JP2017078002A - Method and apparatus for producing thin film by layered nanoparticle - Google Patents

Method and apparatus for producing thin film by layered nanoparticle Download PDF

Info

Publication number
JP2017078002A
JP2017078002A JP2015207606A JP2015207606A JP2017078002A JP 2017078002 A JP2017078002 A JP 2017078002A JP 2015207606 A JP2015207606 A JP 2015207606A JP 2015207606 A JP2015207606 A JP 2015207606A JP 2017078002 A JP2017078002 A JP 2017078002A
Authority
JP
Japan
Prior art keywords
film
sheet material
substrate
dispersion solution
nanoparticle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015207606A
Other languages
Japanese (ja)
Other versions
JP6634776B2 (en
Inventor
博生 野上
Hiroo Nogami
博生 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2015207606A priority Critical patent/JP6634776B2/en
Publication of JP2017078002A publication Critical patent/JP2017078002A/en
Application granted granted Critical
Publication of JP6634776B2 publication Critical patent/JP6634776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing a thin film by layered nanoparticles by using an immersion method with high productivity.SOLUTION: In a method for producing a thin film, a multilayer film of nanoparticles is formed on a surface of a base material by immersing the base material in a nanoparticle dispersion solution formed by dispersing flaky or flat nanoparticles in an organic solvent or in water and pulling up the base material. The nanoparticle dispersion solution has a minimum value of film thickness at a certain pulling speed, in relation between the film thickness and the pulling speed of the base material, and the film is formed by pulling up the base material in a speed region in which the pulling speed is higher than that for producing the minimum film thickness.SELECTED DRAWING: Figure 1

Description

本発明は、薄片状又は偏平状のナノ粒子(一般にナノシートと呼ばれる)を層状に配設した薄膜の製造方法および製造装置に関するものである。特に、浸漬法により薄膜を形成する方法に関する。 The present invention relates to a method and an apparatus for manufacturing a thin film in which flaky or flat nanoparticles (generally referred to as nanosheets) are arranged in layers. In particular, the present invention relates to a method of forming a thin film by an immersion method.

従来、金属酸化物ナノシートを単層で配列した薄膜の製造方法として、ラングミュアー・ブロジェット法(LB法)やスピンコート法などが知られている。LB法は、ナノ材料溶液の自由表面上に析出したナノ材料を自由表面上に集積して基板に転写する方法であり、成膜に長時間を必要とし、工業的に不向きであるという欠点がある。また、スピンコート法も基材を回転させなければいけない成膜手法のため、大面積での成膜には適していない。 Conventionally, a Langmuir-Blodgett method (LB method), a spin coat method, or the like is known as a method for producing a thin film in which metal oxide nanosheets are arranged in a single layer. The LB method is a method in which nanomaterials deposited on the free surface of the nanomaterial solution are accumulated on the free surface and transferred to the substrate, and requires a long time for film formation, and is not suitable for industrial use. is there. Also, the spin coating method is not suitable for film formation over a large area because it requires a substrate to be rotated.

一方、特許文献1には、薄片状ペロブスカイト酸化物からなるナノ粒子を基材に成膜するために、ディップコート法(浸漬法)を用いることが記載されている。すなわち、ペロブスカイト酸化物のナノ粒子を有機溶媒中に分散させてナノ粒子分散溶液を作製し、この分散溶液中に基材を浸漬し、当該基材を引き上げることで基材の表面にナノ粒子の単層膜を形成する方法である。ナノ粒子分散溶液におけるナノ粒子の濃度を適切に設定し、所定の温度と湿度の下で基材を斜め又は垂直に引き上げることにより、単層ペロブスカイト酸化物薄膜を形成できると記載されている。 On the other hand, Patent Document 1 describes that a dip coating method (dipping method) is used in order to form nanoparticles made of flaky perovskite oxide on a substrate. That is, nanoparticles of perovskite oxide are dispersed in an organic solvent to prepare a nanoparticle dispersion solution, the base material is immersed in this dispersion solution, and the base material is lifted to thereby form nanoparticles on the surface of the base material. This is a method of forming a single layer film. It is described that a single-layer perovskite oxide thin film can be formed by appropriately setting the concentration of nanoparticles in the nanoparticle dispersion solution and pulling the substrate obliquely or vertically under a predetermined temperature and humidity.

特開2011−184273号公報JP 2011-184273 A

J.Phys.Chem.C,2010,114(17),pp7637_7645J. et al. Phys. Chem. C, 2010, 114 (17), pp7637_7645

上述の浸漬コーティング方法では、ガスバリア性や絶縁性を確保するために、成膜速度を抑えることで緻密な単層膜を成膜しようとしている。しかし、単層膜の場合、基材被覆率を90〜95%程度にすることはできても、被覆率100%を実現することは困難である。その結果、このような単層膜を例えば積層セラミックコンデンサなどの誘電体層として使用した場合、ショートの発生リスクが高くなるという問題がある。膜の絶縁性を確保するためには多層化や厚膜化が必須となり、重ね塗り(複数回の浸漬コーティング)を行う必要があるため、生産性が低下する。さらに、重ね塗りを行う際には前処理として加熱処理が必要となるため、生産性をさらに低下させる要因となり得る。 In the dip coating method described above, in order to secure gas barrier properties and insulation properties, a dense single layer film is formed by suppressing the film formation rate. However, in the case of a single layer film, it is difficult to achieve a coverage of 100% even though the substrate coverage can be about 90 to 95%. As a result, when such a single layer film is used as a dielectric layer such as a multilayer ceramic capacitor, there is a problem that the risk of occurrence of a short circuit increases. In order to ensure the insulating properties of the film, it is essential to increase the number of layers and the thickness of the film, and it is necessary to perform overcoating (multiple dip coatings), which reduces productivity. Furthermore, since heat treatment is required as a pretreatment when performing overcoating, it can be a factor that further reduces productivity.

また、特許文献1には、ナノシート多層膜を作製するために、コーティング液中のナノ粒子の含有量を高くすること(段落0019)、つまりナノ粒子の濃度を高くする方法が記載されている。しかしながら、単純にコーティング液の濃度を高くしただけでは、基材表面に形成された膜のナノ粒子の配列状態が悪化したり、又は膜に凹凸が生じたりする可能性があった。 Patent Document 1 describes a method for increasing the content of nanoparticles in a coating liquid (paragraph 0019), that is, a method for increasing the concentration of nanoparticles in order to produce a nanosheet multilayer film. However, if the concentration of the coating solution is simply increased, the arrangement state of the nanoparticles of the film formed on the substrate surface may be deteriorated, or the film may be uneven.

ところで、非特許文献1には、浸漬コーティング法を用いてゾル−ゲル薄膜を形成し、膜厚制御する方法について開示されている。それによると、ゾル−ゲル溶液に基材を浸漬し、その基材を引き上げたとき、基材の表面に形成されるゾル−ゲル薄膜の厚みと引き上げ速度との間に相関関係があり、特にある引き上げ速度で膜厚が極小値となることが開示されている。膜厚が極小値となる引き上げ速度よりも小さい速度領域では、乾燥速度が支配的となり、膜厚は引き上げ速度の増大につれて減少する。膜厚が極小値となる引き上げ速度よりも高い速度領域では、膜厚は引き上げ速度の増大につれて増大する。しかし、非特許文献1は、ゾル−ゲル溶液から薄膜を形成する方法を開示しているだけであって、ナノ粒子を分散させた分散溶液からナノ粒子多層膜を形成する方法については何も開示していない。 By the way, Non-Patent Document 1 discloses a method of forming a sol-gel thin film using a dip coating method and controlling the film thickness. According to this, when the substrate is immersed in the sol-gel solution and the substrate is pulled up, there is a correlation between the thickness of the sol-gel thin film formed on the surface of the substrate and the pulling speed, It is disclosed that the film thickness becomes a minimum value at a certain pulling speed. In a speed range smaller than the pulling speed at which the film thickness becomes a minimum value, the drying speed becomes dominant, and the film thickness decreases as the pulling speed increases. In a speed range higher than the pulling speed at which the film thickness becomes a minimum value, the film thickness increases as the pulling speed increases. However, Non-Patent Document 1 only discloses a method of forming a thin film from a sol-gel solution, and discloses nothing about a method of forming a nanoparticle multilayer film from a dispersion solution in which nanoparticles are dispersed. Not done.

本発明の目的は、浸漬法を用いて、良好なナノ粒子多層膜を形成でき、かつ生産性が高い製造方法および製造装置を提供することにある。さらなる目的は、基材被覆率が100%の薄膜を少ない回数の引き上げ操作で成膜可能な製造方法および製造装置を提供することにある。 The objective of this invention is providing the manufacturing method and manufacturing apparatus which can form a favorable nanoparticle multilayer film using immersion method, and have high productivity. A further object is to provide a manufacturing method and a manufacturing apparatus capable of forming a thin film having a substrate coverage of 100% by a small number of pulling operations.

