JP2017076526A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2017076526A
JP2017076526A JP2015203404A JP2015203404A JP2017076526A JP 2017076526 A JP2017076526 A JP 2017076526A JP 2015203404 A JP2015203404 A JP 2015203404A JP 2015203404 A JP2015203404 A JP 2015203404A JP 2017076526 A JP2017076526 A JP 2017076526A
Authority
JP
Japan
Prior art keywords
body portion
main body
groove
heat
heat conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015203404A
Other languages
Japanese (ja)
Other versions
JP2017076526A5 (en
Inventor
祐良 山口
Masayoshi Yamaguchi
祐良 山口
高橋 英樹
Hideki Takahashi
英樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2015203404A priority Critical patent/JP2017076526A/en
Priority to PCT/JP2016/077503 priority patent/WO2017064978A1/en
Publication of JP2017076526A publication Critical patent/JP2017076526A/en
Publication of JP2017076526A5 publication Critical patent/JP2017076526A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • H01M10/652Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery module capable of enhancing heat radiation of a battery cell.SOLUTION: A battery module 10 is fitted to a housing 100, and includes plural battery cells 20 arranged in an arrangement direction A, and plural heat transfer plates 30 each fitted to each of the plurality of battery cells 20. Each of the plural heat transfer plates 30 includes a first main body portion 31 that is in contact with a main surface 21 of the battery cell 20, and a second main body portion 32 which extends in a direction intersecting to a side surface 22 of the battery cell 20 from one end of the first main body portion 31 so as to cover the side surface 22 of the battery cell 20, and is thermally connected to the housing 100 through a thermal conduction member 62 formed by curing liquid heat conductive material 60. The second main body part 32 has an inclined surface facing the inner wall surface 100a provided with the heat conductive member 62 in the housing 100. The inclined surface has an outer surface 32b which is inclined with respect to the side surface 22 of the battery cell 20.SELECTED DRAWING: Figure 2

Description

本発明は、電池モジュールに関する。   The present invention relates to a battery module.

例えばリチウムイオン二次電池等の複数の電池セルが配列してなる配列体を含む電池モジュールが知られている。このような電池モジュールを筐体に固定してなる電池パックには、電池セルにて発生する熱を筐体に逃がすための放熱構造が設けられる。例えば、特許文献1に記載の電池モジュールでは、電池セル同士の間に伝熱プレートを配置し、当該伝熱プレートの一端側を筐体に接触させている。これにより、電池セルにおいて発生した熱を筐体に逃がしている。   For example, a battery module including an array formed by arranging a plurality of battery cells such as a lithium ion secondary battery is known. A battery pack in which such a battery module is fixed to the casing is provided with a heat dissipation structure for releasing heat generated in the battery cells to the casing. For example, in the battery module described in Patent Document 1, a heat transfer plate is disposed between battery cells, and one end side of the heat transfer plate is in contact with the housing. Thereby, the heat generated in the battery cell is released to the casing.

特表平8−506205号公報JP-T 8-506205

伝熱プレートと筐体との伝熱性を向上させるために、両者の間に熱伝導部材を介在させることがある。この熱伝導部材は、例えば液状の熱伝導材料を筐体に塗布し、熱伝導材料に電池モジュールの伝熱プレートを接触させた状態で熱伝導材料を硬化させることによって形成される。   In order to improve the heat transfer between the heat transfer plate and the housing, a heat conducting member may be interposed between them. The heat conducting member is formed, for example, by applying a liquid heat conducting material to the casing and curing the heat conducting material in a state where the heat conducting plate of the battery module is in contact with the heat conducting material.

上述のように熱伝導部材を形成する場合には、伝熱プレートが液状の熱伝導材料に接触した際に、伝熱プレートと熱伝導材料との間に気泡が生じることがある。気泡が存在している状態で熱伝導材料が硬化して熱伝導部材が形成されると、伝熱プレートと熱伝導部材との間に気泡に起因した隙間が生じ、その分、伝熱プレートと筐体との伝熱性の向上が妨げられる。その結果、電池セルの放熱性の向上も妨げられる。   When the heat conducting member is formed as described above, air bubbles may be generated between the heat conducting plate and the heat conducting material when the heat conducting plate comes into contact with the liquid heat conducting material. When the heat conducting material is cured and the heat conducting member is formed in the presence of air bubbles, a gap due to the air bubbles is generated between the heat conducting plate and the heat conducting member. Improvement in heat transfer with the housing is hindered. As a result, improvement in heat dissipation of the battery cell is also hindered.

本発明は、電池セルの放熱性を向上させることができる電池モジュールを提供する。   The present invention provides a battery module capable of improving the heat dissipation of battery cells.

本発明の一側面に係る電池モジュールは、筐体に取り付けられる電池モジュールであって、一方向に配列された複数の電池セルと、複数の電池セルの各々に取り付けられる複数の伝熱プレートと、を備え、複数の電池セルの各々は、一方向と交差する面である第1側面と、第1側面と交差する第2側面と、を備え、複数の伝熱プレートの各々は、電池セルの第1側面に接触する第1本体部と、電池セルの第2側面を覆うように第1本体部の一端から第1側面と交差する方向に延び、液状の熱伝導材料を硬化してなる熱伝導部材を介して筐体に熱的に接続される第2本体部と、を備え、第2本体部は、筐体における熱伝導部材が設けられた面に対向する対向面を備え、対向面は、電池セルの第2側面に対して傾斜する傾斜面を備える。   A battery module according to one aspect of the present invention is a battery module attached to a housing, and a plurality of battery cells arranged in one direction, a plurality of heat transfer plates attached to each of the plurality of battery cells, Each of the plurality of battery cells includes a first side surface that intersects with one direction and a second side surface that intersects with the first side surface, and each of the plurality of heat transfer plates includes: The heat formed by curing the liquid heat conductive material, extending from one end of the first main body so as to cover the first main body contacting the first side and the second side of the battery cell, in a direction intersecting the first side. A second body portion thermally connected to the housing via the conductive member, and the second body portion includes a facing surface facing the surface on which the heat conducting member is provided in the housing. Includes an inclined surface that is inclined with respect to the second side surface of the battery cell.

上記の電池モジュールによると、伝熱プレートの第2本体部が熱伝導部材を介して筐体に熱的に接続されるように電池モジュールを筐体に取り付けることで、電池セルで発生した熱を、伝熱プレートの第1本体部、伝熱プレートの第2本体部、熱伝導部材、及び筐体を介して放熱できる。ここで、伝熱プレートの第2本体部は、筐体における熱伝導部材が設けられた面に対向する対向面を備え、対向面は、電池セルの第2側面に対して傾斜する傾斜面を備える。このため、例えば、筐体の内壁面に液状の熱伝導材料を塗布し、伝熱プレートの第2本体部を筐体の内壁面に対向するように熱伝導材料に接触させた際、第2本体部と熱伝導材料との間に気泡が発生したとしても、発生した気泡は、傾斜面に沿って移動する。これにより、熱伝導材料が硬化して熱伝導部材が形成されたとしても、伝熱プレートの第2本体部と熱伝導部材との間に気泡に起因した隙間が生じる可能性を低減することができる。その分、伝熱プレートと筐体との伝熱性の向上が妨げられる可能性を低減し、電池セルの放熱性を向上させることができる。   According to the above battery module, by attaching the battery module to the housing so that the second main body portion of the heat transfer plate is thermally connected to the housing via the heat conducting member, the heat generated in the battery cell is reduced. The heat can be dissipated through the first body portion of the heat transfer plate, the second body portion of the heat transfer plate, the heat conducting member, and the housing. Here, the second main body portion of the heat transfer plate includes a facing surface facing the surface on which the heat conducting member is provided in the housing, and the facing surface has an inclined surface inclined with respect to the second side surface of the battery cell. Prepare. For this reason, for example, when a liquid heat conduction material is applied to the inner wall surface of the housing and the second main body portion of the heat transfer plate is brought into contact with the heat conduction material so as to face the inner wall surface of the housing, the second Even if bubbles are generated between the main body portion and the heat conducting material, the generated bubbles move along the inclined surface. Thereby, even if the heat conductive material is cured and the heat conductive member is formed, the possibility that a gap due to air bubbles is generated between the second main body portion of the heat transfer plate and the heat conductive member can be reduced. it can. Accordingly, the possibility that the improvement in heat transfer between the heat transfer plate and the housing is hindered can be reduced, and the heat dissipation of the battery cell can be improved.

対向面は、傾斜面であり、第1本体部と第2本体部との交差角度は、90度よりも大きくてもよい。これにより、第2本体部と熱伝導材料との間で発生した気泡が、第2本体部の対向面に沿って第2本体部の縁まで移動し、伝熱プレートの第2本体部と熱伝導部材との間から取り除かれる可能性が高まる。   The opposing surface is an inclined surface, and the intersection angle between the first body portion and the second body portion may be greater than 90 degrees. Thereby, bubbles generated between the second main body portion and the heat conducting material move to the edge of the second main body portion along the opposing surface of the second main body portion, and the second main body portion of the heat transfer plate and heat The possibility of being removed from between the conductive members increases.

第2本体部には、第2本体部の縁から延在する溝が設けられており、溝の深さは、第2本体部の縁に近づくにつれて大きくなり、傾斜面は、溝を規定する面であってもよい。これにより、溝を規定する面に沿って、気泡が第2本体部の縁まで移動し、伝熱プレートの第2本体部と熱伝導部材との間から取り除かれる可能性が高まる。溝の延在方向に交差する断面形状は、例えば三角形状であってもよい。   The second body portion is provided with a groove extending from the edge of the second body portion, and the depth of the groove increases as it approaches the edge of the second body portion, and the inclined surface defines the groove. It may be a surface. Thereby, along the surface which defines a groove | channel, a bubble moves to the edge of a 2nd main-body part, and possibility that it will be removed from between the 2nd main-body part of a heat-transfer plate and a heat conductive member increases. The cross-sectional shape that intersects the extending direction of the groove may be, for example, a triangular shape.

