JP2017077994A - Composition and incombustible material - Google Patents

Composition and incombustible material Download PDF

Info

Publication number
JP2017077994A
JP2017077994A JP2015207016A JP2015207016A JP2017077994A JP 2017077994 A JP2017077994 A JP 2017077994A JP 2015207016 A JP2015207016 A JP 2015207016A JP 2015207016 A JP2015207016 A JP 2015207016A JP 2017077994 A JP2017077994 A JP 2017077994A
Authority
JP
Japan
Prior art keywords
mass
parts
heat insulating
insulating material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015207016A
Other languages
Japanese (ja)
Other versions
JP6556017B2 (en
Inventor
荒木 昭俊
Akitoshi Araki
昭俊 荒木
浩徳 長崎
Hironori Nagasaki
浩徳 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2015207016A priority Critical patent/JP6556017B2/en
Publication of JP2017077994A publication Critical patent/JP2017077994A/en
Application granted granted Critical
Publication of JP6556017B2 publication Critical patent/JP6556017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition which imparts incombustibility without impairing heat insulating properties.SOLUTION: The composition contains: (1) calcium aluminate having a CaO content of 40 mass% or more; (2) gypsum; (3) an inorganic powder having an average particle diameter of 20-60 μm and having a hollow structure; and (4) a waste glass foam powder having an average particle diameter of 20-130 μm. The amount of (2) used is 70-300 pts.mass based on 100 pts.mass of (1). The amount of (3) used is 20-150 pts.mass based on 100 pts.mass of the total of (1) and (2). The amount of (4) used is 20-100 pts.mass based on 100 pts.mass of the total of (1) and (2).SELECTED DRAWING: Figure 1

Description

本発明は、不燃材に関する。   The present invention relates to a non-combustible material.

建築物は気密性が向上し、外気温度との差異により結露が生じる場合があった、結露防止や省エネの観点から、様々な断熱材や結露防止材が開発されてきた。中でもポリウレタンフォームやポリスチレンフォームは、軽量性、接着性、コスト等にも優れているため多用されている。ポリウレタンフォームやポリスチレンフォームは有機系素材であることから不燃性が劣り、しばしば火災による被害拡大の原因となり、その対策を施すことが望まれている。解決策として、グラスウールやロックウール等の無機系の断熱材を使用することが挙げられる。しかし、無機系の断熱材の熱伝導率は有機系素材のフォームよりも高い傾向があり、断熱性の点で劣る場合がある。グラスウールやロックウール等は繊維状であるため、作業性の点で穿痛感を有するといった課題がある。   Various heat insulating materials and anti-condensation materials have been developed from the viewpoint of preventing condensation and saving energy, where the building has improved airtightness and condensation may occur due to the difference from the outside air temperature. Among them, polyurethane foam and polystyrene foam are frequently used because they are excellent in lightness, adhesiveness, cost and the like. Since polyurethane foam and polystyrene foam are organic materials, they are incombustible and often cause damage due to fire, and countermeasures are desired. One solution is to use an inorganic heat insulating material such as glass wool or rock wool. However, the thermal conductivity of an inorganic heat insulating material tends to be higher than that of an organic material foam, and may be inferior in heat insulation. Since glass wool, rock wool, and the like are fibrous, there is a problem of having a feeling of pain in terms of workability.

有機系素材のフォームに不燃性を付与した素材は既に市販されている。例えば、フェノール樹脂フォームのボードの片面又は両面を不燃材であるアルミニウム箔、水酸化アルミニウム紙、セッコウ系板材等で積層した構造の不燃断熱ボードが挙げられる。しかし、火災等で熱が加わると、火炎に面した表面は燃えないが、熱で内部のフェノール樹脂が溶け、空洞となりボード自体が脱落し延焼するという課題がある。
ウレタン樹脂発泡体の耐燃焼性を向上する技術としては、アルカリ金属炭酸塩、イソシアネート類、水及び反応触媒で発泡体を形成する断熱材料に関する技術(特許文献1)、リチウム、ナトリウム、カリウム、ホウ素、及びアルミニウムからなる群より選ばれる金属の、水酸化物、酸化物、炭酸塩類、硫酸塩、硝酸塩、アルミン酸塩、ホウ酸塩、及びリン酸塩類からなる群より選ばれる一種又は二種以上の無機化合物と水とイソシアネート類とからなる硬化性組成物で、主にトンネルの地盤改良用の注入材に関する技術(特許文献2)がある。これらの発明は、断熱性について明確化されていない。特に、アルカリ金属炭酸塩30%以上の水溶液とイソシアネート類を反応させ、多量の水を使用するため未反応の水が多量に残ることから断熱材として使用するためには乾燥する必要があり、作業工程が多い。
The material which gave the nonflammability to the foam of an organic material is already marketed. For example, a non-combustible heat insulating board having a structure in which one side or both sides of a phenol resin foam board is laminated with a non-combustible aluminum foil, aluminum hydroxide paper, gypsum-based board material, or the like. However, when heat is applied in a fire or the like, the surface facing the flame does not burn, but there is a problem that the phenol resin inside melts due to the heat and becomes a cavity and the board itself falls off and spreads.
Technologies for improving the combustion resistance of urethane resin foams include technologies relating to heat insulating materials that form foams with alkali metal carbonates, isocyanates, water and reaction catalysts (Patent Document 1), lithium, sodium, potassium, boron , And a metal selected from the group consisting of aluminum, one or more selected from the group consisting of hydroxides, oxides, carbonates, sulfates, nitrates, aluminates, borates, and phosphates There is a technique (Patent Document 2) relating to an injection material for ground improvement of a tunnel, which is a curable composition comprising an inorganic compound of the above, water and isocyanates. These inventions are not clarified for heat insulation. In particular, an aqueous solution of 30% or more alkali metal carbonate and isocyanates are reacted, and since a large amount of water is used, a large amount of unreacted water remains. There are many processes.

合成樹脂発泡体を被覆して耐燃焼性を向上する技術としては、セピオライトと水溶性樹脂を主成分とする水性有機バインダーとからなる被覆を形成して表面処理を施した合成樹脂の発泡体粒子に、無機粉体とアルカリ金属ケイ酸塩を主成分とする水ガラスを含む水性無機バインダーとからなるコーティング材を更に被覆し、乾燥硬化させる断熱性被覆粒体に関する技術(特許文献3)、合成樹脂発泡体の少なくとも一部の表面の気泡構造内に、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、アルミノケイ酸塩のうちの1種又は2種以上の混合物からなるシリカ系無機物が充填した無機物含有合成樹脂発泡体に関する技術(特許文献4)が開示されている。これらケイ酸塩類を用いる技術は、燃焼によって、樹脂発泡体が溶け、充填されたケイ酸塩自体の結合力も失われ粉化し形状を保つことが難しいという課題がある。   As a technique for improving the combustion resistance by coating a synthetic resin foam, a synthetic resin foam particle is formed by forming a coating composed of sepiolite and an aqueous organic binder mainly composed of a water-soluble resin and performing surface treatment. In addition, a technology (Patent Document 3), synthesis relating to heat-insulating coated granules that are further coated with a coating material comprising an inorganic powder and a water-based inorganic binder containing water glass containing alkali metal silicate as a main component, followed by drying and curing. An inorganic substance in which a cellular structure of at least a part of the surface of a resin foam is filled with a silica-based inorganic substance made of one or a mixture of two or more of calcium silicate, magnesium silicate, aluminum silicate, and aluminosilicate The technique (patent document 4) regarding the containing synthetic resin foam is disclosed. The technique using these silicates has a problem that the resin foam is melted by combustion, and the bonding strength of the filled silicate itself is lost, and it is difficult to maintain the shape by pulverization.

更に、ビーズ法ポリスチレンフォームで形成された発泡樹脂において、発泡ビーズ間に形成された連続気泡に、酸素指数が21より大きい有機系物質からなる充填材料を充填した発泡樹脂複合構造体に関する技術が開示されている(特許文献5)。これらの技術は、充填材料が有機系物質であり不燃レベルの耐燃焼性の向上は期待できない。これらの技術は実験例より、発泡体の空隙率が3%であり、本発明に比べて非常に密実な空隙を持つ発泡ポリスチレンフォームを対象にしている。   Furthermore, a technology related to a foamed resin composite structure in which, in a foamed resin formed of a polystyrene foam bead method, open cells formed between the foamed beads are filled with a filling material made of an organic material having an oxygen index greater than 21 is disclosed. (Patent Document 5). In these techniques, the filling material is an organic substance, and an improvement in incombustibility at a non-combustible level cannot be expected. From these experimental examples, these techniques are directed to a foamed polystyrene foam having a porosity of 3%, which is very dense compared to the present invention.

カルシウムアルミネートを用いた耐火材料も提案されている。例えば、カルシウムアルミネート、セッコウ、及び凝結遅延剤を含有する耐火被覆材が知られている(特許文献6)。この技術は、鉄骨表面を被覆し火災から保護する目的で使用する材料であり、本発明の目的とは異なる。特許文献6は、中空構造を有する無機粉末、廃ガラス発泡体粉末について記載はない。   A refractory material using calcium aluminate has also been proposed. For example, a fireproof coating material containing calcium aluminate, gypsum and a setting retarder is known (Patent Document 6). This technique is a material used for the purpose of covering the steel surface and protecting it from fire, and is different from the object of the present invention. Patent Document 6 does not describe inorganic powder having a hollow structure and waste glass foam powder.

