JP2017082535A - Construction method for steel pile, and steel pile - Google Patents

Construction method for steel pile, and steel pile Download PDF

Info

Publication number
JP2017082535A
JP2017082535A JP2015213899A JP2015213899A JP2017082535A JP 2017082535 A JP2017082535 A JP 2017082535A JP 2015213899 A JP2015213899 A JP 2015213899A JP 2015213899 A JP2015213899 A JP 2015213899A JP 2017082535 A JP2017082535 A JP 2017082535A
Authority
JP
Japan
Prior art keywords
soil
pile
steel pile
steel
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015213899A
Other languages
Japanese (ja)
Other versions
JP6589559B2 (en
Inventor
祐介 加藤
Yusuke Kato
祐介 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015213899A priority Critical patent/JP6589559B2/en
Publication of JP2017082535A publication Critical patent/JP2017082535A/en
Application granted granted Critical
Publication of JP6589559B2 publication Critical patent/JP6589559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction method for a steel pile capable of being constructed in soil by preventing corrosion of the steel pile, and the steel pile.SOLUTION: A construction method includes: a step S1 of preparing a steel pile comprising a pile body and a flange member provided around the pile body; a step S2 of arranging outer pipes on the flange member and surrounding the pile body with the outer pipes; a step S4 of driving the steel pile and the outer pipes into soil; and a step S3 of filling an area between the pile body and the outer pipe with soil particles.SELECTED DRAWING: Figure 4

Description

本発明は、鋼杭の施工方法及び鋼杭に関する。   The present invention relates to a steel pile construction method and a steel pile.

鋼杭は、地中や海底などの土壌に打ち込まれて、構造物などの基礎に用いられる。鋼杭は、土壌の土砂、泥又は瓦礫などに直接激しく接するので厳しい腐食環境に曝されることになり、腐食されやすい。そのため、鋼杭は効果的な防食対策が望まれている。特に、鋼杭を酸性硫酸塩土壌環境に用いる場合には、この土壌に含まれるパイライトの酸性反応により土壌のpHが著しく低下するため、鋼杭は非常に腐食されやすく、より効果的な防食対策が望まれる。   Steel piles are driven into soil such as the ground or the seabed and used as foundations for structures. Steel piles are exposed to severe corrosive environment because they are in direct contact with soil, mud, rubble, etc., and are easily corroded. Therefore, effective anti-corrosion measures are desired for steel piles. In particular, when steel piles are used in an acidic sulfate soil environment, the pH of the soil is significantly lowered by the acidic reaction of pyrite contained in the soil, so the steel piles are very susceptible to corrosion and are more effective anti-corrosion measures. Is desired.

従来から用いられる防食対策は、鋼杭の表面に樹脂からなる防食被膜を形成する方法、防食電流を付与する電気防食方法、コンクリート、モルタル及びレンジモルタルなどで鋼杭表面を被覆する防食工法、鋼杭の接する土壌を改質する方法などがある。防食被膜を形成する方法は、鋼杭を土壌に打ち込む際に被膜の一部が剥がれ、充分な防食効果が得られなくなることがある。電気防食方法は、土壌の電気抵抗が非常に大きいため、大きな防食電流を流す必要がある。また、電気防食方法は、周囲の通信設備に障害を発生させたり、周囲の鋼材を迷走電流により腐食させたりすることがある。鋼杭表面を被覆する防食工法は、例えば、特開平5−171658号公報(特許文献1)の防食工法がある。同公報には、地下空間を囲う壁体用鋼材と壁体用鋼材の外側を囲う鋼製隔壁体との間に鉄筋コンクリートを打設して、壁体用鋼材の外側の表面をコンクリートで被覆する防食工法が記載されている。この防食工法は、コンクリートなどにひび割れが生じると、このひび割れからコンクリートなどの内部に酸素及び水素イオンが容易に侵入して、鋼材を腐食させる。   Conventional anti-corrosion measures include: a method of forming an anti-corrosion coating made of resin on the surface of steel piles, an electro-corrosion protection method for applying an anti-corrosion current, an anti-corrosion method for coating steel pile surfaces with concrete, mortar, range mortar, There is a method to improve the soil where the pile touches. In the method of forming the anticorrosion coating, when the steel pile is driven into the soil, a part of the coating is peeled off and a sufficient anticorrosion effect may not be obtained. In the anticorrosion method, since the electric resistance of the soil is very large, it is necessary to pass a large anticorrosion current. In addition, the anticorrosion method may cause a failure in surrounding communication equipment or corrode surrounding steel due to stray current. As the anticorrosion method for covering the steel pile surface, for example, there is an anticorrosion method disclosed in JP-A-5-171658 (Patent Document 1). In this publication, reinforced concrete is placed between a wall steel material surrounding an underground space and a steel partition wall surrounding the wall steel material, and the outer surface of the wall steel material is covered with concrete. An anticorrosion method is described. In this anticorrosion method, when cracks occur in concrete or the like, oxygen and hydrogen ions easily enter the concrete and the like from the cracks and corrode steel materials.

土壌を改質する防食方法は、例えば、特開2001−11668号公報(特許文献2)の防食工法がある。同公報には、施工の際、鋼構造物に接する土壌に、アルカリ性の土壌改質剤を混合して、鋼構造物から少なくとも10mmまでの範囲にある土壌のpHを6〜13にする土壌改質を行う防食工法が記載されている。   As an anticorrosion method for modifying soil, for example, there is an anticorrosion method disclosed in Japanese Patent Application Laid-Open No. 2001-11668 (Patent Document 2). In this publication, an alkaline soil modifier is mixed with the soil in contact with the steel structure at the time of construction to adjust the soil pH in the range of at least 10 mm from the steel structure to 6-13. Corrosion protection methods that perform quality are described.

