JP2017075766A - Heat pump type heating device - Google Patents

Heat pump type heating device Download PDF

Info

Publication number
JP2017075766A
JP2017075766A JP2015205061A JP2015205061A JP2017075766A JP 2017075766 A JP2017075766 A JP 2017075766A JP 2015205061 A JP2015205061 A JP 2015205061A JP 2015205061 A JP2015205061 A JP 2015205061A JP 2017075766 A JP2017075766 A JP 2017075766A
Authority
JP
Japan
Prior art keywords
compressor
predetermined value
heat exchanger
hot water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015205061A
Other languages
Japanese (ja)
Other versions
JP6332226B2 (en
Inventor
幸雄 松坂
Yukio Matsuzaka
幸雄 松坂
浩司 津野
Koji Tsuno
浩司 津野
照男 西田
Teruo Nishida
照男 西田
晋司 吉川
Shinji Yoshikawa
晋司 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2015205061A priority Critical patent/JP6332226B2/en
Publication of JP2017075766A publication Critical patent/JP2017075766A/en
Application granted granted Critical
Publication of JP6332226B2 publication Critical patent/JP6332226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type heating device capable of preventing a high pressure state of refrigerant from being maintained and capable of appropriately performing high pressure protection.SOLUTION: A heat pump type heating device 1 performs a protection control for decreasing a compressor frequency when any of parameters of a refrigerant pressure, a compressor input current and a compressor discharging pipe temperature is more than a predetermined value to protect a compressor 10; and a normal control for increasing or decreasing the compressor frequency and an opening degree of an electric valve in response to loads of the applicable heat exchangers 16A, 16B when the parameters are less than the predetermined values and/or the surrounding atmospheric temperature. When the compressor frequency is decreased only by the predetermined value, a decreasing amount of the valve opening degree of the electric valve 12 under the protection control is lower than an amount of reduction of the valve opening degree of the electric valve 12 under the normal control.SELECTED DRAWING: Figure 1

Description

本発明は、給湯用熱交換器および暖房用熱交換器を備えるヒートポンプ式加熱装置に関する。   The present invention relates to a heat pump heating device including a heat exchanger for hot water supply and a heat exchanger for heating.

従来、圧縮機と室外熱交換器と電動弁と利用側熱交換器とを有するヒートポンプ式加熱装置が提案されている。このようなヒートポンプ式加熱装置では、利用側熱交換器の負荷に基づいて圧縮機の周波数を制御する通常制御が行われる。この通常制御では、周波数を下げたときに併せて電動弁の弁開度を小さくしている。   Conventionally, there has been proposed a heat pump type heating device having a compressor, an outdoor heat exchanger, an electric valve, and a use side heat exchanger. In such a heat pump type heating device, normal control for controlling the frequency of the compressor is performed based on the load of the use side heat exchanger. In this normal control, the valve opening of the motor-operated valve is reduced when the frequency is lowered.

通常制御時には、ヒートポンプ式加熱装置内を流れる冷媒の圧力が許容上限圧力を超えて高圧となることがあり、これを防止(高圧保護)する必要がある。例えば特許文献1には、冷媒の圧力が許容上限圧力に至ったときに圧縮機の周波数を垂下させる保護制御を行うヒートポンプ式加熱装置が記載されている。このように保護制御では、冷媒の圧力が高圧となった場合に周波数を下げて圧縮機を保護する。   During normal control, the pressure of the refrigerant flowing in the heat pump type heating device may exceed the allowable upper limit pressure and become a high pressure, and this must be prevented (high pressure protection). For example, Patent Document 1 describes a heat pump type heating device that performs protection control for drooping the frequency of a compressor when the refrigerant pressure reaches an allowable upper limit pressure. Thus, in the protection control, when the refrigerant pressure becomes high, the frequency is lowered to protect the compressor.

特開2002―139258号公報JP 2002-139258 A

しかし保護制御において、通常制御と同様に周波数を下げたときに電動弁の弁開度を小さくすると、冷媒の圧力が下がらず高圧状態を解消できないという問題がある。   However, in the protection control, if the valve opening degree of the motor-operated valve is decreased when the frequency is lowered as in the normal control, there is a problem that the pressure of the refrigerant does not decrease and the high pressure state cannot be solved.

そこで、この発明は上記のような課題を解決するためになされたもので、冷媒の高圧状態が維持されることを防止し、適切に高圧保護を行うことができるヒートポンプ式加熱装置を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and provides a heat pump type heating device that can prevent the high-pressure state of the refrigerant from being maintained and can appropriately perform high-pressure protection. With the goal.

第1の発明に係るヒートポンプ式加熱装置は、圧縮機と、熱源側熱交換器と、電動弁と、利用側熱交換器と有する冷媒回路を備えたヒートポンプ式加熱装置において、
冷媒圧力、前記圧縮機の入力電流および前記圧縮機の吐出管温度のいずれかのパラメータが所定値以上の場合に圧縮機周波数を垂下させ、前記圧縮機を保護する保護制御と、
前記パラメータが所定値未満の場合に前記利用側熱交換器の負荷、および/または外気温度に基づいて圧縮機周波数および電動弁開度を増減させる通常制御と、が行われ、
圧縮機周波数を所定値だけ垂下させたときに、前記保護制御時の前記電動弁の弁開度の減少量が、前記通常制御時の前記電動弁の弁開度の減少量より小さい。
A heat pump heating apparatus according to a first aspect of the present invention is a heat pump heating apparatus including a refrigerant circuit having a compressor, a heat source side heat exchanger, an electric valve, and a use side heat exchanger.
Protection control for drooping the compressor frequency and protecting the compressor when any one of the refrigerant pressure, the compressor input current, and the compressor discharge pipe temperature is equal to or higher than a predetermined value;
When the parameter is less than a predetermined value, normal control for increasing or decreasing the compressor frequency and the motor valve opening based on the load of the use side heat exchanger and / or the outside air temperature is performed,
When the compressor frequency is lowered by a predetermined value, the amount of decrease in the valve opening of the motor-operated valve during the protection control is smaller than the amount of decrease in the valve opening of the motor-operated valve during the normal control.

このヒートポンプ式加熱装置では、圧縮機周波数を所定値だけ垂下させたときに、保護制御時の電動弁の弁開度の減少量が、通常制御時の電動弁の弁開度の減少量より小さい。これにより、冷媒圧力が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁の弁開度の減少量を抑え、効率的に冷媒圧力を低下できる。従って、冷媒の高圧状態が維持されることを防止し、適切に高圧保護を行うことができる。また、入力電流が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁の弁開度の減少量を抑え、効率的に入力電流を低下できる。従って、入力電流が高くなる状態が維持されることを防止し、適切に圧縮機を保護できる。更に、吐出管温度が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁の弁開度の減少量を抑え、効率的に吐出管温度を低下できる。従って、吐出管温度が高くなる状態が維持されることを防止し、適切に圧縮機を保護できる。   In this heat pump type heating device, when the compressor frequency is lowered by a predetermined value, the amount of decrease in the valve opening of the motorized valve during the protection control is smaller than the amount of decrease in the valve opening of the motorized valve during the normal control. . As a result, when the compressor frequency is lowered by a predetermined value during protection control performed when the refrigerant pressure is equal to or higher than a predetermined value, the amount of decrease in the valve opening of the motor-operated valve can be suppressed and the refrigerant pressure can be efficiently reduced. . Therefore, the high pressure state of the refrigerant can be prevented from being maintained, and high pressure protection can be appropriately performed. In addition, when the compressor frequency is lowered by a predetermined value during protection control performed when the input current is equal to or greater than a predetermined value, the amount of decrease in the valve opening of the motor-operated valve can be suppressed and the input current can be efficiently reduced. Therefore, the state where the input current becomes high can be prevented from being maintained, and the compressor can be appropriately protected. Furthermore, when the compressor frequency is lowered by a predetermined value during the protection control that is performed when the discharge pipe temperature is equal to or higher than a predetermined value, the amount of decrease in the valve opening of the motorized valve is suppressed and the discharge pipe temperature is efficiently reduced. it can. Therefore, it is possible to prevent the discharge pipe temperature from being kept high and to appropriately protect the compressor.

