from the upstream side of the heat receiving unit is small at the most downstream side of the heat receiving unit, the amount of liquid phase refrigerant changing to a gas phase refrigerant and expanding is small. Accordingly, the most downstream pressure in the heat receiving portion is lower than the upstream pressure in the heat receiving portion. Since the refrigerant tends to flow toward the lower pressure side, the supply amount of the liquid-phase refrigerant is reduced downstream of the heat receiving portion on the return path side, and the heat generated from the heating element cannot be received by the refrigerant at the temperature. It is possible to suppress the occurrence of a dry-out state in which the temperature rises.

結果として、受熱板は、帰還経路側の最下流に発熱体を設置しない発熱体非設置部を有する構成とすることにより、帰還経路側の受熱部の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内の発熱体を設置した箇所のフィン部に形成することができる冷却性能の高い冷却装置を提供することができるものである。   As a result, the heat receiving plate has a heating element non-installing portion that does not install a heating element at the most downstream side on the return path side, thereby preventing dryout downstream of the heat receiving section on the return path side and excessive liquid phase. There is no need to fill the heat receiving portion with the amount of refrigerant, and a cooling device with high cooling performance that can form a thin liquid phase refrigerant layer on the fin portion where the heating element in the heat receiving portion is installed can be provided. It is.

また、前記帰還内部経路と前記フィン部との間に前記受熱部の底面と平行に設けた仕切板を備え、前記仕切板は、複数の開口部を有する構成としてもよい。   Further, a partition plate provided in parallel with the bottom surface of the heat receiving portion may be provided between the return internal path and the fin portion, and the partition plate may have a plurality of openings.

これにより、流入口および流出口を設置した側面から遠い領域まで均一に液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。 また、前記帰還内部経路は管路であり、前記管路は複数の開口部を有する構成としてもよい。   As a result, it is necessary to prevent the local dryout in the heat receiving part by supplying the liquid refrigerant uniformly to the region far from the side surface where the inlet and outlet are installed, and to fill the heat receiving part with an excessive amount of liquid phase refrigerant. Therefore, it is possible to provide a cooling device with high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving portion. The return internal path may be a pipe line, and the pipe line may have a plurality of openings.

これにより、流入口および流出口を設置した側面から遠い領域まで均一に液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   As a result, it is necessary to prevent the local dryout in the heat receiving part by supplying the liquid refrigerant uniformly to the region far from the side surface where the inlet and outlet are installed, and to fill the heat receiving part with an excessive amount of liquid phase refrigerant. Therefore, it is possible to provide a cooling device with high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving portion.

また、前記受熱板は、複数の発熱体を設置し、前記受熱部の前記前面と前記後面との間に、前記フィンと平行方向に1または複数の仕切壁を設け、前記仕切壁と前記受熱部の内壁とで囲まれた複数の受熱器を形成し、前記仕切壁は、前記放熱内部経路を貫通させる放熱内部経路開口と、前記帰還内部経路を貫通させる帰還内部経路開口を設ける構成としてもよい。   Further, the heat receiving plate is provided with a plurality of heating elements, and provided with one or a plurality of partition walls in a direction parallel to the fins between the front surface and the rear surface of the heat receiving section, and the partition walls and the heat receiving plate. A plurality of heat receivers surrounded by the inner wall of the unit, and the partition wall may be provided with a heat dissipation internal path opening that penetrates the heat dissipation internal path and a feedback internal path opening that penetrates the feedback internal path Good.

流入口および流出口を設置した側面側は流出口に続く放熱部の作用により圧力が低くなるため、受熱部内においてフィン部に流出した冷媒は、圧力が低い流入口および流出口を設置した側面側に流れやすい。発熱体が大きい場合、または、1つの受熱板に複数の発熱体を設ける場合など、受熱部の横幅を大きくする場合がある。このような場合、流入口および流出口を設置した側面と、その対向する側面まのでの距離が長くなるため、受熱部の横幅が小さい場合と比較して、流入口および流出口を設置した側面から遠い領域が多くなり、ドライアウトしやすい領域が多くなってしまう。そこで、受熱部内を仕切壁により仕切ることにより、仕切られた空間内に供給された冷媒は、その空間内のフィン部を流れ、フィンと熱交換した後に放熱内部経路および仕切壁に設けた放熱内部経路開口を通って放熱経路側に流れることとなる。従って、受熱部の横幅が大きい場合であっても、流入口および流出口を設置した側面から遠い領域のドライアウトを抑制することができる。結果として、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   Since the pressure on the side surface where the inflow port and the outflow port are installed is reduced by the action of the heat dissipating part that follows the outflow port, the refrigerant that has flowed into the fins in the heat receiving part is the side surface where the low pressure inlet and outflow port are installed. Easy to flow into. In some cases, such as when the heating element is large, or when a plurality of heating elements are provided on one heat receiving plate, the lateral width of the heat receiving portion is increased. In such a case, the distance between the side surface on which the inlet and the outlet are installed and the side surface facing the side surface becomes longer, so the side surface on which the inlet and outlet are installed compared to the case where the lateral width of the heat receiving part is small. The area far from the area increases, and the area easy to dry out increases. Therefore, by dividing the inside of the heat receiving part with a partition wall, the refrigerant supplied in the partitioned space flows through the fin part in the space, and after heat exchange with the fin, the heat dissipation internal path and the heat dissipation internal provided in the partition wall It will flow to the heat dissipation path side through the path opening. Accordingly, even when the lateral width of the heat receiving portion is large, dryout in a region far from the side surface where the inflow port and the outflow port are installed can be suppressed. As a result, a cooling device with high cooling performance that prevents local dryout in the heat receiving part, does not need to fill the heat receiving part with an excessive amount of liquid phase refrigerant, and can form a thin liquid phase refrigerant layer in the heat receiving part. It can be provided.

また、前記受熱板は、複数の発熱体を設置し、前記受熱部の前記前面と前記後面との間に、前記フィンと平行方向に1または複数の仕切壁を設け、前記仕切壁と前記受熱部の内壁とで囲まれた複数の受熱器を形成し、前記仕切壁は、前記放熱内部経路を貫通させる放熱内部経路開口と、前記管路を貫通させる管路開口を設ける構成としてもよい。   Further, the heat receiving plate is provided with a plurality of heating elements, and provided with one or a plurality of partition walls in a direction parallel to the fins between the front surface and the rear surface of the heat receiving section, and the partition walls and the heat receiving plate. A plurality of heat receivers surrounded by the inner wall of the unit may be formed, and the partition wall may be provided with a heat radiation internal path opening that penetrates the heat radiation internal path and a pipe opening that penetrates the pipe.

流入口および流出口を設置した側面側は流出口に続く放熱部の作用により圧力が低くなるため、受熱部内においてフィン部に流出した冷媒は、圧力が低い流入口および流出口を設置した側面側に流れやすい。発熱体が大きい場合、または、1つの受熱板に複数の発熱体を設ける場合など、受熱部の横幅を大きくする場合がある。このような場合、流入口および流出口を設置した側面と、その対向する側面まのでの距離が長くなるため、受熱部の横幅が小さい場合と比較して、流入口および流出口を設置した側面から遠い領域が多くなり、ドライアウトしやすい領域が多くなってしまう。そこで、受熱部内を仕切壁により仕切ることにより、仕切られた空間内に供給された冷媒は、その空間内のフィン部を流れ、フィンと熱交換した後に放熱内部経路および仕切壁に設けた放熱内部経路開口を通って放熱経路側に流れることとなる。従って、受熱部の横幅が大きい場合であっても、流入口および流出口を設置した側面から遠い領域のドライアウトを抑制することができる。結果として、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   Since the pressure on the side surface where the inflow port and the outflow port are installed is reduced by the action of the heat dissipating part that follows the outflow port, the refrigerant that has flowed into the fins in the heat receiving part is the side surface where the low pressure inlet and outflow port are installed. Easy to flow into. In some cases, such as when the heating element is large, or when a plurality of heating elements are provided on one heat receiving plate, the lateral width of the heat receiving portion is increased. In such a case, the distance between the side surface on which the inlet and the outlet are installed and the side surface facing the side surface becomes longer, so the side surface on which the inlet and outlet are installed compared to the case where the lateral width of the heat receiving part is small. The area far from the area increases, and the area easy to dry out increases. Therefore, by dividing the inside of the heat receiving part with a partition wall, the refrigerant supplied in the partitioned space flows through the fin part in the space, and after heat exchange with the fin, the heat dissipation internal path and the heat dissipation internal provided in the partition wall It will flow to the heat dissipation path side through the path opening. Accordingly, even when the lateral width of the heat receiving portion is large, dryout in a region far from the side surface where the inflow port and the outflow port are installed can be suppressed. As a result, a cooling device with high cooling performance that prevents local dryout in the heat receiving part, does not need to fill the heat receiving part with an excessive amount of liquid phase refrigerant, and can form a thin liquid phase refrigerant layer in the heat receiving part. It can be provided.

また、前記仕切板に前記複数の開口部を設ける間隔は、前記流入口および前記流出口を設置した側面から遠ざかるほど短くする構成としてもよい。   Moreover, it is good also as a structure which shortens the space | interval which provides the said several opening part in the said partition plate, so that it distances from the side surface which installed the said inflow port and the said outflow port.

流入口および流出口を設置した側面側は流出口に続く放熱部の作用により圧力が低いので、流入口および流出口を設置した側面に近いほど流出口に冷媒が流れやすく、流入口および流出口を設置した側面から遠いほど流出口に冷媒が流れ難くなる。仕切板に複数の開口部を設ける間隔は、流入口および流出口を設置した側面から遠ざかるほど短くすることにより、流入口および流出口を設置した側面に近い領域は開口部を設ける間隔を長く、すなわち、開口部の個数を少なくして、フィン部に流出する冷媒の流れを抑制し、流入口および流出口を設置した側面から遠い領域は開口部を設ける間隔を短く、すなわち、開口部の個数を多くして、フィン部に流出する冷媒の流れを促進する。その結果、フィン部全体に液相の冷媒が供給されることとなる。   Since the pressure on the side of the side where the inlet and outlet are installed is lower due to the action of the heat radiating part following the outlet, the closer the side where the inlet and outlet are installed, the easier the refrigerant will flow to the outlet. The further away from the side where the is installed, the more difficult it is for the refrigerant to flow to the outlet. The interval at which the plurality of openings are provided in the partition plate is shortened as the distance from the side surface on which the inflow port and the outflow port are installed, so that the region close to the side surface on which the inflow port and the outflow port are installed has a longer interval at which the opening is provided. That is, the number of openings is reduced to suppress the flow of the refrigerant flowing out to the fins, and the area far from the side surface where the inlet and outlet are installed has a short interval between openings, that is, the number of openings. To increase the flow of the refrigerant flowing out to the fin portion. As a result, the liquid-phase refrigerant is supplied to the entire fin portion.