特開平5−171658号公報JP-A-5-171658 特開2001−11668号公報JP 2001-11668 A

上記土壌を改質する防食工法は、土壌改質剤を添加して酸性土壌のpHを中性〜アルカリ性に変えることで、鋼を防食している。しかしながら、この技術は、土壌改質剤を添加して土壌のpHを中性〜アルカリ性に改質しても、土壌の表面から鋼の周りに酸素が十分に供給されていると、埋設鋼材のカソード反応により鋼を腐食させるおそれがある。また、パイライトを含む酸性硫酸塩土壌の場合には、パイライトの酸化反応により土壌のpHが低下して、鋼を腐食させるおそれがある。   In the anticorrosion method for modifying the soil, steel is anticorrosive by adding a soil modifier to change the pH of the acidic soil from neutral to alkaline. However, even if the soil modifier is added to improve the pH of the soil from neutral to alkaline, this technology can prevent the buried steel material from being buried if oxygen is sufficiently supplied around the steel from the soil surface. There is a risk of corroding the steel by the cathode reaction. Moreover, in the case of acidic sulfate soil containing pyrite, the pH of the soil may be lowered due to the oxidation reaction of pyrite, which may corrode steel.

本発明の目的は、鋼杭を防食して土壌に施工可能な鋼杭の施工方法及び鋼杭を提供することである。   The objective of this invention is providing the construction method and steel pile of a steel pile which can carry out corrosion prevention of a steel pile, and can be applied to soil.

本発明の一実施形態による鋼杭の施工方法は、杭体と、杭体の周りに設けられたつば部材とを備える鋼杭を準備する工程と、外管をつば部材上に配置して外管で杭体を囲う工程と、鋼杭及び外管を土壌に打ち込む工程と、杭体と外管との間の領域に土粒子を充填する工程とを含む。   The construction method of the steel pile by one Embodiment of this invention is the process of preparing the steel pile provided with a pile body and the collar member provided around the pile body, arrange | positioning an outer pipe | tube on a collar member, and outside. A step of enclosing the pile body with the pipe, a step of driving the steel pile and the outer pipe into the soil, and a step of filling the region between the pile body and the outer pipe with soil particles.

本発明の一実施形態による鋼杭は、杭体と、杭体の周りに設けられたつば部材とを備える。つば部材は、杭体を囲うよう配置される外管の位置を拘束する壁を備える。   A steel pile according to an embodiment of the present invention includes a pile body and a collar member provided around the pile body. A collar member is provided with the wall which restrains the position of the outer tube | pipe arrange | positioned so that a pile body may be enclosed.

本発明によれば、鋼杭を防食して土壌に施工することができる。   According to the present invention, a steel pile can be protected against corrosion and applied to soil.

図1は、パイライトと土粒子とが存在する土壌系の鋼杭の腐食反応の模式的な説明図である。FIG. 1 is a schematic explanatory view of the corrosion reaction of a soil-based steel pile in which pyrite and soil particles are present. 図2は、本発明の一実施形態による鋼杭の斜視図である。FIG. 2 is a perspective view of a steel pile according to an embodiment of the present invention. 図3は、外管を配置した鋼杭の断面図である。FIG. 3 is a cross-sectional view of a steel pile in which an outer pipe is arranged. 図4は、本発明の一実施形態による施工方法のフローチャートである。FIG. 4 is a flowchart of a construction method according to an embodiment of the present invention. 図5は、鋼杭及び外管を打ち込む途中の状態の模式図である。FIG. 5 is a schematic view of a state in the middle of driving the steel pile and the outer pipe. 図6は、鋼杭及び外管を打ち込んだ状態の模式図である。FIG. 6 is a schematic view of a state in which the steel pile and the outer pipe are driven. 図7は、外管を引き抜く途中の状態の模式図である。FIG. 7 is a schematic diagram of a state in the middle of pulling out the outer tube. 図8は、外管を引き抜いた状態の模式図である。FIG. 8 is a schematic view showing a state in which the outer tube is pulled out. 図9は、変形例による鋼杭の先端の断面図である。FIG. 9 is a cross-sectional view of the tip of a steel pile according to a modification. 図10は、他の変形例による鋼杭のつば部材周辺の断面図である。FIG. 10 is a cross-sectional view of the periphery of a brim member of a steel pile according to another modification. 図11は、さらに他の変形例による鋼杭のつば部材周辺の断面図である。FIG. 11 is a cross-sectional view of the periphery of a brim member of a steel pile according to still another modification. 図12は、さらに他の変形例による鋼杭の平面図である。FIG. 12 is a plan view of a steel pile according to still another modification. 図13は、さらに他の変形例による鋼杭の平面図である。FIG. 13 is a plan view of a steel pile according to still another modification. 図14は、さらに他の変形例による鋼杭の平面図である。FIG. 14 is a plan view of a steel pile according to still another modification. 図15は、浸漬試験の模式図である。FIG. 15 is a schematic diagram of the immersion test. 図16は、浸漬日数と重量減との関係を示すグラフである。FIG. 16 is a graph showing the relationship between the number of days of immersion and weight loss. 図17は、浸漬日数とpHとの関係を示すグラフである。FIG. 17 is a graph showing the relationship between the number of days of immersion and pH.

本発明者らは、鋼杭を防食して土壌に施工するため、種々の検討を行い、以下の(A)〜(D)の知見を得た。   In order to prevent corrosion of steel piles and construct them on soil, the present inventors made various studies and obtained the following findings (A) to (D).

(A)土壌腐食環境において、酸性硫酸塩土壌(以下、酸性土という)は、時間経過でpHが低下しやすく、腐食環境が非常に厳しい。pHの低下は、土壌中に含まれるパイライト(FeS)の酸化反応により硫酸を生成するためである。パイライトと水と土粒子とが存在する環境(以下、土壌系という)は、パイライトと水とからなるパイライト分散溶液の環境(以下、溶液系という)よりも腐食速度が小さくなることが分かった。土壌系では、例えば、図1に示すように、土粒子3が酸素及び水素イオンの拡散の障害となり、土粒子3間に生じる隙間が酸素及び水素イオンの拡散経路9になることで、パイライト8への酸素の供給や鋼杭1への酸素及び水素イオンの供給が遅くなり、腐食速度が小さくなると考えられる。 (A) In a soil corrosive environment, acidic sulfate soil (hereinafter referred to as acidic soil) has a very severe corrosive environment because the pH tends to decrease over time. The decrease in pH is because sulfuric acid is generated by an oxidation reaction of pyrite (FeS 2 ) contained in the soil. It was found that the environment in which pyrite, water, and soil particles exist (hereinafter referred to as soil system) has a lower corrosion rate than the environment of the pyrite dispersion solution composed of pyrite and water (hereinafter referred to as solution system). In the soil system, for example, as shown in FIG. 1, the soil particles 3 become an obstacle to the diffusion of oxygen and hydrogen ions, and the gap formed between the soil particles 3 becomes the diffusion path 9 of oxygen and hydrogen ions, thereby the pyrite 8. It is considered that the supply of oxygen to the steel and the supply of oxygen and hydrogen ions to the steel pile 1 are slow, and the corrosion rate is reduced.