前記目的を達成するため、本発明は、薄片状又は偏平状のナノ粒子を有機溶媒又は水中に分散させたナノ粒子分散溶液に基材を浸漬し、当該基材を引き上げることで前記基材の表面にナノ粒子の多層膜を形成する薄膜の製造方法である。特に、ナノ粒子分散溶液は、膜の膜厚と基材の引き上げ速度との関係において、ある引き上げ速度で膜厚が極小値を持つ溶液であり、膜厚が極小となる引き上げ速度よりも高い速度領域で基材を引き上げることにより成膜する。 In order to achieve the above-mentioned object, the present invention immerses a substrate in a nanoparticle dispersion solution in which flaky or flat nanoparticles are dispersed in an organic solvent or water, and pulls up the substrate to lift the substrate. This is a method for producing a thin film in which a multilayer film of nanoparticles is formed on the surface. In particular, the nanoparticle dispersion solution is a solution having a minimum film thickness at a certain pulling speed in relation to the film thickness and the pulling speed of the substrate, and is higher than the pulling speed at which the film thickness is minimized. The film is formed by pulling up the substrate in the region.

本発明は以下のような知見に基づいてなされた。すなわち、ナノ粒子を有機溶媒や水などに分散させたナノ粒子分散溶液について、その溶液中から基材を引き上げた際、上述のゾル−ゲル溶液と同様の性質を有する、つまり、膜厚が極小値となる引き上げ速度で基材を引き上げれば、最も膜厚の薄い膜を形成することが可能になるという点である。そこで、本発明者が種々条件を変えて実験したところ、膜厚が極小値となる速度で引き上げると、ナノ粒子の積層数が少なく、そのためナノ粒子による基材被覆率が100%の多層膜を安定して成膜できないことを発見した。さらに、極小値となる膜厚よりもより大きな膜厚を得るには、極小値となる引き上げ速度より小さい速度領域と大きい速度領域とが存在するが、小さい速度領域で引き上げたとき、ナノ粒子の配向状態が悪くなることを発見した。つまり、極小値となる引き上げ速度より小さい速度領域で引き上げると、乾燥による粘度上昇の影響が大きくなり、ナノ粒子が湾曲したりして、ナノ粒子が層状にきれいに並んだ多層膜を形成することが難しいからである。さらに、引き上げ速度が小さい分、生産性も低い。 The present invention has been made based on the following findings. That is, a nanoparticle dispersion solution in which nanoparticles are dispersed in an organic solvent or water has the same properties as the above-mentioned sol-gel solution when the substrate is pulled up from the solution, that is, the film thickness is extremely small. If the substrate is pulled up at a pulling speed that is a value, it is possible to form a thinnest film. Therefore, when the present inventor experimented under various conditions, when the film thickness was increased at a minimum value, the number of nanoparticles stacked was small, and thus a multilayer film with a substrate coverage of 100% by nanoparticles was obtained. I discovered that the film could not be formed stably. Furthermore, in order to obtain a film thickness that is larger than the film thickness at which the minimum value is reached, there are a speed region that is smaller than the pulling speed at which the minimum value is reached and a large speed region. It was discovered that the orientation state deteriorated. In other words, if the pulling speed is lower than the minimum pulling speed, the effect of the increase in viscosity due to drying increases, and the nanoparticles may be bent to form a multilayer film in which the nanoparticles are neatly arranged in layers. Because it is difficult. Furthermore, productivity is low because the pulling speed is low.

これに対し、極小値となる引き上げ速度より大きい速度領域で基材を引き上げた場合、せん断応力の作用により溶液中のナノ粒子が基材の表面とほぼ平行に配向し、ナノ粒子同士が相補的に重なり合った多層膜を形成できることから、少ない回数の引き上げ操作でナノ粒子による基材被覆率が100%の多層膜を形成可能なこと、さらに生産性の面でも良好な製造方法を実現できることを発見した。なお、ここで「多層膜」とは、膜自体が多層であるという意味ではなく、1つの膜内にナノ粒子が多層に積層された状態で存在している膜のことである。 On the other hand, when the substrate is lifted at a speed range larger than the pulling speed at which the minimum value is reached, the nanoparticles in the solution are oriented almost parallel to the surface of the substrate due to the action of shear stress, and the nanoparticles are complementary to each other. Discovered that it is possible to form a multilayer film with a substrate coverage of 100% with nanoparticles by a small number of pulling operations, and that it is possible to realize a good manufacturing method in terms of productivity. did. Here, the “multilayer film” does not mean that the film itself is a multilayer, but a film in which nanoparticles are laminated in a single film.

本発明が対象とするナノ粒子の形状は、薄片状もしくは扁平状であり、厚さに対する幅及び長さの比が比較的大きな形状を有するものである。例えば厚さが0.5〜10nmで、幅及び長さが厚さの10倍以上のものがよい。ナノ粒子の材料としては、例えばペロブスカイト酸化物(例えばCa2Nb310、Sr2Nb310など)やチタン酸化物などの酸化物、遷移金属炭化物(例えばTi2C、Ti3C2、Sc2Cなど)、遷移金属窒化物(例えばTi2N、Ti3N2、Sc2Nなど)、グラフェン、六方晶系窒化ホウ素(h-BN)、遷移金属ジカルコゲナイド(TMD)、カルコゲナイド層状化合物(例えばInSe、Bi2Se3など)などを含む。 The shape of the nanoparticles targeted by the present invention is flaky or flat, and has a shape in which the ratio of width and length to thickness is relatively large. For example, it is preferable that the thickness is 0.5 to 10 nm and the width and length are 10 times or more of the thickness. Examples of the nanoparticle material include perovskite oxides (for example, Ca 2 Nb 3 O 10 and Sr 2 Nb 3 O 10 ), oxides such as titanium oxide, transition metal carbides (for example, Ti 2 C and Ti 3 C 2). , Sc 2 C, etc.), transition metal nitrides (eg, Ti 2 N, Ti 3 N 2 , Sc 2 N, etc.), graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD), chalcogenides Layered compounds (for example, InSe, Bi 2 Se 3 etc.) are included.

ナノ粒子を分散させる溶媒の種類は、ナノ粒子の分散性が損なわれないものが相応しく、水又は有機溶媒が使用される。有機溶媒としては、例えばエタノール、メタノール、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、2−プロパノール、ホルムアミド、メチルエチルケトン、1−ブタノールなどを使用することができる。例えば、h−BNナノシートの場合にはイソプロパノールやNメチルピロリドンが望ましく、グラフェン、TMDナノシートの場合にはNメチルピロリドンなどが望ましい。 The type of solvent in which the nanoparticles are dispersed is suitably one that does not impair the dispersibility of the nanoparticles, and water or an organic solvent is used. As the organic solvent, for example, ethanol, methanol, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, 2-propanol, formamide, methyl ethyl ketone, 1-butanol and the like can be used. For example, isopropanol or N-methylpyrrolidone is desirable for h-BN nanosheets, and N-methylpyrrolidone is desirable for graphene or TMD nanosheets.

基材としては、耐溶剤性を有するものであればよく、硬質基板(石英ガラス板,シリコンウェハ,マイカ板,グラファイト板,アルミナ板など)、樹脂シート(ポリカーボネートフィルム,PETフィルム,アラミドフィルムなど)、金属シート(金属フィルムなど)が含まれる。基材の表面は平滑(例えばRaでシングルナノオーダーが望ましい)であることが必要であるが、原子レベルの平滑性は不要である。 Any substrate may be used as long as it has solvent resistance. Hard substrate (quartz glass plate, silicon wafer, mica plate, graphite plate, alumina plate, etc.), resin sheet (polycarbonate film, PET film, aramid film, etc.) , Metal sheets (metal films etc.) are included. The surface of the substrate needs to be smooth (for example, Ra is preferably a single nano-order), but atomic level smoothness is not necessary.

静置状態のナノ材料分散溶液は濃度分布が存在しているため、成膜前にナノ材料分散溶液の分散状態を均一化する必要がある。ただし、激しく攪拌すると内部のナノ粒子が壊れる可能性があるため、揺動方式のような緩やかな攪拌方式が望ましい。 Since the nanomaterial dispersion solution in a stationary state has a concentration distribution, it is necessary to make the dispersion state of the nanomaterial dispersion solution uniform before film formation. However, since the internal nanoparticles may be broken if vigorously stirred, a gentle stirring method such as a rocking method is desirable.