これにより、流入口および流出口を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口および流出口を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet and the outlet are installed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet and outlet are installed, local dryout in the heat receiving part is prevented, and it is not necessary to fill the heat receiving part with an excessive amount of liquid phase refrigerant. It is possible to provide a cooling device with high cooling performance capable of forming a phase refrigerant layer in the heat receiving part.

また、前記管路に前記複数の開口部を設ける間隔は、前記流入口および前記流出口を設置した側面から遠ざかるほど短くする構成としてもよい。   Moreover, it is good also as a structure which shortens the space | interval which provides the said several opening part in the said pipe line, so that it distances from the side surface which installed the said inflow port and the said outflow port.

流入口および流出口を設置した側面側は流出口に続く放熱部の作用により圧力が低いので、流入口および流出口を設置した側面に近いほど流出口に冷媒が流れやすく、流入口および流出口を設置した側面から遠いほど流出口に冷媒が流れ難くなる。管路に複数の開口部を設ける間隔は、流入口および流出口を設置した側面から遠ざかるほど短くすることにより、流入口および流出口を設置した側面に近い領域は開口部を設ける間隔を長く、すなわち、開口部の個数を少なくして、フィン部に流出する冷媒の流れを抑制し、流入口および流出口を設置した側面から遠い領域は開口部を設ける間隔を短く、すなわち、開口部の個数を多くして、フィン部に流出する冷媒の流れを促進する。その結果、フィン部全体に液相の冷媒が供給されることとなる。   Since the pressure on the side of the side where the inlet and outlet are installed is lower due to the action of the heat radiating part following the outlet, the closer the side where the inlet and outlet are installed, the easier the refrigerant will flow to the outlet. The further away from the side where the is installed, the more difficult it is for the refrigerant to flow to the outlet. The interval at which the plurality of openings are provided in the pipeline is shortened as the distance from the side surface where the inflow port and the outflow port are installed, so that the region near the side surface where the inflow port and the outflow port are installed has a longer interval at which the opening is provided. That is, the number of openings is reduced to suppress the flow of the refrigerant flowing out to the fins, and the area far from the side surface where the inlet and outlet are installed has a short interval between openings, that is, the number of openings. To increase the flow of the refrigerant flowing out to the fin portion. As a result, the liquid-phase refrigerant is supplied to the entire fin portion.

これにより、流入口および流出口を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口および流出口を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet and the outlet are installed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet and outlet are installed, local dryout in the heat receiving part is prevented, and it is not necessary to fill the heat receiving part with an excessive amount of liquid phase refrigerant. It is possible to provide a cooling device with high cooling performance capable of forming a phase refrigerant layer in the heat receiving part.

また、前記仕切板に設けた前記複数の開口部の面積は、前記流入口および前記流出口を設置した側面から遠ざかるほど大きくする構成としてもよい。   Moreover, it is good also as a structure which enlarges the area of these opening part provided in the said partition plate so that it is far from the side surface which installed the said inflow port and the said outflow port.

流入口および流出口を設置した側面側は流出口に続く放熱部の作用により圧力が低いので、流入口および流出口を設置した側面に近いほど流出口に冷媒が流れやすく、流入口および流出口を設置した側面から遠いほど流出口に冷媒が流れ難くなる。仕切板に設けた複数の開口部の面積は、流入口および流出口を設置した側面から遠ざかるほど大きくすることにより、流入口および流出口を設置した側面に近い領域は開口部の面積を小さくして、フィン部に流出する冷媒の流れを抑制し、流入口および流出口を設置した側面から遠い領域は開口部の面積を大きくして、フィン部に流出する冷媒の流れを促進する。その結果、フィン部全体に液相の冷媒が供給されることとなる。   Since the pressure on the side of the side where the inlet and outlet are installed is lower due to the action of the heat radiating part following the outlet, the closer the side where the inlet and outlet are installed, the easier the refrigerant will flow to the outlet. The further away from the side where the is installed, the more difficult it is for the refrigerant to flow to the outlet. By increasing the area of the plurality of openings provided in the partition plate away from the side surface on which the inflow port and the outflow port are installed, the area near the side surface on which the inflow port and the outflow port are installed reduces the area of the opening. Thus, the flow of the refrigerant flowing out to the fin portion is suppressed, and the area far from the side surface where the inflow port and the outflow port are installed increases the area of the opening portion to promote the flow of the refrigerant flowing out to the fin portion. As a result, the liquid-phase refrigerant is supplied to the entire fin portion.

これにより、流入口および流出口を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口および流出口を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet and the outlet are installed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet and outlet are installed, local dryout in the heat receiving part is prevented, and it is not necessary to fill the heat receiving part with an excessive amount of liquid phase refrigerant. It is possible to provide a cooling device with high cooling performance capable of forming a phase refrigerant layer in the heat receiving part.

また、前記管路に設けた前記複数の開口部の面積は、前記流入口および前記流出口を設置した側面から遠ざかるほど大きくする構成としてもよい。   Moreover, it is good also as a structure which enlarges the area of these opening part provided in the said pipe line so that it is far from the side surface which installed the said inflow port and the said outflow port.

流入口および流出口を設置した側面側は流出口に続く放熱部の作用により圧力が低いので、流入口および流出口を設置した側面に近いほど流出口に冷媒が流れやすく、流入口および流出口を設置した側面から遠いほど流出口に冷媒が流れ難くなる。管路に設けた複数の開口部の面積は、流入口および流出口を設置した側面から遠ざかるほど大きくすることにより、流入口および流出口を設置した側面に近い領域は開口部の面積を小さくして、フィン部に流出する冷媒の流れを抑制し、流入口および流出口を設置した側面から遠い領域は開口部の面積を大きくして、フィン部に流出する冷媒の流れを促進する。その結果、フィン部全体に液相の冷媒が供給されることとなる。   Since the pressure on the side of the side where the inlet and outlet are installed is lower due to the action of the heat radiating part following the outlet, the closer the side where the inlet and outlet are installed, the easier the refrigerant will flow to the outlet. The further away from the side where the is installed, the more difficult it is for the refrigerant to flow to the outlet. By increasing the area of the plurality of openings provided in the pipeline away from the side surface on which the inlet and outlet are installed, the area near the side surface on which the inlet and outlet are installed reduces the area of the opening. Thus, the flow of the refrigerant flowing out to the fin portion is suppressed, and the area far from the side surface where the inflow port and the outflow port are installed increases the area of the opening portion to promote the flow of the refrigerant flowing out to the fin portion. As a result, the liquid-phase refrigerant is supplied to the entire fin portion.

これにより、流入口および流出口を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口および流出口を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet and the outlet are installed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet and outlet are installed, local dryout in the heat receiving part is prevented, and it is not necessary to fill the heat receiving part with an excessive amount of liquid phase refrigerant. It is possible to provide a cooling device with high cooling performance capable of forming a phase refrigerant layer in the heat receiving part.

また、本発明の冷却装置を搭載した電子機器にしてもよい。帰還経路側の下流の受熱器内のドライアウトを防ぎ、過剰な液相冷媒量にて受熱器内を満たす必要が無く、薄い液相冷媒の層を受熱器内に形成することができる冷却性能の高い冷却装置を搭載した電子機器を提供することができる。   Moreover, you may make it the electronic device carrying the cooling device of this invention. Cooling performance that prevents dryout in the downstream heat receiver on the return path side, does not need to fill the heat receiver with an excessive amount of liquid phase refrigerant, and can form a thin liquid phase refrigerant layer in the heat receiver An electronic device equipped with a high cooling device can be provided.

(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態1の冷却装置を搭載した電子機器の概略図である。   FIG. 1 is a schematic diagram of an electronic device on which the cooling device according to Embodiment 1 of the present invention is mounted.

図1に示すように、電子機器50は、ケース51内に発熱体である発熱体A28、発熱体B29となる電力用半導体素子と冷却装置1とが備えられている。   As shown in FIG. 1, the electronic device 50 is provided with a heating semiconductor element A28 and heating element B29 that are heating elements and a cooling device 1 in a case 51.

冷却装置1は、発熱体A28、発熱体B29を冷却するための受熱部3と、放熱部4を備えており、放熱経路5と帰還経路6とにより受熱部3と放熱部4が連結されている。この構成により、冷却装置1は内部が密閉空間となり、図1では図示していないが、冷却装置1内は、減圧した上で、冷媒が封入されている。冷媒としては、フロン類、フッ素系溶剤類などが用いられるが、これらに限られない。受熱部3、放熱部4および後述するフィンであるフィンA22、フィンB23の材質は、アルミニウムが適しているが、これらに限られない。   The cooling device 1 includes a heat receiving part 3 for cooling the heat generating element A 28 and the heat generating element B 29, and a heat radiating part 4. The heat receiving part 3 and the heat radiating part 4 are connected by the heat radiating path 5 and the return path 6. Yes. With this configuration, the inside of the cooling device 1 becomes a sealed space, and although not shown in FIG. 1, the inside of the cooling device 1 is decompressed and filled with a refrigerant. As the refrigerant, chlorofluorocarbons, fluorinated solvents and the like are used, but are not limited thereto. Aluminum is suitable for the material of the heat receiving part 3, the heat radiating part 4, and fins A22 and B23, which will be described later, but is not limited thereto.

冷却装置1は、放熱部4に冷媒により輸送した熱を冷却するための水冷チラー(図示なし)に接続されている。水冷チラーで冷却された冷却水を冷却水供給経路7から放熱部4に供給し、放熱部4において冷媒により輸送した熱を冷却水と熱交換することにより冷媒が冷却されて液相冷媒となる。受熱した冷却水は冷却水戻り経路8を経て水冷チラーに戻り水冷チラーにおいて冷却される。   The cooling device 1 is connected to a water-cooled chiller (not shown) for cooling the heat transported by the refrigerant to the heat radiating unit 4. The cooling water cooled by the water-cooled chiller is supplied from the cooling water supply path 7 to the heat radiating unit 4, and the heat transported by the refrigerant in the heat radiating unit 4 is heat-exchanged with the cooling water, whereby the refrigerant is cooled and becomes a liquid phase refrigerant. . The received cooling water returns to the water cooling chiller via the cooling water return path 8 and is cooled in the water cooling chiller.