(B)土壌系では、土粒子3の平均粒径が小さくなると、鋼杭1の腐食速度が小さくなり、平均粒径が大きくなると、溶液系の腐食速度に近づく傾向があることが分かった。これは、土粒子3が細かいほど、拡散経路9が減少したり狭まったりするなどで拡散が制限され、土粒子3が粗いほど、拡散経路9が増加したり広がったりするなどで拡散が容易になるためと考えられる。ここで、土壌系及び溶液系において、酸素及び水素イオンの拡散速度を測定した結果、土壌系は溶液系よりも酸素及び水素イオンの拡散速度が遅くなることが確認された。   (B) In soil system, when the average particle diameter of the soil particle 3 became small, the corrosion rate of the steel pile 1 became small, and when the average particle diameter became large, it turned out that there exists a tendency which approaches the corrosion rate of a solution system. This is because the finer the soil particle 3 is, the more the diffusion path 9 is reduced or narrowed, so that the diffusion is limited. The coarser the soil particle 3 is, the more easily the diffusion path 9 is increased or spread. It is thought to be. Here, as a result of measuring the diffusion rate of oxygen and hydrogen ions in the soil system and the solution system, it was confirmed that the diffusion rate of oxygen and hydrogen ions in the soil system was slower than that in the solution system.

(C)溶液系では腐食が進行しても低pHを維持するのに対し、土壌系では日数経過に伴い土壌と鋼杭との界面のpHが上昇し、界面を低pHに維持できなくなることが分かった。これは、鋼杭の腐食により水素イオンが消費されることでpHが上昇に向かうところ、溶液系では、パイライトの酸化反応により水素イオンが継続的に供給されることで、低pHに維持されたと考えられる。一方、土壌系では、酸素や水素イオンの拡散が制限されることで、鋼杭の周囲において水素イオンの消費に水素イオンの供給が追いつかず、界面のpHが上昇したと考えられる。また、土壌系では、界面のpHが上昇しても、土壌の鋼杭から30mm離れた位置(以下、バルク部という)が低pHに維持されることが分かった。   (C) While the solution system maintains a low pH even when corrosion progresses, in the soil system, the pH of the interface between the soil and the steel pile increases with the passage of days, and the interface cannot be maintained at a low pH. I understood. This is because when hydrogen ions are consumed due to corrosion of steel piles, the pH tends to increase, and in the solution system, hydrogen ions are continuously supplied by the oxidation reaction of pyrite, so that the low pH is maintained. Conceivable. On the other hand, in the soil system, the diffusion of oxygen and hydrogen ions is restricted, so the supply of hydrogen ions cannot catch up with the consumption of hydrogen ions around the steel pile, and the interface pH is considered to have increased. Further, in the soil system, it was found that even if the pH at the interface rises, the position 30 mm away from the steel pile of the soil (hereinafter referred to as the bulk part) is maintained at a low pH.

(D)土壌は深い位置になるほど、酸素の濃度が低下する傾向にある。これは、深い位置になるほど、土壌の表面からの酸素が供給されにくくなるためと考えられる。   (D) The oxygen concentration tends to decrease as the soil becomes deeper. This is probably because the deeper the position, the less oxygen is supplied from the soil surface.

本発明者らは、前述の知見に基づいて本発明を完成させた。まず、本発明の一実施形態の概要を説明する。   The present inventors have completed the present invention based on the aforementioned findings. First, an outline of an embodiment of the present invention will be described.

本実施形態による鋼杭の施工方法は、杭体と、杭体の周りに設けられたつば部材とを備える鋼杭を準備する工程と、外管をつば部材上に配置して外管で杭体を囲う工程と、鋼杭及び外管を土壌に打ち込む工程と、杭体と外管との間の領域に土粒子を充填する工程とを含む。   The steel pile construction method according to the present embodiment includes a step of preparing a steel pile including a pile body and a collar member provided around the pile body, and an outer pipe is disposed on the collar member and the pile is formed by the outer pipe. A step of enclosing the body, a step of driving a steel pile and an outer tube into the soil, and a step of filling soil particles in a region between the pile body and the outer tube.

この施工方法は、充填した土粒子により杭体への酸素及び水素イオンの拡散を制限でき、鋼杭を防食して土壌に施工することができる。   This construction method can restrict the diffusion of oxygen and hydrogen ions to the pile body by the filled soil particles, and can be applied to the soil by preventing corrosion of the steel pile.

この施工方法は、好ましくは、土粒子を充填した後、外管を土壌から引き抜く工程をさらに含む。   This construction method preferably further includes a step of drawing the outer tube from the soil after filling with the soil particles.

好ましくは、土粒子は、JIS1204:2009の粒径区分で粗砂又はそれよりも小さい土粒子である。   Preferably, the soil particles are coarse sand or smaller soil particles in the particle size classification of JIS 1204: 2009.

好ましくは、領域の深さは1m以上である。   Preferably, the depth of the region is 1 m or more.

好ましくは、杭体に対するつば部材の下面の内角は15〜90°である。   Preferably, the inner angle of the lower surface of the collar member with respect to the pile body is 15 to 90 °.

好ましくは、杭体の表面と外管の内面との間の距離は30mm以上である。   Preferably, the distance between the surface of the pile body and the inner surface of the outer tube is 30 mm or more.

本実施形態による鋼杭は、杭体と、杭体の周りに設けられたつば部材とを備える。つば部材は、杭体を囲うよう配置される外管の位置を拘束する壁を備える。   The steel pile according to the present embodiment includes a pile body and a collar member provided around the pile body. A collar member is provided with the wall which restrains the position of the outer tube | pipe arrange | positioned so that a pile body may be enclosed.