耐熱骨材、軽量骨材、アルミナ系結合材、炭化珪素、及び補強繊維からなる不焼成耐火断熱材に関する技術が開示されており、軽量骨材としてシラスバルーン、アルミナ系結合材としてカルシウムアルミネートが記述されている(特許文献7)。この技術は、製鉄や製鋼で使用する高温領域の耐火断熱材に使用することを前提としており、通常環境下の断熱を目的とした用途ではない。特許文献7は、セッコウについて記載はない。カルシウムアルミネートとしてアルミナセメントを挙げている。アルミナセメントのCaO含有量は40質量%未満であり、本発明とは異なる。   A technology related to a non-fired fire-resistant heat insulating material composed of a heat-resistant aggregate, a lightweight aggregate, an alumina-based binder, silicon carbide, and reinforcing fibers is disclosed, and a shirasu balloon as a lightweight aggregate and calcium aluminate as an alumina-based binder. (Patent Document 7). This technology is based on the premise that it is used for high-temperature refractory heat insulating materials used in steelmaking and steelmaking, and is not intended for heat insulation under normal circumstances. Patent Document 7 does not describe gypsum. Alumina cement is cited as the calcium aluminate. The CaO content of the alumina cement is less than 40% by mass, which is different from the present invention.

セメント、骨材、急硬材、及び特定の乾燥収縮低減剤を含有してなり、急硬材がカルシウムアルミネート単独又はカルシウムアルミネートとセッコウであり、セメント100質量部に対してカルシウムアルミネート1〜20質量部であり、カルシウムアルミネート100質量部に対してセッコウが30〜300質量部であり、乾燥収縮低減剤がセメント100質量部に対して0.1〜10質量部である、モルタル組成物が開示されており、骨材として、セラミックバルーン、シラスバルーン、廃ガラスを原料とし焼成して製造した軽量骨材が記述されている(特許文献8)。しかし、中空構造を有する無機粉末と廃ガラス発泡体粉末を特定量使用すること、不燃材として使用することについて記載はない。   It contains cement, aggregate, rapid hardening material, and a specific drying shrinkage reducing agent, and the rapid hardening material is calcium aluminate alone or calcium aluminate and gypsum, and calcium aluminate 1 per 100 parts by mass of cement. A mortar composition that is ˜20 parts by mass, that gypsum is 30 to 300 parts by mass with respect to 100 parts by mass of calcium aluminate, and that the drying shrinkage reducing agent is 0.1 to 10 parts by mass with respect to 100 parts by mass of cement. Articles have been disclosed, and as the aggregate, a ceramic balloon, a shirasu balloon, and a lightweight aggregate manufactured by firing from waste glass as a raw material are described (Patent Document 8). However, there is no description about using a specific amount of inorganic powder having a hollow structure and waste glass foam powder and using it as a noncombustible material.

特開平10−67576号公報JP-A-10-67576 特開平8−92555号公報JP-A-8-92555 特開2001−329629号公報JP 2001-329629 A 特開2012−102305号公報JP 2012-102305 A 特許第4983967号公報Japanese Patent No. 498967 特開平7−48153号公報JP 7-48153 A 特開昭62−41774号公報JP-A-62-41774 特許第4860396号公報Japanese Patent No. 4860396

本発明は断熱性を損なうことなく、不燃性を付与する組成物を提供する。   The present invention provides a composition that imparts incombustibility without impairing the heat insulating properties.

即ち、本発明は、(1)CaO含有量が40質量%以上のカルシウムアルミネート、(2)セッコウ、(3)平均粒子径が20〜60μmの中空構造を有する無機粉末、(4)平均粒子径が20〜130μmの廃ガラス発泡体粉末を含有する組成物であり、(2)の使用量が(1)100質量部に対して70〜300質量部であり、(3)の使用量が(1)と(2)の合計100質量部に対して20〜150質量部であり、(4)の使用量が(1)と(2)の合計100質量部に対して20〜100質量部である組成物であり、(3)が、シラスバルーン、フライアッシュバルーン、火山性堆積物の加熱発泡体からなる群の1種以上である該組成物であり、(4)の軟化点が800℃以下である該組成物であり、(5)材料分離防止剤を含有する該組成物であり、該組成物からなる不燃材であり、樹脂成形体に充填するのに使用する該不燃材であり、該組成物と水を含有するスラリーであり、水の使用量が、組成物100質量部に対して150〜500質量部である該スラリーであり、粘度が400〜700mPa・sである該スラリーであり、樹脂成形体に該スラリーを充填した不燃断熱材であり、樹脂成形体が、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、発泡フェノール樹脂からなる群の1種以上である該不燃断熱材であり、樹脂成形体が、連続気泡を有する該不燃断熱材であり、連続気泡率が25〜70体積%である該不燃断熱材であり、密度が70〜300kg/mである該不燃断熱材であり、該スラリーを充填することにより得られる不燃断熱材の製造方法であり、該不燃断熱材を用いて断熱する断熱方法である。 That is, the present invention includes (1) calcium aluminate having a CaO content of 40% by mass or more, (2) gypsum, (3) inorganic powder having a hollow structure with an average particle diameter of 20 to 60 μm, and (4) average particles. It is a composition containing waste glass foam powder having a diameter of 20 to 130 μm, the amount of (2) used is (1) 70 to 300 parts by weight with respect to 100 parts by weight, and the amount of (3) used is 20 to 150 parts by mass with respect to 100 parts by mass in total of (1) and (2), and 20 to 100 parts by mass with respect to the total of 100 parts by mass of (1) and (2). (3) is a composition of at least one member of the group consisting of shirasu balloons, fly ash balloons, and heated foams of volcanic deposits, and (4) has a softening point of 800 (5) containing a material separation preventing agent. The composition, the non-combustible material comprising the composition, the non-combustible material used for filling the resin molding, the slurry containing the composition and water, and the amount of water used. The slurry is 150 to 500 parts by mass with respect to 100 parts by mass of the composition, the slurry has a viscosity of 400 to 700 mPa · s, and is a non-combustible heat insulating material in which the slurry is filled in a resin molded body. The resin molded body is the non-combustible heat insulating material that is one or more members of the group consisting of a foamed polyurethane resin, a foamed polystyrene resin, a foamed polyolefin resin, and a foamed phenol resin, and the resin molded body is the non-combustible heat insulating material having open cells. The non-combustible heat insulating material having an open cell ratio of 25 to 70% by volume, the non-combustible heat insulating material having a density of 70 to 300 kg / m 3 , and a non-combustible heat insulating material obtained by filling the slurry. It is a manufacturing method of a fuel heat insulation material, and is a heat insulation method which insulates using this incombustible heat insulation material.

本発明は断熱性を損なうことなく、不燃性を付与する。   The present invention imparts nonflammability without impairing the heat insulating properties.

減圧含浸装置を示す図である。It is a figure which shows a pressure reduction impregnation apparatus.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明に使用する(1)カルシウムアルミネートは、カルシア原料とアルミナ原料等を混合して、キルンで焼成し、又は、電気炉で溶融し、冷却して得られるCaOとAlとを主成分とする水和活性を有する物質の総称である。カルシウムアルミネートは、不燃性や初期強度発現性の点で、溶融後に急冷した非晶質カルシウムアルミネートが好ましい。カルシウムアルミネートのCaO含有量は、反応活性の点で、40質量%以上が好ましい。40質量%未満では十分な不燃性を示さない場合がある。CaO含有量は、水を加えてスラリーにした時の流動性を確保する点で、50質量%以下が好ましい。50質量%を超えるとスラリーにした時に適切な流動性が確保できずに充填不良を起こす場合がある。本発明では、カルシウムアルミネートのCaOやAlの一部が、アルカリ金属酸化物、アルカリ土類金属酸化物、酸化ケイ素、酸化チタン、酸化鉄、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属硫酸塩、及び、アルカリ土類金属硫酸塩等と置換した化合物、又は、CaOとAlとを主成分とするものに、これらの化合物が少量固溶した化合物も使用できる。 (1) Calcium aluminate used in the present invention is a mixture of calcia raw material and alumina raw material, calcined in a kiln, or melted in an electric furnace and cooled to obtain CaO and Al 2 O 3 obtained. It is a general term for substances having hydration activity as the main component. The calcium aluminate is preferably an amorphous calcium aluminate that is rapidly cooled after melting in terms of nonflammability and initial strength development. The CaO content of calcium aluminate is preferably 40% by mass or more in terms of reaction activity. If it is less than 40% by mass, sufficient nonflammability may not be exhibited. The CaO content is preferably 50% by mass or less in terms of securing fluidity when water is added to form a slurry. When it exceeds 50 mass%, when it is made into a slurry, appropriate fluidity may not be ensured and filling failure may occur. In the present invention, a part of calcium aluminate CaO or Al 2 O 3 contains alkali metal oxide, alkaline earth metal oxide, silicon oxide, titanium oxide, iron oxide, alkali metal halide, alkaline earth metal halogen. A compound in which a small amount of these compounds are dissolved in a compound substituted with an oxide, an alkali metal sulfate, an alkaline earth metal sulfate or the like, or a compound mainly composed of CaO and Al 2 O 3 can be used. .