本実施の形態では、水冷チラーによる水冷式としたが、冷却ファンによる空冷式、その他の方式であってもよい。   In the present embodiment, the water cooling type using a water cooling chiller is used, but an air cooling type using a cooling fan or other methods may be used.

次に、上記構成における冷却装置1の基本的な仕組みについて説明する。   Next, a basic mechanism of the cooling device 1 having the above configuration will be described.

冷却装置1は、内部を減圧した後に冷媒を封入したものであり、冷却装置1内は、冷媒の作用により外部温度に応じた冷媒の飽和圧力となる。発熱体A28、発熱体B29の熱は受熱部3を介して冷媒に伝わり、冷媒が液相から気相へと変化することで、発熱体A28、発熱体B29が冷却される。受熱部3内にて気化した冷媒は、未沸騰の液相の冷媒との気液二相の混相流となって、受熱部3から放熱経路5を通り放熱部4へと移動し、冷却水供給経路7より供給された冷却水により冷やされ再び液化し液相の冷媒となり帰還経路6を経て受熱部3に戻る。   The cooling device 1 is a device in which the inside is decompressed and then a refrigerant is enclosed, and the inside of the cooling device 1 becomes a saturation pressure of the refrigerant according to the external temperature by the action of the refrigerant. The heat of the heating element A28 and the heating element B29 is transmitted to the refrigerant through the heat receiving portion 3, and the refrigerant changes from the liquid phase to the gas phase, whereby the heating element A28 and the heating element B29 are cooled. The refrigerant vaporized in the heat receiving part 3 becomes a gas-liquid two-phase mixed flow with the non-boiling liquid phase refrigerant, moves from the heat receiving part 3 to the heat radiating part 4 through the heat radiating path 5, and the cooling water. It is cooled by the cooling water supplied from the supply path 7 and is liquefied again to become a liquid phase refrigerant, and returns to the heat receiving unit 3 through the return path 6.

よって、受熱部3内にて冷媒が気化し、気化した冷媒が放熱経路5を通過し放熱部4にて液化し、液化した冷媒が帰還経路6を通過し再び受熱部3内に供給されるサイクルが繰り返されることで、発熱体A28、発熱体B29を冷却している。   Therefore, the refrigerant is vaporized in the heat receiving part 3, the vaporized refrigerant passes through the heat radiation path 5 and is liquefied in the heat radiation part 4, and the liquefied refrigerant passes through the return path 6 and is supplied again into the heat receiving part 3. The heating element A28 and the heating element B29 are cooled by repeating the cycle.

帰還経路6は、放熱経路5より、経路の径を小さくする。これにより、帰還経路6の流路圧損が、放熱経路5の流路圧損より、高くなるので、冷媒が受熱部3から帰還経路6に逆流するのを抑制することができる。   The return path 6 has a smaller path diameter than the heat dissipation path 5. Thereby, since the flow path pressure loss of the return path 6 becomes higher than the flow path pressure loss of the heat radiation path 5, it is possible to prevent the refrigerant from flowing backward from the heat receiving portion 3 to the return path 6.

図2は、本実施の形態の冷却装置1の受熱部3の外観を示す図である。   FIG. 2 is a diagram illustrating an appearance of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.

図3および図4は、本実施の形態の冷却装置1の受熱部3の分解斜視図である。   3 and 4 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 according to the present embodiment.

図5は、本実施の形態の冷却装置の受熱部のX−X´断面を示す図である。   FIG. 5 is a diagram showing an XX ′ cross section of the heat receiving portion of the cooling device of the present embodiment.

図2、図3、図4に示すように、受熱部3は、前面および後面が最大面積の横長の直方体形状とする。   As shown in FIGS. 2, 3, and 4, the heat receiving portion 3 has a horizontally long rectangular parallelepiped shape with a maximum area on the front and rear surfaces.

受熱部3は、前面および後面が垂直方向となるように設置する。
前面には、発熱体A28を設置する受熱板A15を設け、後面には、発熱体B29を設置する受熱板B16を設ける。
The heat receiving unit 3 is installed so that the front surface and the rear surface are in the vertical direction.
A heat receiving plate A15 on which the heating element A28 is installed is provided on the front surface, and a heat receiving plate B16 on which the heating element B29 is installed on the rear surface.

なお、発熱体、受熱板、フィン他をそれぞれA,Bに分けているが、これは、各々が2つあることを意味し、特に記載がないかぎりA,Bに違いはなく、AとBは同様に扱うものとする。   In addition, although a heat generating body, a heat receiving plate, a fin, etc. are each divided into A and B, this means that there are two each, and there is no difference between A and B unless otherwise stated. A and B Shall be treated similarly.

また、本実施の形態では、発熱体A28、発熱体B29と受熱板A15、受熱板B16とを受熱部3の前面および後面の両方に設けているが、前面または後面のいずれか一方に発熱体A28と受熱板A15とを設ける構成としてもよい(図示せず)。   In the present embodiment, the heating element A28, the heating element B29, the heat receiving plate A15, and the heat receiving plate B16 are provided on both the front surface and the rear surface of the heat receiving unit 3, but the heating element is provided on either the front surface or the rear surface. A28 and a heat receiving plate A15 may be provided (not shown).

図5に示すように、発熱体B29を、受熱板B16に接触させて熱的に接続する。図示しないが、発熱体A28を、受熱板A15に接触させて熱的に接続する。受熱板A15と受熱板B16には、発熱体を固定するための固定用ネジ孔19を適宜設けて、受熱板A15に発熱体A28を、受熱板B16に発熱体B29をネジで固定する。2つの発熱体A28と発熱体B29との間に、受熱部3が挟まれるように垂直方向に設置する。   As shown in FIG. 5, the heating element B29 is brought into thermal contact with the heat receiving plate B16. Although not shown, the heating element A28 is brought into thermal contact with the heat receiving plate A15. The heat receiving plate A15 and the heat receiving plate B16 are appropriately provided with fixing screw holes 19 for fixing the heat generating members, and the heat generating plate A15 is fixed to the heat receiving plate A15 and the heat generating plate B29 is fixed to the heat receiving plate B16 with screws. It installs in the perpendicular direction so that the heat receiving part 3 may be pinched | interposed between two heat generating body A28 and heat generating body B29.

横長の直方体形状である受熱部3の上部には放熱内部経路25として空間を設け、下部には帰還内部経路24として空間を設ける。   A space is provided as a heat radiating internal path 25 in the upper part of the heat receiving portion 3 having a horizontally long rectangular parallelepiped shape, and a space is provided as a return internal path 24 in the lower part.

受熱部3の放熱内部経路25と帰還内部経路24との間の中央部をフィン部2とする。
受熱部3には、放熱経路5と放熱内部経路25とを接続する流出口31と、帰還経路6と帰還内部経路24とを接続する流入口30を設ける。
The central part between the heat radiation internal path 25 and the return internal path 24 of the heat receiving part 3 is referred to as a fin part 2.
The heat receiving portion 3 is provided with an outlet 31 that connects the heat dissipation path 5 and the heat dissipation internal path 25, and an inlet 30 that connects the return path 6 and the return internal path 24.

流出口31と流入口30とは、受熱部3の同一の側面に設ける。流出口31と流入口30とを設ける側面は、受熱板A15、受熱板B16を設ける前面、後面をつなぐ側面である。   The outlet 31 and the inlet 30 are provided on the same side surface of the heat receiving unit 3. The side surface on which the outflow port 31 and the inflow port 30 are provided is a side surface that connects the front surface and the rear surface on which the heat receiving plate A15 and the heat receiving plate B16 are provided.

フィン部2には受熱板A15から、受熱部3の内部に突出する複数の平板状のフィンA22を平行に並べて設け、受熱板B16から、受熱部3の内部に突出する複数の平板状のフィンB23を並行に並べて設ける。フィン間の冷媒の流路が上下方向となるようにフィンA22およびフィンB23を配置する。   The fin portion 2 is provided with a plurality of plate-like fins A22 that protrude from the heat receiving plate A15 into the heat receiving portion 3 in parallel, and a plurality of plate fins that protrude from the heat receiving plate B16 into the heat receiving portion 3. B23 are arranged in parallel. The fin A22 and the fin B23 are arranged so that the flow path of the refrigerant between the fins is in the vertical direction.

帰還内部経路24とフィン部2の間に仕切板32を受熱部3の底面と平行に設け、仕切板32には、複数の開口部33設ける構成としてもよい。   A partition plate 32 may be provided between the return internal path 24 and the fin portion 2 in parallel with the bottom surface of the heat receiving unit 3, and the partition plate 32 may have a plurality of openings 33.

次に、本実施の形態における特徴的な構成について説明する。   Next, a characteristic configuration in the present embodiment will be described.

図5に示すように、受熱板B16には発熱体B29を設置し、図示しないが、受熱板A15には発熱体A28を設置するが、受熱板B16には、帰還経路6側の最下流に発熱体B29を設置しない発熱体非設置部46を設ける。すなわち、受熱板B16の最下流から上流にかけての所定の範囲を発熱体非設置部46とし、発熱体非設置部46には発熱体を設置しない。発熱体B29は、受熱板B16の最上流から下流にかけて、発熱体非設置部46を避けて受熱板B16に設置する。   As shown in FIG. 5, the heat receiving plate B16 is provided with a heating element B29, and although not shown, the heat receiving plate A15 is provided with a heating element A28, but the heat receiving plate B16 is located on the most downstream side on the return path 6 side. A heating element non-installation part 46 in which the heating element B29 is not installed is provided. That is, the predetermined range from the most downstream side to the upstream side of the heat receiving plate B16 is the heating element non-installation part 46, and no heating element is installed in the heating element non-installation part 46. The heating element B29 is installed on the heat receiving plate B16 from the uppermost stream to the downstream side of the heat receiving plate B16, avoiding the heating element non-installation portion 46.

ここで、受熱部3および受熱板B16の上流、下流、最上流および最下流とは、特に示さない限り、受熱部3および受熱板B16の帰還経路6側の上流、下流、最上流および最下流、すなわち、受熱部3の流入口30および流出口31を設けた側面側が上流、流入口30および流出口31を設けた側面と対向する面側が下流を意味するものとする。   Here, unless otherwise indicated, upstream, downstream, upstream and downstream of the heat receiving unit 3 and the heat receiving plate B16 are upstream, downstream, upstream and downstream of the heat receiving unit 3 and the heat receiving plate B16 on the return path 6 side. That is, the side of the heat receiving unit 3 on which the inlet 30 and the outlet 31 are provided is upstream, and the side of the heat receiving unit 3 that faces the side of the inlet 30 and outlet 31 is downstream.