この鋼杭は、防食させて土壌に施工させることができる。   This steel pile can be anticorrosive and applied to the soil.

以下、本発明の一実施形態による鋼杭について詳細に説明する。図2のA方向(鋼杭1を打ち込む方向)を打ち込み方向と表し、鋼杭1を打ち込む際に土壌が最初に接触する側を下、反対側を上と表す。また、B方向(打ち込み方向と直交する方向)を断面方向と表して説明する。   Hereinafter, the steel pile by one Embodiment of this invention is demonstrated in detail. The A direction (direction in which the steel pile 1 is driven) in FIG. 2 is expressed as the driving direction, and when the steel pile 1 is driven in, the side where the soil first comes into contact is represented as the bottom, and the opposite side is represented as the top. Further, the B direction (direction orthogonal to the driving direction) will be described as a cross-sectional direction.

鋼杭1は、図2に示すように、防食が望まれる杭体4と、杭体4の外表面に設けられたつば部材5とを備える。つば部材5は杭体4の外表面の上下長の途中に接続され、杭体4から断面方向Bに突出している。つば部材5は、下向きに凸である支持部6と、支持部6から上向きに伸長する環状の壁7とを備える。杭体4と支持部6とのなす角のうち上側に位置する角度(以下、「内角」とも表す)θを15〜90°とすることが好ましい。内角θを90°より大きくすると、杭体4を土壌に打ち込むときに杭体4と支持部6との接続部に大きな応力が加わり破損する恐れがあるためである。内角θを15°未満とすると支持部6が大きくなり、支持部6のコストが高くなり、施工時の手間が増えるためである。また、内角θのさらに好ましい上限値は60°である。内角θのさらに好ましい下限値は30°である。杭体4の外表面と壁7の内面との間の距離は100mm以下が好ましい。   As shown in FIG. 2, the steel pile 1 includes a pile body 4 for which anticorrosion is desired and a flange member 5 provided on the outer surface of the pile body 4. The collar member 5 is connected in the middle of the vertically long outer surface of the pile body 4 and protrudes from the pile body 4 in the cross-sectional direction B. The collar member 5 includes a support portion 6 that is convex downward, and an annular wall 7 that extends upward from the support portion 6. Of the angles formed by the pile body 4 and the support portion 6, it is preferable that an angle θ (hereinafter also referred to as “inner angle”) θ is 15 to 90 °. This is because if the inner angle θ is larger than 90 °, a large stress is applied to the connecting portion between the pile body 4 and the support portion 6 when the pile body 4 is driven into the soil, causing damage. This is because if the inner angle θ is less than 15 °, the support portion 6 becomes large, the cost of the support portion 6 becomes high, and labor for construction increases. Further, a more preferable upper limit value of the internal angle θ is 60 °. A more preferable lower limit value of the inner angle θ is 30 °. The distance between the outer surface of the pile body 4 and the inner surface of the wall 7 is preferably 100 mm or less.

鋼杭1は、図3に示すように、外管12を外側に被せて使用する。外管12は、支持部6上に配置され、壁7によって断面方向Bに拘束される。外管12が配置されることで、杭体4の外表面、支持部6の上面及び外管12の内面で囲まれた領域11が形成される。後述する土粒子3の充填による杭体4への酸素及び水素イオンの拡散の制限と鋼杭1の防食効果を享受するため、領域11の断面方向Bの長さ(杭体4の外表面と外管12の内面との間の距離)T1は30mm以上であることが好ましく、領域11の打ち込み方向Aの長さ(深さ)D1は1m以上が好ましい。さらに、外管12の設置及び引き抜きの際に外管12と壁7との干渉を防止するため、壁7と外管12との間に隙間を設けることが好ましい。   As shown in FIG. 3, the steel pile 1 is used with an outer tube 12 covered outside. The outer tube 12 is disposed on the support portion 6 and is restrained in the cross-sectional direction B by the wall 7. By arranging the outer tube 12, a region 11 surrounded by the outer surface of the pile body 4, the upper surface of the support 6 and the inner surface of the outer tube 12 is formed. In order to enjoy the limitation of diffusion of oxygen and hydrogen ions to the pile body 4 and the anticorrosion effect of the steel pile 1 by filling the soil particles 3 described later, the length of the region 11 in the cross-sectional direction B (the outer surface of the pile body 4 and The distance (T1) between the inner surface of the outer tube 12) is preferably 30 mm or more, and the length (depth) D1 of the region 11 in the driving direction A is preferably 1 m or more. Furthermore, it is preferable to provide a gap between the wall 7 and the outer tube 12 in order to prevent interference between the outer tube 12 and the wall 7 when the outer tube 12 is installed and pulled out.

[施工方法]
以下、本発明の一実施形態による鋼杭の施工方法について詳細に説明する。なお、鋼杭1の説明と重複する説明は省略する。
[Construction method]
Hereinafter, the construction method of the steel pile by one Embodiment of this invention is demonstrated in detail. In addition, the description which overlaps with the description of the steel pile 1 is abbreviate | omitted.

この施工方法は、図4に示すように、鋼杭1を準備する工程S1と、外管12をつば部材5上に配置して外管12で杭体4を囲う工程S2と、杭体4と外管12との間の領域11に土粒子を充填する工程S3と、鋼杭1及び外管12を土壌に打ち込む工程S4と、外管を引き抜く工程S5とを含む。   As shown in FIG. 4, the construction method includes a step S1 of preparing the steel pile 1, a step S2 of placing the outer pipe 12 on the collar member 5 and surrounding the pile body 4 with the outer pipe 12, and a pile body 4 A step S3 for filling the region 11 between the outer pipe 12 and the outer pipe 12, a step S4 for driving the steel pile 1 and the outer pipe 12 into the soil, and a step S5 for extracting the outer pipe.