成膜時の引き上げ角度は水平面に対して垂直方向又は斜め方向に引き上げるのが望ましく、水平面に対する角度は70°〜90°がよい。引上げ速度は膜厚が極小値となる引き上げ速度よりも速い領域とするのがよく、溶液の濃度にもよるが、例えば0.2mm/s以上とするのがよい。浸漬深さは基材が漬かればよいので、制限はない。浸漬時間は基材表面に溶液がなじむ必要があるので、例えば30秒以上とするのがよい。 The pulling angle during film formation is desirably pulled up in a direction perpendicular to or oblique to the horizontal plane, and the angle with respect to the horizontal plane is preferably 70 ° to 90 °. The pulling rate is preferably a region that is faster than the pulling rate at which the film thickness becomes a minimum value, and is preferably 0.2 mm / s or more, for example, depending on the concentration of the solution. The immersion depth is not limited as long as the substrate is immersed. Since it is necessary for the immersion time to adjust the solution to the surface of the base material, it is preferable to set it for 30 seconds or more, for example.

基材の引き上げ速度は、極小値となる膜厚をh0としたとき、膜厚hが極小値となる膜厚h0の2倍となる速度以上で、膜厚hが50nmとなる速度以下とするのが望ましい。ある濃度のナノ粒子分散溶液を使用した場合、膜厚が極小となる引き上げ速度で引き上げると、膜のナノ粒子の積層数が少なく、ナノ粒子による基材被覆率が100%の多層膜を安定して成膜できないことがある。そこで、引き上げ速度を変化させて基材被覆率を測定したところ、極小値となる膜厚h0の2倍以上となる速度で引き上げると、ナノ粒子の積層数が増え、基材被覆率100%を安定して達成することが可能になることがわかった。また、膜厚が50nmを超えると、既存の材料でも形成可能であり、ナノシート薄膜による有利性が低下するので、膜厚が50nmとなる速度以下で引き上げるのが望ましい。 The pulling speed of the substrate, when the film thickness becomes the minimum value set to h 0, a thickness h is to become the speed more than 2 times the thickness h 0 of the minimum value, less than the speed of the film thickness h is 50nm Is desirable. When a nanoparticle dispersion solution of a certain concentration is used, if the film is pulled up at a pulling speed at which the film thickness is minimized, the number of nanoparticle layers in the film is small, and a multilayer film with a substrate coverage of 100% is stabilized. May fail to form a film. Therefore, when the substrate coverage was measured while changing the pulling speed, when the film was pulled at a speed that is at least twice the minimum value of the film thickness h 0 , the number of nanoparticles stacked increased and the substrate coverage was 100%. It has been found that it is possible to achieve this stably. Further, if the film thickness exceeds 50 nm, it can be formed even by using an existing material, and the advantage of the nanosheet thin film is lowered. Therefore, it is desirable to increase the film thickness at a speed of 50 nm or less.

基材をナノ粒子分散溶液に複数回の浸漬/引き上げを行うことにより成膜してもよい。本発明による引き上げ速度で成膜した膜は非常に薄いので、1回の成膜では十分な絶縁性が確保できない場合がある。特に、薄膜コンデンサのように耐圧性が求められる用途では確実な絶縁性が求められる。そのような場合に、本発明方法を複数回繰り返すことで、絶縁性の良好な薄膜を形成できる。なお、複数回繰り返すといっても、5回以上のように多数回の重ね塗りは必ずしも必要ではなく、例えば2〜3回程度で十分な絶縁膜を形成可能である。 The substrate may be formed by immersing / pulling the substrate into the nanoparticle dispersion solution a plurality of times. Since the film formed at the pulling speed according to the present invention is very thin, there is a case where sufficient insulation cannot be secured by one film formation. In particular, reliable insulation is required in applications where pressure resistance is required, such as thin film capacitors. In such a case, a thin film with good insulation can be formed by repeating the method of the present invention a plurality of times. In addition, even if it repeats a plurality of times, it is not always necessary to apply multiple times such as 5 times or more. For example, a sufficient insulating film can be formed by about 2 to 3 times.

溶液の濃度は、必要とする膜厚の絶対値や緻密性に影響を与えることが分かっているため、目標とする膜厚を得るために適切な濃度に設定する必要がある。すなわち、所望の膜厚を1回で塗布するために必要な濃度は、実験的に11.3g/L以上であると推測されるので、この濃度以上の溶液が望ましい。 Since it is known that the concentration of the solution affects the absolute value and density of the required film thickness, it is necessary to set the concentration to an appropriate concentration in order to obtain a target film thickness. That is, the concentration necessary to apply a desired film thickness at one time is estimated to be 11.3 g / L or more experimentally, so a solution having this concentration or more is desirable.

ナノ粒子分散溶液に浸漬する前の基材に対して、基材表面の有機物除去および親水化を促進するための前処理を施すのが望ましい。前処理の具体的方法としては、例えばUV-O3処理、プラズマ処理などがある。このような前処理により、ナノ粒子分散溶液が基材の表面全体になじみやすくなり、欠陥の少ないナノ粒子の多層膜を成膜することが可能になる。 It is desirable to perform a pretreatment for promoting organic substance removal and hydrophilization on the substrate surface before the substrate is immersed in the nanoparticle dispersion solution. Specific examples of the pretreatment include UV-O 3 treatment and plasma treatment. By such pretreatment, the nanoparticle dispersion solution becomes easy to conform to the entire surface of the base material, and it becomes possible to form a multilayer film of nanoparticles having few defects.

ナノ粒子分散溶液から引き上げられたシート材上の多層膜に対して、多層膜を定着させ、緻密性を高めるための後処理を行うのがよい。後処理方法としては、例えばUV-O3処理がある。成膜過程において、ナノ粒子間に有機物が残留することがあり、その有機物がナノ粒子の定着性を低下させ、構造欠陥の原因になる可能性がある。そこで、成膜後の後処理を行うことで、多層膜内に残留した有機物を効果的に除去できる。 The multilayer film on the sheet material pulled up from the nanoparticle dispersion solution is preferably subjected to post-treatment for fixing the multilayer film and improving the denseness. As a post-treatment method, for example, there is UV-O 3 treatment. In the film formation process, an organic substance may remain between the nanoparticles, and the organic substance may reduce the fixing property of the nanoparticles and cause a structural defect. Therefore, by performing post-processing after film formation, organic substances remaining in the multilayer film can be effectively removed.

基材は長尺なシート材であり、シート材を巻き出しロールから複数のガイドロールを経て巻き取りロールへと連続的に搬送し、複数のガイドロールの内、少なくとも1つのガイドロールをナノ粒子分散溶液中に浸漬し、シート材を連続駆動することにより、シート材の表面にナノ粒子の多層膜を形成するようにしてもよい。基材として基板を使用した場合には、この基板をつり下げてナノ粒子分散溶液中に浸漬し、それを引き上げることで多層膜を形成することが可能である。しかし、この方法で大きな基板上に成膜しようとすれば、基板を浸漬できる大型で深い貯留槽が必要であり、しかも1回ずつ浸漬操作と引き上げ操作とを行う必要があるため、量産性を高めることが難しい。そこで、長尺なシート材を基材として使用し、そのシート材を連続的に搬送しながらその一部をナノ粒子分散溶液中に浸漬してその上に多層膜を形成した後、このシート材を巻き取るようにすれば、均質な多層膜を量産性高く製造することができる。膜厚を制御するには、シート材の送り速度を変えればよいため、量産時の制御性にも優れているという特徴がある。シート材はガイドロールによって湾曲させることができるので、ナノ粒子分散溶液を貯留する貯留槽を深くする必要がなく、コストを低減できる。 The base material is a long sheet material, and the sheet material is continuously conveyed from the unwinding roll to the winding roll through the plurality of guide rolls, and at least one guide roll among the plurality of guide rolls is nano-particles. A multilayer film of nanoparticles may be formed on the surface of the sheet material by dipping in the dispersion solution and continuously driving the sheet material. When a substrate is used as the base material, it is possible to form a multilayer film by suspending the substrate and immersing it in the nanoparticle dispersion solution and pulling it up. However, if it is intended to form a film on a large substrate by this method, a large and deep storage tank capable of immersing the substrate is required, and it is necessary to perform the immersing operation and the pulling operation one by one. It is difficult to increase. Therefore, a long sheet material is used as a base material, and while the sheet material is continuously conveyed, a part of the sheet material is immersed in the nanoparticle dispersion solution to form a multilayer film thereon. By winding up the film, a homogeneous multilayer film can be produced with high productivity. In order to control the film thickness, it is only necessary to change the feeding speed of the sheet material. Therefore, the controllability at the time of mass production is excellent. Since the sheet material can be bent by the guide roll, it is not necessary to deepen the storage tank for storing the nanoparticle dispersion solution, and the cost can be reduced.