溝は、第1の溝及び第2の溝を備え、第1の溝及び第2の溝は、同じ方向に延在していてもよい。これにより、気泡を移動させるための経路の数を多く確保できるので、気泡が伝熱プレートの第2本体部と熱伝導部材との間から取り除かれる可能性をさらに高めることができる。   The groove may include a first groove and a second groove, and the first groove and the second groove may extend in the same direction. Thereby, since the number of the paths for moving the bubbles can be ensured, the possibility that the bubbles are removed from between the second main body portion of the heat transfer plate and the heat conductive member can be further increased.

溝は、第1の溝及び第2の溝を備え、第1の溝及び第2の溝は、交差していてもよい。これによっても、気泡を移動させるための経路の数を多く確保できるので、気泡が伝熱プレートの第2本体部と熱伝導部材との間から取り除かれる可能性をさらに高めることができる。   The groove includes a first groove and a second groove, and the first groove and the second groove may intersect each other. This also ensures a large number of paths for moving the bubbles, so that the possibility that the bubbles are removed from between the second main body portion of the heat transfer plate and the heat conducting member can be further increased.

上述のように第1本体部と第2本体部との交差角度を90度よりも大きくした構成においては、第2本体部は、対向面によって熱伝導部材を押圧した状態で筐体に熱的に接続され、対向面は、第2本体部の第1本体部側の一端部において熱伝導部材が第1の圧縮率で圧縮されるように熱伝導部材を押圧し、第2本体部の他端部において熱伝導部材が第1の圧縮率よりも大きい第2の圧縮率で圧縮されるように熱伝導部材を押圧するように傾斜していてもよい。第1の圧縮率は、第2本体部と熱伝導部材との間の熱伝達率が所定熱伝達率以上となる圧縮率であり、第2の圧縮率は、熱伝導部材の反力が所定反力以下となる圧縮率であってもよい。これにより、熱伝導部材が、第1の圧縮率から第2の圧縮率の範囲内の圧縮率で圧縮されるので、第2本体部と熱伝導部材との間の熱伝達率を所定熱伝達率以上としつつ、熱伝導部材の反力を所定反力以下とした状態で、電池モジュールを筐体に取り付けることができる。   As described above, in the configuration in which the intersection angle between the first main body portion and the second main body portion is larger than 90 degrees, the second main body portion is thermally applied to the housing in a state where the heat conducting member is pressed by the opposing surface. And the opposite surface presses the heat conducting member so that the heat conducting member is compressed at the first compression rate at one end of the second body portion on the first body portion side. You may incline so that a heat conductive member may be pressed in an edge part so that a heat conductive member may be compressed with the 2nd compression rate larger than a 1st compression rate. The first compression rate is a compression rate at which the heat transfer rate between the second main body and the heat conducting member is equal to or higher than a predetermined heat transfer rate, and the second compression rate is a predetermined reaction force of the heat conducting member. The compression rate may be equal to or less than the reaction force. As a result, the heat conduction member is compressed at a compression rate within the range from the first compression rate to the second compression rate, so that the heat transfer rate between the second body portion and the heat conduction member is a predetermined heat transfer. The battery module can be attached to the housing in a state where the reaction force of the heat conducting member is set to be equal to or less than a predetermined reaction force while the ratio is not less than the rate.

本発明によれば、電池セルの放熱性を向上させることができる。   According to the present invention, the heat dissipation of the battery cell can be improved.

電池モジュールの構成を示す斜視図である。It is a perspective view which shows the structure of a battery module. 電池セル、伝熱プレート及び筐体の関係を説明するための図である。It is a figure for demonstrating the relationship between a battery cell, a heat-transfer plate, and a housing | casing. 伝熱プレートにおける、第1本体部と第2本体部との交差角度の定め方の一例について説明するための図である。It is a figure for demonstrating an example of how to determine the crossing angle of the 1st main-body part and the 2nd main-body part in a heat-transfer plate. 電池パックの製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of a battery pack. 電池モジュールの筐体への取り付け方を説明するための図である。It is a figure for demonstrating how to attach a battery module to the housing | casing. 伝熱プレートの第2本体部と熱伝導材料との接触部分の詳細を説明するための図である。It is a figure for demonstrating the detail of the contact part of the 2nd main-body part of a heat-transfer plate, and a heat conductive material. 他の構成に係る伝熱プレートの形状を示す図である。It is a figure which shows the shape of the heat exchanger plate which concerns on another structure. さらに他の構成に係る伝熱プレートの形状を示す図である。It is a figure which shows the shape of the heat exchanger plate which concerns on another structure.

以下、図面を参照しながら、本発明に係る実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。各図面における寸法、形状は、実際のものとは必ずしも同一ではない。   Embodiments according to the present invention will be described below with reference to the drawings. Where possible, the same parts are denoted by the same reference numerals, and redundant description is omitted. The dimensions and shapes in each drawing are not necessarily the same as actual ones.

図1は、電池モジュールの構成を示す斜視図である図2は、電池セル、伝熱プレート及び筐体の関係を説明するための図である。図2では、電池セルの電極端子26側からみた状態で、電池セル等が模式的に示される。図2においては、図1に示される電池セル20の電極端子26,26、接続部材27、セルホルダ40及びブラケット50の図示は省略されている。   FIG. 1 is a perspective view showing a configuration of a battery module. FIG. 2 is a diagram for explaining a relationship among battery cells, a heat transfer plate, and a housing. In FIG. 2, a battery cell etc. are typically shown in the state seen from the electrode terminal 26 side of the battery cell. 2, illustration of the electrode terminals 26 and 26, the connection member 27, the cell holder 40, and the bracket 50 of the battery cell 20 shown in FIG. 1 is omitted.

電池モジュール10は、一方向(配列方向A)に配列された複数の電池セル20と、複数の電池セル20の各々に取り付けられる複数の伝熱プレート30と、複数の電池セル20の各々を保持する複数のセルホルダ40と、弾性部材(不図示)と、一対のブラケット50,50と、を含む。なお、図1に示される例では、電池モジュール10は、7つの電池セル20、7つの伝熱プレート30及び7つのセルホルダ40を含むが、電池セル20、伝熱プレート30及びセルホルダ40の数はこれに限定されない。   The battery module 10 holds a plurality of battery cells 20 arranged in one direction (array direction A), a plurality of heat transfer plates 30 attached to each of the plurality of battery cells 20, and each of the plurality of battery cells 20. A plurality of cell holders 40, an elastic member (not shown), and a pair of brackets 50, 50. In the example shown in FIG. 1, the battery module 10 includes seven battery cells 20, seven heat transfer plates 30, and seven cell holders 40, but the number of battery cells 20, heat transfer plates 30, and cell holders 40 is as follows. It is not limited to this.

電池セル20は、リチウムイオン二次電池等の非水電解質二次電池といった蓄電池、あるいは電気二重層キャパシタ等である。電池セル20は、負極とセパレータと正極とを積層してなる電極組立体をケースに収容することによって構成されている。電極組立体の負極及び正極は、ケースに絶縁された状態で固定され、ケースから突出する一対の電極端子26,26にそれぞれ電気的に接続されている。一対の電極端子26,26のうちの一方の電極端子26は、負極端子として機能し、他方の電極端子26は、正極端子として機能する。隣り合う電池セル20の電極端子26,26は、バスバー等の導電性を有する接続部材27によって接続されている。これにより、複数の電池セル20は、電気的に直列に接続されている。   The battery cell 20 is a storage battery such as a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, or an electric double layer capacitor. The battery cell 20 is configured by housing an electrode assembly in which a negative electrode, a separator, and a positive electrode are stacked in a case. The negative electrode and the positive electrode of the electrode assembly are fixed in an insulated state to the case, and are electrically connected to a pair of electrode terminals 26 and 26 protruding from the case, respectively. One electrode terminal 26 of the pair of electrode terminals 26 and 26 functions as a negative electrode terminal, and the other electrode terminal 26 functions as a positive electrode terminal. The electrode terminals 26 and 26 of the adjacent battery cells 20 are connected by a conductive connecting member 27 such as a bus bar. Thereby, the some battery cell 20 is electrically connected in series.

電池セル20は、主面21と、側面22と、を有する。主面21は、配列方向Aに交差する電池セル20の側面(第1側面)である。側面22は、主面21と交差する電池セル20の側面(第2側面)である。電池セル20の主面21と側面22とのなす角度は実質的に90度である。   The battery cell 20 has a main surface 21 and a side surface 22. The main surface 21 is a side surface (first side surface) of the battery cell 20 that intersects the arrangement direction A. The side surface 22 is a side surface (second side surface) of the battery cell 20 that intersects the main surface 21. The angle formed between the main surface 21 and the side surface 22 of the battery cell 20 is substantially 90 degrees.

伝熱プレート30は、電池セル20を放熱させるための要素である。伝熱プレート30は、対応する電池セル20に取り付けられる。伝熱プレート30の材料の例は、アルミニウムである。   The heat transfer plate 30 is an element for radiating heat from the battery cell 20. The heat transfer plate 30 is attached to the corresponding battery cell 20. An example of the material of the heat transfer plate 30 is aluminum.

伝熱プレート30は、第1本体部31と、第2本体部32とを含む。第1本体部31は、電池セル20の主面21に接触する略矩形状の平板である。第1本体部31と電池セル20の主面21とは実質的に平行をなす。第2本体部32は、電池セル20の側面22を覆うように第1本体部31の一端から主面21に交差する方向に延びる略矩形状の平板である。第2本体部32は、内面32aと、外面32bとを有する。内面32aは、電池セル20の側面22に対向するとともに側面22に対して傾斜している。外面32bは、電池セル20の側面22とは反対側の面であり、内面32aと同様に、電池セル20の側面22に対して傾斜している。外面32bは、筐体100における熱伝導部材62が設けられた内壁面100aに対向する対向面である。外面32bは、熱伝導部材62を介して筐体100に熱的に接続される。このため、電池セル20は、伝熱プレート30の第1本体部31、第2本体部32及び熱伝導部材62を介して、筐体100に放熱される。熱伝導部材62の詳細については後述する。   The heat transfer plate 30 includes a first main body portion 31 and a second main body portion 32. The first main body 31 is a substantially rectangular flat plate that contacts the main surface 21 of the battery cell 20. The first main body 31 and the main surface 21 of the battery cell 20 are substantially parallel. The second main body portion 32 is a substantially rectangular flat plate extending from one end of the first main body portion 31 in a direction intersecting the main surface 21 so as to cover the side surface 22 of the battery cell 20. The 2nd main-body part 32 has the inner surface 32a and the outer surface 32b. The inner surface 32 a faces the side surface 22 of the battery cell 20 and is inclined with respect to the side surface 22. The outer surface 32b is a surface opposite to the side surface 22 of the battery cell 20, and is inclined with respect to the side surface 22 of the battery cell 20 similarly to the inner surface 32a. The outer surface 32 b is a facing surface that faces the inner wall surface 100 a provided with the heat conducting member 62 in the housing 100. The outer surface 32 b is thermally connected to the housing 100 through the heat conducting member 62. For this reason, the battery cell 20 is radiated to the housing 100 through the first main body portion 31, the second main body portion 32, and the heat conducting member 62 of the heat transfer plate 30. Details of the heat conducting member 62 will be described later.