カルシウムアルミネートのガラス化率は、不燃性や反応活性の点で、70%以上が好ましく、90%以上がより好ましい。70%未満では初期強度発現性が低下する場合がある。ガラス化率は加熱前のサンプルについて、粉末X線回折法により、本発明のカルシウムアルミネートの結晶鉱物のメインピーク面積Sを予め測定し、その後1000℃で2時間加熱後、1〜10℃/分の冷却速度で徐冷し、粉末X線回折法による加熱後の結晶鉱物のメインピーク面積Sを求め、更に、これらのS及びSの値を用い、次の式を用いてガラス化率χを算出する。ガラス化率χ(%)=100×(1−S/SThe vitrification rate of calcium aluminate is preferably 70% or more, and more preferably 90% or more in terms of nonflammability and reaction activity. If it is less than 70%, the initial strength development may be lowered. The vitrification rate is determined by measuring the main peak area S of the crystal mineral of the calcium aluminate of the present invention in advance by a powder X-ray diffraction method for the sample before heating, and then heating at 1000 ° C. for 2 hours, and then 1-10 ° C. / Slowly cooling at a cooling rate of 1 minute, and determining the main peak area S 0 of the crystal mineral after heating by powder X-ray diffraction method. Further, using these S 0 and S values, vitrification is performed using the following formula: Calculate the rate χ. Vitrification rate χ (%) = 100 × (1−S / S 0 )

カルシウムアルミネートの粒度は、不燃性や初期強度発現性の点で、ブレーン比表面積値3,000cm/g以上が好ましく、5,000cm/g以上がより好ましい。3,000cm/g未満では初期強度発現性が低下する場合がある。 The particle size of the calcium aluminate is preferably a brane specific surface area value of 3,000 cm 2 / g or more, more preferably 5,000 cm 2 / g or more, in terms of nonflammability and initial strength development. If it is less than 3,000 cm 2 / g, the initial strength development may decrease.

本発明の(2)セッコウとしては、半水セッコウと無水セッコウ等が挙げられる。これらの中では、不燃性や強度発現性の点で、無水セッコウが好ましい。無水セッコウとしては、弗酸副生無水セッコウや天然無水セッコウ等が使用できる。セッコウを水に浸漬させた時のpHは、弱アルカリから酸性の値を示すことが好ましく、pH8以下がより好ましい。pH8を超えると、セッコウ成分の溶解度が高くなり、不燃性や初期強度発現性を阻害する場合がある。ここでいうpHとは、セッコウ/イオン交換水=1g/100gの20℃における希釈スラリーのpHを、イオン交換電極等を用いて測定したものである。   Examples of (2) gypsum of the present invention include semi-water gypsum and anhydrous gypsum. Among these, anhydrous gypsum is preferable in terms of nonflammability and strength development. As anhydrous gypsum, hydrofluoric acid byproduct anhydrous gypsum and natural anhydrous gypsum can be used. The pH when gypsum is immersed in water preferably shows an acidic value from a weak alkali, and more preferably pH 8 or less. When it exceeds pH 8, the solubility of a gypsum component will become high and may inhibit nonflammability and initial strength expression property. The pH here is a value obtained by measuring the pH of the diluted slurry at 20 ° C. of gypsum / ion exchange water = 1 g / 100 g using an ion exchange electrode or the like.

セッコウの粒度は、不燃性や初期強度発現性と適正な作業時間が得られる点で、ブレーン比表面積値で3000cm/g以上が好ましく、4000cm/g以上がより好ましい。 The particle size of the gypsum, in that the non-flammable and early strength development and proper working time is obtained, preferably 3000 cm 2 / g or more in Blaine specific surface area value, 4000 cm 2 / g or more is more preferable.

セッコウの使用量は、カルシウムアルミネート100質量部に対して70〜300質量部が好ましく、100〜200質量部がより好ましい。70質量部未満では十分な不燃性や初期強度発現性が得られない場合があり、300質量部を超えると十分な不燃性を示さない場合がある。   70-300 mass parts is preferable with respect to 100 mass parts of calcium aluminate, and, as for the usage-amount of gypsum, 100-200 mass parts is more preferable. If it is less than 70 parts by mass, sufficient incombustibility and initial strength development may not be obtained, and if it exceeds 300 parts by mass, sufficient incombustibility may not be exhibited.

本発明の(3)中空構造を有する無機粉末とは、シラスバルーンに代表される火山性堆積物を高温で加熱して作られる加熱発泡体、火力発電所から発生するフライアッシュバルーン、黒曜石や真珠岩を焼成したバルーン構造の無機粉末等が挙げられる。(3)は、(2)や(4)を除くことが好ましい。フライアッシュバルーンを使用する場合は、可能であれば強熱減量が5%以下のものを使用することが、未燃カーボンが少ない点で、好ましい。これらの中では、密度が小さく、樹脂成形体に充填した際に断熱性を損ないにくい点で、シラスバルーン、フライアッシュバルーン、火山性堆積物の加熱発泡体からなる群の1種以上が好ましく、シラスバルーン、フライアッシュバルーンからなる群の1種以上がより好ましく、シラスバルーンが最も好ましい。無機粉末の平均粒子径は20〜60μmが好ましく、30〜50μmがより好ましい。20μm未満では、粒子が細かすぎてスラリーにした時の粘度が高くなり、連続気泡への充填性が低下する場合があり、60μmを超えると不燃性、形状保持性、断熱性が低下する場合がある。   The inorganic powder having a hollow structure (3) of the present invention is a heated foam produced by heating a volcanic deposit represented by a shirasu balloon at a high temperature, a fly ash balloon generated from a thermal power plant, obsidian and pearls. An inorganic powder having a balloon structure in which a rock is fired may be used. (3) preferably excludes (2) and (4). When a fly ash balloon is used, it is preferable to use one having a loss on ignition of 5% or less if possible from the viewpoint of low unburned carbon. Among these, at least one member of the group consisting of a shirasu balloon, a fly ash balloon, and a heated foam of a volcanic deposit is preferable in that the density is low and the heat insulation is not easily impaired when the resin molded body is filled. One or more members of the group consisting of a shirasu balloon and a fly ash balloon are more preferable, and a shirasu balloon is most preferable. The average particle diameter of the inorganic powder is preferably 20 to 60 μm, and more preferably 30 to 50 μm. If the particle size is less than 20 μm, the viscosity is too high when the particles are made into a slurry, and the filling property to open cells may be reduced. If the particle size exceeds 60 μm, nonflammability, shape retention, and heat insulation may be reduced. is there.

無機粉末の使用量は、カルシウムアルミネートとセッコウの合計100質量部に対して20〜150質量部が好ましく、30〜120質量部がより好ましい。20質量部未満では、不燃性が低下し、燃焼後の形状を十分に保持できない場合があり、150質量部を超えると不燃性が低下する場合がある。   20-150 mass parts is preferable with respect to a total of 100 mass parts of calcium aluminate and gypsum, and the usage-amount of inorganic powder has more preferable 30-120 mass parts. If the amount is less than 20 parts by mass, the incombustibility may decrease, and the shape after combustion may not be sufficiently retained. If the amount exceeds 150 parts by mass, the incombustibility may decrease.

本発明の(4)廃ガラス発泡体粉末とは、ガラスビン等の廃棄物を粉砕後、焼成し、粒度調整したものであれば使用できる。廃ガラス発泡体粉末の平均粒子径は20〜130μmが好ましく、40〜100μmがより好ましい。20μm未満では、形状を保持できず、断熱性が小さくなり、粒子が細かすぎてスラリーにした時の粘度が高くなる場合があり、130μmを超えると連続気泡への充填性や不燃性が低下する可能性がある。廃ガラス発泡体の軟化点は、燃焼後の形状保持性が向上する点で、800℃以下が好ましい。800℃を超えると、無機粉末や燃焼で分解した生成物に対する融着効果が十分に発揮できず、形状を保持できず、断熱性が小さくなる場合がある。廃ガラス発泡体の軟化点は、600℃以上が好ましい。軟化点は、例えば、JIS R 3103−1により求める。   The (4) waste glass foam powder of the present invention can be used as long as waste such as glass bottles is pulverized, fired, and particle size adjusted. The average particle diameter of the waste glass foam powder is preferably 20 to 130 μm, more preferably 40 to 100 μm. If the thickness is less than 20 μm, the shape cannot be maintained, the heat insulating property is reduced, and the viscosity may be increased when the particles are too fine to form a slurry. If the particle size exceeds 130 μm, the filling property to open cells and the nonflammability are reduced. there is a possibility. The softening point of the waste glass foam is preferably 800 ° C. or lower in view of improving shape retention after combustion. When it exceeds 800 ° C., the fusion effect on the inorganic powder or the product decomposed by combustion cannot be sufficiently exhibited, the shape cannot be maintained, and the heat insulation may be reduced. The softening point of the waste glass foam is preferably 600 ° C. or higher. A softening point is calculated | required by JISR3103-1, for example.

廃ガラス発泡体粉末の使用量は、カルシウムアルミネートとセッコウの混合物の合計100質量部に対して20〜100質量部が好ましく、30〜80質量部がより好ましい。20質量部未満では、連続気泡への充填性が低下し、燃焼後の形状を十分に保持できない場合があり、100質量部を超えると不燃性が低下する可能性がある。   20-100 mass parts is preferable with respect to a total of 100 mass parts of the mixture of calcium aluminate and gypsum, and 30-80 mass parts is more preferable. If the amount is less than 20 parts by mass, the filling properties into open cells may be reduced, and the shape after combustion may not be sufficiently retained. If the amount exceeds 100 parts by mass, the nonflammability may be reduced.