帰還内部経路24とフィン部2との間に受熱部3の底面と平行に設けた仕切板32は、複数の開口部33を有するので、帰還経路6の液相冷媒は、流入口30から帰還内部経路24に流入し、仕切板32に設けた開口部33よりフィン部2に流出し、フィン部2に流出した液相冷媒は、発熱体B29から発生した熱をフィンB23から受熱して気相と液相の二相の冷媒となり、圧力が高い状態となる。つまり、冷媒が液相から気相に変化するときに体積が膨張するためである。   Since the partition plate 32 provided parallel to the bottom surface of the heat receiving unit 3 between the return internal path 24 and the fin portion 2 has a plurality of openings 33, the liquid phase refrigerant in the return path 6 returns from the inlet 30. The liquid-phase refrigerant that flows into the internal path 24, flows out from the opening 33 provided in the partition plate 32, flows out into the fin unit 2, and flows out into the fin unit 2 receives heat generated from the heating element B 29 from the fin B 23. It becomes a two-phase refrigerant of a phase and a liquid phase, and the pressure is high. That is, the volume expands when the refrigerant changes from the liquid phase to the gas phase.

受熱板B16は、帰還経路6側の最下流に発熱体B29を設置しない発熱体非設置部46を有する構成とするため、発熱体B29を設置しない発熱体非設置部46を設けた受熱部3の最下流の温度は、発熱体非設置部46の上流側の受熱板B16を設けた受熱部3の上流の温度より低温となる。そのため、受熱部3の最下流においては、受熱部3の上流より受熱する熱量が少ないため、液相冷媒が気相冷媒に変化し膨張する量も少ない。従って、受熱部3内の最下流の圧力は、受熱部3内の上流の圧力より低くなる。   Since the heat receiving plate B16 includes a heating element non-installing portion 46 in which the heating element B29 is not installed at the most downstream side on the return path 6 side, the heat receiving unit 3 provided with the heating element non-installing portion 46 in which the heating element B29 is not installed. The most downstream temperature is lower than the temperature upstream of the heat receiving part 3 provided with the heat receiving plate B16 on the upstream side of the heating element non-installation part 46. Therefore, since the amount of heat received from the upstream side of the heat receiving unit 3 is small at the most downstream side of the heat receiving unit 3, the amount of liquid phase refrigerant that is changed into a gas phase refrigerant and expands is small. Therefore, the most downstream pressure in the heat receiving unit 3 is lower than the upstream pressure in the heat receiving unit 3.

従って、冷媒は、圧力の低い方に流れやすくなるため、受熱部3の最下流方向に流れることになり、帰還経路6側の受熱部3の下流において、液相の冷媒の供給量が少なくなり、発熱体B29から発生する熱を冷媒で受熱することができず温度が上昇してしまうドライアウトの状態が発生することを抑制することができる。   Therefore, since the refrigerant tends to flow toward the lower pressure side, it flows in the most downstream direction of the heat receiving unit 3, and the supply amount of the liquid phase refrigerant is reduced downstream of the heat receiving unit 3 on the return path 6 side. Further, it is possible to suppress the occurrence of a dry-out state in which the heat generated from the heating element B29 cannot be received by the refrigerant and the temperature rises.

結果として、受熱板B16は、帰還経路6側の最下流に発熱体B29を設置しない発熱体非設置部46を有する構成とすることにより、帰還経路6側の受熱部3の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   As a result, the heat receiving plate B16 has a heating element non-installing portion 46 in which the heating element B29 is not installed on the most downstream side on the return path 6 side, so that the dryout downstream of the heat receiving part 3 on the return path 6 side is reduced. It is possible to provide a cooling device 1 with high cooling performance that can prevent and do not need to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant and can form a thin liquid phase refrigerant layer in the heat receiving unit 3. Is.

また、仕切板32に複数の開口部33を設ける間隔は、流入口30および流出口31を設置した側面から遠ざかるほど短くする構成としてもよい。   Moreover, it is good also as a structure which shortens the space | interval which provides the several opening part 33 in the partition plate 32, so that it distances from the side surface in which the inflow port 30 and the outflow port 31 were installed.

これによると、流入口30および流出口31を設置した側面側は流出口31に続く放熱部4の作用により圧力が低いので、流入口30および流出口31を設置した側面に近いほど流出口31に冷媒が流れやすく、流入口30および流出口31を設置した側面から遠いほど流出口31に冷媒が流れ難くなる。つまり、流入口30および流出口31を設置した側面に近い領域は開口部33を設ける間隔を長く、すなわち、開口部33の個数を少なくしてフィン部2に流出する冷媒の流れを抑制し、流入口30および流出口31を設置した側面から遠い領域は開口部33を設ける間隔を短く、すなわち、開口部33の個数を多くして、フィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。   According to this, since the pressure on the side surface side where the inflow port 30 and the outflow port 31 are installed is low due to the action of the heat radiating part 4 following the outflow port 31, the outflow port 31 is closer to the side surface where the inflow port 30 and the outflow port 31 are installed. The refrigerant is more likely to flow into the outlet 31, and the further away from the side surface on which the inlet 30 and outlet 31 are installed, the more difficult it is for the refrigerant to flow into the outlet 31. That is, the area close to the side surface where the inlet 30 and the outlet 31 are installed has a longer interval for providing the opening 33, that is, the number of the openings 33 is reduced to suppress the flow of the refrigerant flowing out to the fin portion 2, In a region far from the side surface on which the inlet 30 and the outlet 31 are installed, the interval at which the openings 33 are provided is shortened, that is, the number of the openings 33 is increased to promote the flow of the refrigerant flowing out to the fins 2. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.

これにより、流入口30および流出口31を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口30および流出口31を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet 30 and the outlet 31 are installed and cannot be cooled. As a result, it is necessary to supply the refrigerant to a region far from the side surface where the inlet 30 and the outlet 31 are installed, thereby preventing local dryout in the heat receiving portion and filling the heat receiving portion 3 with an excessive amount of liquid phase refrigerant. There can be provided a cooling device 1 with high cooling performance that can form a thin liquid phase refrigerant layer in the heat receiving part 3.

また、仕切板32に設けた複数の開口部33の面積は、流入口30および流出口31を設置した側面から遠ざかるほど大きくする構成としてもよい。   Moreover, it is good also as a structure which makes the area of the some opening part 33 provided in the partition plate 32 so large that it distances from the side surface in which the inflow port 30 and the outflow port 31 were installed.

流入口30および流出口31を設置した側面側は流出口31に続く放熱部4の作用により圧力が低いので、流入口30および流出口31を設置した側面に近いほど流出口31に冷媒が流れやすく、流入口30および流出口31を設置した側面から遠いほど流出口31に冷媒が流れ難くなる。つまり、流入口30および流出口31を設置した側面に近い領域は開口部33の面積を小さくしてフィン部2に流出する冷媒の流れを抑制し、流入口30および流出口31を設置した側面から遠い領域は開口部33の面積を大きくして、フィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。   Since the pressure on the side surface where the inflow port 30 and the outflow port 31 are installed is low due to the action of the heat radiating section 4 following the outflow port 31, the refrigerant flows through the outflow port 31 as it is closer to the side surface where the inflow port 30 and the outflow port 31 are installed. It becomes easy, and it becomes difficult for a refrigerant | coolant to flow into the outflow port 31, so that it is far from the side surface which installed the inflow port 30 and the outflow port 31. FIG. That is, the area close to the side surface on which the inlet 30 and the outlet 31 are installed reduces the area of the opening 33 to suppress the flow of the refrigerant flowing out to the fin portion 2, and the side surface on which the inlet 30 and the outlet 31 are installed. The area far from the area increases the area of the opening 33 and promotes the flow of the refrigerant flowing out to the fin portion 2. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.

これにより、流入口30および流出口31を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口30および流出口31を設置した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet 30 and the outlet 31 are installed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet 30 and the outlet 31 are installed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid-phase refrigerant. There is no need, and it is possible to provide a cooling device 1 with high cooling performance that can form a thin liquid-phase refrigerant layer in the heat receiving section 3.

また、受熱板B16の発熱体非設置部46には、フィンB23のフィンの数を、発熱体Bを設置した受熱板B16に設けたフィンの数より少なくしてもよい。または、受熱板B16の発熱体非設置部46には、フィンB23を設けない構成としてもよい。これにより、発熱体非設置部46には発熱体が設置されていないので、フィンB23により放熱する必要がなく、フィン数が少なくなるため、フィン部2に位置する冷媒流路一つ一つの断面積が大きくなり、液層冷媒がフィン部2に沿って帰還内部経路24から放熱内部経路25に流れる量が減少し、発熱体A28と発熱体B29を設けたフィン部2の冷媒流れを阻害せずに、受熱部3内の局所ドライアウトを防ぐことができる。
(実施の形態2)
図6は、本実施形態の冷却装置1の受熱部3の分解斜視図である。
Further, the number of fins of the fin B23 may be smaller than the number of fins provided on the heat receiving plate B16 in which the heat generating body B is installed in the heat generating member non-installation portion 46 of the heat receiving plate B16. Or it is good also as a structure which does not provide the fin B23 in the heat generating body non-installation part 46 of the heat receiving plate B16. As a result, since no heat generating element is installed in the heat generating element non-installation section 46, it is not necessary to dissipate heat by the fins B23, and the number of fins is reduced, so that each refrigerant flow path located in the fin section 2 is disconnected. The area is increased, and the amount of liquid layer refrigerant flowing from the return internal path 24 to the heat dissipation internal path 25 along the fin portion 2 is reduced, thereby inhibiting the refrigerant flow in the fin portion 2 provided with the heat generating elements A28 and B29. In addition, local dryout in the heat receiving unit 3 can be prevented.
(Embodiment 2)
FIG. 6 is an exploded perspective view of the heat receiving unit 3 of the cooling device 1 of the present embodiment.

図7は、本実施形態の冷却装置1の受熱部3のX−X´断面を示す図である。   FIG. 7 is a view showing an XX ′ cross section of the heat receiving unit 3 of the cooling device 1 of the present embodiment.