工程S3で充填される土粒子は、JIS 1204:2009の粒径区分で粗砂又はそれよりも小さい土粒子であることが好ましい。粗砂又はそれよりも小さい土粒子とは、JIS 1204:2009において、粒径2mm以下の土粒子である。粒径2mm以下とは、JIS 1204:2009の土粒度試験方法に基づき、土粒子を格子状のふるいにかけ、2mm×2mmの格子を通過した土粒子の重量比率が50%以上を表す(有効粒径D50)。そして、粒径区分は、JIS 1204:2009に基づき、0.850〜2mmが粗砂、0.250〜0.850mmが中砂、0.075〜0.250mmが細砂、0.075〜0.005mmがシルト、0.005mm以下が粘土である。土粒子は、知見のとおり粒径が小さいほど好ましく、より好ましくは細砂以下である。 It is preferable that the soil particles filled in step S3 are coarse sand or smaller soil particles in the particle size classification of JIS 1204: 2009. The coarse sand or smaller soil particles are soil particles having a particle size of 2 mm or less in JIS 1204: 2009. The particle size of 2 mm or less is based on the soil particle size test method of JIS 1204: 2009, and the weight ratio of the soil particles passing through a 2 mm × 2 mm lattice is 50% or more (effective particles). diameter D 50). The particle size classification is based on JIS 1204: 2009, 0.850 to 2 mm is coarse sand, 0.250 to 0.850 mm is medium sand, 0.075 to 0.250 mm is fine sand, 0.075 to 0 0.005 mm is silt, and 0.005 mm or less is clay. The soil particles are preferably as the particle size is small as is known, and more preferably fine sand or less.

工程S4は、図5に示すように、土粒子3を領域11に充填した鋼杭1及び外管12を土壌2に打ち込む。その結果、図6に示すように、鋼杭1及び外管12が土粒子3とともに土壌2に埋め込まれる。   In step S4, the steel pile 1 and the outer pipe 12 filled with the soil particles 3 in the region 11 are driven into the soil 2, as shown in FIG. As a result, as shown in FIG. 6, the steel pile 1 and the outer tube 12 are embedded in the soil 2 together with the soil particles 3.

工程S5は、図7に示すように、外管12を土壌2から引き抜く。外管12を引く抜くことで生じる土粒子3と土壌との間の隙間は、図8に示すように、鋼杭1の周りの土壌や土粒子3の土圧作用により埋められる。   In step S5, the outer tube 12 is extracted from the soil 2 as shown in FIG. As shown in FIG. 8, the gap between the soil particles 3 and the soil generated by pulling out the outer tube 12 is filled by the soil pressure action of the soil around the steel pile 1 and the soil particles 3.

この施工方法は、杭体4の周りを土粒子3で被い、鋼杭1を土壌2に施工することで、杭体4への酸素及び水素イオンの拡散(供給)を既設の土壌よりも制限して、杭体4を防食することができる。この施工方法は、土壌がパイライトを含む酸性土であっても、杭体4の周りが低pHに維持されることを抑制でき、杭体4を防食して土壌2に施工することができる。この施工方法は、土粒子に粗砂又はそれよりも小さい土粒子を用いることで、酸素及び水素イオンの拡散をより制限できる。この施工方法は、外管12を引き抜くことで、引き抜いた外管12を別の鋼杭1の施工に再使用することができる。   In this construction method, the pile body 4 is covered with soil particles 3 and the steel pile 1 is constructed on the soil 2, so that the diffusion (supply) of oxygen and hydrogen ions to the pile body 4 is more than that of the existing soil. It can restrict | limit and can prevent the pile body 4 from corrosion. This construction method can suppress the surroundings of the pile body 4 from being maintained at a low pH even when the soil is acidic soil containing pyrite, and can prevent the pile body 4 from being corroded and can be applied to the soil 2. This construction method can further limit the diffusion of oxygen and hydrogen ions by using coarse sand or smaller soil particles as the soil particles. In this construction method, by pulling out the outer tube 12, the extracted outer tube 12 can be reused for the construction of another steel pile 1.

この施工方法は、外管12の位置を壁7によって拘束することで、酸素及び水素イオンの拡散の制限に有効な厚みを確保して土粒子を充填することができる。   In this construction method, the position of the outer tube 12 is constrained by the wall 7, so that a thickness effective for limiting the diffusion of oxygen and hydrogen ions can be secured and the soil particles can be filled.

[変形例]
杭体4の形状は、打ち込むことができる形状であれば、任意の形状を適用できる。杭体4は円形の鋼管杭を適用してもよく、棒状やH字型の鋼杭を適用してもよい。さらに、杭体4の下側に蓋を備えていてもよい。この蓋は、杭体4が土壌に打ち込まれたとき、土壌が杭体4内に侵入することを防止することができる。
[Modification]
As long as the shape of the pile body 4 can be driven in, any shape can be applied. As the pile body 4, a circular steel pipe pile may be applied, or a rod-like or H-shaped steel pile may be applied. Further, a lid may be provided on the lower side of the pile body 4. This lid can prevent the soil from entering the pile body 4 when the pile body 4 is driven into the soil.

また、外管12の形状は、領域11の断面方向Bの長さT1と打ち込み方向Aの長さD1とを前記所望の長さにできれば、円管でなく任意の形状にしてもよい。   The outer tube 12 may have any shape instead of a circular tube as long as the length T1 in the cross-sectional direction B and the length D1 in the driving direction A of the region 11 can be set to the desired length.

また、支持部6の設置位置を杭体4の任意の場所に設置してもよい。例えば図9に示す変形例のように、内角θが90°であるつば部材5が杭体4の底に設けられている構造にしてもよい。この場合、杭体4の外表面全体を土粒子3で被うことができる。また、図10に示す変形例のように、内角θが90°であるつば部材5が杭体4の途中に設けられている構造にしてもよい。また、図11に示す変形例のように、支持部6の上面が平坦になるように、支持部6の内面を詰まった構造にしてもよい。この場合、打ち込み時の支持部6の強度を向上させることができる。   Moreover, you may install the installation position of the support part 6 in the arbitrary places of the pile body 4. FIG. For example, as in the modification shown in FIG. 9, the collar member 5 having an inner angle θ of 90 ° may be provided on the bottom of the pile body 4. In this case, the entire outer surface of the pile body 4 can be covered with the soil particles 3. Moreover, you may make it the structure where the collar member 5 whose inner angle (theta) is 90 degrees is provided in the middle of the pile body 4 like the modification shown in FIG. Further, as in the modification shown in FIG. 11, the inner surface of the support portion 6 may be clogged so that the upper surface of the support portion 6 becomes flat. In this case, the strength of the support portion 6 at the time of driving can be improved.