本発明は(5)材料分離防止剤を使用しても良い。材料分離防止剤は、スラリーにした時の材料分離を防止し、充填性を向上する効果を発揮する。材料分離防止剤としては、メチルセルロース、メチルエチルセルロース等のセルロースエーテル類、カルボキシルメチルセルロース又はそのアルカリ金属塩、ポリアクリルアミド類、ポリビニルピロリドン、ポリビニルアルコール等の有機系物質、各種ベントナイト、コロイダルシリカ分散液等が挙げられる。これらの中では、不燃性を阻害しにくい点で、ベントナイトとコロイダルシリカ分散液からなる群のうちの1種以上が好ましい。コロイダルシリカ分散液は、ゲル化作用により適度な材料分離防止効果を付与する以外に、不燃性を高める効果も発揮する点で、好ましい。   In the present invention, (5) a material separation inhibitor may be used. The material separation preventing agent exhibits an effect of preventing material separation when slurryed and improving the filling property. Examples of the material separation inhibitor include cellulose ethers such as methyl cellulose and methyl ethyl cellulose, carboxyl methyl cellulose or an alkali metal salt thereof, polyacrylamides, organic substances such as polyvinyl pyrrolidone and polyvinyl alcohol, various bentonites, colloidal silica dispersions, and the like. It is done. Among these, one or more members selected from the group consisting of bentonite and colloidal silica dispersion are preferable in that nonflammability is hardly inhibited. A colloidal silica dispersion is preferable in that it exhibits an effect of enhancing nonflammability in addition to imparting an appropriate material separation preventing effect by a gelling action.

材料分離防止剤の使用量は、カルシウムアルミネートとセッコウの混合物100質量部に対して固形分換算で0.05〜10質量部が好ましい。材料分離防止剤の使用量は、有機系物質の場合、カルシウムアルミネートとセッコウの混合物100質量部に対して0.05〜0.5質量部が好ましい。材料分離防止剤の使用量は、ベントナイトの場合、カルシウムアルミネートとセッコウの混合物100質量部に対して1〜10質量部が好ましい。材料分離防止剤の使用量は、コロイダルシリカ分散液の場合、カルシウムアルミネートとセッコウの混合物100質量部に対して固形分換算で0.5〜5質量部が好ましい。   The amount of the material separation inhibitor used is preferably 0.05 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of the mixture of calcium aluminate and gypsum. In the case of an organic substance, the amount of the material separation inhibitor used is preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the mixture of calcium aluminate and gypsum. In the case of bentonite, the amount of the material separation inhibitor used is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the mixture of calcium aluminate and gypsum. In the case of a colloidal silica dispersion, the amount of the material separation inhibitor used is preferably 0.5 to 5 parts by mass in terms of solid content with respect to 100 parts by mass of a mixture of calcium aluminate and gypsum.

本発明のスラリーを調整する時の水の使用量は、組成物100質量部、好ましくは(1)〜(4)の合計100質量部に対して150〜500質量部が好ましく、200〜400質量部がより好ましい。150質量部未満では、連続気泡への充填性が悪い場合があり、500質量部を超えると連続気泡内で生成する水和物強度が低下し、不燃性が小さくなる場合がある。   The amount of water used when preparing the slurry of the present invention is preferably 100 to 500 parts by mass, and preferably 200 to 400 parts by mass with respect to 100 parts by mass of the composition, preferably 100 parts by mass in total of (1) to (4). Part is more preferred. If the amount is less than 150 parts by mass, the filling ability of the open cells may be poor. If the amount exceeds 500 parts by weight, the strength of the hydrate produced in the open cells may be reduced, and the incombustibility may be reduced.

本発明のスラリーの粘度は、連続気泡への充填中に材料分離し、水分だけ先に吸引されない粘度であれば特に限定しないが、充填後の断熱材の密度のばらつきが小さくなる点で、400〜700mPa・sが好ましい。   The viscosity of the slurry of the present invention is not particularly limited as long as the material is separated during filling into the open cells and only moisture is not sucked first, but the density of the heat insulating material after filling is reduced to 400. ˜700 mPa · s is preferred.

本発明のスラリーを樹脂成形体の連続気泡に浸透、充填することにより、不燃断熱材が得られる。   By infiltrating and filling the slurry of the present invention into the open cells of the resin molded body, a non-combustible heat insulating material can be obtained.

本発明の樹脂成形体は、連続気泡を有することが好ましい。連続気泡を有することにより、樹脂成形体に、スラリーのような液状のものが連続気泡に充填する。   The resin molded body of the present invention preferably has open cells. By having open cells, the resin molded body is filled with liquids such as slurry in open cells.

樹脂の種類としては、連続気泡を有する樹脂成形体であれば特に限定するものではないが、発泡ポリビニルアルコール樹脂、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、発泡フェノール樹脂等が挙げられる。これらの発泡樹脂は独立気泡により発泡体を形成する樹脂であり、かつ、直径数mmの粒状物である。これらの発泡樹脂を型枠に詰めて加圧し、成形することにより、連続気泡を有する樹脂成形体が得られる。ポリスチレン樹脂についてはビーズ法ポリスチレンフォームの製造方法に準拠することにより、連続気泡を有する樹脂成形体を製造できる。これらの中では、断熱材としてよく使われている点で、粒状発泡ポリウレタン樹脂成形体、粒状発泡ポリスチレン樹脂成形体、粒状発泡ポリオレフィン樹脂、粒状発泡フェノール樹脂からなる群の1種以上が好ましい。連続気泡を有する樹脂成形体は、粒状発泡ポリウレタン樹脂、粒状発泡ポリスチレン樹脂、粒状発泡ポリオレフィン樹脂、粒状発泡フェノール樹脂からなる群の1種以上からなる粒状樹脂の集合体であることが好ましい。   The type of resin is not particularly limited as long as it is a resin molded body having open cells, and examples thereof include foamed polyvinyl alcohol resin, foamed polyurethane resin, foamed polystyrene resin, foamed polyolefin resin, and foamed phenol resin. These foamed resins are resins that form foams by closed cells and are granular materials having a diameter of several mm. A resin molded body having open cells can be obtained by filling these foamed resins in a mold, pressurizing them, and molding them. About a polystyrene resin, the resin molding which has an open cell can be manufactured by complying with the manufacturing method of a bead method polystyrene foam. Among these, at least one member of the group consisting of a granular foamed polyurethane resin molded body, a granular foamed polystyrene resin molded body, a granular foamed polyolefin resin, and a granular foamed phenol resin is preferable because it is often used as a heat insulating material. It is preferable that the resin molding which has an open cell is an aggregate | assembly of the granular resin which consists of 1 or more types of the group which consists of granular foaming polyurethane resin, granular foaming polystyrene resin, granular foaming polyolefin resin, and granular foaming phenol resin.

樹脂成形体の連続気泡率は25〜70体積%が好ましい。25体積%未満ではスラリーを均一に充填することが難しい場合があり、70体積%を超えると樹脂成形体の密度が大きくなり、断熱性が損なわれる場合がある。   The open cell ratio of the resin molding is preferably 25 to 70% by volume. If it is less than 25% by volume, it may be difficult to uniformly fill the slurry, and if it exceeds 70% by volume, the density of the resin molded product may increase and the heat insulation may be impaired.

樹脂成形体へのスラリーの充填方法は、連続気泡率が50体積%未満の樹脂成形体では、圧搾空気による圧入や真空ポンプによる減圧による吸引により充填させた方が好ましい。樹脂成形体へのスラリーの充填方法は、連続気泡率が50体積%以上の樹脂成形体では、常圧下で、自然に又は振動を加えながら気泡内に充填させることもできる。   As for the method of filling the resin molded body with the slurry, it is preferable that the resin molded body having an open cell ratio of less than 50% by volume is filled by press-fitting with compressed air or suction by a vacuum pump. As for the method of filling the resin molded body with the slurry, in the resin molded body having an open cell ratio of 50% by volume or more, the bubbles can be filled naturally or while applying vibrations under normal pressure.

本発明は、連続気泡率(体積%)に対して0.8〜1.5倍の容量のスラリーを充填することが好ましい。0.8倍未満では、十分な不燃性を付与することができない場合があり、1.5倍を超えると樹脂成形体の密度が大きくなりすぎ断熱性が低下する場合がある。   In the present invention, it is preferable to fill a slurry having a volume of 0.8 to 1.5 times the open cell ratio (% by volume). If it is less than 0.8 times, sufficient nonflammability may not be imparted, and if it exceeds 1.5 times, the density of the resin molded product may become too high and the heat insulation may be lowered.

連続気泡に充填したスラリーは、水和反応により水和生成物が生じ、固化する。樹脂成形体内の連続気泡は、水和生成物で充填される。水和生成物としては、カルシウムアルミネートとセッコウの反応で生成するエトリンガイトが挙げられる。エトリンガイトは分子内に多量の水を結晶水として有するので、加熱により脱水し、消火作用を示し、樹脂成形体に不燃性を付与する。本発明はより急硬性を示すCaO40質量%以上のカルシウムアルミネートを使用することにより、エトリンガイトを積極的に生成し、有機系樹脂成形体の不燃性を向上する。   In the slurry filled in the open cells, a hydrated product is generated by the hydration reaction and solidifies. Open cells in the resin molded body are filled with a hydrated product. Examples of the hydration product include ettringite produced by the reaction of calcium aluminate and gypsum. Since ettringite has a large amount of water as crystallization water in the molecule, it dehydrates by heating, exhibits a fire extinguishing action, and imparts nonflammability to the resin molded body. In the present invention, ettringite is positively generated by using calcium aluminate of CaO 40% by mass or more that exhibits more rapid hardness, and the nonflammability of the organic resin molded body is improved.