実施の形態1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。   The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図6、図7に示すように、受熱部3の下部には、流入口30に接続された管路37を設ける。放熱内部経路25と管路37との間にフィン部2を設ける。放熱経路5と放熱内部経路25とを接続する流出口31と、帰還経路6と管路37とを接続する流入口とを設ける。管路37には、複数の開口部38を設ける。   As shown in FIGS. 6 and 7, a pipe 37 connected to the inflow port 30 is provided in the lower part of the heat receiving part 3. The fin portion 2 is provided between the heat dissipation internal path 25 and the pipe line 37. An outlet 31 for connecting the heat dissipation path 5 and the heat dissipation internal path 25 and an inlet for connecting the return path 6 and the pipe line 37 are provided. The pipe 37 is provided with a plurality of openings 38.

図7に示すように、受熱板B16には発熱体B29を設置し、図示しないが、受熱板A15には発熱体A28を設置するが、受熱板B16には、帰還経路6側の最下流に発熱体B29を設置しない発熱体非設置部46を設ける。すなわち、受熱板B16の最下流から上流にかけての所定の範囲を発熱体非設置部46とし、発熱体非設置部46には発熱体を設置しない。発熱体B29は、受熱板B16の最上流から下流にかけて、発熱体非設置部46を避けて受熱板B16に設置する。   As shown in FIG. 7, the heat receiving plate B16 is provided with a heating element B29, and although not shown, the heat receiving plate A15 is provided with a heating element A28, but the heat receiving plate B16 is located on the most downstream side on the return path 6 side. A heating element non-installation part 46 in which the heating element B29 is not installed is provided. That is, the predetermined range from the most downstream side to the upstream side of the heat receiving plate B16 is the heating element non-installation part 46, and no heating element is installed in the heating element non-installation part 46. The heating element B29 is installed on the heat receiving plate B16 from the uppermost stream to the downstream side of the heat receiving plate B16, avoiding the heating element non-installation portion 46.

管路37は、複数の開口部38を有するので、帰還経路6の液相冷媒は、流入口30から帰還内部経路24に流入し、管路37に設けた開口部33よりフィン部2に流出し、フィン部2に流出した液相冷媒は、発熱体B29から発生した熱をフィンB23から受熱して気相と液相の二相の冷媒となり、圧力が高い状態となる。冷媒が液相から気相に変化するときに体積が膨張するためである。   Since the pipe line 37 has a plurality of openings 38, the liquid-phase refrigerant in the return path 6 flows into the return internal path 24 from the inflow port 30, and flows out to the fin part 2 from the opening part 33 provided in the pipe line 37. Then, the liquid-phase refrigerant that has flowed out to the fin portion 2 receives heat generated from the heating element B29 from the fin B23 and becomes a two-phase refrigerant of a gas phase and a liquid phase, and is in a high pressure state. This is because the volume expands when the refrigerant changes from the liquid phase to the gas phase.

受熱板B16は、帰還経路6側の最下流に発熱体B29を設置しない発熱体非設置部46を有する構成とするため、発熱体B29を設置しない発熱体非設置部46を設けた受熱部3の最下流の温度は、発熱体非設置部46の上流側の受熱板B16を設けた受熱部3の上流の温度より低温となる。そのため、受熱部3の最下流においては、受熱部3の上流より受熱する熱量が少ないため、液相冷媒が気相冷媒に変化し膨張する量も少ない。従って、受熱部3内の最下流の圧力は、受熱部3内の上流の圧力より低くなる。冷媒は、圧力の低い方に流れやすくなるため、帰還経路6側の受熱部3の下流において、液相の冷媒の供給量が少なくなり、発熱体B29から発生する熱を冷媒で受熱することができず温度が上昇してしまうドライアウトの状態が発生することを抑制することができる。   Since the heat receiving plate B16 includes a heating element non-installing portion 46 in which the heating element B29 is not installed at the most downstream side on the return path 6 side, the heat receiving unit 3 provided with the heating element non-installing portion 46 in which the heating element B29 is not installed. The most downstream temperature is lower than the temperature upstream of the heat receiving part 3 provided with the heat receiving plate B16 on the upstream side of the heating element non-installation part 46. Therefore, since the amount of heat received from the upstream side of the heat receiving unit 3 is small at the most downstream side of the heat receiving unit 3, the amount of liquid phase refrigerant that is changed into a gas phase refrigerant and expands is small. Therefore, the most downstream pressure in the heat receiving unit 3 is lower than the upstream pressure in the heat receiving unit 3. Since the refrigerant easily flows toward the lower pressure side, the supply amount of the liquid-phase refrigerant is reduced downstream of the heat receiving portion 3 on the return path 6 side, and the heat generated from the heating element B29 may be received by the refrigerant. It is possible to suppress the occurrence of a dry-out state in which the temperature cannot be increased.

結果として、受熱板B16は、帰還経路6側の最下流に発熱体B29を設置しない発熱体非設置部46を有する構成とすることにより、帰還経路6側の受熱部3の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   As a result, the heat receiving plate B16 has a heating element non-installing portion 46 in which the heating element B29 is not installed on the most downstream side on the return path 6 side, so that the dryout downstream of the heat receiving part 3 on the return path 6 side is reduced. It is possible to provide a cooling device 1 with high cooling performance that can prevent and do not need to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant and can form a thin liquid phase refrigerant layer in the heat receiving unit 3. Is.

また、管路37に複数の開口部38を設ける間隔は、流入口30および流出口31を設置した側面から遠ざかるほど短くする構成としてもよい。   Moreover, it is good also as a structure which shortens the space | interval which provides the several opening part 38 in the pipe line 37, so that it distances from the side surface in which the inflow port 30 and the outflow port 31 were installed.

流入口30および流出口31を設置した側面側は流出口31に続く放熱部の作用により圧力が低いので、流入口30および流出口31を設置した側面に近いほど流出口に冷媒が流れやすく、流入口30および流出口31を設置した側面から遠いほど流出口31に冷媒が流れ難くなる。つまり、流入口30および流出口31を設置した側面に近い領域は開口部38を設ける間隔を長く、すなわち、開口部38の個数を少なくしてフィン部に流出する冷媒の流れを抑制し、流入口30および流出口31を設置した側面から遠い領域は開口部38を設ける間隔を短く、すなわち、開口部38の個数を多くしてフィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。   Since the pressure on the side surface side where the inflow port 30 and the outflow port 31 are set is low due to the action of the heat radiating portion following the outflow port 31, the closer the side surface where the inflow port 30 and the outflow port 31 are installed, the easier the refrigerant flows to the outflow port. The further away from the side surface on which the inflow port 30 and the outflow port 31 are installed, the more difficult the refrigerant flows to the outflow port 31. That is, the area close to the side surface where the inlet 30 and the outlet 31 are installed has a longer interval between the openings 38, that is, the number of the openings 38 is reduced to suppress the flow of the refrigerant flowing out to the fin portion. In the region far from the side surface where the inlet 30 and the outlet 31 are installed, the interval at which the openings 38 are provided is shortened, that is, the number of the openings 38 is increased to promote the flow of the refrigerant flowing out to the fin portion 2. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.

これにより、流入口30および流出口31を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口30および流出口31を設置した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet 30 and the outlet 31 are installed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet 30 and the outlet 31 are installed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid-phase refrigerant. There is no need, and it is possible to provide a cooling device 1 with high cooling performance that can form a thin liquid-phase refrigerant layer in the heat receiving section 3.

また、管路37に設けた複数の開口部38の面積は、流入口30および流出口31を設置した側面から遠ざかるほど大きくする構成としてもよい。   Further, the area of the plurality of openings 38 provided in the pipe line 37 may be configured to increase as the distance from the side surface on which the inflow port 30 and the outflow port 31 are installed.

この構成では、流入口30および流出口31を設置した側面側は流出口31に続く放熱部4の作用により圧力が低いので、流入口30および流出口31を設置した側面に近いほど流出口31に冷媒が流れやすく、流入口30および流出口31を設置した側面から遠いほど流出口31に冷媒が流れ難くなる。つまり、流入口30および流出口31を設置した側面に近い領域は開口部38の面積を小さくしてフィン部2に流出する冷媒の流れを抑制し、流入口30および流出口31を設置した側面から遠い領域は開口部38の面積を大きくしてフィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。   In this configuration, the pressure on the side surface where the inflow port 30 and the outflow port 31 are installed is low due to the action of the heat radiating unit 4 following the outflow port 31, so the closer to the side surface where the inflow port 30 and the outflow port 31 are installed, the more the outflow port 31. The refrigerant is more likely to flow into the outlet 31, and the further away from the side surface on which the inlet 30 and outlet 31 are installed, the more difficult it is for the refrigerant to flow into the outlet 31. That is, the area close to the side surface on which the inlet 30 and the outlet 31 are installed reduces the area of the opening 38 to suppress the flow of the refrigerant flowing out to the fin portion 2, and the side surface on which the inlet 30 and the outlet 31 are installed. The area far from the area increases the area of the opening 38 and promotes the flow of the refrigerant flowing out to the fin portion 2. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.

これにより、流入口30および流出口31を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口30および流出口31を設置した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。
(実施の形態3)
図8は、本実施形態の冷却装置1の受熱部3の外観を示す図である。
Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet 30 and the outlet 31 are installed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet 30 and the outlet 31 are installed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid-phase refrigerant. There is no need, and it is possible to provide a cooling device 1 with high cooling performance that can form a thin liquid-phase refrigerant layer in the heat receiving section 3.
(Embodiment 3)
FIG. 8 is a diagram illustrating an appearance of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.

図9、10は、本実施形態の冷却装置1の受熱部3の分解斜視図である。   9 and 10 are exploded perspective views of the heat receiving unit 3 of the cooling device 1 of the present embodiment.

図11は、本実施形態の冷却装置1の受熱部3のY−Y´断面を示す図である。   FIG. 11 is a view showing a YY ′ cross section of the heat receiving unit 3 of the cooling device 1 of the present embodiment.

実施の形態1、2と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。   The same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図8に示すように、受熱部3は、前面および後面が最大面積の横長の直方体形状とする。   As shown in FIG. 8, the heat receiving portion 3 has a horizontally long rectangular parallelepiped shape with the maximum front and rear surfaces.