第2の発明に係るヒートポンプ式加熱装置は、前記保護制御により、前記パラメータが所定値以上の場合に圧縮機周波数を垂下させたときに、前記パラメータが所定値未満になるまで圧縮機周波数を垂下させる。   In the heat pump heating device according to the second invention, when the compressor frequency is lowered when the parameter is equal to or greater than a predetermined value by the protection control, the compressor frequency is lowered until the parameter becomes less than the predetermined value. Let

このヒートポンプ式加熱装置では、パラメータを所定値未満になるまで確実に下げ、高圧状態、入力電流が高い状態および吐出管温度が高い状態のいずれかが維持されることを防止し、圧縮機を保護できる。   In this heat pump type heating device, the parameter is surely lowered until it becomes less than the predetermined value, preventing any one of the high pressure state, the high input current state and the high discharge pipe temperature from being maintained, protecting the compressor it can.

第3の発明に係るヒートポンプ式加熱装置は、所定時間毎に、前記パラメータが所定値以上であるか否かを判断する。   The heat pump type heating apparatus according to the third invention determines whether or not the parameter is equal to or greater than a predetermined value every predetermined time.

このヒートポンプ式加熱装置では、所定時間毎に、前記パラメータが所定値以上であるか否かを判断することで、パラメータが所定値以上になったことを迅速に検知できる。   In this heat pump type heating device, it is possible to quickly detect that the parameter has exceeded the predetermined value by determining whether or not the parameter is not less than the predetermined value every predetermined time.

第4の発明に係るヒートポンプ式加熱装置は、前記保護制御により前記パラメータが所定値未満になった場合、前記保護制御から前記通常制御に切り換える。   The heat pump heating device according to a fourth aspect of the invention switches from the protection control to the normal control when the parameter becomes less than a predetermined value by the protection control.

このヒートポンプ式加熱装置では、前記保護制御により前記パラメータが所定値未満になった場合、前記保護制御から前記通常制御に切り換えるので、適切な通常制御が可能である。   In the heat pump type heating device, when the parameter becomes less than a predetermined value due to the protection control, the protection control is switched to the normal control, so that appropriate normal control is possible.

第1の発明では、圧縮機周波数を所定値だけ垂下させたときに、保護制御時の電動弁の弁開度の減少量が、通常制御時の電動弁の弁開度の減少量より小さい。これにより、冷媒圧力が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁の弁開度の減少量を抑え、効率的に冷媒圧力を低下できる。従って、冷媒の高圧状態が維持されることを防止し、適切に高圧保護を行うことができる。また、入力電流が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁の弁開度の減少量を抑え、効率的に入力電流を低下できる。従って、入力電流が高くなる状態が維持されることを防止し、適切に圧縮機を保護できる。更に、吐出管温度が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁の弁開度の減少量を抑え、効率的に吐出管温度を低下できる。従って、吐出管温度が高くなる状態が維持されることを防止し、適切に圧縮機を保護できる。   In the first aspect of the invention, when the compressor frequency is lowered by a predetermined value, the amount of decrease in the valve opening of the motor operated valve during protection control is smaller than the amount of decrease in the valve opening of the motor operated valve during normal control. As a result, when the compressor frequency is lowered by a predetermined value during protection control performed when the refrigerant pressure is equal to or higher than a predetermined value, the amount of decrease in the valve opening of the motor-operated valve can be suppressed and the refrigerant pressure can be efficiently reduced. . Therefore, the high pressure state of the refrigerant can be prevented from being maintained, and high pressure protection can be appropriately performed. In addition, when the compressor frequency is lowered by a predetermined value during protection control performed when the input current is equal to or greater than a predetermined value, the amount of decrease in the valve opening of the motor-operated valve can be suppressed and the input current can be efficiently reduced. Therefore, the state where the input current becomes high can be prevented from being maintained, and the compressor can be appropriately protected. Furthermore, when the compressor frequency is lowered by a predetermined value during the protection control that is performed when the discharge pipe temperature is equal to or higher than a predetermined value, the amount of decrease in the valve opening of the motorized valve is suppressed and the discharge pipe temperature is efficiently reduced. it can. Therefore, it is possible to prevent the discharge pipe temperature from being kept high and to appropriately protect the compressor.

第2の発明では、パラメータを所定値未満になるまで確実に下げ、高圧状態、入力電流が高い状態および吐出管温度が高い状態のいずれかが維持されることを防止し、圧縮機を保護できる。   In the second aspect of the invention, the parameter can be reliably lowered until it becomes less than the predetermined value, and any of the high pressure state, the high input current state, and the high discharge pipe temperature state can be prevented and the compressor can be protected. .

第3の発明では、所定時間毎に、前記パラメータが所定値以上であるか否かを判断することで、パラメータが所定値以上になったことを迅速に検知できる。   In the third invention, it is possible to quickly detect that the parameter has become equal to or greater than the predetermined value by determining whether or not the parameter is equal to or greater than the predetermined value every predetermined time.

第4の発明では、前記保護制御により前記パラメータが所定値未満になった場合、前記保護制御から前記通常制御に切り換えるので、適切な通常制御が可能である。   In the fourth aspect of the invention, when the parameter becomes less than a predetermined value due to the protection control, the protection control is switched to the normal control, so that appropriate normal control is possible.

本発明の第1実施形態のヒートポンプ式加熱装置を示す構成図である。It is a lineblock diagram showing the heat pump type heating device of a 1st embodiment of the present invention. 図1のヒートポンプ式加熱装置に含まれる室外機の正面図である。It is a front view of the outdoor unit contained in the heat pump type heating apparatus of FIG. 図3(a)は、室外機を正面から見たときのヒートポンプ部および水ユニットの内部構成を説明する部分破断図であり、図3(b)は、室外機を上方から見たときの水ユニットの内部構成を説明する部分破断図であり、図3(c)は、室外機を右側面から見たときの給湯用水配管接続部および暖房用水配管接続部の配置を説明する部分破断図である。FIG. 3A is a partial cutaway view illustrating the internal configuration of the heat pump unit and the water unit when the outdoor unit is viewed from the front, and FIG. 3B is the water when the outdoor unit is viewed from above. FIG. 3C is a partial cutaway view for explaining the internal configuration of the unit, and FIG. 3C is a partial cutaway view for explaining the arrangement of the hot water supply water pipe connection portion and the heating water pipe connection portion when the outdoor unit is viewed from the right side surface. is there. 図4(a)および図4(b)は、給湯用熱交換器および暖房用熱交換器の斜視図および側面図である。4 (a) and 4 (b) are a perspective view and a side view of a hot water supply heat exchanger and a heating heat exchanger, respectively. 圧縮機を保護制御する制御部のブロック図。The block diagram of the control part which carries out protection control of the compressor. 圧縮機を保護制御するフローチャート。The flowchart which carries out protection control of the compressor. (a)は、圧力センサにより所定時間毎に検知された冷媒圧力を示すグラフ、(b)は保護制御が実行されることにより垂下された圧縮機の周波数を示すグラフ。(A) is a graph which shows the refrigerant | coolant pressure detected for every predetermined time with the pressure sensor, (b) is a graph which shows the frequency of the compressor drooped by performing protection control.

以下、本発明の実施形態を添付図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

室外機1(ヒートポンプ式加熱装置)は、図1および図2に示すように、ヒートポンプ部2と、ヒートポンプ部2の上方に配置された水ユニット部3とを有している。ヒートポンプ部2には、圧縮機10と、室外熱交換器(熱源側熱交換器)11と、電動弁12と、室外ファン13とが収容されている。水ユニット部3には、給湯用熱交換器(利用側第1熱交換器)16Aと、暖房用熱交換器(利用側第2熱交換器)16Bと、給水ポンプ17とが収容されている。   As shown in FIGS. 1 and 2, the outdoor unit 1 (heat pump heating device) includes a heat pump unit 2 and a water unit unit 3 disposed above the heat pump unit 2. The heat pump unit 2 accommodates a compressor 10, an outdoor heat exchanger (heat source side heat exchanger) 11, an electric valve 12, and an outdoor fan 13. The water unit 3 accommodates a hot water supply heat exchanger (use side first heat exchanger) 16A, a heating heat exchanger (use side second heat exchanger) 16B, and a water supply pump 17. .