以上のように、本発明の製造方法によれば、極小値となる引き上げ速度より大きい速度領域で基材を引き上げることで、溶液中のナノ粒子が基材の表面と平行に配向し、ナノ粒子同士が相補的に重なり合った多層膜を形成できる。その結果、少ない回数の引き上げ操作で基材被覆率が100%の多層膜を安定して形成でき、かつ生産性が高い製造方法を実現できる。 As described above, according to the production method of the present invention, the nanoparticles in the solution are aligned in parallel with the surface of the substrate by pulling up the substrate at a speed region larger than the pulling speed at which the minimum value is obtained. A multilayer film in which the layers overlap each other in a complementary manner can be formed. As a result, a multilayer film having a substrate coverage of 100% can be stably formed with a small number of pulling operations, and a manufacturing method with high productivity can be realized.

また本発明の製造装置によれば、長尺なシート材を基材として用い、浸漬法を用いてその上にナノ粒子多層膜を連続して形成するようにしたので、均質なナノ粒子多層膜を量産性高く製造することができる。 Further, according to the production apparatus of the present invention, since a long sheet material is used as a base material, and a nanoparticle multilayer film is continuously formed thereon using an immersion method, a homogeneous nanoparticle multilayer film is formed. Can be manufactured with high mass productivity.

本発明に係る薄膜製造装置の第1実施例の概略図である。It is the schematic of 1st Example of the thin film manufacturing apparatus which concerns on this invention. 基材の引き上げ速度と平均膜厚との関係を示すグラフである。It is a graph which shows the relationship between the raising speed of a base material, and an average film thickness. 膜厚が極小値となる引き上げ速度ucより低い速度で引き上げたときのナノ粒子の配向状態と、膜厚が極小値となる引き上げ速度ucより高い速度で引き上げたときのナノ粒子の配向状態とを概略的に示す。Orientation of nanoparticles when the thickness is pulled up by the minimum value to become the alignment state of the nanoparticles when lifted at speed u less than c speed, higher than the pull rate u c that the film thickness becomes a minimum value speed Is shown schematically. 図1に示す基材を溶液中から引き上げた時の多層膜の成膜原理図である。It is a film-forming principle figure of a multilayer film when the base material shown in FIG. 1 is pulled up from the solution. 誘電体薄膜の膜厚依存性を示す図である。It is a figure which shows the film thickness dependence of a dielectric material thin film. 溶液濃度と膜厚との関係を示す図である。It is a figure which shows the relationship between a solution concentration and a film thickness. ショート率と膜厚との関係を示す図である。It is a figure which shows the relationship between a short circuit rate and a film thickness. 本発明に係る薄膜製造装置の第2実施例の構成図である。It is a block diagram of 2nd Example of the thin film manufacturing apparatus which concerns on this invention.

−第1実施例−
図1は本発明に係る薄膜製造装置の第1実施例を示す。図1において、貯留槽1の中には、薄片状又は偏平状のナノ粒子を有機溶媒又は水中に分散させたナノ粒子分散溶液2が貯留されている。貯留槽1の上方には、可逆駆動可能なモータ3が配置され、そのモータ3の駆動軸に固定されたプーリ4にワイヤ5が巻き掛けられている。ワイヤ5の先端にはクランプ6を介して基材7が吊り下げられている。基材7としては、ナノ粒子分散溶液2に対する耐溶剤性を有し、表面が平滑な基材が望ましく、硬質基板(石英ガラス板,シリコンウェハ,マイカ板,グラファイト板,アルミナ板など)でもよいし、樹脂板や樹脂シート、金属板や金属フィルムでもよい。基材7の浸漬深さは、基材7の必要部位が漬かればよいので、制限はないが、浸漬時間は溶液が基材7に十分になじむだけの時間(例えば30秒以上)が望ましい。基材7の引き上げ速度は、モータ3の回転速度によって制御できる。
-1st Example-
FIG. 1 shows a first embodiment of a thin film manufacturing apparatus according to the present invention. In FIG. 1, a storage tank 1 stores a nanoparticle dispersion solution 2 in which flaky or flat nanoparticles are dispersed in an organic solvent or water. A motor 3 that can be driven reversibly is disposed above the reservoir 1, and a wire 5 is wound around a pulley 4 that is fixed to a drive shaft of the motor 3. A base material 7 is suspended from the tip of the wire 5 via a clamp 6. The substrate 7 is preferably a substrate having a solvent resistance to the nanoparticle dispersion solution 2 and a smooth surface, and may be a hard substrate (quartz glass plate, silicon wafer, mica plate, graphite plate, alumina plate, etc.). However, a resin plate, a resin sheet, a metal plate, or a metal film may be used. The immersion depth of the base material 7 is not limited as long as the necessary portion of the base material 7 is immersed, but the immersion time is preferably a time sufficient for the solution to become fully compatible with the base material 7 (for example, 30 seconds or more). . The pulling speed of the substrate 7 can be controlled by the rotation speed of the motor 3.

浸漬前に基材7の表面の有機物除去および親水化促進を目的として、前処理装置8が設けられている。前処理装置8としては、例えばUV-O3処理装置やプラズマ処理装置が用いられる。特に、UV-O3処理は特定波長の紫外線を照射してオゾンを生成し、その生成したオゾンを利用して有機化合物を酸化・分解させるものであり、加熱処理を必要としないので前処理装置として好適である。 A pretreatment device 8 is provided for the purpose of removing organic substances on the surface of the substrate 7 and promoting hydrophilicity before dipping. As the pretreatment device 8, for example, a UV-O 3 treatment device or a plasma treatment device is used. In particular, UV-O 3 treatment generates ozone by irradiating ultraviolet rays of a specific wavelength, and uses the generated ozone to oxidize and decompose organic compounds. It is suitable as.

ナノ粒子は、薄片状もしくは扁平状であり、例えば厚さが0.5〜10nm(望ましくは1〜5nm)で、幅及び長さが厚さの10倍以上のものがよい。ナノ粒子の材料としては、例えばペロブスカイト酸化物(例えばCa2Nb310、Sr2Nb310など)やチタン酸化物などの酸化物、グラフェン、六方晶系窒化ホウ素(h-BN)、遷移金属ジカルコゲナイド(TMD)などが含まれる。ナノ粒子分散溶液の濃度としては、後述するように基材7をナノ粒子分散溶液2から引き上げた時、ある引き上げ速度で膜厚が極小値を持ち、かつ基材7上にナノ粒子の多層膜が生成される濃度に設定する必要がある。例えばナノ粒子がCa2Nb310ならば、15g/Lの濃度がよい。含有量は溶媒の種類によって異なるが、15g/Lの濃度は、溶媒がエタノールの場合には1.87wt%に相当し、溶媒が水であれば1.48wt%に相当する。 The nanoparticles are flaky or flat, for example, having a thickness of 0.5 to 10 nm (desirably 1 to 5 nm) and a width and length that is 10 times or more of the thickness. Examples of the nanoparticle material include perovskite oxides (for example, Ca 2 Nb 3 O 10 and Sr 2 Nb 3 O 10 ), oxides such as titanium oxide, graphene, hexagonal boron nitride (h-BN), Transition metal dichalcogenides (TMD) and the like are included. The concentration of the nanoparticle dispersion solution is such that when the substrate 7 is pulled up from the nanoparticle dispersion solution 2 as will be described later, the film thickness has a minimum value at a certain pulling speed, and the multilayer film of nanoparticles is formed on the substrate 7. Must be set to the concentration at which is produced. For example, if the nanoparticles are Ca 2 Nb 3 O 10 , a concentration of 15 g / L is good. Although the content varies depending on the type of solvent, the concentration of 15 g / L corresponds to 1.87 wt% when the solvent is ethanol and 1.48 wt% when the solvent is water.

図2は、STEM(走査透過電子顕微鏡)で膜厚定量分析して得られた膜厚(乾燥後)と引上げ速度との関係を示す。ナノ粒子としてペロブスカイト酸化物(Ca2Nb310)を、溶媒としてエタノール又は水を、基材としてPET基板をそれぞれ使用し、ナノ粒子の濃度を15g/Lとした。図1に示すように、ナノ粒子分散溶液2中に浸漬した基材7を引き上げたとき、基材7の表面に形成されるナノ粒子膜の厚みと引き上げ速度との間には相関関係があり、ある引き上げ速度で膜厚が極小値を持つことがわかる。 FIG. 2 shows the relationship between the pulling speed and the film thickness (after drying) obtained by quantitative film thickness analysis using STEM (scanning transmission electron microscope). Perovskite oxide (Ca 2 Nb 3 O 10 ) was used as nanoparticles, ethanol or water was used as a solvent, and a PET substrate was used as a base material, and the concentration of nanoparticles was set to 15 g / L. As shown in FIG. 1, when the substrate 7 immersed in the nanoparticle dispersion solution 2 is pulled up, there is a correlation between the thickness of the nanoparticle film formed on the surface of the substrate 7 and the lifting speed. It can be seen that the film thickness has a minimum value at a certain pulling speed.