第2本体部32は、電池セル20の側面22に対して傾斜する傾斜面を有する。図2に示される例では、第2本体部32の外面32bが、電池セル20の側面22に対して傾斜しているので、傾斜面として機能する。   The second main body portion 32 has an inclined surface that is inclined with respect to the side surface 22 of the battery cell 20. In the example shown in FIG. 2, the outer surface 32 b of the second main body portion 32 functions as an inclined surface because it is inclined with respect to the side surface 22 of the battery cell 20.

具体的に、図2に示されるように、伝熱プレート30においては、第1本体部31と第2本体部32とのなす交差角度αが90度よりも大きい。このため、第2本体部32は、第1本体部31に直交する面であって、電池セル20の側面22に平行な仮想的な面に対して、交差角度αから90度を差し引いた角度(後述の図3の(b)に示される角度θ)だけ傾斜している。角度θの決め方については、後に図3を参照して説明する。   Specifically, as shown in FIG. 2, in the heat transfer plate 30, the intersection angle α formed by the first main body portion 31 and the second main body portion 32 is larger than 90 degrees. For this reason, the second body portion 32 is a surface orthogonal to the first body portion 31 and an angle obtained by subtracting 90 degrees from the intersection angle α with respect to a virtual surface parallel to the side surface 22 of the battery cell 20. It is inclined by (angle θ shown in FIG. 3B described later). A method of determining the angle θ will be described later with reference to FIG.

セルホルダ40は、対応する電池セル20を保持する。セルホルダ40は、伝熱プレート30の第1本体部31を電池セル20の主面21に接触させるため、電池セル20の主面21が露出するように、電池セル20を保持する。セルホルダ40の材料の例は、樹脂である。なお、セルホルダ40は、例えば、主面21と反対側の電池セル20の面も露出するように、電池セル20を保持してもよい。セルホルダ40は、例えば、電池セル20の主面21及びその反対側の面を除く電池セル20の各側面(側面22を含む)にそれぞれ対向する側板を有するように構成される。その場合、セルホルダ40の各側板が、対応する電池セル20の各側面に当接することによって、電池セル20が保持され得る。   The cell holder 40 holds the corresponding battery cell 20. The cell holder 40 holds the battery cell 20 so that the main surface 21 of the battery cell 20 is exposed in order to bring the first main body portion 31 of the heat transfer plate 30 into contact with the main surface 21 of the battery cell 20. An example of the material of the cell holder 40 is resin. For example, the cell holder 40 may hold the battery cell 20 so that the surface of the battery cell 20 opposite to the main surface 21 is also exposed. For example, the cell holder 40 is configured to have side plates that face the respective side surfaces (including the side surface 22) of the battery cell 20 excluding the main surface 21 of the battery cell 20 and the opposite surface thereof. In that case, each side plate of the cell holder 40 abuts on each side surface of the corresponding battery cell 20, whereby the battery cell 20 can be held.

一対のブラケット50,50は、複数の電池セル20を配列方向Aの両側から挟むことにより当該複数の電池セル20に拘束荷重を付すとともに、筐体100に電池モジュール10を固定する。一対のブラケット50,50は、剛性の高い材料で構成され、例えば、鉄等の金属で構成される。一方のブラケット50は、配列された複数の電池セル20において配列方向Aの一方側に配置される。他方のブラケット50は、配列された複数の電池セル20において配列方向Aの他方側に配置される。一対のブラケット50,50のそれぞれは、挟持部51及び取付部52を有する。   The pair of brackets 50 and 50 sandwich the plurality of battery cells 20 from both sides in the arrangement direction A, thereby applying a restraining load to the plurality of battery cells 20 and fixing the battery module 10 to the housing 100. The pair of brackets 50 and 50 are made of a material having high rigidity, for example, a metal such as iron. One bracket 50 is arranged on one side in the arrangement direction A in the plurality of arranged battery cells 20. The other bracket 50 is arranged on the other side in the arrangement direction A in the plurality of arranged battery cells 20. Each of the pair of brackets 50, 50 has a clamping part 51 and an attachment part 52.

挟持部51は、略矩形の平板である。一方のブラケット50の挟持部51と他方のブラケット50の挟持部51とは、例えばボルト等の連結部材53によって連結される。この挟持部51同士は、連結部材53によって配列方向Aにおいて互いに近づくように力を加えられて連結される。これにより、当該挟持部51同士は、配列方向Aにおける拘束荷重を複数の電池セル20に付加する。   The clamping part 51 is a substantially rectangular flat plate. The clamping part 51 of one bracket 50 and the clamping part 51 of the other bracket 50 are connected by a connecting member 53 such as a bolt, for example. The clamping parts 51 are connected to each other by a connecting member 53 so that a force is applied so as to approach each other in the arrangement direction A. Thereby, the clamping parts 51 apply a binding load in the arrangement direction A to the plurality of battery cells 20.

取付部52は、挟持部51の筐体100側の端から電池セル20と反対側に延在する略矩形の平板である。取付部52には、電池モジュール10を筐体100に取り付ける際に用いられるボルトが挿通される孔が設けられる。取付部52の筐体に接する面は、伝熱プレート30の第2本体部32よりも筐体100側に位置する。当該面と第2本体部32との、筐体100の内壁面100aに対して直交する方向におけるオフセットは、例えば数ミリ程度である。   The attachment portion 52 is a substantially rectangular flat plate extending from the end of the sandwiching portion 51 on the housing 100 side to the side opposite to the battery cell 20. The attachment portion 52 is provided with a hole through which a bolt used when attaching the battery module 10 to the housing 100 is inserted. The surface of the attachment portion 52 that contacts the housing is located closer to the housing 100 than the second main body portion 32 of the heat transfer plate 30. The offset between the surface and the second main body 32 in the direction orthogonal to the inner wall surface 100a of the housing 100 is, for example, about several millimeters.

弾性部材(不図示)は、一方のブラケット50と電池セル20との間に設けられる板状部材である。弾性部材は、ゴム及び樹脂系のスポンジ等の弾性変形可能な材料から構成される。一般に電池セル20は、電池セル20の使用期間が長くなるにつれて膨張するので、弾性部材は、電池モジュール10において電池セル20の膨張を吸収する。取付部52の筐体100に接する面は、弾性部材よりも筐体100側に位置する。当該面と弾性部材との、筐体100の内壁面100aに対して直交する方向におけるオフセットは、例えば3mm以上12mm以下である。   The elastic member (not shown) is a plate-like member provided between one bracket 50 and the battery cell 20. The elastic member is made of an elastically deformable material such as rubber and a resin sponge. In general, since the battery cell 20 expands as the usage period of the battery cell 20 increases, the elastic member absorbs the expansion of the battery cell 20 in the battery module 10. The surface of the attachment portion 52 that contacts the housing 100 is located closer to the housing 100 than the elastic member. The offset between the surface and the elastic member in the direction orthogonal to the inner wall surface 100a of the housing 100 is, for example, 3 mm or more and 12 mm or less.

このように構成された電池モジュール10は、筐体100に取り付けられ、電池パックを構成する。電池パックでは、伝熱プレート30の第2本体部32が熱伝導部材62を介して筐体100と熱的に接続される。   The battery module 10 configured as described above is attached to the housing 100 to form a battery pack. In the battery pack, the second main body portion 32 of the heat transfer plate 30 is thermally connected to the housing 100 via the heat conducting member 62.

ここで、熱伝導部材62について説明する。熱伝導部材62は、液状の熱伝導材料(TIM:ThermalInterface Material)60が硬化してなる固体状の層である。熱伝導材料60は、例えば高い熱伝導率を有する材料であり、例えば1.5W/m・K以上の熱伝導率を有する。熱伝導材料の熱伝導率は、2W/m・K以上でもよく、2.5W/m・Kでもよく、3.0W/m・K以上でもよい。熱伝導材料60としては、例えばポリウレタン樹脂が挙げられる。熱伝導部材62は、粘性を有していてもよい。また、固体状の層とは、一定の体積及び形状を有する層であればよく、ゲル状の層でもよい。熱伝導部材62は、接着性を有してもよい。   Here, the heat conducting member 62 will be described. The heat conducting member 62 is a solid layer formed by curing a liquid heat conducting material (TIM: Thermal Interface Material) 60. The heat conductive material 60 is, for example, a material having a high heat conductivity, and has a heat conductivity of, for example, 1.5 W / m · K or more. The thermal conductivity of the heat conductive material may be 2 W / m · K or more, 2.5 W / m · K, or 3.0 W / m · K or more. Examples of the heat conductive material 60 include polyurethane resin. The heat conducting member 62 may have viscosity. The solid layer may be a layer having a certain volume and shape, and may be a gel layer. The heat conducting member 62 may have adhesiveness.

次に、図3を用いて、伝熱プレート30における、第1本体部31と第2本体部32との交差角度の定め方の一例について説明する。説明の便宜上、第2本体部32における第1本体部31側の端部(一端部)を端部321と称し図示する。また、第2本体部32における端部321とは反対側の端部(他端部)を端部322と称し図示する。   Next, an example of how to determine the intersection angle between the first main body 31 and the second main body 32 in the heat transfer plate 30 will be described with reference to FIG. For convenience of explanation, an end portion (one end portion) of the second main body portion 32 on the first main body portion 31 side is referred to as an end portion 321 and illustrated. In addition, an end portion (the other end portion) opposite to the end portion 321 in the second main body portion 32 is referred to as an end portion 322 and illustrated.