室外機1の内部において、冷媒が循環する冷媒回路(ヒートポンプ)が構成されている。この冷媒回路は、主流路23と第1流路24と第2流路25と低圧流路26とを有する。   Inside the outdoor unit 1, a refrigerant circuit (heat pump) in which refrigerant circulates is configured. This refrigerant circuit has a main flow path 23, a first flow path 24, a second flow path 25, and a low pressure flow path 26.

主流路23には、圧縮機10、室外熱交換器11、および電動弁12が順に設けられている。室外熱交換器11の一端側に配置された圧縮機10の吐出側には、温度センサ40と圧力センサ42とが配置されている。温度センサ40は、圧縮機10の吐出管温度を検知する。圧力センサ42は、圧縮機10から吐出された冷媒の圧力を検知する。また圧縮機10には、圧縮機10の入力電流を検知する電流検知センサ43が配置されている。圧縮機10の吸入側には、室外熱交換器11の一端が接続され、室外熱交換器11の他端には、電動弁12の一端が接続されている。   In the main flow path 23, the compressor 10, the outdoor heat exchanger 11, and the motor operated valve 12 are provided in order. A temperature sensor 40 and a pressure sensor 42 are disposed on the discharge side of the compressor 10 disposed on one end side of the outdoor heat exchanger 11. The temperature sensor 40 detects the discharge pipe temperature of the compressor 10. The pressure sensor 42 detects the pressure of the refrigerant discharged from the compressor 10. The compressor 10 is provided with a current detection sensor 43 that detects the input current of the compressor 10. One end of the outdoor heat exchanger 11 is connected to the suction side of the compressor 10, and one end of the motor-operated valve 12 is connected to the other end of the outdoor heat exchanger 11.

第1流路24と第2流路25とは、圧縮機10の吐出側に配置された四路切換弁18において分岐し、室外熱交換器11の他端側に配置された合流部19において合流する。主流路23の合流部19と電動弁12との間には、冷媒回路と連通するサービスポート41が配設されている。サービスポート41は、例えばメンテナンス時に外部から冷媒回路に冷媒を注入したり、冷媒回路から外部に冷媒を排出するために使用される。   The first flow path 24 and the second flow path 25 branch at the four-way switching valve 18 disposed on the discharge side of the compressor 10, and in the junction 19 disposed on the other end side of the outdoor heat exchanger 11. Join. A service port 41 communicating with the refrigerant circuit is disposed between the junction 19 of the main flow path 23 and the motor operated valve 12. The service port 41 is used, for example, for injecting refrigerant from the outside into the refrigerant circuit during maintenance or discharging the refrigerant from the refrigerant circuit to the outside.

第1流路24は加熱運転時、主流路23の圧縮機10の下流側に設けられた四路切換弁18と、電動弁12の上流側に設けられた合流部19とを接続する。また第1流路24には、給湯用熱交換器16Aと、給湯用熱交換器16Aと合流部19との間に配置された第1逆止弁44とが設けられている。第1逆止弁44は、給湯用熱交換器16Aから合流部19への冷媒の流れを許容するが、合流部19から給湯用熱交換器16A(第1流路24)への冷媒の流れを遮断する。   During the heating operation, the first flow path 24 connects the four-way switching valve 18 provided on the downstream side of the compressor 10 in the main flow path 23 and the merging portion 19 provided on the upstream side of the motor operated valve 12. The first flow path 24 is provided with a hot water supply heat exchanger 16A, and a first check valve 44 disposed between the hot water supply heat exchanger 16A and the merging portion 19. The first check valve 44 allows the flow of the refrigerant from the hot water supply heat exchanger 16A to the merging portion 19, but the refrigerant flows from the merging portion 19 to the hot water supply heat exchanger 16A (first flow path 24). Shut off.

第2流路25は、四路切換弁18と合流部19とを第1流路24と並列に接続する。また第2流路25には、暖房用熱交換器16Bと、レシーバ46と、第2逆止弁48とが設けられている。第2逆止弁48は、暖房用熱交換器16Bから合流部19への冷媒の流れを許容するが、合流部19から暖房用熱交換器16B(第2流路25)への冷媒の流れを遮断する。   The second flow path 25 connects the four-way switching valve 18 and the junction 19 in parallel with the first flow path 24. The second flow path 25 is provided with a heating heat exchanger 16B, a receiver 46, and a second check valve 48. The second check valve 48 allows the refrigerant to flow from the heating heat exchanger 16B to the merging section 19, but the refrigerant flows from the merging section 19 to the heating heat exchanger 16B (second flow path 25). Shut off.

レシーバ46は冷媒を貯留する容器であり、第1流路24および第2流路25のうち、冷媒容量の小さい第2流路25の暖房用熱交換器16Bと第2逆止弁48との間に設けられている。   The receiver 46 is a container for storing a refrigerant. Of the first channel 24 and the second channel 25, the heating heat exchanger 16 </ b> B and the second check valve 48 in the second channel 25 having a small refrigerant capacity. It is provided in between.

第2逆止弁48は、暖房用熱交換器16Bと合流部19との間(暖房用熱交換器16Bの下流側かつ合流部19の上流側)に配置されている。   The second check valve 48 is disposed between the heating heat exchanger 16B and the merging portion 19 (downstream of the heating heat exchanger 16B and upstream of the merging portion 19).

低圧流路26は、四路切換弁18と、圧縮機10の吸入側とを接続している。圧縮機10の吸入側とは電動弁12と圧縮機10との間を指すが、低圧流路26は特に、圧縮機10と室外熱交換器11との間に接続されている。   The low-pressure channel 26 connects the four-way switching valve 18 and the suction side of the compressor 10. The suction side of the compressor 10 refers to between the motor-operated valve 12 and the compressor 10, but the low-pressure flow path 26 is particularly connected between the compressor 10 and the outdoor heat exchanger 11.

給水ポンプ17は、給湯タンク5から流出した給湯用温水を給湯用熱交換器16Aに供給し、給湯タンク5に供給される給湯用温水を循環させる。   The hot water supply pump 17 supplies the hot water for hot water flowing out of the hot water supply tank 5 to the hot water supply heat exchanger 16 </ b> A and circulates the hot water for hot water supplied to the hot water supply tank 5.

上述した冷媒回路では、圧縮機10から吐出された冷媒が第1流路24および第2流路25のいずれか一方の流路に流れて他方の流路には流れないように、四路切換弁18により後述する第1状態と第2状態とに切り換えられる。   In the refrigerant circuit described above, the four-way switching is performed so that the refrigerant discharged from the compressor 10 flows in one of the first flow path 24 and the second flow path 25 and does not flow in the other flow path. The valve 18 is switched between a first state and a second state described later.

第1状態では、圧縮機10から吐出された冷媒が第1流路24に流れて第2流路25に流れず、第2流路25が主流路23の低圧側に接続される。具体的には冷媒が流れる給湯用熱交換器16Aに関し、第1流路24の冷媒流入口には、四路切換弁18を介して圧縮機10の吐出側が接続され、第1流路24の冷媒流出口には、電動弁12が接続されている。冷媒が流れない第2流路25に関しては、一端部が四路切換弁18を介して低圧流路26に接続され、他方の端部が合流部19に接続されている。   In the first state, the refrigerant discharged from the compressor 10 flows to the first flow path 24 and does not flow to the second flow path 25, and the second flow path 25 is connected to the low pressure side of the main flow path 23. Specifically, regarding the hot water supply heat exchanger 16A through which the refrigerant flows, the discharge side of the compressor 10 is connected to the refrigerant inlet of the first flow path 24 via the four-way switching valve 18. An electric valve 12 is connected to the refrigerant outlet. Regarding the second flow path 25 through which the refrigerant does not flow, one end is connected to the low pressure flow path 26 via the four-way switching valve 18, and the other end is connected to the junction 19.