図9、10に示すように、受熱部3の前面と後面、すなわち、受熱板A15と受熱板B16との間に、フィンA22およびフィンB23と平行方向に1または複数の仕切壁34を設ける。本実施の形態では、仕切壁34を2つ設けている。仕切壁34は、受熱部3の長手方向を略等分に区切るように配置する。仕切壁34には、受熱部3の上部にある放熱内部経路25を貫通させる放熱内部経路開口35と、下部にある帰還内部経路24を貫通させる帰還内部経路開口36を設ける。放熱内部経路開口35および帰還内部経路開口36は、仕切壁34に開口部を実際に設けたものであっても、放熱内部経路25および帰還内部経路24を避けて仕切壁34を設ける構造としたものであってもよい。仕切壁34と受熱部3の内壁とで囲まれた受熱部3内の区画を受熱器11とする。   As shown in FIGS. 9 and 10, one or a plurality of partition walls 34 are provided in parallel to the fins A22 and B23 between the front surface and the rear surface of the heat receiving unit 3, that is, between the heat receiving plate A15 and the heat receiving plate B16. In the present embodiment, two partition walls 34 are provided. The partition wall 34 is arrange | positioned so that the longitudinal direction of the heat receiving part 3 may be divided | segmented into substantially equal parts. The partition wall 34 is provided with a heat radiation internal path opening 35 that penetrates the heat radiation internal path 25 at the top of the heat receiving portion 3 and a feedback internal path opening 36 that penetrates the feedback internal path 24 at the bottom. The heat dissipation internal path opening 35 and the return internal path opening 36 have a structure in which the partition wall 34 is provided avoiding the heat dissipation internal path 25 and the feedback internal path 24 even if the opening is actually provided in the partition wall 34. It may be a thing. A section in the heat receiving part 3 surrounded by the partition wall 34 and the inner wall of the heat receiving part 3 is defined as a heat receiver 11.

流入口30および流出口31を設置した側面側は流出口31に続く放熱部4の作用により圧力が低くなるため、受熱部3内においてフィン部2に流出した冷媒は、圧力が低い流入口30および流出口31を設置した側面側に流れやすい。発熱体が大きい場合、または、1つの受熱板に複数の発熱体を設ける場合など、受熱部3の横幅を大きくする場合がある。このような場合、流入口30および流出口31を設置した側面と、その対向する側面まのでの距離が長くなるため、受熱部3の横幅が小さい場合と比較して、流入口30および流出口31を設置した側面から遠い領域が多くなり、ドライアウトしやすい領域が多くなってしまう。そこで、受熱部3内を仕切壁34により仕切ることにより、仕切られた空間内に供給された冷媒は、その空間内のフィンA22、フィンB23に沿って流れ、フィンA22、フィンB23と熱交換した後に放熱内部経路25および仕切壁34に設けた放熱内部経路開口35を通って放熱経路5側に流れることとなる。従って、受熱部3の横幅が大きい場合であっても、流入口30および流出口31を設置した側面から遠い領域のドライアウトを抑制することができる。   Since the pressure on the side surface side where the inflow port 30 and the outflow port 31 are installed is reduced by the action of the heat radiating unit 4 following the outflow port 31, the refrigerant flowing out into the fin portion 2 in the heat receiving unit 3 has a low pressure. And it tends to flow to the side where the outflow port 31 is installed. When the heat generating body is large, or when a plurality of heat generating bodies are provided on one heat receiving plate, the lateral width of the heat receiving unit 3 may be increased. In such a case, since the distance between the side surface on which the inlet 30 and the outlet 31 are installed and the side surface facing the side surface becomes longer, the inlet 30 and the outlet are compared with the case where the lateral width of the heat receiving unit 3 is small. The area far from the side surface on which 31 is installed increases, and the area that is easily dried out increases. Thus, by partitioning the inside of the heat receiving portion 3 with the partition wall 34, the refrigerant supplied into the partitioned space flows along the fins A22 and B23 in the space and exchanges heat with the fins A22 and B23. It will flow to the heat dissipation path 5 side through the heat dissipation internal path 25 and the heat dissipation internal path opening 35 provided in the partition wall 34 later. Accordingly, even when the lateral width of the heat receiving portion 3 is large, dryout in a region far from the side surface on which the inflow port 30 and the outflow port 31 are installed can be suppressed.

次に、本実施の形態における特徴的な構成について説明する。   Next, a characteristic configuration in the present embodiment will be described.

図11に示すように、受熱板B16には、複数の発熱体である発熱体群B48(発熱体Ba43、発熱体Bb44、発熱体Bc45)を設置し、図示しないが、受熱板A15には発熱体群A47(発熱体Aa40、発熱体Ab41、発熱体Ac42)を設置するが、受熱板B16には、帰還経路6側の最下流に発熱体Bc45を設置しない発熱体非設置部46を設ける。すなわち、受熱板B16において帰還経路6側の最下流の受熱器21を設けた範囲の最下流から上流にかけての所定の範囲を発熱体非設置部46とし、発熱体非設置部46には発熱体を設置しない。受熱板B16の最下流の受熱器21を設けた範囲に設置する発熱体Bc45は、受熱板B16の最下流の受熱器21を設けた範囲の最上流から下流にかけて、発熱体非設置部46を避けて受熱板B16に設置する。最下流の受熱器21より上流の受熱器11(最上流の受熱器20を含む)には、発熱体非設置部46を設けず、発熱体を、受熱板B16の受熱器11を設けた範囲の最上流から最下流にかけて設置する。   As shown in FIG. 11, the heat receiving plate B16 is provided with a heat generating group B48 (heat generating body Ba43, heat generating body Bb44, heat generating body Bc45), which is a plurality of heat generating elements, and although not shown, the heat receiving plate A15 generates heat. The body group A47 (heating element Aa40, heating element Ab41, heating element Ac42) is installed, but the heat receiving plate B16 is provided with a heating element non-installing portion 46 where the heating element Bc45 is not installed on the most downstream side on the return path 6 side. That is, a predetermined range from the most downstream to the upstream of the range where the most downstream heat receiver 21 on the return path 6 side in the heat receiving plate B16 is provided is the heating element non-installing portion 46, and the heating element non-installing portion 46 includes the heating element. Do not install. The heating element Bc45 installed in the range where the most downstream heat receiver 21 of the heat receiving plate B16 is provided is provided with the heating element non-installing portion 46 from the uppermost stream to the downstream of the range where the most downstream heat receiving device 21 of the heat receiving plate B16 is provided. Avoid the heat receiving plate B16. The heat receiver 11 upstream of the most downstream heat receiver 21 (including the most upstream heat receiver 20) is not provided with the heating element non-installation portion 46, and the heating element is provided in the range where the heat receiver 11 of the heat receiving plate B16 is provided. Install from the most upstream to the most downstream.

帰還内部経路24とフィン部2との間に受熱部3の底面と平行に設けた仕切板32は、複数の開口部33を有するので、帰還経路6の液相冷媒は、流入口30から帰還内部経路24に流入し、仕切板32に設けた開口部33よりフィン部2に流出し、フィン部2に流出した液相冷媒は、発熱体群B48から発生した熱をフィンB23から受熱して気相と液相の二相の冷媒となり、圧力が高い状態となる。冷媒が液相から気相に変化するときに体積が膨張するためである。   Since the partition plate 32 provided parallel to the bottom surface of the heat receiving unit 3 between the return internal path 24 and the fin portion 2 has a plurality of openings 33, the liquid phase refrigerant in the return path 6 returns from the inlet 30. The liquid refrigerant flowing into the internal path 24 and flowing out from the opening 33 provided in the partition plate 32 into the fin portion 2 and flowing out into the fin portion 2 receives heat generated from the heating element group B48 from the fin B23. It becomes a two-phase refrigerant of a gas phase and a liquid phase, and the pressure is high. This is because the volume expands when the refrigerant changes from the liquid phase to the gas phase.

受熱板B16は、帰還経路6側の最下流に発熱体Bc45を設置しない発熱体非設置部46を有する構成とするため、発熱体Bc45を設置しない発熱体非設置部46を設けた受熱部3の最下流の温度は、発熱体非設置部46の上流側の受熱板B16を設けた受熱部3の上流の温度より低温となる。そのため、受熱部3の最下流においては、受熱部3の上流より受熱する熱量が少ないため、液相冷媒が気相冷媒に変化し膨張する量も少ない。従って、受熱部3内の最下流の圧力は、受熱部3内の上流の圧力より低くなる。冷媒は、圧力の低い方に流れやすくなるため、帰還経路6側の受熱部3の下流において、液相の冷媒の供給量が少なくなり、発熱体B29から発生する熱を冷媒で受熱することができず温度が上昇してしまうドライアウトの状態が発生することを抑制することができる。   Since the heat receiving plate B16 has a configuration in which the heating element non-installing portion 46 in which the heating element Bc45 is not installed is provided on the most downstream side on the return path 6 side, the heat receiving unit 3 provided with the heating element non-installing portion 46 in which the heating element Bc45 is not installed. The most downstream temperature is lower than the temperature upstream of the heat receiving part 3 provided with the heat receiving plate B16 on the upstream side of the heating element non-installation part 46. Therefore, since the amount of heat received from the upstream side of the heat receiving unit 3 is small at the most downstream side of the heat receiving unit 3, the amount of liquid phase refrigerant that is changed into a gas phase refrigerant and expands is small. Therefore, the most downstream pressure in the heat receiving unit 3 is lower than the upstream pressure in the heat receiving unit 3. Since the refrigerant easily flows toward the lower pressure side, the supply amount of the liquid-phase refrigerant is reduced downstream of the heat receiving portion 3 on the return path 6 side, and the heat generated from the heating element B29 may be received by the refrigerant. It is possible to suppress the occurrence of a dry-out state in which the temperature cannot be increased.

結果として、受熱板B16は、帰還経路6側の最下流に発熱体Bc45を設置しない発熱体非設置部46を有する構成とすることにより、帰還経路6側の受熱部3の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。
(実施の形態4)
図12は、本実施形態の冷却装置1の受熱部3の分解斜視図である。
As a result, the heat receiving plate B16 has a heating element non-installing portion 46 in which the heating element Bc45 is not installed on the most downstream side on the return path 6 side, so that the dryout downstream of the heat receiving part 3 on the return path 6 side is performed. It is possible to provide a cooling device 1 with high cooling performance that can prevent and do not need to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant and can form a thin liquid phase refrigerant layer in the heat receiving unit 3. Is.
(Embodiment 4)
FIG. 12 is an exploded perspective view of the heat receiving unit 3 of the cooling device 1 of the present embodiment.