膜厚が極小値となる引き上げ速度よりも小さい速度領域では、乾燥速度が支配的となり、膜厚h0[m]と引き上げ速度u[m/s]の関係は以下の式で示される。

Figure 2017078002
(ここで、ki:材料定数[-],E:乾燥速度[m3/s],L:成膜サンプルの幅[m])
一方で,膜厚が極小値となる引き上げ速度よりも高い領域では、重力とせん断応力のバランスから膜厚h0と引き上げ速度uとの関係は以下の式で示される。
Figure 2017078002
(ここで、ki:材料定数[-],Dは粘度・表面張力・密度からなる定数[m1/3・s2/3])
これら関係式から、膜厚が極小値となる引き上げ速度は、
Figure 2017078002
となる。よって、この引き上げ速度よりも速い領域で成膜すれば、生産性が高く、良質の多層膜を形成できる。 In a speed region smaller than the pulling speed at which the film thickness becomes a minimum value, the drying speed becomes dominant, and the relationship between the film thickness h 0 [m] and the pulling speed u [m / s] is expressed by the following equation.
Figure 2017078002
(Where, k i : material constant [-], E: drying rate [m 3 / s], L: width of film formation sample [m])
On the other hand, in a region where the film thickness is higher than the pulling speed at which the film thickness becomes a minimum value, the relationship between the film thickness h 0 and the pulling speed u is expressed by the following equation from the balance between gravity and shear stress.
Figure 2017078002
(Where k i : material constant [-], D is a constant [m 1/3 · s 2/3 ] consisting of viscosity, surface tension and density)
From these relational expressions, the pulling speed at which the film thickness becomes the minimum value is
Figure 2017078002
It becomes. Therefore, if the film is formed in a region faster than the pulling speed, a high-quality multilayer film with high productivity can be formed.

図3の(A)は膜厚が極小値となる引き上げ速度ucより低い速度で引き上げたときのナノ粒子の配向状態を示し、図3の(B)は膜厚が極小値となる引き上げ速度ucより高い速度で引き上げたときのナノ粒子の配向状態を示す。なお、図3はナノ粒子の配向状態を理解しやすいように概略的に示したものであり、現実の配向状態を示したものではない。図示するように、引き上げ速度ucより低い速度領域で引き上げると、ナノ粒子が屈曲したりして配向状態が悪くなり、多層膜の表面に凹凸が生じる。これに対し、引き上げ速度ucより高い速度領域で引き上げると、ナノ粒子の配向状態がよく、表面の凹凸も少ない良質の多層膜が形成される。 (A) of FIG. 3 shows the orientation of nanoparticles when the film thickness was drawn up at the lower pull rate u c as the minimum value speed, in FIG. 3 (B) pulling rate that the film thickness becomes the minimum value indicating the orientation of nanoparticles when pulled at higher u c speed. FIG. 3 schematically shows the orientation state of the nanoparticles so that it can be easily understood, and does not show the actual orientation state. As shown, when pulled at a lower speed range than the pull rate u c, the alignment state is degraded nanoparticles with or bending, unevenness occurs in the surface of the multilayer film. In contrast, when pulled at a higher speed range than the pulling speed u c, the alignment state of the nanoparticles may, multilayer film of unevenness of the surface is small quality is formed.

図4は、基材を膜厚が極小値となる引き上げ速度より速い速度で引き上げたときの多層膜の成膜原理を示す。なお、図4では基材の片面にのみ多層膜が形成される場合を示しているが、両面に形成することもできる。図示するように、基材を引き上げると、溶液の表面張力によりメニスカスが生成され、溶液の一部は基材と共に引き上げられる。このとき、溶液中の薄片状のナノ粒子は、せん断力によって引き上げ方向(基材の表面と平行)に配向する。さらに、蒸発に伴う溶媒の流れと表面張力との作用により、基材上のナノ粒子同士が平面方向に凝集し、ナノ粒子同士が相補的に重なり合った緻密な多層膜を形成できる。 FIG. 4 shows the principle of forming a multilayer film when the substrate is pulled up at a speed faster than the pulling speed at which the film thickness becomes a minimum value. Although FIG. 4 shows the case where the multilayer film is formed only on one side of the substrate, it can be formed on both sides. As shown in the figure, when the substrate is pulled up, a meniscus is generated by the surface tension of the solution, and a part of the solution is pulled up together with the substrate. At this time, the flaky nanoparticles in the solution are oriented in the pulling direction (parallel to the surface of the substrate) by the shearing force. Further, due to the action of the solvent flow and surface tension accompanying evaporation, the nanoparticles on the substrate aggregate in the planar direction, and a dense multilayer film in which the nanoparticles are complementarily overlapped can be formed.

図5は、誘電体薄膜の膜厚依存性を示す図である。比較的厚い膜は従来の材料(例えばチタン酸バリウム系材料)を使用して形成できるが、良好な誘電特性を得るためには膜厚30nm程度以上が必要となる。逆に、膜厚30nm以下に薄膜化すると、比誘電率が劇的に下がり、コンデンサとして安定に動作しない。つまり、膜厚20〜30nm付近に量子サイズ効果の壁が存在する。一方、ペロブスカイトナノシート薄膜は、5〜20nmでも100以上の高い比誘電率を持ちうるため、量子サイズ効果の壁による制約がない。よって、30nm以下の厚みの誘電体ナノ薄膜を生成する場合には、ペロブスカイトナノシートが有効である。なお、図5におけるナノシートは一例であり、図示のものよりも高い比誘電率を持つナノシートも存在する。さらに、ナノシート薄膜の膜厚が20nm以上になっても高誘電率を維持することが可能である。 FIG. 5 is a diagram showing the film thickness dependence of the dielectric thin film. A relatively thick film can be formed using a conventional material (for example, a barium titanate-based material), but a film thickness of about 30 nm or more is required to obtain good dielectric properties. On the contrary, when the film thickness is reduced to 30 nm or less, the relative dielectric constant is drastically lowered and the capacitor does not operate stably. That is, there is a quantum size effect wall in the vicinity of the film thickness of 20 to 30 nm. On the other hand, since the perovskite nanosheet thin film can have a high relative dielectric constant of 100 or more even at 5 to 20 nm, there is no restriction due to the wall of the quantum size effect. Therefore, the perovskite nanosheet is effective for producing a dielectric nanofilm having a thickness of 30 nm or less. Note that the nanosheet in FIG. 5 is an example, and there is a nanosheet having a higher dielectric constant than that shown in the figure. Furthermore, a high dielectric constant can be maintained even when the thickness of the nanosheet thin film is 20 nm or more.

本発明者の実験によれば、図2のように膜厚が極小値となる引き上げ速度ucが0.2mm/sであるナノ粒子分散溶液を使用した場合に、引き上げ速度uを極小値となる膜厚h0の2倍となる速度(1mm/s)以上で、膜厚hが50nmとなる速度(10mm/s)以下とするのがよい。つまり、引き上げ速度を1〜10mm/sとしたとき、膜厚が薄く(例えば10〜50nm)、かつ基材被覆率が安定してほぼ100%となる多層膜を1回の引き上げ操作で形成できた。特に、引き上げ速度u=1〜2mm/sとしたとき、厚みが10nm〜30nmで、かつ基材被覆率がほぼ100%となる多層膜を形成できた。引き上げ速度uが10mm/sを超えると、膜厚が50nmより厚くなる傾向がある。 According to the experiments conducted by the present inventors, when the pull rate u c that the film thickness becomes a minimum value as shown in FIG. 2 were used nanoparticle dispersion solution is 0.2 mm / s, and the minimum value of the pulling speed u The film thickness h 0 is preferably set to a speed (1 mm / s) or more that is twice the film thickness h 0 and to a speed (10 mm / s) or less that makes the film thickness h 50 nm. That is, when the pulling speed is 1 to 10 mm / s, a multilayer film having a thin film thickness (for example, 10 to 50 nm) and a stable substrate coverage of almost 100% can be formed by a single pulling operation. It was. In particular, when the pulling rate was u = 1 to 2 mm / s, a multilayer film having a thickness of 10 nm to 30 nm and a substrate coverage of almost 100% could be formed. When the pulling speed u exceeds 10 mm / s, the film thickness tends to be thicker than 50 nm.