支持部6は、打ち込み方向Aから投影したときに円形や多角形等の任意の形状であってもよい。壁7の構造は、打ち込み方向Aから投影したときに点在して配置されていてもよい。一例として、図12に示す変形例のように、支持部6の外周端に等間隔で2つの壁7が設けられている構造や、図13に示す他の変形例のように、支持部6の外周端に等間隔で8つの壁7が設けられている構造を適用できる。   The support portion 6 may have an arbitrary shape such as a circle or a polygon when projected from the driving direction A. The structure of the wall 7 may be arranged in a scattered manner when projected from the driving direction A. As an example, a structure in which two walls 7 are provided at equal intervals on the outer peripheral end of the support portion 6 as in the modification example shown in FIG. 12, or a support portion 6 as in another modification example shown in FIG. It is possible to apply a structure in which eight walls 7 are provided at equal intervals on the outer peripheral edge of each.

上記実施の形態では、支持部6の形状が円錐である例を説明したが、支持部6の形状を任意の形状としてもよい。一例として、図14に示す変形例のように、支持部6は四角錐であり、支持部6の外周端全体に設けられた壁7とを備える構造としてもよい。この場合、外管12が円筒であるとき、外管12の位置は壁7の一部によって拘束される。   In the above embodiment, an example in which the shape of the support portion 6 is a cone has been described, but the shape of the support portion 6 may be an arbitrary shape. As an example, as in the modification shown in FIG. 14, the support portion 6 may be a quadrangular pyramid, and may include a wall 7 provided on the entire outer peripheral end of the support portion 6. In this case, when the outer tube 12 is a cylinder, the position of the outer tube 12 is restricted by a part of the wall 7.

外管12を引き抜く工程S5は選択的な工程であり、実施されなくてもよい。   The process S5 of pulling out the outer tube 12 is an optional process and may not be performed.

上記実施の形態では、鋼杭1及び外管12を打ち込む前に土粒子3を充填した例を説明したが、外管12で杭体4を囲った後であれば、任意のタイミングで土粒子3を充填できる。一例として、打ち込みを中断して、土粒子3を充填し、その後に打ち込みを再開してもよい。この場合、鋼杭1を土壌2に支持させて、土粒子3を充填できる。他の例として、打ち込んだ後に土粒子3を充填してもよい。この場合、鋼杭1を土壌2に支持させて、土粒子3を充填できることはもちろん、打ち込み途中に充填するよりも土壌の表面に近い位置から土粒子3を充填できる。   In the said embodiment, although the example which filled the soil particle 3 before driving in the steel pile 1 and the outer tube | pipe 12 was demonstrated, if it is after enclosing the pile body 4 with the outer tube | pipe 12, soil particle | grains will be carried out at arbitrary timings. 3 can be filled. As an example, the driving may be interrupted, the soil particles 3 may be filled, and then the driving may be resumed. In this case, the steel pile 1 can be supported by the soil 2 and the soil particles 3 can be filled. As another example, the soil particles 3 may be filled after being driven. In this case, the steel pile 1 can be supported by the soil 2 and the soil particles 3 can be filled, and of course, the soil particles 3 can be filled from a position closer to the surface of the soil than filling in the middle of driving.

以下、実施例に基づいて本発明をより具体的に説明する。なお、この実施例は本発明を限定するものではない。   Hereinafter, based on an Example, this invention is demonstrated more concretely. In addition, this Example does not limit this invention.

表1は、No.1〜4の試験片における土粒子3の条件及び実験結果である。No.1〜3はパイライト8を含む土壌系での浸漬試験を行い、No.4はパイライト8を含む溶液系での浸漬試験を行った。溶液系は、図15に示すように、水及びパイライト8からなる175mLのパイライト分散溶液10(4.9g/L FeS)に、試験片11の全面を接触させてパイライト分散溶液10の中央付近に浸漬した。土壌系は、溶液系と同じ水及びパイライトからなる67mLのパイライト分散溶液10に、溶液系と同量の体積となるよう土粒子3を加えたものに、試験片11の全面を接触させて土壌2の中央付近に浸漬した(埋め込んだ)。No.1の土粒子3は粒径2mm以下で構成され平均粒径0.2mmの細砂であり、No.2の土粒子3は粒径2mm以下で構成され平均粒径0.85mmの粗砂であり、No.3の土粒子3は平均粒径3mmの礫である。平均粒径には、JIS 1204:2009の土粒度試験方法に基づき、粒径加積曲線の通過質量百分率が50%に該当する粒径(有効粒径D50)を用いた。試験片11は、JIS SS400の鋼材から得たもの(25mm×50mm×6mm)を供試材とした。試験条件は、初期pHが4.0、試験温度が40℃、雰囲気が大気開放とした。 Table 1 shows no. It is the conditions and experimental result of the soil particle 3 in the test piece of 1-4. No. Nos. 1 to 3 are subjected to an immersion test in a soil system containing pyrite 8, No. 4 performed an immersion test in a solution system containing pyrite 8. As shown in FIG. 15, the solution system is such that 175 mL of pyrite dispersion solution 10 (4.9 g / L FeS 2 ) composed of water and pyrite 8 is brought into contact with the entire surface of the test piece 11 and near the center of the pyrite dispersion solution 10. Soaked in. The soil system is obtained by bringing the entire surface of the test piece 11 into contact with 67 mL pyrite dispersion solution 10 made of the same water and pyrite as in the solution system and adding the soil particles 3 so as to have the same volume as the solution system. 2 was immersed (embedded) near the center. No. No. 1 soil particle 3 is fine sand having an average particle diameter of 0.2 mm and having a particle diameter of 2 mm or less. No. 2 soil particle 3 is coarse sand having an average particle size of 0.85 mm, having a particle size of 2 mm or less. 3 soil particles 3 are gravel with an average particle diameter of 3 mm. As the average particle size, a particle size (effective particle size D 50 ) corresponding to a passing mass percentage of the particle size accumulation curve of 50% based on the soil particle size test method of JIS 1204: 2009 was used. The test piece 11 was obtained from a steel material of JIS SS400 (25 mm × 50 mm × 6 mm) as a test material. The test conditions were that the initial pH was 4.0, the test temperature was 40 ° C., and the atmosphere was open to the atmosphere.