第1状態では図1中、実線で示すように、圧縮機10から吐出された冷媒が、四路切換弁18を介して第1流路24に流入する。そして、給湯用熱交換器16Aで水と熱交換をした後、合流部19を介して電動弁12に到達する。一方、第2流路25内の冷媒は四路切換弁18を介して低圧流路26に流入し、圧縮機10に吸入される。しかし第2流路25内の冷媒が圧縮機10に吸入された後は、第2逆止弁48があるため、第2逆止弁48より合流部側19にある冷媒が圧縮機10に吸入されることはない。   In the first state, as shown by a solid line in FIG. 1, the refrigerant discharged from the compressor 10 flows into the first flow path 24 via the four-way switching valve 18. And after exchanging heat with water in the hot water heat exchanger 16 </ b> A, the electric valve 12 is reached via the junction 19. On the other hand, the refrigerant in the second flow path 25 flows into the low pressure flow path 26 via the four-way switching valve 18 and is sucked into the compressor 10. However, after the refrigerant in the second flow path 25 is sucked into the compressor 10, there is the second check valve 48, so that the refrigerant on the merging portion side 19 from the second check valve 48 is sucked into the compressor 10. It will never be done.

第2状態では、圧縮機10から吐出された冷媒が第2流路25に流れて第1流路24に流れず、第1流路24が主流路23の低圧側に接続される。具体的には冷媒が流れる暖房用熱交換器16Bに関し、第2流路25の冷媒流入口には、四路切換弁18を介して圧縮機10の吐出側が接続され、第2流路25の冷媒流出口には、電動弁12が接続されている。冷媒が流れない第1流路24に関しては、一端部が四路切換弁18を介して低圧流路26に接続され、他方の端部が合流部19に接続されている。   In the second state, the refrigerant discharged from the compressor 10 flows into the second flow path 25 and does not flow into the first flow path 24, and the first flow path 24 is connected to the low pressure side of the main flow path 23. Specifically, with respect to the heating heat exchanger 16B through which the refrigerant flows, the refrigerant inlet of the second flow path 25 is connected to the discharge side of the compressor 10 via the four-way switching valve 18, and the second flow path 25 An electric valve 12 is connected to the refrigerant outlet. Regarding the first flow path 24 through which the refrigerant does not flow, one end is connected to the low pressure flow path 26 via the four-way switching valve 18, and the other end is connected to the junction 19.

第2状態では図1中、点線で示すように、圧縮機10から吐出された冷媒が、四路切換弁18を介して第2流路25に流入する。そして、暖房用熱交換器16Bで水と熱交換をした後、合流部19を介して電動弁12に到達する。一方、第1流路24内の冷媒は四路切換弁18を介して低圧流路26に流入し、圧縮機10に吸入される。しかし第1流路24内の冷媒が圧縮機10に吸入された後は、第1逆止弁44があるため、第1逆止弁44より合流部側19にある冷媒が圧縮機10に吸入されることはない。   In the second state, as shown by the dotted line in FIG. 1, the refrigerant discharged from the compressor 10 flows into the second flow path 25 via the four-way switching valve 18. And after exchanging heat with water with the heat exchanger 16B for heating, it arrives at the motor operated valve 12 through the junction part 19. FIG. On the other hand, the refrigerant in the first flow path 24 flows into the low pressure flow path 26 via the four-way switching valve 18 and is sucked into the compressor 10. However, after the refrigerant in the first flow path 24 is sucked into the compressor 10, the first check valve 44 is provided, so that the refrigerant on the merging portion side 19 from the first check valve 44 is sucked into the compressor 10. It will never be done.

水ユニット部3は、給湯用水配管接続部20と、暖房用水配管接続部21とを有している。給湯用水配管接続部20は、往き接続部20aと、戻り接続部20bとを有しており、暖房用水配管接続部21は、往き接続部21aと、戻り接続部21bとを有している。   The water unit 3 has a hot water supply water pipe connection part 20 and a heating water pipe connection part 21. The hot water supply water pipe connection portion 20 has an outward connection portion 20a and a return connection portion 20b, and the heating water pipe connection portion 21 has an outward connection portion 21a and a return connection portion 21b.

水ユニット部3の内部において、給湯用水配管接続部20の往き接続部20aは第1状態で、給湯用熱交換器16Aの水流出口に接続され、給湯用水配管接続部20の戻り接続部20bは、給湯用熱交換器16Aの水流入口に接続されている。   Inside the water unit 3, the forward connection 20a of the hot water supply water pipe connection 20 is connected to the water outlet of the hot water supply heat exchanger 16A in the first state, and the return connection 20b of the hot water supply water pipe connection 20 is The hot water supply heat exchanger 16A is connected to the water inlet.

給湯用熱交換器16Aでは、第1状態において圧縮機10の吐出側の四路切換弁18から流入した冷媒と、給湯用水配管接続部20の戻り接続部20bから流入した給湯用温水との間で熱交換されることによって、給湯用温水が加熱されて、その加熱された給湯用温水が、給湯用水配管接続部20の往き接続部20aに向かって流出する。   In the hot water supply heat exchanger 16A, between the refrigerant flowing in from the four-way switching valve 18 on the discharge side of the compressor 10 and the hot water supply hot water flowing in from the return connection portion 20b of the hot water supply water pipe connection portion 20 in the first state. As a result of the heat exchange, the hot water for hot water supply is heated, and the heated hot water for hot water supply flows out toward the forward connection portion 20 a of the hot water supply water pipe connection portion 20.

水ユニット部3の内部において、暖房用水配管接続部21の往き接続部21aは第2状態で、暖房用熱交換器16Bの水流出口に接続され、暖房用水配管接続部21の戻り接続部21bは、暖房用熱交換器16Bの水流入口に接続されている。   Inside the water unit 3, the forward connection 21 a of the heating water pipe connection 21 is connected to the water outlet of the heating heat exchanger 16 B in the second state, and the return connection 21 b of the heating water pipe connection 21 is , Connected to the water inlet of the heat exchanger 16B for heating.

暖房用熱交換器16Bでは、第2状態において圧縮機10の吐出側の四路切換弁18から流入した冷媒と、暖房用水配管接続部21の戻り接続部21bから流入した暖房用温水との間で熱交換されることによって、暖房用温水が加熱されて、その加熱された暖房用温水が、暖房用水配管接続部21の往き接続部21aに向かって流出する。本実施形態のヒートポンプ式加熱装置では、室外機1は、給湯用温水および暖房用温水のいずれか一方を加熱可能である。   In the heating heat exchanger 16B, in the second state, between the refrigerant that has flowed in from the four-way switching valve 18 on the discharge side of the compressor 10 and the hot water for heating that has flowed in from the return connection portion 21b of the heating water pipe connection portion 21. The hot water for heating is heated by the heat exchange at, and the heated hot water flows out toward the forward connection portion 21a of the heating water pipe connection portion 21. In the heat pump heating device of the present embodiment, the outdoor unit 1 can heat either hot water for hot water supply or hot water for heating.

本実施形態のヒートポンプ式加熱装置では、利用側装置4は、給湯タンク5と、ガスボイラ6と、床暖房パネル7と、ポンプ8とを有している。ガスボイラ6は、加熱器6aを有しており、床暖房パネル7と給湯端末9に接続されている。したがって、ガスボイラ6は、給湯タンク5から供給された給湯用温水を給湯端末9に供給される前に加熱したり、室外機1から供給された暖房用温水を床暖房パネル7に供給される前に加熱できる。ポンプ8は、床暖房パネル7から流出した暖房用温水を暖房用熱交換器16Bに供給し、床暖房パネル7に供給される暖房用温水を循環させるものである。   In the heat pump type heating device of the present embodiment, the use side device 4 includes a hot water supply tank 5, a gas boiler 6, a floor heating panel 7, and a pump 8. The gas boiler 6 has a heater 6 a and is connected to a floor heating panel 7 and a hot water supply terminal 9. Accordingly, the gas boiler 6 heats the hot water for hot water supplied from the hot water tank 5 before being supplied to the hot water supply terminal 9 or before the hot water for heating supplied from the outdoor unit 1 is supplied to the floor heating panel 7. Can be heated. The pump 8 supplies the heating hot water flowing out from the floor heating panel 7 to the heating heat exchanger 16 </ b> B, and circulates the heating hot water supplied to the floor heating panel 7.