図3の(a)に示されるように、伝熱プレート30の第2本体部32の延在方向における長さ、つまり第2本体部32における第1本体部31との接続端から先端までの距離を、長さWとして定義する。また、第2本体部32の延在方向と、電池セル20の側面22とのなす角度を、角度θとして定義する。   As shown in FIG. 3A, the length of the heat transfer plate 30 in the extending direction of the second main body portion 32, that is, from the connection end to the front end of the second main body portion 32 with the first main body portion 31. The distance is defined as the length W. In addition, an angle formed between the extending direction of the second main body portion 32 and the side surface 22 of the battery cell 20 is defined as an angle θ.

電池モジュール10が筐体100に取り付けられ、熱伝導材料60が硬化して熱伝導部材62が形成された状態では、図3の(b)に示されるように、伝熱プレート30の第2本体部32が、外面32bによって熱伝導部材62を筐体100側に押圧した状態で筐体100に熱的に接続されている。このとき、熱伝導部材62は、伝熱プレート30の第2本体部32によって筐体100側に押圧され、第2本体部32と筐体100とに挟まれて圧縮された状態となっている。内壁面100aに対して垂直な方向における、圧縮される前の熱伝導部材62(熱伝導材料60)の長さ(すなわち厚さ)を厚さT1とすると、圧縮された部分の熱伝導部材62の厚さは、厚さT1よりも小さくなる。   In a state where the battery module 10 is attached to the housing 100 and the heat conducting material 60 is cured to form the heat conducting member 62, the second main body of the heat transfer plate 30 is formed as shown in FIG. The part 32 is thermally connected to the housing 100 in a state where the heat conducting member 62 is pressed to the housing 100 side by the outer surface 32b. At this time, the heat conducting member 62 is pressed toward the housing 100 by the second main body portion 32 of the heat transfer plate 30 and is compressed between the second main body portion 32 and the housing 100. . When the length (that is, the thickness) of the heat conductive member 62 (heat conductive material 60) before being compressed in the direction perpendicular to the inner wall surface 100a is the thickness T1, the heat conductive member 62 in the compressed portion. Is smaller than the thickness T1.

具体的に、図3の(b)に示される例では、熱伝導部材62は、第2本体部32の端部321によって圧縮厚さt1だけ圧縮され、第2本体部32の端部322によって圧縮厚さt2だけ圧縮されている。圧縮厚さは、厚さT1を基準とした、熱伝導部材62の厚さの変化量である。この例では、端部321に対応する位置における熱伝導部材62の厚さは、厚さT1よりも圧縮厚さt1だけ小さい厚さT1−t1である。また、端部322に対応する位置における熱伝導部材62の厚さは、厚さT1よりも圧縮厚さt2だけ小さい厚さT1−t2である。角度θによる傾斜に起因して、熱伝導部材62の厚さは、第2本体部32の端部322に対応する位置から端部321に対応する位置に向かうにつれて大きくなるので、熱伝導部材62の厚さは、全体として、厚さT1−t2から厚さT1−t1の範囲に収まる。   Specifically, in the example shown in FIG. 3B, the heat conducting member 62 is compressed by the compression thickness t <b> 1 by the end portion 321 of the second main body portion 32, and by the end portion 322 of the second main body portion 32. It is compressed by the compression thickness t2. The compression thickness is the amount of change in the thickness of the heat conducting member 62 based on the thickness T1. In this example, the thickness of the heat conducting member 62 at the position corresponding to the end 321 is a thickness T1-t1 that is smaller than the thickness T1 by the compression thickness t1. The thickness of the heat conducting member 62 at the position corresponding to the end 322 is a thickness T1-t2 that is smaller than the thickness T1 by the compression thickness t2. Due to the inclination due to the angle θ, the thickness of the heat conducting member 62 increases from the position corresponding to the end 322 of the second main body portion 32 toward the position corresponding to the end 321, and thus the heat conducting member 62. As a whole, the thickness falls within the range of the thickness T1-t2 to the thickness T1-t1.

ここで、熱伝導部材62の厚さがT1−t1の場合の熱伝導部材62の圧縮率を、第1の圧縮率とする。また、熱伝導部材62の厚さがT1−t2の場合の熱伝導部材62の圧縮率を、第2の圧縮率とする。   Here, let the compression rate of the heat conductive member 62 in case the thickness of the heat conductive member 62 is T1-t1 be a 1st compression rate. Moreover, let the compression rate of the heat conductive member 62 in case the thickness of the heat conductive member 62 is T1-t2 be a 2nd compression rate.

圧縮厚さt1で圧縮された熱伝導部材62の圧縮率、つまり第1の圧縮率は、第2本体部32と熱伝導部材62との間の熱伝達率が所定熱伝達率となる圧縮率である。所定熱伝達率は、電池セル20の放熱性を確保し得る熱伝達率である。通常は圧縮率が小さくなると熱伝達率が低下するので、圧縮厚さt1は、熱伝導部材62に所定熱伝達率以上の熱伝達率を発揮させるために必要な、熱伝導部材62の最小限の圧縮厚さであるとも言える。   The compression rate of the heat conduction member 62 compressed at the compression thickness t1, that is, the first compression rate is a compression rate at which the heat transfer rate between the second main body portion 32 and the heat transfer member 62 becomes a predetermined heat transfer rate. It is. The predetermined heat transfer coefficient is a heat transfer coefficient that can ensure heat dissipation of the battery cell 20. Normally, the heat transfer rate decreases as the compression rate decreases, so the compression thickness t1 is the minimum of the heat transfer member 62 necessary for causing the heat transfer member 62 to exhibit a heat transfer rate equal to or greater than the predetermined heat transfer rate. It can be said that the compression thickness is.

圧縮厚さt2で圧縮された熱伝導部材62の圧縮率、つまり第2の圧縮率は、圧縮されていることによって発生する熱伝導部材62の反力が所定反力となる圧縮率である。所定反力は、電池モジュール10が筐体100に固定されている状態の維持を妨げない程度の反力である。通常は圧縮率が大きくなると反力が大きくなるので、このような圧縮厚さt2は、熱伝導部材62に所定反力よりも大きい反力を発生させないようにするための、熱伝導部材62の最大限の圧縮厚さであるとも言える。   The compression rate of the heat conduction member 62 compressed at the compression thickness t2, that is, the second compression rate, is a compression rate at which the reaction force of the heat conduction member 62 generated by the compression becomes a predetermined reaction force. The predetermined reaction force is a reaction force that does not hinder the maintenance of the state in which the battery module 10 is fixed to the housing 100. Normally, the reaction force increases as the compression ratio increases. Therefore, the compression thickness t2 is such that the heat conduction member 62 prevents the reaction force larger than the predetermined reaction force from being generated. It can be said that it is the maximum compression thickness.

なお、上述した第1の圧縮率及び第2の圧縮率は、例えば、熱伝導部材62(熱伝導材料60)の特性に基づいて定められてもよいし、実験データ等に基づいて定められてもよい。   The first compression rate and the second compression rate described above may be determined based on, for example, the characteristics of the heat conducting member 62 (heat conducting material 60), or may be determined based on experimental data or the like. Also good.

以上により、伝熱プレート30の第2本体部32の外面32bは、熱伝導部材62が第1の圧縮率以上であって第2の圧縮率以下の圧縮率で圧縮されるように、熱伝導部材62を筐体100側に押圧する。   As described above, the outer surface 32b of the second main body portion 32 of the heat transfer plate 30 is thermally conductive so that the heat conducting member 62 is compressed at a compression rate that is equal to or higher than the first compression rate and equal to or lower than the second compression rate. The member 62 is pressed toward the housing 100 side.

熱伝導部材62の圧縮率は熱伝導部材62の圧縮厚さを変えることによって調整される。また、熱伝導部材62の圧縮厚さは、例えば第2本体部32による熱伝導部材62の押圧の大きさを変えることによって調整される。この場合、第2本体部32の端部321に対応する位置における熱伝導部材62の圧縮厚さが決まれば、第2本体部32の端部322に対応する位置における熱伝導部材62の圧縮厚さは、外面32bの傾斜の程度、つまり角度θに応じて決定される。   The compressibility of the heat conducting member 62 is adjusted by changing the compression thickness of the heat conducting member 62. Further, the compression thickness of the heat conducting member 62 is adjusted by, for example, changing the magnitude of pressing of the heat conducting member 62 by the second main body portion 32. In this case, if the compression thickness of the heat conducting member 62 at the position corresponding to the end 321 of the second main body 32 is determined, the compression thickness of the heat conducting member 62 at the position corresponding to the end 322 of the second main body 32. The height is determined according to the degree of inclination of the outer surface 32b, that is, the angle θ.

例えば、第2本体部32の端部321に対応する位置における熱伝導部材62が、第1の圧縮率以上の圧縮率で圧縮されるように(つまり熱伝導部材62の圧縮厚さが圧縮厚さt1以上となるように)、第2本体部32の外面32bで熱伝導部材62を筐体100側に押圧する。このような押圧は、例えば、熱伝導材料60の粘度を調節したり、電池モジュール10を筐体100に取り付けた状態における第2本体部32と筐体100との距離を調節したりすることによって実現される。第2本体部32と筐体100との距離は、例えば、上述した、取付部52の筐体100に接する面と第2本体部32との、筐体100の内壁面100aに対して直交する方向におけるオフセットを変えることで調節される。第2本体部32の端部322に対応する位置における熱伝導部材62は、端部321に対応する位置における熱伝導部材62の圧縮厚さよりも、さらに、Wsinθだけ大きな圧縮厚さで圧縮される。よって、第2本体部32の端部322に対応する位置における熱伝導部材62の圧縮厚さは、角度θに依存し得る。   For example, the heat conduction member 62 at a position corresponding to the end 321 of the second main body 32 is compressed at a compression rate equal to or higher than the first compression rate (that is, the compression thickness of the heat conduction member 62 is the compression thickness). The heat conducting member 62 is pressed to the housing 100 side by the outer surface 32b of the second main body 32. Such pressing is performed, for example, by adjusting the viscosity of the heat conductive material 60 or by adjusting the distance between the second main body portion 32 and the housing 100 when the battery module 10 is attached to the housing 100. Realized. The distance between the second body portion 32 and the housing 100 is, for example, orthogonal to the inner wall surface 100a of the housing 100 between the surface of the mounting portion 52 that contacts the housing 100 and the second body portion 32. Adjusted by changing the offset in direction. The heat conducting member 62 at the position corresponding to the end 322 of the second main body 32 is compressed with a compression thickness that is larger than the compression thickness of the heat conducting member 62 at the position corresponding to the end 321 by Wsin θ. . Therefore, the compression thickness of the heat conducting member 62 at the position corresponding to the end portion 322 of the second main body portion 32 can depend on the angle θ.