本発明の組成物は、不燃材として使用できる。本発明のスラリーは、不燃材スラリーとして使用できる。本発明のスラリーを連続気泡に充填した樹脂成形体は、不燃断熱材として使用できる。   The composition of the present invention can be used as a non-combustible material. The slurry of the present invention can be used as a noncombustible material slurry. The resin molding which filled the slurry of this invention in the open cell can be used as a nonflammable heat insulating material.

本発明の不燃材スラリーを連続気泡に充填した後の不燃断熱材の養生方法は、特に限定するものではないが、充填後、水分が蒸発しないように、常温で3日程度養生したりしてもよく、養生時間を短縮するために50℃以下の温度で養生したりしてもよい。   The curing method of the non-combustible heat insulating material after filling the non-combustible material slurry of the present invention into open cells is not particularly limited, but after the filling, it is cured at room temperature for about 3 days so that the water does not evaporate. In order to shorten the curing time, curing may be performed at a temperature of 50 ° C. or lower.

本発明では、不織布や繊維シート等の補強材を不燃断熱材の成形体の片面又は両面に配置することも可能である。   In the present invention, a reinforcing material such as a nonwoven fabric or a fiber sheet can be disposed on one side or both sides of a non-combustible heat insulating material.

本発明の不燃断熱材の形状は、特に限定するものではないが、一般的にはボード状にすることが好ましい。ボード状にした場合、その寸法は、縦500〜1000mm、横1500〜2000mm、厚さ10〜100mmが好ましい。寸法が大きすぎると作業性が悪くなる場合がある。   Although the shape of the nonflammable heat insulating material of the present invention is not particularly limited, it is generally preferable to form a board. In the case of a board, the dimensions are preferably 500 to 1000 mm in length, 1500 to 2000 mm in width, and 10 to 100 mm in thickness. If the dimension is too large, workability may be deteriorated.

本発明では、性能に影響を与えない範囲で各種添加剤を使用できる。例えば、糖類等の炭化促進剤、リン化合物、臭素化合物、ホウ素化合物、窒素化合物、水酸化アルミニウム等の難燃剤、熱膨張黒鉛等の延焼防止剤、タルク、セピオライト、ゼオライト、ポルトランドセメント、シリカフューム、スラグ、フライアッシュ、γ型ケイ酸2カルシウム等の無機物、オキシカルボン酸やその塩の単体や、それらとアルカリ金属塩との混合物等の凝結遅延剤、アルミン酸塩、硫酸アルミニウム、ケイ酸塩等の凝結促進剤等が挙げられる。   In the present invention, various additives can be used as long as the performance is not affected. For example, carbonization accelerators such as saccharides, phosphorus compounds, bromine compounds, boron compounds, nitrogen compounds, flame retardants such as aluminum hydroxide, fire spreaders such as thermally expanded graphite, talc, sepiolite, zeolite, Portland cement, silica fume, slag , Fly ash, inorganic substances such as γ-type dicalcium silicate, oxycarboxylic acid and its salts alone, and a set retarder such as a mixture of them with alkali metal salts, aluminate, aluminum sulfate, silicate, etc. Examples include a setting accelerator.

本発明の不燃断熱材の密度は、断熱性を損なわない範囲で調整する。不燃断熱材の密度は70〜300kg/mが好ましく、90〜230kg/mがより好ましい。70kg/m未満では、十分な不燃性を確保することが難しい場合があり、300kg/mを超えると十分な断熱性が得られない場合がある。 The density of the incombustible heat insulating material of the present invention is adjusted within a range not impairing the heat insulating properties. Density of noncombustible insulation material is preferably 70~300kg / m 3, 90~230kg / m 3 and more preferably. If it is less than 70 kg / m 3 , it may be difficult to ensure sufficient incombustibility, and if it exceeds 300 kg / m 3 , sufficient heat insulation may not be obtained.

本発明の不燃断熱材を用いた断熱方法は、ボード状断熱材が配置されている方法と同じ方法が採用できる。例えば、外張り断熱を壁で実施する場合は、柱等にボード状の不燃断熱材を釘等で仮止めし、気密性を必要とする場合は、ボード状の不燃断熱材の継ぎ目に気密テープを貼る。そして透湿防水シートを表面に貼り付け、専用のビスで胴縁を施工する。充填断熱を壁で実施する場合は、ボード状の不燃断熱材を柱間のサイズに合わせてカットし、隙間ができないようにはめ込んで施工する。   The same method as the method by which the board-shaped heat insulating material is arrange | positioned can be employ | adopted for the heat insulating method using the nonflammable heat insulating material of this invention. For example, when carrying out heat insulation with a wall, temporarily fix a board-like non-combustible heat insulating material to the pillar with a nail or the like, and if air tightness is required, air-tight tape at the joint of the board-like non-combustible heat insulating material Paste. Then, a moisture-permeable waterproof sheet is attached to the surface, and the trunk edge is constructed with a special screw. When filling insulation is performed on the wall, cut the board-like incombustible insulation material according to the size between the pillars, and install it so that there is no gap.

以下、実施例に基づき詳細に説明する。特記しない限り、常温とは23℃をいう。   Hereinafter, it demonstrates in detail based on an Example. Unless otherwise specified, room temperature refers to 23 ° C.

発泡樹脂成形体A1(サイズ:縦20cm×横20cm×厚み5cm)を図1に示す減圧含浸装置にセットし、成形体上面に表1に示す配合の不燃材スラリーを流し込み、セットした成形体下面側から真空ポンプで減圧することにより連続気泡内に不燃材スラリーを充填させ、不燃断熱材を製造した。発泡樹脂成形体は連続気泡を有する。充填後、装置から不燃断熱材を取り外し、3日間常温で乾燥させ、密度、均一性、不燃性、形状保持性、熱伝導率を測定した。結果を表1に示す。   The foamed resin molded body A1 (size: 20 cm long × 20 cm wide × 5 cm thick) is set in the vacuum impregnation apparatus shown in FIG. 1, and the nonflammable material slurry having the composition shown in Table 1 is poured into the upper surface of the molded body. By reducing the pressure with a vacuum pump from the side, the incombustible material slurry was filled into the open cells, and an incombustible heat insulating material was produced. The foamed resin molding has open cells. After filling, the non-combustible heat insulating material was removed from the apparatus, dried at room temperature for 3 days, and the density, uniformity, non-flammability, shape retention, and thermal conductivity were measured. The results are shown in Table 1.

(減圧含浸装置)
減圧含浸装置を図1に示す。減圧含浸装置は、減圧含浸装置(容器本体)1、減圧室2,減圧室と発泡樹脂成形体をセットする部分の仕切り板3,不織布4,発泡樹脂成形体5,不燃材スラリー6,トラップ容器7,真空ポンプ8から構成される。
(Low pressure impregnation equipment)
A vacuum impregnation apparatus is shown in FIG. The decompression impregnation apparatus comprises: a decompression impregnation apparatus (container body) 1, a decompression chamber 2, a partition plate for setting a decompression chamber and a foamed resin molded body 3, a nonwoven fabric 4, a foamed resin molded body 5, an incombustible material slurry 6, a trap container 7 and a vacuum pump 8.

(使用材料)
発泡樹脂成形体A1:市販されているポリスチレン発泡ビーズ(直径2〜5mm)にEVAエマルジョンを1質量%加え、ビーズ表面に均一に塗布されるように混合し、金型に詰めて加圧し、発泡樹脂成形体を作製した。連続気泡率35体積%、熱伝導率0.034W/m・K
カルシウムアルミネートa:CaO:43質量%、Al:53質量%となるように調製し、電気炉で溶融・急冷した非晶質カルシウムアルミネート、ブレーン比表面積値6100cm/g
カルシウムアルミネートb:電気化学工業社製アルミナセメント1号、CaO:36質量%、ガラス化率90%以上
セッコウ:天然無水セッコウ粉砕品、ブレーン比表面積値4600cm/g、pH8以下
無機粉末ア:アクシーズケミカル社製シラスバルーン、商品名:MSB−301、平均粒子径50μm
無機粉末イ:アクシーズケミカル社製シラスバルーン、商品名:ISM−F015、平均粒子径10μm
無機粉末ウ:アクシーズケミカル社製シラスバルーン、商品名:MSB−5011、平均粒子径70μm
廃ガラス発泡体粉末α:DENNERT PORAVER GMBH社製廃ガラス発泡体粉末、商品名:Poraver(0.04〜0.125mm粒度品)、軟化点700〜750℃、平均粒子径90μm
廃ガラス発泡体粉末β:廃ガラス発泡体粉末αを粉砕した粒度調整品、軟化点700〜750℃、平均粒子径15μm
廃ガラス発泡体粉末γ:DENNERT PORAVER GMBH社製廃ガラス発泡体粉末、商品名:Poraver(0.1〜0.3mm粒度品)の粒度調整品、軟化点700〜750℃、平均粒子径140μm
ガラス粉末θ:旭ガラス社製、商品名:AFS1717、平均粒子径2.5μm、軟化点808℃
水:水道水
(Materials used)
Foamed resin molding A1: 1% by mass of EVA emulsion is added to commercially available polystyrene foam beads (diameter 2 to 5 mm), mixed so as to be uniformly applied to the bead surface, packed into a mold, pressurized and foamed A resin molded body was produced. Open cell rate 35% by volume, thermal conductivity 0.034 W / m · K
Calcium aluminate a: CaO: 43 mass%, Al 2 O 3 : 53 mass% Amorphous calcium aluminate prepared by melting and quenching in an electric furnace, Blaine specific surface area value 6100 cm 2 / g
Calcium aluminate b: Alumina cement No. 1 manufactured by Denki Kagaku Kogyo Co., Ltd., CaO: 36% by mass, vitrification ratio of 90% or more gypsum: natural anhydrous gypsum pulverized product, brain specific surface area value 4600 cm 2 / g, pH 8 or less inorganic powder a: Axes Chemical's Shirasu Balloon, trade name: MSB-301, average particle size 50 μm
Inorganic powder A: Shirasu balloon made by Axes Chemical Co., Ltd., trade name: ISM-F015, average particle size 10 μm
Inorganic powder C: Shirasu balloon made by Axes Chemical Co., Ltd., trade name: MSB-5011, average particle size 70 μm
Waste glass foam powder α: Waste glass foam powder manufactured by DENNERT PORVER GMBH, trade name: Poraver (0.04-0.125 mm particle size product), softening point 700-750 ° C., average particle size 90 μm
Waste glass foam powder β: Particle size adjusted product obtained by pulverizing waste glass foam powder α, softening point 700 to 750 ° C., average particle diameter 15 μm
Waste glass foam powder γ: Waste glass foam powder manufactured by DENNERT PORVER GMBH, trade name: Poraver (0.1-0.3 mm particle size product) particle size adjusted product, softening point 700-750 ° C., average particle size 140 μm
Glass powder θ: manufactured by Asahi Glass Co., Ltd., trade name: AFS1717, average particle size 2.5 μm, softening point 808 ° C.
Water: tap water