図3(a)は、室外機1を正面から見たときのヒートポンプ部2および水ユニット部3の内部構成を説明する部分破断図であり、図3(b)は、室外機1を上方から見たときの水ユニット部3の内部構成を説明する部分破断図であり、図3(c)は、室外機1を右側面から見たときの給湯用水配管接続部20および暖房用水配管接続部21の配置を説明する部分破断図である。図3(a)に示すように、四路切換弁18はヒートポンプ部2に配置されている。   Fig.3 (a) is a partial fracture | rupture figure explaining the internal structure of the heat pump part 2 and the water unit part 3 when the outdoor unit 1 is seen from the front, FIG.3 (b) shows the outdoor unit 1 from upper direction. FIG. 3C is a partial cutaway view illustrating the internal configuration of the water unit section 3 when viewed, and FIG. 3C is a hot water supply water pipe connection section 20 and a heating water pipe connection section when the outdoor unit 1 is viewed from the right side surface. FIG. As shown in FIG. 3A, the four-way switching valve 18 is disposed in the heat pump unit 2.

図4(a)および図4(b)は、給湯用熱交換器16Aおよび暖房用熱交換器16Bの斜視図および側面図である。室外機1の水ユニット部3の内部において、給湯用熱交換器16Aおよび暖房用熱交換器16Bは、図4(a)に示すように、上下方向に積層された状態で配置されている。   FIG. 4A and FIG. 4B are a perspective view and a side view of a hot water supply heat exchanger 16A and a heating heat exchanger 16B, respectively. Inside the water unit 3 of the outdoor unit 1, the hot water supply heat exchanger 16A and the heating heat exchanger 16B are arranged in a vertically stacked state, as shown in FIG.

暖房用熱交換器16Bは、上下方向に2段に積層されるように巻回される暖房用水配管32を有しており、給湯用熱交換器16Aは、上下方向に2段に積層されるように巻回される給湯用水配管31を有している。この給湯用水配管31および暖房用水配管32は、平面視において、それぞれの段において略渦巻き状に巻回されている。   The heating heat exchanger 16B has a heating water pipe 32 wound so as to be stacked in two stages in the vertical direction, and the hot water heat exchanger 16A is stacked in two stages in the vertical direction. It has the hot water supply water piping 31 wound like this. The hot water supply water pipe 31 and the heating water pipe 32 are wound in a substantially spiral shape at each stage in a plan view.

給湯用熱交換器16Aの水流入口には、給水ポンプ17(給湯用水配管接続部20の戻り接続部20b)から延在する給湯用戻り連絡配管31aが接続され、給湯用熱交換器16Aの水流出口には、給湯用水配管接続部20の往き接続部20aから延在する給湯用往き連絡配管31bが接続されている。また、暖房用熱交換器16Bの水流入口には、暖房用水配管接続部21の戻り接続部21bから延在する暖房用戻り連絡配管32aが接続され、暖房用熱交換器16Bの水流出口には、暖房用水配管接続部21の往き接続部21aから延在する暖房用往き連絡配管32bが接続されている。   A hot water supply return connection pipe 31a extending from the water supply pump 17 (return connection part 20b of the hot water supply water pipe connection part 20) is connected to the water inlet of the hot water supply heat exchanger 16A, and the water flow of the hot water supply heat exchanger 16A is Connected to the outlet is a hot water supply connection pipe 31 b extending from the forward connection part 20 a of the hot water supply water pipe connection part 20. A heating return communication pipe 32a extending from the return connection part 21b of the heating water pipe connection part 21 is connected to the water inlet of the heating heat exchanger 16B, and the water outlet of the heating heat exchanger 16B is connected to the water outlet of the heating heat exchanger 16B. The heating outgoing communication pipe 32b extending from the outgoing connecting part 21a of the heating water pipe connecting part 21 is connected.

給湯用熱交換器16Aにおいて、給湯用水配管31の外周には、給湯用冷媒配管33が螺旋状に巻回され、暖房用熱交換器16Bにおいて、暖房用水配管32の外周には、暖房用冷媒配管34が螺旋状に巻回されている。給湯用熱交換器16Aの冷媒流入口には、圧縮機10の吐出側の分岐部18から延在する給湯用連絡配管33aが接続され、給湯用熱交換器16Aの冷媒流出口には、電動弁12から延在する給湯用連絡配管33bが接続されている。また、暖房用熱交換器16Bの冷媒流入口には、圧縮機10の吐出側の分岐部18から延在する暖房用連絡配管34aが接続され、暖房用熱交換器16Bの冷媒流出口には、電動弁12から延在する暖房用連絡配管34bが接続されている。   In the hot water supply heat exchanger 16A, a hot water supply refrigerant pipe 33 is spirally wound around the outer periphery of the hot water supply water pipe 31, and in the heating heat exchanger 16B, a heating refrigerant is provided around the outer periphery of the heating water pipe 32. The pipe 34 is wound spirally. The hot water supply heat exchanger 16A has a refrigerant inlet connected to a hot water supply connection pipe 33a extending from the discharge-side branching portion 18 of the compressor 10, and a hot water supply heat exchanger 16A has an electric outlet connected to the refrigerant outlet. A hot water supply connecting pipe 33b extending from the valve 12 is connected. Further, a heating communication pipe 34a extending from the branch portion 18 on the discharge side of the compressor 10 is connected to the refrigerant inlet of the heating heat exchanger 16B, and the refrigerant outlet of the heating heat exchanger 16B is connected to the refrigerant inlet of the heating heat exchanger 16B. The heating communication pipe 34b extending from the motor-operated valve 12 is connected.

本実施形態において、給湯用熱交換器16Aは、給湯用水配管31の外周に給湯用冷媒配管33が螺旋状に巻回された部分とし、暖房用熱交換器16Bは、暖房用水配管32の外周に暖房用冷媒配管34が螺旋状に巻回された部分とする。   In the present embodiment, the hot water supply heat exchanger 16A is a portion in which the hot water supply refrigerant pipe 33 is spirally wound around the outer periphery of the hot water supply water pipe 31, and the heating heat exchanger 16B is the outer periphery of the heating water pipe 32. It is assumed that the heating refrigerant pipe 34 is spirally wound.

給湯用熱交換器16Aの給湯用水配管31は、上下方向に2段に積層されるように巻回されたものであって、給湯用戻り連絡配管31aから、下側に配置された段にある配管に給湯用温水が流入するとともに、上側に配置された段にある配管から、給湯用往き連絡配管31bに給湯用温水が流出するように構成されている。暖房用熱交換器16Bの暖房用水配管32は、上下方向に2段に積層されるように巻回されたものであって、暖房用戻り連絡配管32aから、下側に配置された段にある配管に暖房用温水が流入するとともに、上側に配置された段にある配管から、暖房用往き連絡配管32bに暖房用温水が流出するように構成されている。   The hot water supply water pipe 31 of the hot water supply heat exchanger 16A is wound so as to be stacked in two stages in the vertical direction, and is located at a lower stage from the hot water return communication pipe 31a. Hot water for hot water supply flows into the pipe, and hot water for hot water supply flows out from the pipe located at the upper stage to the hot water supply connecting pipe 31b. The heating water pipe 32 of the heating heat exchanger 16B is wound so as to be stacked in two stages in the vertical direction, and is in a stage disposed on the lower side from the heating return communication pipe 32a. The warm water for heating flows into the pipe, and the warm water for heating flows out from the pipe located at the upper stage to the forward communication pipe 32b for heating.

このように構成された給湯用熱交換器16Aの給湯用水配管31と、暖房用熱交換器16Bの暖房用水配管32とは、水ユニット3の内部において積層されている。詳しくは、給湯用熱交換器16Aは、2段に積層されるように巻回され、最も上側に配置された段にある配管(外側配管)から給湯用温水が流出するように構成されており、暖房用熱交換器16Bは、給湯用熱交換器16Aの上方に積層されている(給湯用水配管31において最も上側に配置された段にある配管(外側配管)に近接するように、給湯用熱交換器16Aに積層されている。)   The hot water supply water pipe 31 of the hot water supply heat exchanger 16 </ b> A configured as described above and the heating water pipe 32 of the heating heat exchanger 16 </ b> B are stacked inside the water unit 3. Specifically, the hot water supply heat exchanger 16A is wound so as to be stacked in two stages, and is configured such that hot water for hot water supply flows out from a pipe (outer pipe) in the uppermost stage. The heating heat exchanger 16B is stacked above the hot water supply heat exchanger 16A (for hot water supply so as to be close to the pipe (outer pipe) at the uppermost stage in the hot water supply water pipe 31). (It is laminated on the heat exchanger 16A.)