Figure 2017082535
Figure 2017082535

No.1〜4は、図16に示すように、7日後及び14日後、回収した試験片11から腐食生成物を除去した重量減(g/cm)を測定した。図17に示すように、No.1〜3は、7日後及び14日後、試験片11と土壌2との界面(位置P1)のpH及びバルク部(位置P2)のpHを測定し、No.4は、7日後及び14日後、パイライト分散溶液10(位置P1)のpHを測定した。図17において、No.1A,2A及び3AがNo.1,2及び3の界面の測定結果であり、No.1B,2B及び3BがNo.1,2及び3のバルク部の測定結果である。なお、位置P2は、土壌2内において試験片11との界面(位置P1)から側方に30mm離れた位置である。また、No.4は位置P1と位置P2とでpHに差を生じないため、位置P2での測定を行っていない。 No. As shown in FIG. 16, the weight loss (g / cm < 2 >) which removed the corrosion product from the collect | recovered test piece 11 was measured after 1-4 for 14 days. As shown in FIG. 1-3 measured the pH of the interface (position P1) and the bulk part (position P2) between the test piece 11 and the soil 2 after 7 days and 14 days. 4 measured the pH of the pyrite dispersion 10 (position P1) after 7 days and 14 days. In FIG. 1A, 2A and 3A are No. It is a measurement result of the interface of 1, 2 and 3, No. 1B, 2B and 3B are No. It is a measurement result of the bulk part of 1, 2 and 3. The position P2 is a position 30 mm away from the interface (position P1) with the test piece 11 in the soil 2 to the side. No. In No. 4, since there is no difference in pH between the position P1 and the position P2, the measurement at the position P2 is not performed.

7日後の重量減は、No.1〜3が0.001g/cm未満であったのに対し、No.4が0.001g/cm以上であった。そして、14日後の重量減は、No.1及び2が0.001g/cm未満であったのに対し、No.3及び4が0.001g/cm以上であった。 The weight loss after 7 days is No. 1 to 3 was less than 0.001 g / cm 2 , whereas 4 was 0.001 g / cm 2 or more. And the weight loss after 14 days is No. No. 1 and 2 were less than 0.001 g / cm 2 , whereas 3 and 4 were 0.001 g / cm 2 or more.

7日後の各pHは、No.1〜3の各位置P1が5以上であったのに対し、No.4が5未満であった。そして、位置P2での各pHはいずれも5未満であった。また、14日後の各pHは、No.1及び2の各位置P1が6以上であったのに対し、No.3の位置P1及びNo.4が6未満であった。そして、位置P2での各pHは、No.1が5未満であり、No.2及び3が6未満であった。   Each pH after 7 days was No. While each position P1 of 1 to 3 was 5 or more, no. 4 was less than 5. Each pH at position P2 was less than 5. Each pH after 14 days was No. Whereas each position P1 of 1 and 2 was 6 or more, no. 3 position P1 and No.3. 4 was less than 6. And each pH in position P2 is No. 1 is less than 5, 2 and 3 were less than 6.

このように、No.1及び2は、位置P1において、14日後の各pHが初期pHから中性程度に上昇した。さらに、No.1及び2は、7日後以降の腐食速度が小さくなった。また、No.1は、位置P2において14日後も低pHを維持した。   Thus, no. As for 1 and 2, each pH after 14 days rose from the initial pH to a neutral level at the position P1. Furthermore, no. In 1 and 2, the corrosion rate after 7 days became small. No. 1 maintained a low pH after 14 days at position P2.

本発明によれば、鋼杭の施工に利用でき、構造物の基礎等に利用できる。   According to the present invention, it can be used for construction of steel piles, and can be used for the foundations of structures.

1:鋼杭
2:土壌
3:土粒子
4:杭体
5:つば部材
6:支持部
7:壁
11:領域
12:外管
θ:内角
D1:深さ
T1:厚み
1: Steel pile 2: Soil 3: Soil particle 4: Pile body 5: Brim member 6: Support part 7: Wall 11: Area 12: Outer pipe θ: Inner angle D1: Depth T1: Thickness

Claims (7)

杭体と、前記杭体の周りに設けられたつば部材とを備える鋼杭を準備する工程と、
外管を前記つば部材上に配置して前記外管で前記杭体を囲う工程と、
前記鋼杭及び前記外管を土壌に打ち込む工程と、
前記杭体と前記外管との間の領域に土粒子を充填する工程とを含む、鋼杭の施工方法。
Preparing a steel pile comprising a pile body and a brim member provided around the pile body;
Arranging an outer pipe on the collar member and enclosing the pile body with the outer pipe;
Driving the steel pile and the outer pipe into the soil;
A method for constructing a steel pile, comprising a step of filling soil particles in a region between the pile body and the outer pipe.
請求項1に記載の鋼杭の施工方法であって、
前記土粒子を充填した後、前記外管を前記土壌から引き抜く工程をさらに含む、鋼杭の施工方法。
It is the construction method of the steel pile of Claim 1,
The steel pile construction method further comprising a step of drawing the outer tube from the soil after filling the soil particles.
請求項1または請求項2に記載の鋼杭の施工方法であって、
前記土粒子は、JIS1204:2009の粒径区分で粗砂又はそれよりも小さい土粒子である、鋼杭の施工方法。
It is the construction method of the steel pile of Claim 1 or Claim 2,
The method for constructing a steel pile, wherein the soil particles are coarse sand or smaller soil particles in the particle size classification of JIS 1204: 2009.
請求項1〜請求項3のいずれか1項に記載の鋼杭の施工方法であって、
前記領域の深さは1m以上である、鋼杭の施工方法。
It is the construction method of the steel pile of any one of Claims 1-3,
The depth of the said area | region is the construction method of the steel pile which is 1 m or more.
請求項1〜請求項4のいずれか1項に記載の鋼杭の施工方法であって、
前記杭体に対する前記つば部材の下面の内角は15〜90°である、鋼杭の施工方法。
It is the construction method of the steel pile of any one of Claims 1-4,
The construction method of the steel pile whose inner angle of the lower surface of the said collar member with respect to the said pile body is 15-90 degrees.
請求項1〜請求項5のいずれか1項に記載の施工方法であって、
前記杭体の表面と前記外管の内面との間の距離は30mm以上である、鋼杭の施工方法。
It is the construction method of any one of Claims 1-5,
The steel pile construction method, wherein the distance between the surface of the pile body and the inner surface of the outer tube is 30 mm or more.
杭体と、
前記杭体の周りに設けられたつば部材とを備え、
前記つば部材は、前記杭体を囲うよう配置される外管の位置を拘束する壁を備える、鋼杭。
A pile,
A collar member provided around the pile body,
The said collar member is a steel pile provided with the wall which restrains the position of the outer pipe | tube arrange | positioned so that the said pile body may be enclosed.
JP2015213899A 2015-10-30 2015-10-30 Steel pile construction method and steel pile Active JP6589559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015213899A JP6589559B2 (en) 2015-10-30 2015-10-30 Steel pile construction method and steel pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213899A JP6589559B2 (en) 2015-10-30 2015-10-30 Steel pile construction method and steel pile