すなわち、第2本体部32の端部321に対応する位置における熱伝導部材62が第1の圧縮率以上の圧縮率で圧縮された状態では、角度θが適切に設定されることで、第2本体部32の端部322に対応する位置において、熱伝導部材62が第1の圧縮率より大きく第2の圧縮率以下の圧縮率で圧縮されるように(つまり、熱伝導部材62の圧縮厚さが圧縮厚さt1より大きくかつ圧縮厚さt2以下となるように)、熱伝導部材62が筐体100側に押圧される。そのような角度θは、0<Wsinθ≦t2−t1との条件を満たす。この条件を満たすように角度θを設定すれば、第2本体部32の端部322において、熱伝導部材62の圧縮厚さが圧縮厚さt1より大きくなり、圧縮厚さt2以下となる。その結果、熱伝導部材62は、第1の圧縮率以上の圧縮率、つまり第2本体部32と熱伝導部材62との間の熱伝達率が所定熱伝達率以上となる圧縮率で圧縮され、また、第2の圧縮率以下の圧縮率、つまり熱伝導部材62の反力が所定反力以下となる圧縮率で圧縮される。よって、第2本体部32と熱伝導部材62との間の熱伝達率を所定熱伝達率以上としつつ、熱伝導部材62の反力を所定反力以下とした状態で、電池モジュール10を筐体100に取り付けることができる。このように電池モジュール10を筐体100に取り付けて電池パックを構成することで、電池セル20の放熱性が向上された電池パックを得ることができる。   That is, in the state where the heat conducting member 62 at the position corresponding to the end 321 of the second main body 32 is compressed at a compression rate equal to or higher than the first compression rate, the angle θ is appropriately set, so that the second At a position corresponding to the end 322 of the main body portion 32, the heat conducting member 62 is compressed at a compression ratio that is greater than the first compression ratio and less than or equal to the second compression ratio (that is, the compression thickness of the heat conduction member 62. Is larger than the compression thickness t1 and equal to or less than the compression thickness t2), the heat conducting member 62 is pressed toward the housing 100 side. Such an angle θ satisfies the condition of 0 <Wsin θ ≦ t2-t1. If the angle θ is set so as to satisfy this condition, at the end 322 of the second main body portion 32, the compression thickness of the heat conducting member 62 becomes larger than the compression thickness t1 and becomes equal to or less than the compression thickness t2. As a result, the heat conduction member 62 is compressed at a compression rate equal to or higher than the first compression rate, that is, a compression rate at which the heat transfer rate between the second body portion 32 and the heat transfer member 62 is equal to or higher than a predetermined heat transfer rate. Further, the compression is performed at a compression rate equal to or lower than the second compression rate, that is, a compression rate at which the reaction force of the heat conducting member 62 is equal to or less than a predetermined reaction force. Therefore, the battery module 10 is mounted in a state where the heat transfer coefficient between the second main body portion 32 and the heat conductive member 62 is not less than a predetermined heat transfer coefficient and the reaction force of the heat conductive member 62 is not more than the predetermined reaction force. It can be attached to the body 100. Thus, the battery pack in which the heat dissipation of the battery cell 20 is improved can be obtained by attaching the battery module 10 to the housing 100 to form the battery pack.

なお、熱伝導部材62の圧縮率は、少なくとも第2本体部32の端部322に対応する位置において、第1の圧縮率以上であって第2の圧縮率以下の圧縮率であればよい。この場合でも、熱伝導部材62の厚さが第2本体部32の端部322に対応する位置から端部321に対応する位置に向かうにつれて大きくなっているので、第2本体部32は、いずれの部分においても第2の圧縮率以下の圧縮率で圧縮される。よって、熱伝導部材62の反力は、所定反力以下となる。また、少なくとも第2本体部32の端部322に対応する位置において熱伝導部材62が第1の圧縮率以上の圧縮率で圧縮されている。よって、少なくとも端部322において、第2本体部32と熱伝導部材62との間の熱伝達率は、所定熱伝達率以上となる。したがって、電池セル20の放熱性が向上された電池パックを得ることができる。   The compression rate of the heat conducting member 62 may be a compression rate that is equal to or higher than the first compression rate and lower than or equal to the second compression rate at least at a position corresponding to the end 322 of the second main body portion 32. Even in this case, since the thickness of the heat conducting member 62 increases from the position corresponding to the end 322 of the second main body 32 toward the position corresponding to the end 321, the second main body 32 is In this part, the image is compressed at a compression rate equal to or lower than the second compression rate. Therefore, the reaction force of the heat conducting member 62 is equal to or less than a predetermined reaction force. Further, the heat conducting member 62 is compressed at a compression rate equal to or higher than the first compression rate at a position corresponding to at least the end 322 of the second main body portion 32. Therefore, at least at the end portion 322, the heat transfer coefficient between the second main body 32 and the heat conducting member 62 is equal to or higher than a predetermined heat transfer coefficient. Therefore, a battery pack with improved heat dissipation of the battery cell 20 can be obtained.

次に、図4を用いて、電池モジュール10の筐体への取り付け方(電池パックの製造方法)の一例について説明する。   Next, an example of how to attach the battery module 10 to the casing (battery pack manufacturing method) will be described with reference to FIG.

図4に示されるように、まず、電池セル20等の組み立てを行う(ステップS1)。ステップS1では、電池セル20をセルホルダ40に組み込む。これにより、セルホルダ40によって電池セル20を保持する。また、ステップS1では、伝熱プレート30の第1本体部31が電池セル20の主面21に接触し、伝熱プレート30の第2本体部32が電池セル20の側面22に対向するように、伝熱プレート30を配置する。   As shown in FIG. 4, first, the battery cell 20 and the like are assembled (step S1). In step S <b> 1, the battery cell 20 is incorporated into the cell holder 40. Thereby, the battery cell 20 is held by the cell holder 40. In step S <b> 1, the first main body portion 31 of the heat transfer plate 30 is in contact with the main surface 21 of the battery cell 20, and the second main body portion 32 of the heat transfer plate 30 is opposed to the side surface 22 of the battery cell 20. The heat transfer plate 30 is disposed.

次に、複数の電池セル20を配列及び拘束する(ステップS2)。ステップS2では、ステップS1にてセルホルダ40に組み込んだ複数の電池セル20を、主面21に交差する方向(一方向)に沿って配列する。この際、隣り合う電池セル20同士の間に伝熱プレート30の第1本体部31を挟む。複数の電池セル20を配列させた後、一方向の両側から複数の電池セル20を一対のブラケット50,50にて挟持する。この際、一方のブラケット50の挟持部51と、当該挟持部51の隣に位置する電池セル20との間に弾性部材を配置する。そして、連結部材53を用いて一対のブラケット50,50を連結し、配列した複数の電池セル20に対して一方向に沿った拘束荷重を付加する。   Next, the plurality of battery cells 20 are arranged and restrained (step S2). In step S <b> 2, the plurality of battery cells 20 incorporated in the cell holder 40 in step S <b> 1 are arranged along a direction (one direction) intersecting the main surface 21. At this time, the first main body portion 31 of the heat transfer plate 30 is sandwiched between the adjacent battery cells 20. After arranging the plurality of battery cells 20, the plurality of battery cells 20 are sandwiched between the pair of brackets 50 and 50 from both sides in one direction. Under the present circumstances, an elastic member is arrange | positioned between the clamping part 51 of one bracket 50, and the battery cell 20 located next to the said clamping part 51. FIG. And a pair of brackets 50 and 50 are connected using the connection member 53, and the restraint load along one direction is added with respect to the some battery cell 20 arranged.

次に、筐体100に熱伝導材料60を塗布する(ステップS3)。ステップS3では、図5に示されるように、筐体100の内壁面100a上に、液状の熱伝導材料60を塗布する。   Next, the heat conductive material 60 is applied to the housing 100 (step S3). In step S <b> 3, as shown in FIG. 5, a liquid heat conductive material 60 is applied on the inner wall surface 100 a of the housing 100.

なお、筐体100に熱伝導材料60を塗布する際には、内壁面100aを水平面とするとよい。これにより、内壁面100a上に設けられた熱伝導材料60が塗布された位置に維持され易くなる。その結果、例えば後述のステップS4において、電池モジュール10の筐体100への取り付けが容易に行える。   When applying the heat conductive material 60 to the casing 100, the inner wall surface 100a may be a horizontal plane. Thereby, it becomes easy to be maintained at the position where the heat conductive material 60 provided on the inner wall surface 100a is applied. As a result, for example, in step S4 to be described later, the battery module 10 can be easily attached to the housing 100.

次に、電池モジュール10を筐体100に固定する(ステップS4)。ステップS4では、一対のブラケット50,50の取付部52を図示しないボルトで筐体100に固定することによって、電池セル20の側面22が筐体100の内壁面100aと実質的に平行をなすように、電池モジュール10を筐体100に取り付ける。伝熱プレート30の第2本体部32は、内壁面100aに対向するように熱伝導材料60に接触する。熱伝導材料60は、伝熱プレート30の第2本体部32と筐体100とによって圧縮され、その厚さは、図5に示される厚さT1よりも小さくなる。その後、伝熱プレート30の第2本体部32と熱伝導材料60とが接触した状態で熱伝導材料60が硬化し、第2本体部32と筐体100(の内壁面100a)との間に熱伝導部材62が形成される。   Next, the battery module 10 is fixed to the housing 100 (step S4). In step S4, the side surface 22 of the battery cell 20 is substantially parallel to the inner wall surface 100a of the housing 100 by fixing the mounting portion 52 of the pair of brackets 50, 50 to the housing 100 with a bolt (not shown). In addition, the battery module 10 is attached to the housing 100. The 2nd main-body part 32 of the heat-transfer plate 30 contacts the heat conductive material 60 so that the inner wall surface 100a may be opposed. The heat conductive material 60 is compressed by the second main body portion 32 of the heat transfer plate 30 and the housing 100, and the thickness thereof is smaller than the thickness T1 shown in FIG. Thereafter, the heat conductive material 60 is cured in a state where the second main body portion 32 of the heat transfer plate 30 and the heat conductive material 60 are in contact with each other, and between the second main body portion 32 and the housing 100 (the inner wall surface 100a thereof). A heat conducting member 62 is formed.