給湯用熱交換器16Aには、水連絡配管(給湯用戻り連絡配管31aおよび給湯用往き連絡配管31b)と、冷媒連絡配管(給湯用連絡配管33aおよび給湯用連絡配管33b)とが接続されており、暖房用熱交換器16Bには、水連絡配管(暖房用戻り連絡配管32aおよび暖房用往き連絡配管32b)と、冷媒連絡配管(暖房用連絡配管34aおよび暖房用連絡配管34b)とが接続されている。   A water communication pipe (a hot water supply return communication pipe 31a and a hot water supply forward communication pipe 31b) and a refrigerant communication pipe (a hot water supply communication pipe 33a and a hot water supply communication pipe 33b) are connected to the hot water supply heat exchanger 16A. The heating heat exchanger 16B is connected to a water communication pipe (heating return communication pipe 32a and heating outgoing communication pipe 32b) and a refrigerant communication pipe (heating communication pipe 34a and heating communication pipe 34b). Has been.

図5に示すように、制御部56は、入力側が温度センサ40と圧力センサ42と電流検知センサ43と暖房出湯温度センサ50とに接続されている。制御部56の出力側は、圧縮機10と電動弁12とに接続されている。なお、暖房出湯温度センサ50は暖房用熱交換器16Bと往き接続部21aとの間に配置され、暖房用熱交換器16Bから出湯した水の温度を検知する。   As shown in FIG. 5, the control unit 56 is connected to the temperature sensor 40, the pressure sensor 42, the current detection sensor 43, and the heating hot water temperature sensor 50 on the input side. The output side of the control unit 56 is connected to the compressor 10 and the motor operated valve 12. In addition, the heating hot water temperature sensor 50 is arrange | positioned between the heat exchanger 16B for heating, and the outgoing connection part 21a, and detects the temperature of the hot water discharged from the heat exchanger 16B for heating.

上記構成を備えたヒートポンプ式加熱装置では、通常制御と保護制御とが行われる。   In the heat pump type heating apparatus having the above configuration, normal control and protection control are performed.

圧力センサ42で検知された冷媒圧力が所定値未満の場合に行われる通常制御について説明する。給湯運転時には圧縮機10の周波数は、外気温度によって決定される値になるように制御されて固定される。また電動弁12の開度は、圧縮機10の吐出管の温度センサ40で検知された吐出管温度が目標吐出管温度に一致するようにフィードバック制御される。この目標吐出管温度は凝縮温度、蒸発温度および周波数で決定される。暖房運転時には周波数は、暖房出湯温度センサ50により検知された暖房出湯温度が目標温度になるようにフィードバック制御される。電動弁12の開度は給湯運時と同様に、温度センサ40で検知された吐出管温度が目標吐出管温度に一致するようにフィードバック制御される。以上から通常制御において周波数は、暖房用熱交換器16Bの負荷および外気温度のうち、少なくとも一方に基づいて制御される。     The normal control performed when the refrigerant pressure detected by the pressure sensor 42 is less than a predetermined value will be described. During the hot water supply operation, the frequency of the compressor 10 is controlled and fixed to a value determined by the outside air temperature. The opening degree of the motor-operated valve 12 is feedback-controlled so that the discharge pipe temperature detected by the temperature sensor 40 of the discharge pipe of the compressor 10 matches the target discharge pipe temperature. This target discharge pipe temperature is determined by the condensation temperature, evaporation temperature and frequency. During the heating operation, the frequency is feedback controlled so that the heating hot water temperature detected by the heating hot water temperature sensor 50 becomes the target temperature. The opening degree of the motor-operated valve 12 is feedback-controlled so that the discharge pipe temperature detected by the temperature sensor 40 coincides with the target discharge pipe temperature, as in hot water supply operation. From the above, in the normal control, the frequency is controlled based on at least one of the load of the heating heat exchanger 16B and the outside air temperature.

この通常制御では周波数が増加するとき、<表>に示すように、冷媒圧力に関わらず周波数増加分だけ電動弁12を開く。具体的には周波数が4Hz増加すると、電動弁12を20パルス開くが、具体的な数値は限定されない。一方、周波数が減少(垂下)するとき、周波数の減少分だけ電動弁12を閉める。具体的には周波数が4Hz減少すると、電動弁12を20パルス閉じるが、具体的な数値は限定されない。   In this normal control, when the frequency increases, as shown in Table, the motor-operated valve 12 is opened by the amount corresponding to the increased frequency regardless of the refrigerant pressure. Specifically, when the frequency is increased by 4 Hz, the motor-operated valve 12 is opened by 20 pulses, but the specific numerical value is not limited. On the other hand, when the frequency decreases (hangs down), the motor-operated valve 12 is closed by the amount of the frequency decrease. Specifically, when the frequency decreases by 4 Hz, the motor-operated valve 12 is closed by 20 pulses, but the specific numerical value is not limited.

圧力センサ42で検知された冷媒圧力が所定値以上の場合に行われる保護制御では、周波数を減少(垂下)させるが、周波数の減少量に関わらず電動弁12の開度を維持する。なお保護制御では、暖房用熱交換器16Bの負荷および外気温度に関わらず周波数を垂下させる。   In the protection control performed when the refrigerant pressure detected by the pressure sensor 42 is equal to or higher than a predetermined value, the frequency is decreased (drooped), but the opening degree of the motor-operated valve 12 is maintained regardless of the frequency decrease amount. In the protection control, the frequency is dropped regardless of the load of the heating heat exchanger 16B and the outside air temperature.

<表>

Figure 2017075766
<Table>
Figure 2017075766

以下、パラメータとして冷媒圧力を用いた場合の圧縮機10の保護制御について詳述する。   Hereinafter, the protection control of the compressor 10 when the refrigerant pressure is used as a parameter will be described in detail.

図6は、通常制御時に冷媒圧力が所定値以上となり、保護制御が実行されるフローチャートを示す。図7(a)は、圧力センサ42により所定時間毎に検知された冷媒圧力を示す。図7(b)は、保護制御が実行されることにより垂下された圧縮機の周波数を示す。   FIG. 6 is a flowchart in which the protection control is executed when the refrigerant pressure becomes a predetermined value or more during normal control. FIG. 7A shows the refrigerant pressure detected every predetermined time by the pressure sensor 42. FIG.7 (b) shows the frequency of the compressor drooped by protection control being performed.

図6に示すように、ステップS1で制御部56が通常制御を開始する。このとき、図7(a)の時間t0に示すように、圧力センサ42により検知された圧縮機10の吐出側の冷媒圧力は所定値未満である。本実施形態の圧縮機10の設計圧力が4.17MPaであるのに対し、所定値は例えば4MPaであるが、これに限定されない。   As shown in FIG. 6, the control unit 56 starts normal control in step S1. At this time, as shown at time t0 in FIG. 7A, the refrigerant pressure on the discharge side of the compressor 10 detected by the pressure sensor 42 is less than a predetermined value. While the design pressure of the compressor 10 of the present embodiment is 4.17 MPa, the predetermined value is, for example, 4 MPa, but is not limited thereto.

ステップS2では、制御部56が所定時間を経過したか否かを判断する。所定時間は例えば20秒であるが、これに限定されない。所定時間を経過していればステップS3に進み、経過していなければ繰り返す。   In step S2, the control unit 56 determines whether or not a predetermined time has elapsed. The predetermined time is, for example, 20 seconds, but is not limited to this. If the predetermined time has elapsed, the process proceeds to step S3, and if not, the process is repeated.

ステップS3では、圧力センサ42により検知された冷媒圧力が所定値以上であるか否かを制御部56が判断する。ステップS2とステップS3とから、制御部56は所定時間毎に、冷媒圧力が所定値以上であるか否かを判断することが分かる。図7(a)の時間t2に示すように、冷媒圧力が所定値以上であれば、圧縮機10が高圧状態であると判断してステップS4に進む。図7(a)の時間t1に示すように、冷媒圧力が所定値未満であればステップS2に戻る。   In step S3, the control unit 56 determines whether or not the refrigerant pressure detected by the pressure sensor 42 is equal to or greater than a predetermined value. From step S2 and step S3, it is understood that the control unit 56 determines whether or not the refrigerant pressure is equal to or higher than a predetermined value every predetermined time. As shown at time t2 in FIG. 7A, if the refrigerant pressure is equal to or higher than a predetermined value, it is determined that the compressor 10 is in a high pressure state, and the process proceeds to step S4. As shown at time t1 in FIG. 7A, if the refrigerant pressure is less than the predetermined value, the process returns to step S2.