(不燃材スラリーの調製と仕込み量)
表1に示すカルシウムアルミネート100質量部、表1に示す量のセッコウ、カルシウムアルミネートとセッコウの合計100質量部に対して表1に示す量の中空構造を有する無機粉末(以下無機粉末をいうこともある)、カルシウムアルミネートとセッコウの合計100質量部に対して表1に示す量の廃ガラス発泡体粉末を混合することにより不燃材を調製した。水を不燃材100質量部に対して250質量部となるように、攪拌しながら少量ずつ加えた。全ての水を加えてから5分間攪拌し、不燃材スラリーを調製した。調製した不燃材スラリーを発泡樹脂成形体上面に流し込んだ。流し込んだ不燃材スラリーの容量は950cm(連続気泡率に対して1.36倍の容量)である。
(Preparation and preparation amount of noncombustible material slurry)
100 parts by mass of calcium aluminate shown in Table 1, gypsum in the amount shown in Table 1, inorganic powder having a hollow structure in the amount shown in Table 1 with respect to 100 parts by mass of calcium aluminate and gypsum (hereinafter referred to as inorganic powder) Incombustible material was prepared by mixing the amount of waste glass foam powder shown in Table 1 with respect to a total of 100 parts by mass of calcium aluminate and gypsum. Water was added little by little with stirring so as to be 250 parts by mass with respect to 100 parts by mass of the non-combustible material. After adding all the water, the mixture was stirred for 5 minutes to prepare a noncombustible material slurry. The prepared incombustible material slurry was poured onto the upper surface of the foamed resin molded body. The volume of the incombustible material slurry poured in is 950 cm 3 (volume 1.36 times the open cell rate).

(測定方法)
ブレーン比表面積値:JIS R5201に従い、測定した。
平均粒子径:レーザ回折式粒度分布計で測定した。機種は、LA−920(堀場製作所)を使用した。
均一性:装置から取り出した不燃断熱材を縦方向及び横方向で4分割し、更に、分割した不燃断熱材ブロックを厚さ方向に2分割し、合計8個の分割成形体としてそれぞれの密度を求めた。求めた密度の最小値と最大値の差を求め、差か小さい程均一に充填していると評価した。
密度:均一性を求めるために8点の密度の平均値を算出した。
不燃性:ISO 5660−1:2002に示されたコーンカロリーメータによる発熱試験に準拠して測定した。縦10cm×横10cm×厚さ5cmの不燃断熱材を試験体にした。この試験体を用いて加熱時間が20分間の時の総発熱量が8MJ/m以下であれば不燃性を示す。
熱伝導率:縦10cm×横5cm×厚み5cmの試験体を用いて迅速熱伝導率計(ボックス式プローブ法)で測定した。
形状保持性:不燃性試験後の試験体に亀裂、割れ、崩壊、収縮がない場合を○、そうでない場合を×とした。
(Measuring method)
Blaine specific surface area value: measured according to JIS R5201.
Average particle diameter: Measured with a laser diffraction particle size distribution meter. The model used was LA-920 (Horiba Seisakusho).
Uniformity: The non-combustible heat insulating material taken out from the apparatus is divided into four parts in the vertical direction and the horizontal direction, and further, the divided non-combustible heat insulating material block is divided into two parts in the thickness direction, and the respective densities are obtained as a total of eight divided molded bodies. Asked. The difference between the minimum value and the maximum value of the obtained density was determined, and the smaller the difference, the more uniformly filled.
Density: In order to obtain uniformity, an average value of density at 8 points was calculated.
Nonflammability: Measured according to a heat generation test using a cone calorimeter shown in ISO 5660-1: 2002. A non-combustible heat insulating material measuring 10 cm long × 10 cm wide × 5 cm thick was used as a test specimen. Using this test specimen, if the total calorific value when the heating time is 20 minutes is 8 MJ / m 2 or less, nonflammability is exhibited.
Thermal conductivity: It measured with the rapid thermal conductivity meter (box type probe method) using the test body of length 10cm x width 5cm x thickness 5cm.
Shape retention: A case where the specimen after the nonflammability test is free from cracks, cracks, collapse, and shrinkage is indicated as ◯, and a case where it is not indicated as X.






カルシウムアルミネートa100質量部、セッコウ120質量部、カルシウムアルミネートとセッコウの合計100質量部に対して廃ガラス発泡体粉末α60質量部、カルシウムアルミネートとセッコウの合計100質量部に対して表2に示す量の無機粉末エを混合したこと以外は、実施例1と同様に行った。結果を表2に示す。   Table 2 against 100 parts by mass of calcium aluminate a, 120 parts by mass of gypsum, 100 parts by mass of calcium aluminate and gypsum, 60 parts by mass of waste glass foam powder, 100 parts by mass of calcium aluminate and gypsum The same procedure as in Example 1 was conducted except that the indicated amount of inorganic powder was mixed. The results are shown in Table 2.

(使用材料)
無機粉末エ:東海工業社製フライアッシュバルーン分級品、平均粒子径45μm
(Materials used)
Inorganic powder D: Fly ash balloon classification product manufactured by Tokai Kogyo Co., Ltd., average particle size 45 μm





カルシウムアルミネートa100質量部、セッコウ120質量部、カルシウムアルミネートとセッコウの合計100質量部に対して廃ガラス発泡体粉末α60質量部、カルシウムアルミネートとセッコウの合計100質量部に対して中空無機粉末ア60質量部、カルシウムアルミネートとセッコウの混合物100質量部に対して固形分換算で表3に示す量の材料分離防止剤を混合して不燃材を調製したこと以外は、実施例1と同様に行った。スラリー粘度も測定した。結果を表3に示す。   Calcium aluminate a 100 parts by weight, gypsum 120 parts by weight, calcium aluminate and gypsum total 100 parts by weight Waste glass foam powder α 60 parts by weight, calcium aluminate and gypsum 100 parts by weight hollow inorganic powder (A) Same as Example 1 except that 60 parts by mass, a mixture of calcium aluminate and gypsum was mixed with 100 parts by mass of the material separation inhibitor in the amount of solid content, and an incombustible material was prepared. Went to. The slurry viscosity was also measured. The results are shown in Table 3.

(使用材料)
材料分離防止剤I:信越化学工業社製メチルセルロース、商品名:SM4000
材料分離防止剤II:日産化学工業社製コロイダルシリカ分散液、商品名:スノーテックス50
材料分離防止剤III:クニミネ工業社製ベントナイト、商品名:クニゲルGS
(Materials used)
Material separation inhibitor I: methylcellulose manufactured by Shin-Etsu Chemical Co., Ltd., trade name: SM4000
Material separation inhibitor II: Colloidal silica dispersion manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex 50
Material separation inhibitor III: Bentonite manufactured by Kunimine Kogyo Co., Ltd., Trade name: Kunigel GS

(測定方法)
スラリー粘度(粘度):不燃材スラリーの粘度をB型粘度計で測定した。
(Measuring method)
Slurry viscosity (viscosity): The viscosity of the noncombustible material slurry was measured with a B-type viscometer.





カルシウムアルミネートa100質量部、セッコウ120質量部、カルシウムアルミネートとセッコウの合計100質量部に対して廃ガラス発泡体粉末α60質量部、カルシウムアルミネートとセッコウの合計100質量部に対して中空無機粉末ア60質量部を混合して不燃材を調製し、不燃材100質量部に対して表4に示す量の水を混合して不燃材スラリーを調製したこと以外は、実施例1と同様に行った。スラリー粘度も測定した。結果を表4に示す。   Calcium aluminate a 100 parts by weight, gypsum 120 parts by weight, calcium aluminate and gypsum total 100 parts by weight Waste glass foam powder α 60 parts by weight, calcium aluminate and gypsum 100 parts by weight hollow inorganic powder A 60 mass parts was mixed to prepare a non-combustible material, and the same procedure as in Example 1 was performed except that 100 mass parts of the non-combustible material was mixed with the amount of water shown in Table 4 to prepare a non-combustible material slurry. It was. The slurry viscosity was also measured. The results are shown in Table 4.