Publications (2)

Publication Number Publication Date
JP2017082535A true JP2017082535A (en) 2017-05-18
JP6589559B2 JP6589559B2 (en) 2019-10-16

Family

ID=58711860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213899A Active JP6589559B2 (en) 2015-10-30 2015-10-30 Steel pile construction method and steel pile

Country Status (1)

Country Link
JP (1) JP6589559B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108911A (en) * 1990-08-28 1992-04-09 Nitsukai Giken Kk Foundation piling method
JPH08296228A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Driven member made of coated steel
US5713701A (en) * 1995-12-06 1998-02-03 Marshall; Frederick S. Foundation piling
JP2000248548A (en) * 1999-02-26 2000-09-12 Nikko Kaihatsu:Kk Removal method of continuous wall core pile and device thereof
JP2001011668A (en) * 1999-06-24 2001-01-16 Sumitomo Metal Ind Ltd Corrosion protective method of steel structure by conditioning soil
JP2001335976A (en) * 2000-05-30 2001-12-07 Nakabohtec Corrosion Protecting Co Ltd Soil substitution material for corrosion prevention
JP2002046615A (en) * 2000-08-01 2002-02-12 Kansai Electric Power Co Inc:The Material transporting dolly
JP2006125050A (en) * 2004-10-28 2006-05-18 Yoshiyuki Ogushi Corrosion preventive material construction mold and corrosion preventive structure and corrosion preventive method for steel pipe pile by use of it
JP2010248812A (en) * 2009-04-16 2010-11-04 Sansei:Kk Double tube-type pile head structure
JP2010255349A (en) * 2009-04-28 2010-11-11 Takenaka Komuten Co Ltd Double pipe type steel pipe pile for vibration isolation and construction method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108911A (en) * 1990-08-28 1992-04-09 Nitsukai Giken Kk Foundation piling method
JPH08296228A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Driven member made of coated steel
US5713701A (en) * 1995-12-06 1998-02-03 Marshall; Frederick S. Foundation piling
JP2000248548A (en) * 1999-02-26 2000-09-12 Nikko Kaihatsu:Kk Removal method of continuous wall core pile and device thereof
JP2001011668A (en) * 1999-06-24 2001-01-16 Sumitomo Metal Ind Ltd Corrosion protective method of steel structure by conditioning soil
JP2001335976A (en) * 2000-05-30 2001-12-07 Nakabohtec Corrosion Protecting Co Ltd Soil substitution material for corrosion prevention
JP2002046615A (en) * 2000-08-01 2002-02-12 Kansai Electric Power Co Inc:The Material transporting dolly
JP2006125050A (en) * 2004-10-28 2006-05-18 Yoshiyuki Ogushi Corrosion preventive material construction mold and corrosion preventive structure and corrosion preventive method for steel pipe pile by use of it
JP2010248812A (en) * 2009-04-16 2010-11-04 Sansei:Kk Double tube-type pile head structure
JP2010255349A (en) * 2009-04-28 2010-11-11 Takenaka Komuten Co Ltd Double pipe type steel pipe pile for vibration isolation and construction method therefor

Also Published As

Publication number Publication date
JP6589559B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
SG191848A1 (en) Improved steel pipe piles and pipe pile structures
CN105155516B (en) The method of construction drill bored concrete pile before making an overall screening underground obstacle
JP6589559B2 (en) Steel pile construction method and steel pile
CN107587524A (en) A kind of drainpipe construction method for passing through sea wall
CN102619215A (en) Lock catch type steel pipe pile structure and construction method thereof
JP2014211085A (en) Vertical shaft construction method
CN102704478A (en) Building anchor rod construction technology
CN105274985B (en) A kind of interior steel-pipe pile setting multiple arcs ribbed stiffener and its construction method
CA2936927C (en) Method of forming a mudline cellar for offshore arctic drilling
CN202370171U (en) Steel pipe concrete column filled with marine sand concrete
JP2014108060A (en) Anchor block
CN107119650B (en) Marine steel cylinder bank protection structure multiple-anticorrosion protects construction method
CN204370463U (en) Ultra-soft cob brick loose tool assists suspended deck structure
JP2012062660A (en) Pile head treatment method and pile head treatment apparatus for cast-in-place concrete pile
Jeong et al. Experimental studies of effectiveness of hybrid cathodic protection system on the steel in concrete
CN205999913U (en) One kind drowned caisson placing guider under water
JP6536268B2 (en) Anticorrosion method
CN110067273A (en) A kind of reinforcement means of building foundation settlement
JP5670595B2 (en) Vertical shaft construction method
JP2005105602A (en) Counter measure structure for liquefaction
CN203176546U (en) Aerator pipe anti-corrosion support
CN109972678A (en) Construction method of underground continuous wall
JP7245145B2 (en) Seafloor crustal deformation observation equipment
CN202830998U (en) Integrated equipment foundation and terrace connection alkali-resisting structure
CN107366542A (en) A kind of grouting method for having been equipped with pit shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R151 Written notification of patent or utility model registration

Ref document number: 6589559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151