ステップS4では、制御部56が保護制御を開始する。保護制御ではステップS5で、制御部56が圧縮機10の周波数を垂下させる(図7(b)の時間t2参照)。これにより、冷媒圧力が低下する。垂下させる周波数は例えば4Hzであるが、これに限定されない。   In step S4, the control unit 56 starts protection control. In the protection control, in step S5, the control unit 56 droops the frequency of the compressor 10 (see time t2 in FIG. 7B). Thereby, a refrigerant pressure falls. The frequency of drooping is 4 Hz, for example, but is not limited to this.

ステップS6では、制御部56が電動弁12の開度を維持するので、周波数の垂下に伴って効率的に冷媒圧力を低下できる。なお、電動弁12の開度を維持することは、圧縮機周波数を所定値だけ垂下させたときに、保護制御時の電動弁12の弁開度の減少量が、通常制御時の電動弁12の弁開度の減少量より小さいことに含まれる。具体的には本実施形態では、例えば圧縮機周波数を1Hzだけ垂下させたときに、保護制御時では電動弁12の弁開度の減少量はゼロである(開度を維持する)のに対し、通常制御時では電動弁12を2パルス分だけ閉める。従って、保護制御時の電動弁12の弁開度の減少量が、通常制御時の電動弁12の弁開度の減少量より小さい。   In step S6, since the control part 56 maintains the opening degree of the motor-operated valve 12, it can reduce a refrigerant | coolant pressure efficiently with the droop of a frequency. Note that maintaining the opening degree of the motor-operated valve 12 means that when the compressor frequency is lowered by a predetermined value, the amount of decrease in the valve opening degree of the motor-operated valve 12 at the time of protection control is the motor valve 12 at the time of normal control. It is included in that it is smaller than the amount of decrease in the valve opening. Specifically, in the present embodiment, for example, when the compressor frequency is lowered by 1 Hz, the reduction amount of the valve opening of the motor-operated valve 12 is zero (maintains the opening) at the time of protection control. During normal control, the motor-operated valve 12 is closed for two pulses. Therefore, the amount of decrease in the valve opening of the motor operated valve 12 during the protection control is smaller than the amount of decrease in the valve opening of the motor operated valve 12 during the normal control.

続くステップS7では制御部56が再度、所定時間を経過したか否かを判断する。所定時間を経過していればステップS8に進み、経過していなければ繰り返す。   In subsequent step S7, the control unit 56 determines again whether or not a predetermined time has elapsed. If the predetermined time has elapsed, the process proceeds to step S8, and if not, the process is repeated.

そしてステップS8では、圧力センサ42により検知された冷媒圧力が所定値以上であるか否かを再度、制御部56が判断する。図7(a)の時間t4に示すように、冷媒圧力が所定値未満であれば、圧縮機10の高圧状態が解消されたと判断して保護制御を終了する。図7(a)の時間t3に示すように、冷媒圧力が所定値以上であればステップS5に戻り、冷媒圧力が所定値未満になるまで保護制御を繰り返して周波数を垂下させる。   In step S8, the control unit 56 determines again whether or not the refrigerant pressure detected by the pressure sensor 42 is equal to or higher than a predetermined value. As shown at time t4 in FIG. 7A, if the refrigerant pressure is less than the predetermined value, it is determined that the high pressure state of the compressor 10 has been eliminated, and the protection control is terminated. As shown at time t3 in FIG. 7A, if the refrigerant pressure is equal to or higher than the predetermined value, the process returns to step S5, and the protection control is repeated until the refrigerant pressure becomes lower than the predetermined value, and the frequency is dropped.

保護制御により冷媒圧力が所定値未満となった後、保護制御を終了して通常制御に切り換える。通常制御が実行されている場合、制御部56が圧縮機周波数を増加させたときに電動弁12の弁開度を大きくし、適切な通常制御を可能としている。   After the refrigerant pressure becomes less than a predetermined value by the protection control, the protection control is terminated and the control is switched to the normal control. When normal control is being executed, when the control unit 56 increases the compressor frequency, the valve opening degree of the motor-operated valve 12 is increased to enable appropriate normal control.

[本実施形態のヒートポンプ式加熱装置の特徴]
本実施形態のヒートポンプ式加熱装置には以下の特徴がある。
[Characteristics of the heat pump type heating apparatus of this embodiment]
The heat pump type heating device of the present embodiment has the following features.

本発明のヒートポンプ式加熱装置では、圧縮機周波数を所定値だけ垂下させたときに、保護制御時の電動弁12の弁開度の減少量が、通常制御時の電動弁12の弁開度の減少量より小さい。これにより、冷媒圧力が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁12の弁開度の減少量を抑え、効率的に冷媒圧力を低下できる。従って、冷媒の高圧状態が維持されることを防止し、適切に高圧保護を行うことができる。   In the heat pump type heating apparatus of the present invention, when the compressor frequency is lowered by a predetermined value, the amount of decrease in the valve opening of the motor-operated valve 12 during the protection control is equal to the valve opening of the motor-operated valve 12 during the normal control. Less than the decrease. As a result, when the compressor frequency is lowered by a predetermined value during the protection control performed when the refrigerant pressure is equal to or higher than a predetermined value, the amount of decrease in the valve opening of the motor-operated valve 12 is suppressed and the refrigerant pressure is efficiently reduced. it can. Therefore, the high pressure state of the refrigerant can be prevented from being maintained, and high pressure protection can be appropriately performed.

本発明のヒートポンプ式加熱装置では、保護制御を繰り返すことで、冷媒圧力を所定値未満になるまで確実に下げ、高圧状態が高い状態が維持されることを防止し、圧縮機を保護できる。   In the heat pump type heating device of the present invention, by repeating the protection control, the refrigerant pressure is surely lowered until it becomes less than a predetermined value, the high pressure state is prevented from being maintained high, and the compressor can be protected.

本発明のヒートポンプ式加熱装置では、所定時間毎に冷媒圧力を検知することで、パラメータが所定値以上になったことを迅速に検知できる。   In the heat pump type heating device of the present invention, it is possible to quickly detect that the parameter has become equal to or greater than a predetermined value by detecting the refrigerant pressure every predetermined time.

本発明のヒートポンプ式加熱装置では、保護制御により冷媒圧力が所定値未満になった場合、保護制御から通常制御に切り換えるので、適切な通常制御が可能である。   In the heat pump type heating device of the present invention, when the refrigerant pressure becomes less than a predetermined value due to the protection control, the protection control is switched to the normal control, so that appropriate normal control is possible.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

前記実施形態では、ステップS6で制御部56が電動弁12の開度を維持した。しかしこれに限定されず、圧縮機周波数を所定値だけ垂下させたときに、保護制御時の電動弁12の弁開度の減少量が、通常制御時の電動弁12の弁開度の減少量より小さければ、同様の効果を得ることができる。   In the said embodiment, the control part 56 maintained the opening degree of the motor operated valve 12 by step S6. However, the present invention is not limited to this, and when the compressor frequency is lowered by a predetermined value, the amount of decrease in the valve opening of the motor operated valve 12 during the protection control is the amount of decrease in the valve opening of the motor operated valve 12 during the normal control. If it is smaller, the same effect can be obtained.

前記実施形態では冷媒圧力を圧力センサ42で検知したが、これに限定されない。例えば利用側熱交換器16A,16Bの凝縮温度を検知し、この凝縮温度から冷媒圧力を推測してもよい。同様に外気温度を検知し、この外気温度から冷媒圧力を推測してもよい。また凝縮温度および外気温度に限定されず、冷媒圧力を推測する他の手法を用いてもよい。   Although the refrigerant pressure is detected by the pressure sensor 42 in the embodiment, the present invention is not limited to this. For example, the condensation temperature of the use side heat exchangers 16A and 16B may be detected, and the refrigerant pressure may be estimated from the condensation temperature. Similarly, the outside air temperature may be detected, and the refrigerant pressure may be estimated from this outside air temperature. Further, the method is not limited to the condensation temperature and the outside air temperature, and other methods for estimating the refrigerant pressure may be used.