図6は、溶液濃度を変えたときの膜厚の変化を示したものである。図示するように、溶液濃度が15g/L、成膜速度が2mm/s、重ね塗り回数が1回のとき、平均膜厚は12.18nmであり、溶液濃度が17.5g/L、成膜速度が2mm/s、重ね塗り回数が1回のとき、平均膜厚は20.52nmであった。特に、溶液濃度が17.5g/Lの場合には、膜厚のばらつきが小さくなることがわかる。これら2つのデータから濃度xと膜厚yとの線形式を推定すると、
y=3.336x−37.86
となる。この結果から、濃度が11.3g/Lを下回ると、膜厚がゼロになることが推測され、所望の膜厚を1回で塗布するために必要な濃度は11.3g/L以上であると推測される。
FIG. 6 shows the change in film thickness when the solution concentration is changed. As shown in the figure, when the solution concentration is 15 g / L, the film formation rate is 2 mm / s, and the number of overcoating is one, the average film thickness is 12.18 nm, and the solution concentration is 17.5 g / L. When the speed was 2 mm / s and the number of overcoating was one, the average film thickness was 20.52 nm. In particular, when the solution concentration is 17.5 g / L, it can be seen that the variation in film thickness becomes small. If the linear form of the density x and the film thickness y is estimated from these two data,
y = 3.336x-37.86
It becomes. From this result, it is presumed that the film thickness becomes zero when the concentration is lower than 11.3 g / L, and the concentration necessary to apply a desired film thickness at one time is 11.3 g / L or more. It is guessed.

なお、溶液濃度が17.5g/L、成膜速度が1mm/s、重ね塗り回数が2回のとき、平均膜厚は47nmとなった。膜厚のばらつきは、40.9〜53.6nmであった。 The average film thickness was 47 nm when the solution concentration was 17.5 g / L, the deposition rate was 1 mm / s, and the number of overcoating was two. The variation in film thickness was 40.9 to 53.6 nm.

図7は、ショート率(ショートしたサンプル数/全測定サンプル数)と膜厚との関係を示したものである。図示するように、膜厚が20nm以下ではショート率がほぼ100%であり、20〜80nmにかけて膜厚の増大につれてショート率が急激に低下し、80nmを超えるとショート率はほぼ0%となる。よって、80nm以上の膜厚に調整することが、ショート率をほぼ0%にするためには有効である。 FIG. 7 shows the relationship between the short-circuit rate (number of shorted samples / total number of samples measured) and film thickness. As shown in the figure, the short-circuit rate is almost 100% when the film thickness is 20 nm or less, and the short-circuit rate rapidly decreases as the film thickness increases from 20 to 80 nm. When the film thickness exceeds 80 nm, the short-circuit rate becomes approximately 0%. Therefore, adjusting the film thickness to 80 nm or more is effective for reducing the short-circuit rate to approximately 0%.

−第2実施例−
図8は本発明に係る薄膜製造装置の第2実施例を示す。この製造装置では、基材として長尺なシート材10を使用し、このシート材10を巻き出しロール11から供給し、複数のガイドロール12〜16を経て巻き取りロール17へと巻き取るよう構成されている。巻き取りロール17には、シート材10の送り速度を制御する駆動装置18が連結されている。複数のガイドロール12〜16は、シート材を所定の張力を持って送るための回転自在なロールであるが、送り速度と同期して回転駆動されてもよい。複数のガイドロールの中の少なくとも1つのガイドロール14は、貯留槽20に貯留されたナノ粒子分散溶液21中に浸漬されている。そのため、シート材10を連続的に送ることにより、シート材10の一部がナノ粒子分散溶液21の中を通過し、引き上げ時にシート材10の表面にナノ粒子の多層膜が形成される。シート材10の必要な浸漬深さは、送り速度と目標とする浸漬時間の関係から計算することができる。例えば、送り速度2mm/sで30秒間浸漬させるためには、最低限30mmの深さが必要となる。
-Second Example-
FIG. 8 shows a second embodiment of the thin film manufacturing apparatus according to the present invention. In this manufacturing apparatus, a long sheet material 10 is used as a base material, the sheet material 10 is supplied from an unwinding roll 11, and is wound around a winding roll 17 through a plurality of guide rolls 12 to 16. Has been. A driving device 18 that controls the feeding speed of the sheet material 10 is connected to the winding roll 17. The plurality of guide rolls 12 to 16 are rotatable rolls for feeding the sheet material with a predetermined tension, but may be driven to rotate in synchronization with the feeding speed. At least one guide roll 14 among the plurality of guide rolls is immersed in the nanoparticle dispersion solution 21 stored in the storage tank 20. Therefore, by continuously feeding the sheet material 10, a part of the sheet material 10 passes through the nanoparticle dispersion solution 21, and a multilayer film of nanoparticles is formed on the surface of the sheet material 10 when being pulled up. The required immersion depth of the sheet material 10 can be calculated from the relationship between the feed rate and the target immersion time. For example, in order to immerse for 30 seconds at a feed rate of 2 mm / s, a depth of at least 30 mm is required.

シート材10としては、ナノ粒子分散溶液21に対する耐溶剤性を有する、薄肉で表面が平滑なシートが望ましく、例えばセラミックグリーンシートの製造に使用されるキャリアフィルムと同様の材料(例えばポリカーボネートフィルム,PETフィルム,アラミドフィルムなど)を使用できる。 As the sheet material 10, a sheet having a solvent resistance to the nanoparticle dispersion solution 21 and having a thin surface and a smooth surface is desirable. For example, a material similar to a carrier film used for manufacturing a ceramic green sheet (for example, polycarbonate film, PET Film, aramid film, etc.) can be used.

ナノ粒子分散溶液21中に浸漬される直前のシート材10に対して、シート材表面の有機物除去および親水化促進のための前処理を行う前処理装置22が設けられている。具体的には、浸漬前のシート材10をガイドするガイドロール12と13との間に前処理装置22が設けられている。この前処理方法としては、UV-O3処理やプラズマ処理などがある。さらに、ナノ粒子分散溶液21から引き上げられたシート材10上の多層膜に対して、多層膜に含まれる有機物の除去を行い、多層膜の緻密性を高める後処理装置23が設けられている。具体的には、引き上げ後のシート材10をガイドするガイドロール15と16との間に後処理装置23が設けられている。後処理方法としては、UV-O3処理が効果的である。さらに、ナノ粒子分散溶液21から引き上げられた直後のシート材10に対して乾燥処理を行う乾燥装置24が設けられている。この実施例の乾燥装置24は縦型であり、ナノ粒子分散溶液21からほぼ垂直方向に引き上げられたシート材10に対して、次のガイドロール15に巻き掛ける前に乾燥処理を実施する。そのため、シート材10上に形成された未乾燥の多層膜がガイドロール15によって損傷を受けるのを防止できる。乾燥方法は任意であるが、できるだけシート材10を高温に加熱せずに、短時間で多層膜を乾燥させる方法を用いる方が良い。多層膜はシート材10の両面又は片面のいずれに形成してもよい。 A pretreatment device 22 that performs pretreatment for removing organic substances on the surface of the sheet material and promoting hydrophilicity is provided for the sheet material 10 immediately before being immersed in the nanoparticle dispersion solution 21. Specifically, a pretreatment device 22 is provided between the guide rolls 12 and 13 that guide the sheet material 10 before immersion. Examples of the pretreatment method include UV-O 3 treatment and plasma treatment. Furthermore, a post-processing device 23 is provided for removing the organic matter contained in the multilayer film from the multilayer film on the sheet material 10 pulled up from the nanoparticle dispersion solution 21 and improving the denseness of the multilayer film. Specifically, a post-processing device 23 is provided between the guide rolls 15 and 16 that guide the sheet material 10 after being pulled up. As a post-treatment method, UV-O 3 treatment is effective. Furthermore, a drying device 24 that performs a drying process on the sheet material 10 immediately after being pulled up from the nanoparticle dispersion solution 21 is provided. The drying device 24 of this embodiment is a vertical type, and performs a drying process on the sheet material 10 pulled up from the nanoparticle dispersion solution 21 in a substantially vertical direction before being wound around the next guide roll 15. Therefore, it is possible to prevent the undried multilayer film formed on the sheet material 10 from being damaged by the guide roll 15. Although a drying method is arbitrary, it is better to use a method of drying the multilayer film in a short time without heating the sheet material 10 as high as possible. The multilayer film may be formed on either one side or one side of the sheet material 10.