カルシウムアルミネートa100質量部に対して、セッコウ120質量部、カルシウムアルミネートとセッコウの合計100質量部に対して廃ガラス発泡体粉末α60質量部、カルシウムアルミネートとセッコウの合計100質量部に対して中空無機粉末ア60質量部を混合して不燃材を調製し、表5に示す量の連続気泡率を有する発泡樹脂成形体を使用して不燃断熱材を製造したこと以外は、実施例1と同様に行った。スラリーの充填量は連続気泡率の1.36倍とした。結果を表5に示す。   For 100 parts by weight of calcium aluminate a, 120 parts by weight of gypsum, 60 parts by weight of waste glass foam powder for 100 parts by weight of calcium aluminate and gypsum, 100 parts by weight of calcium aluminate and gypsum Example 1 except that 60 parts by mass of hollow inorganic powder was mixed to prepare a non-combustible material, and a non-combustible heat insulating material was produced using a foamed resin molding having an open cell ratio in the amount shown in Table 5. The same was done. The filling amount of the slurry was 1.36 times the open cell ratio. The results are shown in Table 5.

(使用材料)
発泡樹脂成形体A(A1〜A4):市販されている発泡ポリスチレン樹脂ビーズ(粒径2〜5mm)に市販のEVAエマルジョンを1質量%加えて混合し、金型に詰め加圧し、連続気泡を有する発泡ポリスチレン樹脂成形体とした。連続気泡率は加圧度合いを調整することで制御した。不燃材スラリー未充填の発泡樹脂成形体の熱伝導率は0.034W/m・K
発泡樹脂成形体B(B1〜B4):市販されている発泡硬質ポリウレタン樹脂成形体を砕き、粒径2〜5mmの粒状物に調整した。市販のEVAエマルジョンを1質量%加えて混合し、金型に詰め加圧し、連続気泡を有する発泡ポリウレタン樹脂成形体とした。連続気泡率は加圧度合いを調整することで制御した。不燃材未充填の発泡樹脂成形体の熱伝導率は0.027W/m・K
発泡樹脂成形体C(C1〜C4):市販されているポリエチレンフォームを使い、発泡樹脂成形体Bと同様に行った。不燃材未充填の発泡樹脂成形体の熱伝導率は0.030W/m・K
発泡樹脂成形体D(D1〜D4):市販されているフェノール樹脂フォームを使い、発泡樹脂成形体Bと同様に行った。不燃材未充填の発泡樹脂成形体の熱伝導率は0.022W/m・K
(Materials used)
Foamed resin molding A (A1 to A4): 1% by mass of commercially available EVA emulsion is added to and mixed with commercially available expanded polystyrene resin beads (particle size 2 to 5 mm), packed in a mold and pressurized, It was set as the expanded polystyrene resin molding which has. The open cell ratio was controlled by adjusting the degree of pressurization. The thermal conductivity of the foamed resin molding not filled with non-combustible material slurry is 0.034 W / m · K
Foamed resin molded body B (B1 to B4): A commercially available foamed hard polyurethane resin molded body was crushed and adjusted to a granular material having a particle diameter of 2 to 5 mm. 1% by mass of a commercially available EVA emulsion was added and mixed, filled in a mold and pressed to obtain a foamed polyurethane resin molded article having open cells. The open cell ratio was controlled by adjusting the degree of pressurization. Thermal conductivity of foamed resin moldings not filled with non-combustible material is 0.027 W / m · K
Foamed resin molded product C (C1 to C4): The same procedure as for foamed resin molded product B was performed using a commercially available polyethylene foam. The thermal conductivity of foamed resin moldings not filled with non-combustible material is 0.030 W / m · K
Foamed resin molded body D (D1 to D4): It was carried out in the same manner as foamed resin molded body B using a commercially available phenol resin foam. Thermal conductivity of foamed resin moldings not filled with non-combustible material is 0.022 W / m · K

(測定方法)
連続気泡率:作製した発泡樹脂成形体の上面以外にエポキシ樹脂を塗装し遮水膜を形成させた。上面より、振動を加えながら溢れるまで水を流し込み、溢れた水をふき取り充填された水の量を測定することで連続気泡率を算出した。
連続気泡率(体積%)=〔(水を充填した後の樹脂成形体質量−水を充填する前の樹脂成形体質量)/樹脂成形体の体積〕×100、但し、水を充填した後の樹脂成形体質量は、塗装に使用したエポキシ樹脂質量を除いた質量
(Measuring method)
Open cell ratio: An epoxy resin was applied to the top of the produced foamed resin molded body to form a water shielding film. From the upper surface, water was poured until it overflowed while applying vibration, and the amount of the filled water was measured by wiping off the overflowed water to calculate the open cell ratio.
Open cell ratio (% by volume) = [(Mass of resin molded product after filling with water−Mass of resin molded product before filling with water) / Volume of resin molded product] × 100, but after filling with water The resin molding mass is the mass excluding the epoxy resin mass used for painting.





実験No.1−13の不燃断熱材を、厚さ1cm×0.5m角のセッコウボードに敷き詰めた断熱壁を6枚作製した。断熱壁6枚からなる箱体を作製した。箱体の内部温度を30℃に調整し、外気温度を10℃に低下させて箱体内部の温度変化を確認した。比較のために、不燃材スラリーを充填する前の断熱材(発泡樹脂成形体A1)を敷き詰めた断熱壁からなる箱体、セッコウボードのみからなる箱体を作製し、温度変化を確認した。
その結果、実験No.1−13の不燃断熱材を用いた箱体は1時間後に11℃温度が低下した。不燃材スラリーを充填する前の断熱材の場合は1時間後に10℃低下した。不燃材スラリーを充填しても、断熱性は低下しないことが判った。セッコウボードのみの場合は1時間後に18℃低下し、外気温度とほぼ同じ温度になり、断熱性を示さなかった。
Experiment No. Six heat-insulating walls were prepared by spreading 1-13 incombustible heat insulating material on a gypsum board having a thickness of 1 cm × 0.5 m square. A box made of six heat insulating walls was produced. The internal temperature of the box was adjusted to 30 ° C., and the outside air temperature was lowered to 10 ° C. to confirm the temperature change inside the box. For comparison, a box made of a heat insulating wall and a box made of only a gypsum board were filled with a heat insulating material (foamed resin molded body A1) before filling with the noncombustible material slurry, and the temperature change was confirmed.
As a result, Experiment No. The box using the incombustible heat insulating material 1-13 had a temperature of 11 ° C. lowered after 1 hour. In the case of the heat insulating material before filling with the non-combustible material slurry, the temperature decreased by 10 ° C. after 1 hour. It was found that the heat insulating property does not decrease even when the nonflammable material slurry is filled. In the case of the gypsum board alone, the temperature dropped by 18 ° C. after 1 hour, was almost the same as the outside air temperature, and did not show heat insulation.

本発明は、良好な断熱性を維持しながら不燃性を付与でき、燃焼後も断熱材の形状を維持できるので、火災時の延焼を阻止する効果が大きくなり、防火安全性の高い建築物、車両、航空機、船舶、冷凍、冷蔵設備の建造等に寄与できる。本発明は、連続気泡を有する樹脂系断熱材に不燃性を付与し、燃焼後も崩壊や変形がなく、形状を保持できる断熱材を提供する。   The present invention can impart incombustibility while maintaining good heat insulation, and since the shape of the heat insulating material can be maintained even after combustion, the effect of preventing the spread of fire at the time of fire is increased, and a fireproof safety building, It can contribute to the construction of vehicles, aircraft, ships, refrigeration and refrigeration equipment. The present invention provides a heat insulating material that imparts incombustibility to a resin-based heat insulating material having open cells, can be maintained in shape without being collapsed or deformed even after combustion.

1 減圧含浸装置(容器本体)
2 減圧室
3 減圧室と発泡樹脂成形体をセットする部分の仕切り板
4 不織布
5 発泡樹脂成形体
6 不燃材スラリー
7 トラップ容器
8 真空ポンプ
1 Vacuum impregnation equipment (container body)
2 Decompression chamber 3 Partition plate 4 for setting the decompression chamber and the foamed resin molded body 4 Non-woven fabric 5 Foamed resin molded body 6 Non-combustible material slurry 7 Trap container 8 Vacuum pump

Claims (16)