以上のようにして、伝熱プレート30の第2本体部32が熱伝導部材62を介して筐体100に熱的に接続されるように電池モジュール10を筐体100に取り付け、電池パックを製造する。   As described above, the battery module 10 is attached to the housing 100 so that the second main body portion 32 of the heat transfer plate 30 is thermally connected to the housing 100 via the heat conducting member 62, and the battery pack is manufactured. To do.

次に、図6を用いて、電池モジュール10の作用効果について説明する。図6は、電池モジュール10を筐体100に取り付ける際の、伝熱プレートの第2本体部と熱伝導材料との接触部分の詳細を説明するための図である。   Next, the effect of the battery module 10 is demonstrated using FIG. FIG. 6 is a diagram for explaining details of a contact portion between the second main body portion of the heat transfer plate and the heat conductive material when the battery module 10 is attached to the housing 100.

電池モジュール10を筐体100に取り付ける際に、伝熱プレート30の第2本体部32が、熱伝導材料60に面接触する。このとき、図6の(a)に示されるように、伝熱プレート30の第2本体部32と熱伝導材料60との間に気泡Vが生じることがある。気泡Vが存在している状態で熱伝導材料60が硬化して熱伝導部材62が形成されると、伝熱プレート30と熱伝導部材62との間に気泡に起因した隙間が生じ、その分、伝熱プレート30の第2本体部32と、筐体100との伝熱性の向上が妨げられる。その結果、電池セル20の放熱性の向上も妨げられる。   When the battery module 10 is attached to the housing 100, the second main body portion 32 of the heat transfer plate 30 comes into surface contact with the heat conductive material 60. At this time, as shown in FIG. 6A, bubbles V may be generated between the second main body portion 32 of the heat transfer plate 30 and the heat conductive material 60. When the heat conduction material 60 is cured and the heat conduction member 62 is formed in the state where the bubbles V are present, a gap due to the air bubbles is generated between the heat transfer plate 30 and the heat conduction member 62, and accordingly. The improvement in heat transfer between the second main body portion 32 of the heat transfer plate 30 and the housing 100 is hindered. As a result, improvement in heat dissipation of the battery cell 20 is also hindered.

ここで、電池モジュール10の伝熱プレート30の第2本体部32は、電池セル20の側面22に対して傾斜する傾斜面を有する。図6に示される例では、第2本体部32の外面32bが、傾斜面である。内壁面100aが水平面であれば、第2本体部32の外面32bは、水平面に対して傾斜する面となる。   Here, the second main body portion 32 of the heat transfer plate 30 of the battery module 10 has an inclined surface that is inclined with respect to the side surface 22 of the battery cell 20. In the example shown in FIG. 6, the outer surface 32 b of the second main body portion 32 is an inclined surface. If the inner wall surface 100a is a horizontal plane, the outer surface 32b of the second main body portion 32 is a plane inclined with respect to the horizontal plane.

電池モジュール10では外面32bが筐体100の内壁面100a(水平面)に対して傾斜しているので、図6の(a)の矢印で示されるように、気泡Vは、浮力により、第2本体部32と熱伝導材料60との間から、外面32bに沿って上方に移動する。移動した気泡Vは、例えば第2本体部32と電池セル20との間のスペースに放出される。このように、外面32bの傾斜を利用することによって、気泡Vが移動して第2本体部32と熱伝導材料60との間から取り除かれる可能性が高まる。よって、熱伝導材料60が硬化して熱伝導部材62が形成されたとしても、伝熱プレート30の第2本体部32と熱伝導部材62との間に気泡Vに起因した隙間が生じる可能性を低減することができる。すなわち、例えば、図6の(b)に示されるように、伝熱プレート30の第2本体部32と熱伝導部材62とを隙間なく接触させた状態で、電池モジュール10を筐体100に取り付けることができる。この場合、高い熱伝導率を有する熱伝導部材62を介して、伝熱プレート30の第2本体部32の熱を、筐体100に伝達することができる。したがって、電池セル20の放熱性を向上させることができる。   In the battery module 10, the outer surface 32 b is inclined with respect to the inner wall surface 100 a (horizontal plane) of the housing 100, so that the bubbles V are generated by the buoyancy as shown by the arrow in FIG. It moves upward along the outer surface 32b from between the portion 32 and the heat conductive material 60. The moved bubble V is discharged into a space between the second main body 32 and the battery cell 20, for example. In this manner, by using the inclination of the outer surface 32b, the possibility that the bubbles V move and are removed from between the second main body portion 32 and the heat conductive material 60 increases. Therefore, even if the heat conductive material 60 is cured and the heat conductive member 62 is formed, there is a possibility that a gap due to the bubbles V is generated between the second main body portion 32 of the heat transfer plate 30 and the heat conductive member 62. Can be reduced. That is, for example, as shown in FIG. 6B, the battery module 10 is attached to the housing 100 in a state where the second main body portion 32 of the heat transfer plate 30 and the heat conducting member 62 are in contact with each other without a gap. be able to. In this case, the heat of the second main body portion 32 of the heat transfer plate 30 can be transferred to the housing 100 via the heat conductive member 62 having high heat conductivity. Therefore, the heat dissipation of the battery cell 20 can be improved.

また、先に図3を参照して説明したように、外面32bは、端部321において熱伝導部材62が第1の圧縮率で圧縮されるように熱伝導部材62を筐体100側に押圧し、端部322において熱伝導部材62が第2の圧縮率で圧縮されるように熱伝導部材62を筐体100側に押圧するように傾斜してもよい。この場合、熱伝導部材62が、第1の圧縮率から第2の圧縮率の範囲内の圧縮率で圧縮されるので、第2本体部32と熱伝導部材62との間の熱伝達率を所定熱伝達率以上とし、熱伝導部材62の反力を所定反力以下とした状態で、電池モジュール10を筐体100に取り付けることができる。これにより、電池セル20の放熱性が向上された電池パックを得ることができる。   In addition, as described above with reference to FIG. 3, the outer surface 32 b presses the heat conducting member 62 toward the housing 100 so that the heat conducting member 62 is compressed at the end portion 321 at the first compression rate. Then, the heat conducting member 62 may be inclined so as to press the housing 100 toward the casing 100 so that the heat conducting member 62 is compressed at the second compression rate at the end 322. In this case, since the heat conduction member 62 is compressed at a compression rate within the range of the first compression rate to the second compression rate, the heat transfer coefficient between the second main body portion 32 and the heat conduction member 62 is set. The battery module 10 can be attached to the housing 100 in a state where the heat transfer rate is equal to or higher than the predetermined heat transfer rate and the reaction force of the heat conducting member 62 is equal to or lower than the predetermined reaction force. Thereby, the battery pack in which the heat dissipation of the battery cell 20 is improved can be obtained.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものでなく、発明の趣旨を逸脱しない範囲で種々の変更が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

例えば上記実施形態では、伝熱プレート30の第2本体部32全体を電池セル20の側面22に対して傾斜させることで、第2本体部32に傾斜面を得る例について説明した。一方、第2本体部全体を傾斜させるか否かによらず、第2本体部に傾斜面を得ることもできる。そのような伝熱プレートの構成の例について、次に、図7及び図8を用いて説明する。   For example, in the above-described embodiment, an example in which the second main body portion 32 of the heat transfer plate 30 is inclined with respect to the side surface 22 of the battery cell 20 to obtain an inclined surface in the second main body portion 32 has been described. On the other hand, an inclined surface can be obtained in the second main body portion regardless of whether or not the entire second main body portion is inclined. Next, an example of the configuration of such a heat transfer plate will be described with reference to FIGS. 7 and 8.

例えば、図7の(a)に示される伝熱プレート70は、第1本体部71及び第2本体部72を含む。伝熱プレート70も、伝熱プレート30と同様に、電池セル20に取り付けられる。第1本体部71の構成及び機能は、伝熱プレート30の第1本体部31と同様である。なお、第1本体部71と第2本体部72とのなす交差角度βは、前述の交差角度αと同じであってもよいし、異なっていてもよい。交差角度βは、例えば90度であってもよい。   For example, the heat transfer plate 70 shown in FIG. 7A includes a first main body portion 71 and a second main body portion 72. Similarly to the heat transfer plate 30, the heat transfer plate 70 is also attached to the battery cell 20. The configuration and function of the first main body 71 are the same as those of the first main body 31 of the heat transfer plate 30. In addition, the intersection angle β formed by the first body portion 71 and the second body portion 72 may be the same as or different from the above-described intersection angle α. The intersection angle β may be 90 degrees, for example.

第2本体部72は、外面72bを有している。外面72bは、外面32bと同様に、電池モジュール10が筐体100に取り付けられた状態で筐体100の内壁面100aに対向する対向面である。外面72bには、溝73が設けられている。溝73は、第2本体部72の縁から延在する。図7の(a)に示される例では、溝73は、配列方向Aに沿って延びている。溝73の一端731及び他端732が、第2本体部72の対向する縁にそれぞれ位置している。   The second main body 72 has an outer surface 72b. The outer surface 72b is a facing surface that faces the inner wall surface 100a of the housing 100 in a state where the battery module 10 is attached to the housing 100, similarly to the outer surface 32b. A groove 73 is provided on the outer surface 72b. The groove 73 extends from the edge of the second main body portion 72. In the example shown in FIG. 7A, the grooves 73 extend along the arrangement direction A. One end 731 and the other end 732 of the groove 73 are located at opposite edges of the second main body 72.