図13は、本実施形態の冷却装置1の受熱部3のY−Y´断面を示す図である。   FIG. 13 is a diagram illustrating a YY ′ cross section of the heat receiving unit 3 of the cooling device 1 of the present embodiment.

実施の形態1、2、3と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。   Constituent elements similar to those of the first, second, and third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図12に示すように、本実施形態は、実施の形態2の受熱部3に実施の形態3と同様に仕切壁34を設けたものである。仕切壁34の作用、効果は、実施の形態3と同様である。   As shown in FIG. 12, in the present embodiment, a partition wall 34 is provided in the heat receiving portion 3 of the second embodiment, as in the third embodiment. The function and effect of the partition wall 34 are the same as those in the third embodiment.

図12に示すように、受熱部3の前面と後面、すなわち、受熱板A15と受熱板B16との間に、フィンA22およびフィンB23と平行方向に1または複数の仕切壁34を設ける。本実施の形態では、仕切壁34を2つ設けている。仕切壁34は、受熱部3の長手方向を略等分に区切るように配置する。仕切壁34には、受熱部3の上部にある放熱内部経路25を貫通させる放熱内部経路開口35と、下部にある管路37を貫通させる管路開口39を設ける。放熱内部経路開口35は、仕切壁34に開口部を実際に設けたものであっても、放熱内部経路25を避けて仕切壁34を設ける構造としたものであってもよい。   As shown in FIG. 12, one or a plurality of partition walls 34 are provided in parallel to the fins A22 and B23 between the front surface and the rear surface of the heat receiving unit 3, that is, between the heat receiving plate A15 and the heat receiving plate B16. In the present embodiment, two partition walls 34 are provided. The partition wall 34 is arrange | positioned so that the longitudinal direction of the heat receiving part 3 may be divided | segmented into substantially equal parts. The partition wall 34 is provided with a heat radiating internal path opening 35 that penetrates the heat radiating internal path 25 above the heat receiving portion 3 and a pipe line opening 39 that penetrates the pipe line 37 below. The heat radiation internal path opening 35 may be a structure in which an opening is actually provided in the partition wall 34 or a structure in which the partition wall 34 is provided avoiding the heat radiation internal path 25.

流入口30および流出口31を設置した側面側は流出口31に続く放熱部4の作用により圧力が低くなるため、受熱部3内においてフィン部2に流出した冷媒は、圧力が低い流入口30および流出口31を設置した側面側に流れやすい。発熱体が大きい場合、または、1つの受熱板に複数の発熱体を設ける場合など、受熱部3の横幅を大きくする場合がある。このような場合、流入口30および流出口31を設置した側面と、その対向する側面まのでの距離が長くなるため、受熱部3の横幅が小さい場合と比較して、流入口30および流出口31を設置した側面から遠い領域が多くなり、ドライアウトしやすい領域が多くなってしまう。そこで、受熱部3内を仕切壁34により仕切ることにより、仕切られた空間内に供給された冷媒は、その空間内のフィンA22、フィンB23に沿って流れ、フィンA22、フィンB23と熱交換した後に放熱内部経路25および仕切壁34に設けた放熱内部経路開口35を通って放熱経路5側に流れることとなる。従って、受熱部3の横幅が大きい場合であっても、流入口30および流出口31を設置した側面から遠い領域のドライアウトを抑制することができる。   Since the pressure on the side surface side where the inflow port 30 and the outflow port 31 are installed is reduced by the action of the heat radiating unit 4 following the outflow port 31, the refrigerant flowing out into the fin portion 2 in the heat receiving unit 3 has a low pressure. And it tends to flow to the side where the outflow port 31 is installed. When the heat generating body is large, or when a plurality of heat generating bodies are provided on one heat receiving plate, the lateral width of the heat receiving unit 3 may be increased. In such a case, since the distance between the side surface on which the inlet 30 and the outlet 31 are installed and the side surface facing the side surface becomes longer, the inlet 30 and the outlet are compared with the case where the lateral width of the heat receiving unit 3 is small. The area far from the side surface on which 31 is installed increases, and the area that is easily dried out increases. Thus, by partitioning the inside of the heat receiving portion 3 with the partition wall 34, the refrigerant supplied into the partitioned space flows along the fins A22 and B23 in the space and exchanges heat with the fins A22 and B23. It will flow to the heat dissipation path 5 side through the heat dissipation internal path 25 and the heat dissipation internal path opening 35 provided in the partition wall 34 later. Accordingly, even when the lateral width of the heat receiving portion 3 is large, dryout in a region far from the side surface on which the inflow port 30 and the outflow port 31 are installed can be suppressed.

次に、本実施の形態における特徴的な構成について説明する。   Next, a characteristic configuration in the present embodiment will be described.

図13に示すように、受熱板B16には、複数の発熱体である発熱体群B48(発熱体Ba43、発熱体Bb44、発熱体Bc45)を設置し、図示しないが、受熱板A15には発熱体群A47(発熱体Aa40、発熱体Ab41、発熱体Ac42)を設置するが、受熱板B16には、帰還経路6側の最下流に発熱体Bc45を設置しない発熱体非設置部46を設ける。すなわち、受熱板B16において帰還経路6側の最下流の受熱器21を設けた範囲の最下流から上流にかけての所定の範囲を発熱体非設置部46とし、発熱体非設置部46には発熱体を設置しない。受熱板B16の最下流の受熱器21を設けた範囲に設置する発熱体Bc45は、受熱板B16の最下流の受熱器21を設けた範囲の最上流から下流にかけて、発熱体非設置部46を避けて受熱板B16に設置する。最下流の受熱器21より上流の受熱器11(最上流の受熱器20を含む)には、発熱体非設置部46を設けず、発熱体を、受熱板B16の受熱器11を設けた範囲の最上流から最下流にかけて設置する。   As shown in FIG. 13, the heat receiving plate B16 is provided with a heat generating group B48 (heat generating body Ba43, heat generating body Bb44, heat generating body Bc45) which is a plurality of heat generating elements, and although not shown, the heat receiving plate A15 generates heat. The body group A47 (heating element Aa40, heating element Ab41, heating element Ac42) is installed, but the heat receiving plate B16 is provided with a heating element non-installing portion 46 where the heating element Bc45 is not installed on the most downstream side on the return path 6 side. That is, a predetermined range from the most downstream to the upstream of the range where the most downstream heat receiver 21 on the return path 6 side in the heat receiving plate B16 is provided is the heating element non-installing portion 46, and the heating element non-installing portion 46 includes the heating element. Do not install. The heating element Bc45 installed in the range where the most downstream heat receiver 21 of the heat receiving plate B16 is provided is provided with the heating element non-installing portion 46 from the uppermost stream to the downstream of the range where the most downstream heat receiving device 21 of the heat receiving plate B16 is provided. Avoid the heat receiving plate B16. The heat receiver 11 upstream of the most downstream heat receiver 21 (including the most upstream heat receiver 20) is not provided with the heating element non-installation portion 46, and the heating element is provided in the range where the heat receiver 11 of the heat receiving plate B16 is provided. Install from the most upstream to the most downstream.

管路37は、複数の開口部33を有するので、帰還経路6の液相冷媒は、流入口30から帰還内部経路24に流入し、管路37に設けた開口部33よりフィン部2に流出し、フィン部2に流出した液相冷媒は、発熱体群B48から発生した熱をフィンB23から受熱して気相と液相の二相の冷媒となり、圧力が高い状態となる。冷媒が液相から気相に変化するときに体積が膨張するためである。   Since the pipe line 37 has a plurality of openings 33, the liquid-phase refrigerant in the return path 6 flows into the return internal path 24 from the inflow port 30, and flows out to the fin part 2 from the opening part 33 provided in the pipe line 37. Then, the liquid-phase refrigerant that has flowed out to the fin portion 2 receives heat generated from the heating element group B48 from the fin B23 to become a two-phase refrigerant of a gas phase and a liquid phase, and is in a high pressure state. This is because the volume expands when the refrigerant changes from the liquid phase to the gas phase.

受熱板B16は、帰還経路6側の最下流に発熱体Bc45を設置しない発熱体非設置部46を有する構成とするため、発熱体Bc45を設置しない発熱体非設置部46を設けた受熱部3の最下流の温度は、発熱体非設置部46の上流側の受熱板B16を設けた受熱部3の上流の温度より低温となる。そのため、受熱部3の最下流においては、受熱部3の上流より受熱する熱量が少ないため、液相冷媒が気相冷媒に変化し膨張する量も少ない。従って、受熱部3内の最下流の圧力は、受熱部3内の上流の圧力より低くなる。冷媒は、圧力の低い方に流れやすくなるため、帰還経路6側の受熱部3の下流において、液相の冷媒の供給量が少なくなり、発熱体B29から発生する熱を冷媒で受熱することができず温度が上昇してしまうドライアウトの状態が発生することを抑制することができる。   Since the heat receiving plate B16 has a configuration in which the heating element non-installing portion 46 in which the heating element Bc45 is not installed is provided on the most downstream side on the return path 6 side, the heat receiving unit 3 provided with the heating element non-installing portion 46 in which the heating element Bc45 is not installed. The most downstream temperature is lower than the temperature upstream of the heat receiving part 3 provided with the heat receiving plate B16 on the upstream side of the heating element non-installation part 46. Therefore, since the amount of heat received from the upstream side of the heat receiving unit 3 is small at the most downstream side of the heat receiving unit 3, the amount of liquid phase refrigerant that is changed into a gas phase refrigerant and expands is small. Therefore, the most downstream pressure in the heat receiving unit 3 is lower than the upstream pressure in the heat receiving unit 3. Since the refrigerant easily flows toward the lower pressure side, the supply amount of the liquid-phase refrigerant is reduced downstream of the heat receiving portion 3 on the return path 6 side, and the heat generated from the heating element B29 may be received by the refrigerant. It is possible to suppress the occurrence of a dry-out state in which the temperature cannot be increased.

結果として、受熱板B16は、帰還経路6側の最下流に発熱体Bc45を設置しない発熱体非設置部46を有する構成とすることにより、帰還経路6側の受熱部3の下流のドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   As a result, the heat receiving plate B16 has a heating element non-installing portion 46 in which the heating element Bc45 is not installed on the most downstream side on the return path 6 side, so that the dryout downstream of the heat receiving part 3 on the return path 6 side is performed. It is possible to provide a cooling device 1 with high cooling performance that can prevent and do not need to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant and can form a thin liquid phase refrigerant layer in the heat receiving unit 3. Is.