上述のように、複数のガイドロールの内の少なくとも1つのガイドロール14をナノ粒子分散溶液21中に浸漬し、シート材10を連続駆動することにより、シート材10の表面にナノ粒子の多層膜を形成するようにしたので、多層膜を形成しながら巻き取りロール17に連続的に巻き取ることができる。すなわち、長尺なシート材10上に多層膜を連続的に形成できるので、きわめて量産性の高い製造装置を実現できる。膜厚を制御するには、シート材10の引き上げ速度を最適値(膜厚が極小値となる引き上げ速度よりも高速で、基材被覆率が安定して100%となる多層膜を1回の引き上げ操作で形成できる速度が望ましい)に制御すれば良い。引き上げ速度はシート材10の送り速度、つまり駆動装置18により容易に制御できる。したがって、量産時の制御性にも優れた製造装置を実現できる。 As described above, at least one guide roll 14 of the plurality of guide rolls is immersed in the nanoparticle dispersion solution 21 and the sheet material 10 is continuously driven, whereby the nanoparticle multilayer film is formed on the surface of the sheet material 10. Thus, the film can be continuously wound around the winding roll 17 while forming a multilayer film. That is, since a multilayer film can be continuously formed on the long sheet material 10, a manufacturing apparatus with extremely high productivity can be realized. In order to control the film thickness, the pulling speed of the sheet material 10 is set to an optimum value (a multilayer film having a substrate coverage rate of 100% at a higher speed than the pulling speed at which the film thickness becomes a minimum value). It is preferable to control the speed so that it can be formed by a pulling operation. The pulling speed can be easily controlled by the feeding speed of the sheet material 10, that is, the driving device 18. Therefore, it is possible to realize a manufacturing apparatus having excellent controllability during mass production.

図8では、溶液から引き上げたシート材10に対して乾燥処理、UV-O3処理を施した後、巻き取りロール17に巻き取るようにしたが、巻き取りロール17に巻き取る前に、ナノシート多層膜に対して電極パターン塗布、乾燥処理などを実施してもよい。その場合には、巻き取りロール17に巻き取られたシート材には、ナノシート多層膜と電極パターンとが形成された状態となる。そのため、このシート材を薄膜コンデンサの製造に用いることが可能になる。 In FIG. 8, the sheet material 10 pulled up from the solution is subjected to a drying process and a UV-O 3 process, and then wound around the take-up roll 17. Electrode pattern application, drying treatment, and the like may be performed on the multilayer film. In that case, a nanosheet multilayer film and an electrode pattern are formed on the sheet material wound around the winding roll 17. Therefore, this sheet material can be used for manufacturing a thin film capacitor.

なお、図8の実施例では1回の浸漬/引き上げによりシート材10上に成膜する例を示したが、複数回の浸漬/引き上げにより重ね塗りした多層膜を形成してもよい。その場合には、シート材10を巻き取りロール17に巻き取る前に2回目以後の浸漬/引き上げを実施してもよい。 In the example of FIG. 8, an example in which a film is formed on the sheet material 10 by one dipping / pulling up is shown, but a multi-layered film may be formed by multiple dipping / pulling up. In that case, before the sheet material 10 is taken up on the take-up roll 17, the second and subsequent dipping / pulling may be performed.

本発明は上記実施例に限定されるものではない。上記実施例では、ナノ粒子としてペロブスカイト酸化物(Ca2Nb310)を使用し、例えばコンデンサの誘電体薄膜として好適な多層膜の製造方法について説明したが、他のナノ粒子(Sr2Nb310、グラフェン、六方晶系窒化ホウ素、遷移金属ジカルコゲナイドなど)を使用しても同様の効果を有する。本発明の多層膜の用途としては、誘電体以外に、例えば光触媒、圧電体等のファインセラミックス材料、光電変換材料、フォトクロミック材料、エレクトロクロミック性材料、ガスバリア性材料、赤外線反射材料、導電性材料など多岐にわたる。 The present invention is not limited to the above embodiments. In the above embodiment, perovskite oxide (Ca 2 Nb 3 O 10 ) is used as the nanoparticle, and for example, a method for producing a multilayer film suitable as a dielectric thin film of a capacitor has been described. However, other nanoparticles (Sr 2 Nb) 3 O 10 , graphene, hexagonal boron nitride, transition metal dichalcogenide, etc.) have the same effect. In addition to dielectrics, the multilayer film of the present invention can be used, for example, photocatalysts, fine ceramic materials such as piezoelectrics, photoelectric conversion materials, photochromic materials, electrochromic materials, gas barrier materials, infrared reflective materials, conductive materials, etc. Wide range.

1 貯留槽
2 ナノ粒子分散溶液
3 モータ
7 基材
8 前処理装置
10 シート材(基材)
11 巻き出しロール
12〜16 ガイドロール
14 浸漬ロール
17 巻き取りロール
18 駆動装置
20 貯留槽
21 ナノ粒子分散溶液
22 前処理装置
23 後処理装置
24 乾燥装置
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Nanoparticle dispersion solution 3 Motor 7 Base material 8 Pretreatment apparatus 10 Sheet material (base material)
DESCRIPTION OF SYMBOLS 11 Unwinding rolls 12-16 Guide roll 14 Immersion roll 17 Winding roll 18 Drive apparatus 20 Storage tank 21 Nanoparticle dispersion solution 22 Pretreatment apparatus 23 Posttreatment apparatus 24 Drying apparatus

Claims (10)

薄片状又は偏平状のナノ粒子を有機溶媒又は水中に分散させたナノ粒子分散溶液に基材を浸漬し、当該基材を引き上げることで前記基材の表面にナノ粒子の多層膜を形成する薄膜の製造方法であって、
前記ナノ粒子分散溶液は、前記膜の膜厚と前記基材の引き上げ速度との関係において、ある引き上げ速度で膜厚が極小値を持つ溶液であり、
前記膜厚が極小となる引き上げ速度よりも高い速度領域で前記基材を引き上げることにより成膜する、薄膜の製造方法。
A thin film that forms a multilayer film of nanoparticles on the surface of the substrate by immersing the substrate in a nanoparticle dispersion solution in which flaky or flat nanoparticles are dispersed in an organic solvent or water, and pulling up the substrate. A manufacturing method of
The nanoparticle dispersion solution is a solution having a minimum value of the film thickness at a certain pulling speed in the relationship between the film thickness of the film and the pulling speed of the substrate.
A method for producing a thin film, wherein a film is formed by pulling up the substrate in a speed region higher than a pulling speed at which the film thickness is minimized.
前記引き上げ速度は、前記極小値となる膜厚をh0としたとき、膜厚hが極小値となる膜厚h0の2倍となる速度以上で、前記膜厚hが50nmとなる速度以下である、請求項1に記載の薄膜の製造方法。 The pull rate, when the film thickness becomes the minimum value set to h 0, a thickness h is to become the speed more than 2 times the thickness h 0 of the minimum value, less than the speed of the film thickness h is 50nm The method for producing a thin film according to claim 1, wherein 前記基材を前記ナノ粒子分散溶液に複数回の浸漬/引き上げを行うことにより成膜する、請求項1又は2に記載の薄膜の製造方法。 The method for producing a thin film according to claim 1 or 2, wherein the substrate is formed by immersing / pulling the substrate into the nanoparticle dispersion solution a plurality of times. 前記ナノ粒子分散溶液の濃度は11.3g/L以上である、請求項1〜3のいずれか1項に記載の薄膜の製造方法。 The manufacturing method of the thin film of any one of Claims 1-3 whose density | concentration of the said nanoparticle dispersion solution is 11.3 g / L or more. 前記ナノ粒子分散溶液に浸漬する前の前記基材に対して、基材表面の有機物除去および親水化を促進するための前処理を施す、請求項1〜4のいずれか1項に記載の薄膜の製造方法。 The thin film according to any one of claims 1 to 4, wherein a pretreatment for promoting organic substance removal and hydrophilization on the surface of the substrate is performed on the substrate before being immersed in the nanoparticle dispersion solution. Manufacturing method. 前記ナノ粒子分散溶液から引き上げられた前記シート材上の多層膜に対して、当該多層膜に含まれる有機物の除去処理を行う、請求項1〜5のいずれか1項に記載の薄膜の製造方法。 The manufacturing method of the thin film of any one of Claims 1-5 which performs the removal process of the organic substance contained in the said multilayer film with respect to the multilayer film on the said sheet | seat material pulled up from the said nanoparticle dispersion solution. . 前記基材は長尺なシート材であり、
前記シート材を巻き出しロールから複数のガイドロールを経て巻き取りロールへと連続的に搬送し、
前記複数のガイドロールの内、少なくとも1つのガイドロールを前記ナノ粒子分散溶液中に浸漬し、
前記シート材を連続駆動することにより、前記シート材の表面に前記ナノ粒子の多層膜を形成する、請求項1〜6のいずれか1項に記載の薄膜の製造方法。
The base material is a long sheet material,
The sheet material is continuously conveyed from a winding roll to a winding roll through a plurality of guide rolls,
Of the plurality of guide rolls, at least one guide roll is immersed in the nanoparticle dispersion solution,
The manufacturing method of the thin film of any one of Claims 1-6 which forms the multilayer film of the said nanoparticle on the surface of the said sheet material by driving the said sheet material continuously.
薄片状又は偏平状のナノ粒子を有機溶媒又は水中に分散させたナノ粒子分散溶液を貯留した貯留槽と、
長尺なシート材と、
前記シート材を供給する巻き出しロールと、
前記シート材を巻き取る巻き取りロールと、
前記巻き出しロールと巻き取りロールとの間に配設された前記シート材を送るための複数のガイドロールであって、その中の少なくとも1つのガイドロールが前記ナノ粒子分散溶液中に浸漬された、ガイドロールと、
前記シート材の送り速度を制御する駆動装置と、を備え、
前記ナノ粒子分散溶液は、前記シート材の表面に形成される膜の膜厚と前記シート材の引き上げ速度との関係において、ある引き上げ速度で膜厚が極小値を持つ溶液であり、
前記膜厚が極小となる引き上げ速度よりも高い速度領域で引き上げるよう前記駆動装置を制御し、
前記シート材を連続駆動することにより、前記シート材の表面に前記ナノ粒子の多層膜を形成する、製造装置。
A storage tank storing a nanoparticle dispersion solution in which flaky or flat nanoparticles are dispersed in an organic solvent or water; and
Long sheet material,
An unwinding roll for supplying the sheet material;
A winding roll for winding the sheet material;
A plurality of guide rolls for feeding the sheet material disposed between the unwinding roll and the winding roll, wherein at least one guide roll therein is immersed in the nanoparticle dispersion solution. , Guide rolls,
A drive device for controlling the feeding speed of the sheet material,
The nanoparticle dispersion solution is a solution having a minimum thickness at a certain pulling rate in the relationship between the film thickness of the film formed on the surface of the sheet material and the pulling speed of the sheet material,
Controlling the drive device to pull in a speed region higher than the pulling speed at which the film thickness is minimized,
The manufacturing apparatus which forms the multilayer film of the nanoparticle on the surface of the sheet material by continuously driving the sheet material.
前記ナノ粒子分散溶液中に浸漬される前の前記シート材に対して基材表面の有機物除去および親水化を促進するための前処理を行う前処理装置が設けられている、請求項8に記載の製造装置。 The pre-processing apparatus which performs the pre-processing for promoting the organic substance removal and hydrophilization of the base-material surface with respect to the said sheet | seat material before being immersed in the said nanoparticle dispersion solution is provided. Manufacturing equipment. 前記ナノ粒子分散溶液から引き上げられた前記シート材上の多層膜に対して、当該多層膜に含まれる有機物の除去処理を行う後処理装置が設けられている、請求項8又は9に記載の製造装置。 10. The production according to claim 8, wherein a post-treatment device is provided for performing a removal treatment of an organic substance contained in the multilayer film on the multilayer film on the sheet material pulled up from the nanoparticle dispersion solution. apparatus.
JP2015207606A 2015-10-22 2015-10-22 Method and apparatus for producing thin film using nanosheet Active JP6634776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015207606A JP6634776B2 (en) 2015-10-22 2015-10-22 Method and apparatus for producing thin film using nanosheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207606A JP6634776B2 (en) 2015-10-22 2015-10-22 Method and apparatus for producing thin film using nanosheet