図7の(a)に示される例では、溝73の延在方向に交差する断面形状は、略矩形形状である。この場合、溝73は、底面73a及び側面73bによって規定される。第2本体部72の外面72bに対して直交する方向における、外面72bから溝73の底面73aまでの距離、すなわち溝73の深さは、溝73の他端732から一端731に近づくにつれて大きくなる。その結果、溝73の底面73aは、外面72bに対して傾斜する。このため、例えば交差角度βが90度である場合には、底面73aは、電池セル20の側面22に対して傾斜する傾斜面となる。交差角度βが90度よりも大きい場合でも、溝73の底面73aが電池セル20の側面22に対して傾斜するようにしておけば、溝73の底面73aは、傾斜面として機能する。   In the example shown in FIG. 7A, the cross-sectional shape that intersects the extending direction of the groove 73 is a substantially rectangular shape. In this case, the groove 73 is defined by the bottom surface 73a and the side surface 73b. The distance from the outer surface 72 b to the bottom surface 73 a of the groove 73 in the direction orthogonal to the outer surface 72 b of the second main body 72, that is, the depth of the groove 73 increases as it approaches the one end 731 from the other end 732 of the groove 73. . As a result, the bottom surface 73a of the groove 73 is inclined with respect to the outer surface 72b. For this reason, for example, when the intersection angle β is 90 degrees, the bottom surface 73 a is an inclined surface that is inclined with respect to the side surface 22 of the battery cell 20. Even when the crossing angle β is larger than 90 degrees, if the bottom surface 73a of the groove 73 is inclined with respect to the side surface 22 of the battery cell 20, the bottom surface 73a of the groove 73 functions as an inclined surface.

図7の(a)に示される伝熱プレート70によれば、電池モジュール10を筐体100に取り付ける際に第2本体部72と熱伝導材料60との間において溝73付近で発生した気泡Vは、溝73に取り込まれ、溝73の底面73aに沿って移動する。より具体的に、気泡Vは、溝73の深さがより深くなる方向、つまり他端732から一端731に向かう方向に沿って、第2本体部72の縁まで移動し得る。このように溝73の底面73aの傾斜を利用することによっても、気泡Vが第2本体部72と熱伝導材料60との間から取り除かれる可能性を高めることができる。   According to the heat transfer plate 70 shown in FIG. 7A, bubbles V generated in the vicinity of the groove 73 between the second main body 72 and the heat conductive material 60 when the battery module 10 is attached to the housing 100. Is taken into the groove 73 and moves along the bottom surface 73 a of the groove 73. More specifically, the bubble V can move to the edge of the second main body 72 along the direction in which the depth of the groove 73 becomes deeper, that is, the direction from the other end 732 toward the one end 731. Thus, also by utilizing the inclination of the bottom surface 73 a of the groove 73, the possibility that the bubbles V are removed from between the second main body portion 72 and the heat conductive material 60 can be increased.

なお、溝73の延在方向に交差する断面形状は、略矩形形状に限定されない。例えば図7の(b)に示されるように、溝73の延在方向に交差する断面形状は、三角形状であってもよい。この場合でも、溝73を規定する内面73cが、電池セル20の側面22に対して傾斜する傾斜面として機能するので、気泡Vが第2本体部72と熱伝導材料60との間から取り除かれる可能性が高まる。また、溝73の断面形状を三角形状とすることで、電池モジュール10を筐体100に取り付ける際に、溝73を規定する内面73cが熱伝導材料60の表面に対して傾斜した状態で(つまり、溝73を規定する面が熱伝導材料60の面と平行な部分を有さない状態で)熱伝導材料60に接触するので、溝73の一部に気泡Vが留まる可能性を低減することもできる。   The cross-sectional shape that intersects the extending direction of the groove 73 is not limited to a substantially rectangular shape. For example, as illustrated in FIG. 7B, the cross-sectional shape that intersects the extending direction of the groove 73 may be a triangular shape. Even in this case, the inner surface 73 c that defines the groove 73 functions as an inclined surface that is inclined with respect to the side surface 22 of the battery cell 20, so that the bubbles V are removed from between the second main body 72 and the heat conductive material 60. The possibility increases. In addition, since the cross-sectional shape of the groove 73 is triangular, when the battery module 10 is attached to the housing 100, the inner surface 73c that defines the groove 73 is inclined with respect to the surface of the heat conductive material 60 (that is, Since the surface defining the groove 73 is in contact with the heat conductive material 60 (with no part parallel to the surface of the heat conductive material 60), the possibility of bubbles V remaining in a part of the groove 73 is reduced. You can also.

なお、溝73は、例えば、第2本体部72を構成する平板状の部材を加工することによって、第2本体部72に形成される。   In addition, the groove | channel 73 is formed in the 2nd main-body part 72 by processing the flat member which comprises the 2nd main-body part 72, for example.

また、図7では、伝熱プレート70の第2本体部72に、配列方向Aに沿って延在するように溝が設けられた形態について説明したが、これに限られず、伝熱プレートの第2本体部には、種々の態様で溝が設けられてよい。   In addition, in FIG. 7, the second body portion 72 of the heat transfer plate 70 has been described with the groove provided so as to extend along the arrangement direction A, but the present invention is not limited to this, and the second heat transfer plate The two main body portions may be provided with grooves in various manners.

例えば、図8の(a)に示されるように、配列方向Aに交差する(例えば直交する)方向に沿って延在するように、溝73が、第2本体部72に設けられてもよい。   For example, as shown in FIG. 8A, the groove 73 may be provided in the second main body portion 72 so as to extend along a direction intersecting (for example, orthogonal to) the arrangement direction A. .

また、溝73は、複数の溝を含んでもよい。例えば図8の(b)及び図8の(c)に示される例では、複数の溝は、同じ方向に延在する第1の溝及び第2の溝である。各溝は、図8の(b)に示されるように配列方向Aと交差する(例えば直交する)方向に沿って延在するように並んで設けられてもよいし、図8の(c)に示されるように配列方向Aに沿って延在するように並んで設けられてもよい。なお、溝の数はとくに限定されない。   The groove 73 may include a plurality of grooves. For example, in the example shown in FIG. 8B and FIG. 8C, the plurality of grooves are a first groove and a second groove extending in the same direction. Each groove may be provided side by side so as to extend along a direction intersecting (for example, orthogonal to) the arrangement direction A as shown in FIG. 8B, or in FIG. It may be provided side by side so as to extend along the arrangement direction A as shown in FIG. The number of grooves is not particularly limited.

また、第1の溝及び第2の溝は、交差していてもよい。図8の(d)に示されるように、配列方向Aに沿って延在する2つの溝73と、配列方向Aに交差する方向に沿って延びる2つの溝73とが、交差していてもよい。この場合、例えば、配列方向Aに沿って延在する2つの溝が第1の溝であり、配列方向Aと交差する方向に沿って延在する2つの溝が第2の溝である。   The first groove and the second groove may intersect each other. As shown in FIG. 8D, even if the two grooves 73 extending along the arrangement direction A and the two grooves 73 extending along the direction intersecting the arrangement direction A intersect each other. Good. In this case, for example, two grooves extending along the arrangement direction A are first grooves, and two grooves extending along a direction intersecting with the arrangement direction A are second grooves.

図8の(b)〜(d)を参照して説明したように、第2本体部72に複数の溝73が設けられることによって、気泡Vを移動させるための経路の数をより多く確保できるので、気泡Vが第2本体部72と熱伝導材料60との間から取り除かれる可能性をさらに高めることができる。   As described with reference to (b) to (d) of FIG. 8, by providing the plurality of grooves 73 in the second main body portion 72, it is possible to secure a larger number of paths for moving the bubbles V. Therefore, the possibility that the bubbles V are removed from between the second main body 72 and the heat conductive material 60 can be further increased.

なお、上述の図7の例では、溝73の延在方向に交差する断面形状が略矩形形状又は三角形状である場合について説明したが、溝73の延在方向に交差する断面形状は、これらの形状に限定されず、例えば台形形状等であってもよい。また、図7に示される例では溝73の一端731及び他端732のいずれもが第2本体部72の縁に位置している例について説明したが、少なくとも溝73の深さがより深くなる側の一端が、第2本体部72の縁に位置していればよい。   In the example of FIG. 7 described above, the case where the cross-sectional shape that intersects the extending direction of the groove 73 is a substantially rectangular shape or a triangular shape has been described. For example, a trapezoidal shape or the like may be used. In the example illustrated in FIG. 7, the example in which both the one end 731 and the other end 732 of the groove 73 are located at the edge of the second main body portion 72 has been described, but at least the depth of the groove 73 becomes deeper. The one end of the side should just be located in the edge of the 2nd main-body part 72. FIG.

また、上記実施形態では、第2本体部32の外面32bが、端部322から端部321に向かうにつれて電池セル20の側面22に近づくように傾斜する例について説明したが、外面32bの傾斜の態様はこれに限られない。外面32bは、端部321から端部322に向かうにつれて電池セル20の側面22に近づくように傾斜していてもよい。また、外面32bは、端部321及び端部322とは異なる一対の端部のうちの、一方の端部から他方の端部に向かうにつれて、電池セル20の側面22に近づくように傾斜していてもよい。   Moreover, although the outer surface 32b of the 2nd main-body part 32 demonstrated the example which inclines so that it may approach the side surface 22 of the battery cell 20 as it goes to the end part 321 from the end part 322 in the said embodiment, the inclination of the outer surface 32b is demonstrated. The aspect is not limited to this. The outer surface 32b may be inclined so as to approach the side surface 22 of the battery cell 20 from the end 321 toward the end 322. Moreover, the outer surface 32b is inclined so as to approach the side surface 22 of the battery cell 20 from one end to the other end of the pair of ends that are different from the end 321 and the end 322. May be.