以上のように本発明にかかる冷却装置は、冷却性能が高いので、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)、ダイオード等の電子部品を搭載した電子機器等の冷却装置として有用である。   As described above, since the cooling device according to the present invention has high cooling performance, electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate bipolar transistor (IGBT), and a diode are mounted. It is useful as a cooling device for electronic equipment.

1 冷却装置
2 フィン部
3 受熱部
4 放熱部
5 放熱経路
6 帰還経路
7 冷却水供給経路
8 冷却水戻り経路
9 接触面A
10 接触面B
11 受熱器
15 受熱板A
16 受熱板B
19 固定用ネジ孔
20 最上流の受熱器
21 最下流の受熱器
22 フィンA
23 フィンB
24 帰還内部経路
25 放熱内部経路
28 発熱体A
29 発熱体B
30 流入口
31 流出口
32 仕切板
33 開口部
34 仕切壁
35 放熱内部経路開口
36 帰還内部経路開口
37 管路
38 開口部
39 管路開口
40 発熱体Aa
41 発熱体Ab
42 発熱体Ac
43 発熱体Ba
44 発熱体Bb
45 発熱体Bc
46 発熱体非設置部
47 発熱体群A
48 発熱体群B
50 電子機器
51 ケース
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Fin part 3 Heat receiving part 4 Heat radiating part 5 Heat radiating path 6 Return path 7 Cooling water supply path 8 Cooling water return path 9 Contact surface A
10 Contact surface B
11 Heat receiver 15 Heat receiving plate A
16 Heat receiving plate B
19 Fixing screw hole 20 Uppermost heat receiver 21 Most downstream heat receiver 22 Fin A
23 Fin B
24 Return path 25 Heat dissipation path 28 Heating element A
29 Heating element B
30 Inlet 31 Outlet 32 Partition Plate 33 Opening 34 Partition Wall 35 Heat Dissipation Internal Path Opening 36 Return Internal Path Opening 37 Pipeline 38 Opening 39 Pipeline Opening 40 Heating Element Aa
41 Heating element Ab
42 Heating element Ac
43 Heating element Ba
44 Heating element Bb
45 Heating element Bc
46 Heating element non-installation part 47 Heating element group A
48 Heating Element Group B
50 Electronic equipment 51 Case

Claims (10)

冷媒の相変化によって冷却する冷却装置において、
受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、
前記受熱部は、
前面および後面を備え、前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、
前記受熱部の上部に放熱内部経路と、前記受熱部の下部に帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間にフィン部と、
前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口と、を有し、
前記流入口と前記流出口とを、前記受熱部の同一の側面に設け、
前記フィン部は、前記受熱板から内部に突出する複数の平板状のフィンを、フィン間の隙間により構成される冷媒の流路が上下方向となるように設け、
前記受熱板は、前記帰還経路側の最下流に前記発熱体を設置しない発熱体非設置部を有することを特徴とする冷却装置。
In the cooling device that cools by phase change of the refrigerant,
A heat receiving part, a heat radiation path, a heat radiation part, a return path are connected in order to form a circulation path for the refrigerant,
The heat receiving part is
A heat receiving plate comprising a front surface and a rear surface, and a heating element installed on at least one of the front surface or the rear surface;
A heat dissipating internal path above the heat receiving part, a feedback internal path below the heat receiving part, and a fin between the heat dissipating internal path and the feedback internal path;
An outlet that connects the heat dissipation path and the heat dissipation internal path; and an inlet that connects the feedback path and the feedback internal path;
The inlet and the outlet are provided on the same side surface of the heat receiving part,
The fin portion is provided with a plurality of plate-like fins protruding inward from the heat receiving plate such that a refrigerant flow path constituted by gaps between the fins is in the vertical direction,
The cooling device according to claim 1, wherein the heat receiving plate has a heating element non-installation portion in which the heating element is not installed on the most downstream side on the return path side.
前記帰還内部経路と前記フィン部との間に前記受熱部の底面と平行に設けた仕切板を備え、
前記仕切板は、複数の開口部を有することを特徴とする請求項1に冷却装置。
A partition plate provided in parallel with the bottom surface of the heat receiving part between the return internal path and the fin part,
The cooling device according to claim 1, wherein the partition plate has a plurality of openings.
前記帰還内部経路は管路であり、前記管路は複数の開口部を有することを特徴とする請求項1に冷却装置。 The cooling device according to claim 1, wherein the return internal path is a pipe line, and the pipe line has a plurality of openings. 前記受熱板は、複数の発熱体を設置し、
前記受熱部の前記前面と前記後面との間に、前記フィンと平行方向に1または複数の仕切壁を設け、
前記仕切壁と前記受熱部の内壁とで囲まれた複数の受熱器を形成し、
前記仕切壁は、前記放熱内部経路を貫通させる放熱内部経路開口と、前記帰還内部経路を貫通させる帰還内部経路開口を設けることを特徴とする請求項2に記載の冷却装置。
The heat receiving plate is provided with a plurality of heating elements,
Between the front surface and the rear surface of the heat receiving portion, one or more partition walls are provided in a direction parallel to the fins,
Forming a plurality of heat receivers surrounded by the partition wall and the inner wall of the heat receiving unit;
The cooling device according to claim 2, wherein the partition wall includes a heat dissipation internal path opening that penetrates the heat dissipation internal path and a feedback internal path opening that penetrates the feedback internal path.
前記受熱板は、複数の発熱体を設置し、
前記受熱部の前記前面と前記後面との間に、前記フィンと平行方向に1または複数の仕切壁を設け、
前記仕切壁と前記受熱部の内壁とで囲まれた複数の受熱器を形成し、
前記仕切壁は、前記放熱内部経路を貫通させる放熱内部経路開口と、前記管路を貫通させる管路開口を設けることを特徴とする請求項3に記載の冷却装置。
The heat receiving plate is provided with a plurality of heating elements,
Between the front surface and the rear surface of the heat receiving portion, one or more partition walls are provided in a direction parallel to the fins,
Forming a plurality of heat receivers surrounded by the partition wall and the inner wall of the heat receiving unit;
The cooling device according to claim 3, wherein the partition wall includes a heat radiation internal path opening that penetrates the heat radiation internal path and a pipe opening that penetrates the pipe.
前記仕切板に前記複数の開口部を設ける間隔は、前記流入口および前記流出口を設置した側面から遠ざかるほど短くすることを特徴とする請求項2または4に記載の冷却装置。 5. The cooling device according to claim 2, wherein an interval at which the plurality of openings are provided in the partition plate is shortened as the distance from the side surface on which the inflow port and the outflow port are installed. 前記管路に前記複数の開口部を設ける間隔は、前記流入口および前記流出口を設置した側面から遠ざかるほど短くすることを特徴とする請求項3または5に記載の冷却装置。 6. The cooling device according to claim 3, wherein an interval at which the plurality of openings are provided in the pipe line is shortened as the distance from the side surface on which the inflow port and the outflow port are installed. 前記仕切板に設けた前記複数の開口部の面積は、前記流入口および前記流出口を設置した側面から遠ざかるほど大きくすることを特徴とする請求項2、4、6のいずれか一つに記載の冷却装置。 7. The area of the plurality of openings provided in the partition plate is increased as the distance from the side surface on which the inflow port and the outflow port are installed is increased. Cooling system. 前記管路に設けた前記複数の開口部の面積は、前記流入口および前記流出口を設置した側面から遠ざかるほど大きくすることを特徴とする請求項3、5、7のいずれか一つに記載の冷却装置。 8. The area of the plurality of openings provided in the pipeline is increased as the distance from the side surface on which the inflow port and the outflow port are installed is increased. 9. Cooling system. 請求項1〜9のいずれか一つに記載の冷却装置を搭載した電子機器。 The electronic device carrying the cooling device as described in any one of Claims 1-9.
JP2015211966A 2015-10-28 2015-10-28 Cooling device and electronic equipment mounting the same Pending JP2017083078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015211966A JP2017083078A (en) 2015-10-28 2015-10-28 Cooling device and electronic equipment mounting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015211966A JP2017083078A (en) 2015-10-28 2015-10-28 Cooling device and electronic equipment mounting the same

Publications (1)

Publication Number Publication Date
JP2017083078A true JP2017083078A (en) 2017-05-18

Family

ID=58713610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015211966A Pending JP2017083078A (en) 2015-10-28 2015-10-28 Cooling device and electronic equipment mounting the same

Country Status (1)

Country Link
JP (1) JP2017083078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230349A1 (en) * 2017-06-16 2018-12-20 株式会社デンソー Cooler and thermosyphon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230349A1 (en) * 2017-06-16 2018-12-20 株式会社デンソー Cooler and thermosyphon
JP2019002642A (en) * 2017-06-16 2019-01-10 株式会社デンソー Cooler and thermosiphon
CN110753822A (en) * 2017-06-16 2020-02-04 株式会社电装 Cooler and thermosyphon
CN110753822B (en) * 2017-06-16 2021-06-08 株式会社电装 Thermal siphon

Similar Documents

Publication Publication Date Title
JP6482954B2 (en) Liquid cooling system
TWI438388B (en) Liquid cooling device
WO2011122332A1 (en) Phase change cooler and electronic equipment provided with same
WO2013102973A1 (en) Cooling device and electronic equipment using same
US11956920B2 (en) Liquid-cooled plate radiator
US20130206367A1 (en) Heat dissipating module
JP2014052142A (en) Radiator, electronic apparatus, and cooling device
JP2015141958A (en) Cooling device and electronic equipment having the same
JP2012204554A (en) Cooling unit
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2016219572A (en) Liquid cooling cooler
WO2016117342A1 (en) Cooling device and electronic device in which same is installed
JP2017083050A (en) Cooling device and electronic equipment mounting the same
JP2016207928A (en) Heat sink for cooling multiple heating components
JP5689511B2 (en) Cold plate
JP6825615B2 (en) Cooling system and cooler and cooling method
JP2017166710A (en) Cooling device and electronic equipment mounted with the same
JP2017083078A (en) Cooling device and electronic equipment mounting the same
JP2016138740A (en) Cooling apparatus and electronic equipment
WO2016208180A1 (en) Cooling device and electronic apparatus having same mounted thereon
JP2017058120A (en) Cooling device and electronic apparatus mounted with the same
WO2017046986A1 (en) Cooling device and electronic device equipped with same
WO2022190960A1 (en) Heat sink
JP2015163831A (en) Heat receiver, cooling device using the same, and electronic apparatus using the same
JP4517962B2 (en) Cooling device for electronic equipment