(1)CaO含有量が40質量%以上のカルシウムアルミネート、(2)セッコウ、(3)平均粒子径が20〜60μmの中空構造を有する無機粉末、(4)平均粒子径が20〜130μmの廃ガラス発泡体粉末を含有する組成物であり、(2)の使用量が(1)100質量部に対して70〜300質量部であり、(3)の使用量が(1)と(2)の合計100質量部に対して20〜150質量部であり、(4)の使用量が(1)と(2)の合計100質量部に対して20〜100質量部である組成物。   (1) Calcium aluminate with a CaO content of 40% by mass or more, (2) gypsum, (3) inorganic powder having a hollow structure with an average particle size of 20 to 60 μm, (4) an average particle size of 20 to 130 μm It is a composition containing waste glass foam powder, the amount of (2) used is 70 to 300 parts by weight with respect to (1) 100 parts by weight, and the amount of (3) used is (1) and (2 ) Is 20 to 150 parts by mass with respect to 100 parts by mass in total, and the amount of (4) used is 20 to 100 parts by mass with respect to 100 parts by mass in total of (1) and (2). (3)が、シラスバルーン、フライアッシュバルーン、火山性堆積物の加熱発泡体からなる群の1種以上である請求項1記載の組成物。   The composition according to claim 1, wherein (3) is at least one member of the group consisting of a shirasu balloon, a fly ash balloon, and a heated foam of volcanic deposits. (4)の軟化点が800℃以下である請求項1又は2記載の組成物。   The composition according to claim 1 or 2, wherein the softening point of (4) is 800 ° C or lower. (5)材料分離防止剤を含有する請求項1〜3のうちの1項記載の組成物。   (5) The composition according to any one of claims 1 to 3, comprising a material separation inhibitor. 請求項1〜4のうちの1項記載の組成物からなる不燃材。   An incombustible material comprising the composition according to claim 1. 樹脂成形体に充填するのに使用する請求項1〜4のうちの1項記載の組成物からなる不燃材。   An incombustible material comprising the composition according to claim 1, which is used for filling a resin molded body. 請求項1〜4のうちの1項記載の組成物と水を含有するスラリー。   A slurry containing the composition according to one of claims 1 to 4 and water. 水の使用量が、組成物100質量部に対して150〜500質量部である請求項7記載のスラリー。   The slurry according to claim 7, wherein the amount of water used is 150 to 500 parts by mass with respect to 100 parts by mass of the composition. 粘度が400〜700mPa・sである請求項7又は8記載のスラリー。   The slurry according to claim 7 or 8, which has a viscosity of 400 to 700 mPa · s. 樹脂成形体に請求項7〜9のうちの1項記載のスラリーを充填した不燃断熱材。   A non-combustible heat insulating material in which the resin molded body is filled with the slurry according to claim 7. 樹脂成形体が、発泡ポリウレタン樹脂、発泡ポリスチレン樹脂、発泡ポリオレフィン樹脂、発泡フェノール樹脂からなる群の1種以上である請求項10記載の不燃断熱材。   The incombustible heat insulating material according to claim 10, wherein the resin molded body is at least one member selected from the group consisting of a foamed polyurethane resin, a foamed polystyrene resin, a foamed polyolefin resin, and a foamed phenol resin. 樹脂成形体が、連続気泡を有する請求項10又は11記載の不燃断熱材。   The incombustible heat insulating material according to claim 10 or 11, wherein the resin molded body has open cells. 連続気泡率が25〜70体積%である請求項12記載の不燃断熱材。   The incombustible heat insulating material according to claim 12, wherein the open cell ratio is 25 to 70% by volume. 密度が70〜300kg/mである請求項10〜13のうちの1項記載の不燃断熱材。 The nonflammable heat insulating material according to claim 10, wherein the density is 70 to 300 kg / m 3 . 樹脂成形体に請求項7〜9のうちの1項記載のスラリーを充填することにより得られる不燃断熱材の製造方法。   The manufacturing method of the nonflammable heat insulating material obtained by filling the slurry as described in one of Claims 7-9 to a resin molding. 請求項10〜13記載のうちの1項記載の不燃断熱材を用いて断熱する断熱方法。   The heat insulation method thermally insulated using the nonflammable heat insulating material of one of Claims 10-13.
JP2015207016A 2015-10-21 2015-10-21 Composition and incombustible material Active JP6556017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015207016A JP6556017B2 (en) 2015-10-21 2015-10-21 Composition and incombustible material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207016A JP6556017B2 (en) 2015-10-21 2015-10-21 Composition and incombustible material

Publications (2)

Publication Number Publication Date
JP2017077994A true JP2017077994A (en) 2017-04-27
JP6556017B2 JP6556017B2 (en) 2019-08-07

Family

ID=58665844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207016A Active JP6556017B2 (en) 2015-10-21 2015-10-21 Composition and incombustible material

Country Status (1)

Country Link
JP (1) JP6556017B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020137987A1 (en) * 2018-12-28 2020-07-02
WO2021177378A1 (en) 2020-03-04 2021-09-10 株式会社ジェイエスピー Fireproof heat insulating board and fireproof heat insulating structural body
WO2022004750A1 (en) * 2020-07-01 2022-01-06 デンカ株式会社 Fire-resistant insulating composition, fire-resistant insulating composition slurry, fire-resistant insulating board, and fire-resistant insulating structure body
WO2022004749A1 (en) * 2020-07-01 2022-01-06 株式会社ジェイエスピー Fire-resistant heat insulation composition, fire-resistant heat insulation composition slurry, fire-resistant heat insulation board, and fire-resistant heat insulation structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910449A (en) * 1972-05-30 1974-01-29
JPS5155363A (en) * 1974-11-12 1976-05-15 Morishita Chem Ind NANNENDANNETSURETANFUOOMU
JPH0748153A (en) * 1993-08-02 1995-02-21 Denki Kagaku Kogyo Kk Fire-resistant coating material
JPH0912379A (en) * 1995-06-28 1997-01-14 Sk Kaken Co Ltd Lightweight incombustible heat insulating material composition having excellent forced feedability by pump and its installation method as well as lightweight incombustible heat insulating material layer
JP2012236914A (en) * 2011-05-12 2012-12-06 Jsp Corp Composite molding
JP2015120859A (en) * 2013-12-25 2015-07-02 株式会社ジェイエスピー Foam molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910449A (en) * 1972-05-30 1974-01-29
JPS5155363A (en) * 1974-11-12 1976-05-15 Morishita Chem Ind NANNENDANNETSURETANFUOOMU
JPH0748153A (en) * 1993-08-02 1995-02-21 Denki Kagaku Kogyo Kk Fire-resistant coating material
JPH0912379A (en) * 1995-06-28 1997-01-14 Sk Kaken Co Ltd Lightweight incombustible heat insulating material composition having excellent forced feedability by pump and its installation method as well as lightweight incombustible heat insulating material layer
JP2012236914A (en) * 2011-05-12 2012-12-06 Jsp Corp Composite molding
JP2015120859A (en) * 2013-12-25 2015-07-02 株式会社ジェイエスピー Foam molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020137987A1 (en) * 2018-12-28 2020-07-02
WO2020137987A1 (en) 2018-12-28 2020-07-02 デンカ株式会社 Fire-resistant heat-insulation composition, fire-resistant heat-insulation composition slurry, fire-resistant heat-insulation board, and fire-resistant heat-insulation structure
CN113242842A (en) * 2018-12-28 2021-08-10 电化株式会社 Fire-resistant heat-insulating composition, fire-resistant heat-insulating composition slurry, fire-resistant heat-insulating plate, and fire-resistant heat-insulating structure
WO2021177378A1 (en) 2020-03-04 2021-09-10 株式会社ジェイエスピー Fireproof heat insulating board and fireproof heat insulating structural body
CN114981509A (en) * 2020-03-04 2022-08-30 株式会社Jsp Refractory heat insulating panel and refractory heat insulating structure
US20240209622A1 (en) * 2020-03-04 2024-06-27 Jsp Corporation Fireproof heat insulating board and fireproof heat insulating structure
WO2022004750A1 (en) * 2020-07-01 2022-01-06 デンカ株式会社 Fire-resistant insulating composition, fire-resistant insulating composition slurry, fire-resistant insulating board, and fire-resistant insulating structure body
WO2022004749A1 (en) * 2020-07-01 2022-01-06 株式会社ジェイエスピー Fire-resistant heat insulation composition, fire-resistant heat insulation composition slurry, fire-resistant heat insulation board, and fire-resistant heat insulation structure

Also Published As

Publication number Publication date
JP6556017B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
KR102247280B1 (en) Fire-resistant coating applied to fire-resistant materials and high-strength, density-controlled cold fusion concrete cementitious spray
JP6332988B2 (en) Refractory mortar
JP6681272B2 (en) Composition and non-combustible material
KR101146220B1 (en) A high density fire resistive coating composition for ultra high strength concrete having finish function
CN107265965B (en) Aerogel foam concrete building block and preparation method thereof
KR101603669B1 (en) Mortar and method for fabricating thereof
KR101737811B1 (en) Expanded mortar and method for fabricating thereof and repair material method
JP6556017B2 (en) Composition and incombustible material
CA3005519A1 (en) Inorganic fire protection and insulation foam and use thereof
JP2004510673A (en) Fire protection material
TW201518074A (en) Gypsum products comprising silica gel
KR101383875B1 (en) A MANUFACTURING METHOD OF COMPOSITION FOR ADIABATIC MATERIAL WITH inorganic porous material
JP6953171B2 (en) Non-combustible building materials and non-combustible heat insulating building materials
KR20150121329A (en) Expanded mortar and method for fabricating thereof
EP0254501B1 (en) Foamable composition
KR20100079869A (en) Fire resistive method of high strength concrete using a high density fire resistive sprayer
CN106082884B (en) A kind of insulating light wall slab and preparation process containing solid waste cinder
CN113493340A (en) Magnesium phosphate-based foam concrete heat-insulating material
EP3904308B1 (en) Fire-resistant heat-insulation composition, fire-resistant heat-insulation composition slurry, fire-resistant heat-insulation board, and fire-resistant heat-insulation structure
KR101532274B1 (en) Flame retardant compositiom for coating styroform and styroform coated the same and method for manufacturing styroform
WO2021177378A1 (en) Fireproof heat insulating board and fireproof heat insulating structural body
JP6681273B2 (en) Composition and non-combustible material
WO2022004750A1 (en) Fire-resistant insulating composition, fire-resistant insulating composition slurry, fire-resistant insulating board, and fire-resistant insulating structure body
KR101998773B1 (en) Manufacturing method of the internal airfoil slab coated with the refractory mortar
WO2022004749A1 (en) Fire-resistant heat insulation composition, fire-resistant heat insulation composition slurry, fire-resistant heat insulation board, and fire-resistant heat insulation structure

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180921

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R150 Certificate of patent or registration of utility model

Ref document number: 6556017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250