10…電池モジュール、20…電池セル、21…主面(第1側面)、22…側面(第2側面)、30,70…伝熱プレート、31,71…第1本体部、32,72…第2本体部、32b,72b…外面(対向面、傾斜面)、60…熱伝導材料、62…熱伝導部材、73…溝、73a…底面(傾斜面)、73c…内面(傾斜面)、100…筐体、100a…内壁面。   DESCRIPTION OF SYMBOLS 10 ... Battery module, 20 ... Battery cell, 21 ... Main surface (1st side surface), 22 ... Side surface (2nd side surface), 30, 70 ... Heat-transfer plate, 31, 71 ... 1st main-body part, 32, 72 ... 2nd main-body part, 32b, 72b ... outer surface (facing surface, inclined surface), 60 ... heat conducting material, 62 ... heat conducting member, 73 ... groove, 73a ... bottom surface (tilted surface), 73c ... inner surface (tilted surface), 100: casing, 100a: inner wall surface.

Claims (7)

筐体に取り付けられる電池モジュールであって、
一方向に配列された複数の電池セルと、
前記複数の電池セルの各々に取り付けられる複数の伝熱プレートと、
を備え、
前記複数の電池セルの各々は、
前記一方向と交差する面である第1側面と、
前記第1側面と交差する第2側面と、
を備え、
前記複数の伝熱プレートの各々は、
前記電池セルの前記第1側面に接触する第1本体部と、
前記電池セルの前記第2側面を覆うように前記第1本体部の一端から前記第1側面と交差する方向に延び、液状の熱伝導材料を硬化してなる熱伝導部材を介して前記筐体に熱的に接続される第2本体部と、
を備え、
前記第2本体部は、前記筐体における前記熱伝導部材が設けられた面に対向する対向面を備え、
前記対向面は、前記電池セルの第2側面に対して傾斜する傾斜面を備える、電池モジュール。
A battery module attached to a housing,
A plurality of battery cells arranged in one direction;
A plurality of heat transfer plates attached to each of the plurality of battery cells;
With
Each of the plurality of battery cells is
A first side surface that is a surface intersecting the one direction;
A second side crossing the first side;
With
Each of the plurality of heat transfer plates is
A first body portion that contacts the first side surface of the battery cell;
The casing extends from one end of the first main body portion so as to cover the second side surface of the battery cell in a direction intersecting the first side surface, and a heat conductive member formed by curing a liquid heat conductive material. A second body portion thermally connected to
With
The second main body includes a facing surface that faces a surface of the housing on which the heat conducting member is provided,
The opposing surface is a battery module including an inclined surface that is inclined with respect to a second side surface of the battery cell.
前記対向面は、前記傾斜面であり、
前記第1本体部と前記第2本体部との交差角度は、90度よりも大きい、請求項1に記載の電池モジュール。
The opposing surface is the inclined surface;
The battery module according to claim 1, wherein an intersection angle between the first main body portion and the second main body portion is larger than 90 degrees.
前記第2本体部には、前記第2本体部の縁から延在する溝が設けられており、
前記溝の深さは、前記第2本体部の縁に近づくにつれて大きくなり、
前記傾斜面は、前記溝を規定する面である、請求項1又は2に記載の電池モジュール。
The second body part is provided with a groove extending from an edge of the second body part,
The depth of the groove increases as it approaches the edge of the second body part,
The battery module according to claim 1, wherein the inclined surface is a surface that defines the groove.
前記溝の延在方向に交差する断面形状は、三角形状である、請求項3に記載の電池モジュール。   The battery module according to claim 3, wherein a cross-sectional shape intersecting with the extending direction of the groove is a triangular shape. 前記溝は、第1の溝及び第2の溝を備え、
前記第1の溝及び前記第2の溝は、同じ方向に延在している、請求項3又は4に記載の電池モジュール。
The groove includes a first groove and a second groove,
The battery module according to claim 3, wherein the first groove and the second groove extend in the same direction.
前記溝は、第1の溝及び第2の溝を備え、
前記第1の溝及び前記第2の溝は、交差している、請求項3又は4に記載の電池モジュール。
The groove includes a first groove and a second groove,
The battery module according to claim 3 or 4, wherein the first groove and the second groove intersect each other.
前記第2本体部は、前記対向面によって前記熱伝導部材を押圧した状態で前記筐体に熱的に接続され、
前記対向面は、前記第2本体部の前記第1本体部側の一端部において前記熱伝導部材が第1の圧縮率で圧縮されるように前記熱伝導部材を押圧し、前記第2本体部の他端部において前記熱伝導部材が前記第1の圧縮率よりも大きい第2の圧縮率で圧縮されるように前記熱伝導部材を押圧するように傾斜しており、
前記第1の圧縮率は、前記第2本体部と前記熱伝導部材との間の熱伝達率が所定熱伝達率以上となる圧縮率であり、
前記第2の圧縮率は、前記熱伝導部材の反力が所定反力以下となる圧縮率である、請求項2に記載の電池モジュール。
The second main body is thermally connected to the housing in a state where the heat conducting member is pressed by the facing surface,
The opposing surface presses the heat conducting member so that the heat conducting member is compressed at a first compression rate at one end of the second body portion on the first body portion side, and the second body portion The heat conducting member is inclined so as to press the heat conducting member so that the heat conducting member is compressed at a second compression rate larger than the first compression rate,
The first compression rate is a compression rate at which a heat transfer coefficient between the second main body portion and the heat conducting member is equal to or higher than a predetermined heat transfer coefficient,
The battery module according to claim 2, wherein the second compression rate is a compression rate at which a reaction force of the heat conducting member is equal to or less than a predetermined reaction force.
JP2015203404A 2015-10-15 2015-10-15 Battery module Pending JP2017076526A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015203404A JP2017076526A (en) 2015-10-15 2015-10-15 Battery module
PCT/JP2016/077503 WO2017064978A1 (en) 2015-10-15 2016-09-16 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203404A JP2017076526A (en) 2015-10-15 2015-10-15 Battery module

Publications (2)

Publication Number Publication Date
JP2017076526A true JP2017076526A (en) 2017-04-20
JP2017076526A5 JP2017076526A5 (en) 2018-06-21

Family

ID=58517184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203404A Pending JP2017076526A (en) 2015-10-15 2015-10-15 Battery module

Country Status (2)

Country Link
JP (1) JP2017076526A (en)
WO (1) WO2017064978A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096387A (en) * 2017-11-17 2019-06-20 トヨタ自動車株式会社 Battery pack, manufacturing method of battery pack, and interposed member
JP2019106313A (en) * 2017-12-13 2019-06-27 トヨタ自動車株式会社 Method of manufacturing battery pack
JP2019160496A (en) * 2018-03-09 2019-09-19 株式会社デンソー Battery device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116018B2 (en) * 2016-01-07 2018-10-30 GM Global Technology Operations LLC Cure in place thermal interface material
DE102019207357A1 (en) * 2019-05-20 2020-11-26 Audi Ag Method for introducing a heat transfer agent between a battery module and a cooling floor, injection system and battery module
DE102019208805B3 (en) * 2019-06-18 2020-08-06 Audi Ag Method for introducing a thermally conductive filler with a variable proportion of filler, battery module device and system for introducing filler
JP7310561B2 (en) * 2019-11-13 2023-07-19 Tdk株式会社 Stacked battery pack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004398A (en) * 2010-06-18 2012-01-05 Sumitomo Heavy Ind Ltd Power storage module
JP2013016375A (en) * 2011-07-05 2013-01-24 Hitachi Ltd Nonaqueous electrolytic cell module
JP2013038439A (en) * 2009-12-07 2013-02-21 Sumitomo Heavy Ind Ltd Power storage module
JP2014116193A (en) * 2012-12-10 2014-06-26 Toyota Industries Corp Battery module and manufacturing method for the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726035B2 (en) * 2011-09-28 2015-05-27 京セラ株式会社 Crystal growth equipment
JP6111788B2 (en) * 2013-03-28 2017-04-12 株式会社豊田自動織機 Battery pack
JP6268821B2 (en) * 2013-09-03 2018-01-31 ウシオ電機株式会社 Semiconductor laser device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038439A (en) * 2009-12-07 2013-02-21 Sumitomo Heavy Ind Ltd Power storage module
JP2012004398A (en) * 2010-06-18 2012-01-05 Sumitomo Heavy Ind Ltd Power storage module
JP2013016375A (en) * 2011-07-05 2013-01-24 Hitachi Ltd Nonaqueous electrolytic cell module
US20130130087A1 (en) * 2011-07-05 2013-05-23 Hitachi, Ltd. Non-aqueous electrolyte battery module
JP2014116193A (en) * 2012-12-10 2014-06-26 Toyota Industries Corp Battery module and manufacturing method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096387A (en) * 2017-11-17 2019-06-20 トヨタ自動車株式会社 Battery pack, manufacturing method of battery pack, and interposed member
US11075418B2 (en) 2017-11-17 2021-07-27 Toyota Jidosha Kabushiki Kaisha Battery pack, manufacturing method of battery pack, and intervening member
JP2019106313A (en) * 2017-12-13 2019-06-27 トヨタ自動車株式会社 Method of manufacturing battery pack
JP2019160496A (en) * 2018-03-09 2019-09-19 株式会社デンソー Battery device
JP7135348B2 (en) 2018-03-09 2022-09-13 株式会社デンソー battery device

Also Published As

Publication number Publication date
WO2017064978A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2017064978A1 (en) Battery module
US11380948B2 (en) Battery module
KR20200021609A (en) Battery module and Manufacturing method of the same
CN106025120B (en) Electricity storage module
WO2019151037A1 (en) Battery module and battery pack
EP2357689A1 (en) Battery module
JP5906962B2 (en) Secondary battery module cell holder
CN108475830B (en) Heat dissipation material, method of manufacturing the same, and battery module including the same
US20150214531A1 (en) Battery device and battery pack
JP6926630B2 (en) Battery module
KR20120129968A (en) Heat sink and electrical energy storage means
US20150214585A1 (en) Battery device and battery pack
JP6681436B2 (en) Power storage module
JP6558198B2 (en) Battery module
JP6657748B2 (en) Battery module and method of manufacturing battery module
JP6627265B2 (en) Battery pack
US20190097284A1 (en) Power storage device pack
KR20170021130A (en) Battery module having holder
CN214706037U (en) Heat conduction gasket and battery pack
JP2012094312A (en) Battery pack and separator
JP6690452B2 (en) Battery module
JP2017103158A (en) Battery pack
WO2016031628A1 (en) Battery pack
JP5154706B1 (en) Battery pack and battery module
JP6681435B2 (en) Power storage module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190611