Publications (2)

Publication Number Publication Date
JP2017078002A true JP2017078002A (en) 2017-04-27
JP6634776B2 JP6634776B2 (en) 2020-01-22

Family

ID=58665163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207606A Active JP6634776B2 (en) 2015-10-22 2015-10-22 Method and apparatus for producing thin film using nanosheet

Country Status (1)

Country Link
JP (1) JP6634776B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341919A (en) * 2020-03-06 2020-06-26 江苏集萃分子工程研究院有限公司 Continuous preparation process and device for preparing perovskite thin film in roll-to-roll mode by one-step method
KR20200141741A (en) * 2019-06-11 2020-12-21 광주과학기술원 A method for manufacturing selective amphipathic water treatment membrane using Janus graphene, membrane structure and membrane manufactured by thereof
JPWO2021131643A1 (en) * 2019-12-25 2021-07-01
WO2022034852A1 (en) * 2020-08-13 2022-02-17 株式会社村田製作所 Film manufacturing method and conductive film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221146A (en) * 1990-01-29 1991-09-30 Mitsubishi Heavy Ind Ltd Catalyst filter base material for treating combustion exhaust gas
JP2006289165A (en) * 2005-04-06 2006-10-26 Sony Corp Method of forming particulate film
JP2012148952A (en) * 2010-07-12 2012-08-09 Central Glass Co Ltd Coating solution for formation of low-reflective film, method for preparation thereof, and low-reflective member produced by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221146A (en) * 1990-01-29 1991-09-30 Mitsubishi Heavy Ind Ltd Catalyst filter base material for treating combustion exhaust gas
JP2006289165A (en) * 2005-04-06 2006-10-26 Sony Corp Method of forming particulate film
JP2012148952A (en) * 2010-07-12 2012-08-09 Central Glass Co Ltd Coating solution for formation of low-reflective film, method for preparation thereof, and low-reflective member produced by using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAUSTINI, MARCO ET AL.: "Preparation of Sol-Gel Films by Dip-Coating in Extreme Conditions", J.PHYS.CHEM.C., vol. 114(17), JPN6019013025, 2 April 2010 (2010-04-02), US, pages 7637 - 7645, ISSN: 0004015711 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200141741A (en) * 2019-06-11 2020-12-21 광주과학기술원 A method for manufacturing selective amphipathic water treatment membrane using Janus graphene, membrane structure and membrane manufactured by thereof
KR102223371B1 (en) 2019-06-11 2021-03-05 광주과학기술원 A method for manufacturing selective amphipathic water treatment membrane using Janus graphene, membrane structure and membrane manufactured by thereof
JPWO2021131643A1 (en) * 2019-12-25 2021-07-01
WO2021131643A1 (en) * 2019-12-25 2021-07-01 株式会社村田製作所 Electroconductive composite structure and method for producing same
CN111341919A (en) * 2020-03-06 2020-06-26 江苏集萃分子工程研究院有限公司 Continuous preparation process and device for preparing perovskite thin film in roll-to-roll mode by one-step method
WO2022034852A1 (en) * 2020-08-13 2022-02-17 株式会社村田製作所 Film manufacturing method and conductive film

Also Published As

Publication number Publication date
JP6634776B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6634776B2 (en) Method and apparatus for producing thin film using nanosheet
Eskandari et al. Hydrophilic Cu2O nanostructured thin films prepared by facile spin coating method: investigation of surface energy and roughness
KR101244058B1 (en) Preparation method of graphene transparent thin film using layer―by―layer assembly process of reduced graphene oxide
JP5583097B2 (en) Transparent electrode laminate
EP1884578A1 (en) A method of manufacturing a self-ordered porous structure of aluminium oxide, a nanoporous article and a nano object
Yücel et al. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology
JP5984089B2 (en) Method for producing thin film comprising nanosheet monolayer film by spin coating method, superhydrophilic material thereby, substrate for oxide thin film, and dielectric material
TW201249655A (en) Gas barrier film
AU2009250336A1 (en) Thermoelectric element
Chandran et al. Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods
Bazargan et al. Controlled growth of monodisperse nanocrystallites in tin (IV) oxide nanofilms
Glynn et al. Linking precursor alterations to nanoscale structure and optical transparency in polymer assisted fast-rate dip-coating of vanadium oxide thin films
Li et al. P (VDF-TrFE) ferroelectric nanotube array for high energy density capacitor applications
Lee et al. Synthesis of Sr2Nb3O10 nanosheets and their application for growth of thin film using an electrophoretic method
Jia et al. Fabrication and strain investigation of ZnO nanorods on Si composing sol–gel and chemical bath deposition method
Ansari et al. Controlled growth of thermally stable uniform-sized Ag nanoparticles on flat support and their electrochemical activity
JP5069082B2 (en) Silicon nitride film manufacturing method, gas barrier film, and thin film element
Navin et al. Structural, morphological and optical studies of ripple-structured ZnO thin films
JP2013144618A (en) Method for manufacturing nanosheet membrane, nanosheet membrane, and method for manufacturing inorganic compound thin membrane
KR101523849B1 (en) Method of fabricating metal-carbon composite particle
Mimura et al. Fabrication and characterization of barium titanate nanocube ordered assemblies on micro-patterned substrates
Kemnade et al. How to evaluate and manipulate charge transfer and photocatalytic response at hybrid nanocarbon–metal oxide interfaces
JP2019031429A (en) Low-temperature, thin-film crystallization method and products prepared therefrom
Yasir et al. Design And Fabrication Of A Low-Cost Dip Coating System For Depositing Homogeneous And Transparent Zno Thin Films
KR102231942B1 (en) Apparatus having patterned solution shearing coater of roll to roll type for forming a thin film of organic semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6634776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150