前記実施形態では、パラメータの1つとして冷媒圧力を検知して圧縮機10を通常制御から保護制御に変更した。しかしこれに限定されず、通常制御では冷媒圧力に代えて、電流検知センサ43で検知された圧縮機10の入力電流および温度センサ40で検知された圧縮機10の吐出管温度のいずれかのパラメータが所定値未満の場合に、給湯用熱交換器16Aおよび暖房用熱交換器16Bの負荷に基づいて圧縮機周波数および電動弁開度を増減させてもよい。また保護制御では、前述したいずれかのパラメータが所定値以上の場合に圧縮機周波数を垂下させ、圧縮機10を保護してもよい。   In the embodiment, the refrigerant pressure is detected as one of the parameters, and the compressor 10 is changed from the normal control to the protection control. However, the present invention is not limited to this, and in normal control, any one parameter of the input current of the compressor 10 detected by the current detection sensor 43 and the discharge pipe temperature of the compressor 10 detected by the temperature sensor 40 instead of the refrigerant pressure. May be increased or decreased based on the load of the hot water supply heat exchanger 16A and the heating heat exchanger 16B. In the protection control, the compressor frequency may be lowered to protect the compressor 10 when any of the parameters described above is equal to or greater than a predetermined value.

圧縮機10の入力電流が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁12の弁開度の減少量を抑えることで、効率的に入力電流を低下できる。従って、入力電流が高くなる状態が維持されることを防止し、適切に圧縮機10を保護できる。また保護制御を繰り返すことで、入力電流を所定値未満になるまで確実に下げ、入力電流が高い状態が維持されることを防止し、圧縮機10を保護できる。   When the compressor frequency is drooped by a predetermined value during protection control performed when the input current of the compressor 10 is equal to or higher than a predetermined value, input is efficiently performed by suppressing the decrease amount of the valve opening of the motor-operated valve 12. The current can be reduced. Therefore, it is possible to prevent the state where the input current is increased from being maintained and to appropriately protect the compressor 10. Further, by repeating the protection control, the input current can be reliably reduced until it becomes less than a predetermined value, the state where the input current is high can be prevented, and the compressor 10 can be protected.

圧縮機10の吐出管温度が所定値以上の場合に行われる保護制御時に圧縮機周波数を所定値だけ垂下させたときに、電動弁12の弁開度の減少量を抑えることで、効率的に吐出管温度を低下できる。従って、吐出管温度が高くなる状態が維持されることを防止し、適切に圧縮機10を保護できる。また保護制御を繰り返すことで、吐出管温度を所定値未満になるまで確実に下げ、吐出管温度が高い状態が維持されることを防止し、圧縮機10を保護できる。   When the compressor frequency is lowered by a predetermined value during protection control performed when the discharge pipe temperature of the compressor 10 is equal to or higher than a predetermined value, the reduction amount of the valve opening of the motor-operated valve 12 is suppressed efficiently. The discharge pipe temperature can be lowered. Therefore, the state where the discharge pipe temperature becomes high can be prevented from being maintained, and the compressor 10 can be appropriately protected. Further, by repeating the protection control, the discharge pipe temperature is surely lowered until it becomes less than a predetermined value, the state where the discharge pipe temperature is high is prevented from being maintained, and the compressor 10 can be protected.

1 室外機(ヒートポンプ式加熱装置)
10 圧縮機
11 室外熱交換器(熱源側熱交換器)
12 電動弁
16A 給湯用熱交換器(利用側第1熱交換器)
16B 暖房用熱交換器(利用側第2熱交換器)
1 Outdoor unit (heat pump type heating device)
10 Compressor 11 Outdoor heat exchanger (heat source side heat exchanger)
12 Motorized valve 16A Hot water supply heat exchanger (user side first heat exchanger)
16B Heat exchanger for heating (second heat exchanger on the use side)

Claims (4)

圧縮機と、熱源側熱交換器と、電動弁と、利用側熱交換器と有する冷媒回路を備えたヒートポンプ式加熱装置において、
冷媒圧力、前記圧縮機の入力電流および前記圧縮機の吐出管温度のいずれかのパラメータが所定値以上の場合に圧縮機周波数を垂下させ、前記圧縮機を保護する保護制御と、
前記パラメータが所定値未満の場合に前記利用側熱交換器の負荷、および/または外気温度に基づいて圧縮機周波数および電動弁開度を増減させる通常制御と、が行われ、
圧縮機周波数を所定値だけ垂下させたときに、前記保護制御時の前記電動弁の弁開度の減少量が、前記通常制御時の前記電動弁の弁開度の減少量より小さいことを特徴とするヒートポンプ式加熱装置。
In a heat pump heating device including a compressor, a heat source side heat exchanger, an electric valve, and a refrigerant circuit having a use side heat exchanger,
Protection control for drooping the compressor frequency and protecting the compressor when any one of the refrigerant pressure, the compressor input current, and the compressor discharge pipe temperature is equal to or higher than a predetermined value;
When the parameter is less than a predetermined value, normal control for increasing or decreasing the compressor frequency and the motor valve opening based on the load of the use side heat exchanger and / or the outside air temperature is performed,
When the compressor frequency is lowered by a predetermined value, a reduction amount of the valve opening of the motor-operated valve during the protection control is smaller than a reduction amount of the valve opening of the motor-operated valve during the normal control. Heat pump type heating device.
前記保護制御により、前記パラメータが所定値以上の場合に圧縮機周波数を垂下させたときに、前記パラメータが所定値未満になるまで圧縮機周波数を垂下させることを特徴とする請求項1に記載のヒートポンプ式加熱装置。   2. The compressor frequency according to claim 1, wherein when the compressor frequency is lowered when the parameter is greater than or equal to a predetermined value, the compressor frequency is lowered until the parameter becomes less than the predetermined value by the protection control. Heat pump type heating device. 所定時間毎に、前記パラメータが所定値以上であるか否かを判断することを特徴とする請求項1又は2に記載のヒートポンプ式加熱装置。   The heat pump heating device according to claim 1 or 2, wherein it is determined whether or not the parameter is equal to or greater than a predetermined value every predetermined time. 前記保護制御により前記パラメータが所定値未満になった場合、前記保護制御から前記通常制御に切り換えることを特徴とする請求項1から3のいずれかに記載のヒートポンプ式加熱装置。   The heat pump heating device according to any one of claims 1 to 3, wherein when the parameter becomes less than a predetermined value due to the protection control, the protection control is switched to the normal control.
JP2015205061A 2015-10-16 2015-10-16 Heat pump type heating device Active JP6332226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205061A JP6332226B2 (en) 2015-10-16 2015-10-16 Heat pump type heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205061A JP6332226B2 (en) 2015-10-16 2015-10-16 Heat pump type heating device

Publications (2)

Publication Number Publication Date
JP2017075766A true JP2017075766A (en) 2017-04-20
JP6332226B2 JP6332226B2 (en) 2018-05-30

Family

ID=58550204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205061A Active JP6332226B2 (en) 2015-10-16 2015-10-16 Heat pump type heating device

Country Status (1)

Country Link
JP (1) JP6332226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007026A (en) * 2017-11-20 2018-05-08 美意(浙江)空调设备有限公司 A kind of temperature logic initialization system
CN114234447A (en) * 2021-12-23 2022-03-25 广东纽恩泰新能源科技发展有限公司 Low-temperature variable-frequency heat pump compressor frequency control method and device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123165U (en) * 1988-02-16 1989-08-22
JPH0996452A (en) * 1995-09-29 1997-04-08 Toshiba Corp Air conditioner
JPH10246516A (en) * 1997-02-28 1998-09-14 Fujitsu General Ltd Control for air conditioner
JP2001208434A (en) * 2000-01-31 2001-08-03 Matsushita Electric Ind Co Ltd Heat pump hot water supplier
JP2002031419A (en) * 2000-07-14 2002-01-31 Daikin Ind Ltd Refrigerating apparatus
JP2002139258A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Method of operating heat pump type hot water supplier, and heat pump type hot water supplier
JP2003028538A (en) * 2001-07-12 2003-01-29 Sanyo Electric Co Ltd Heat pump water heater and method for controlling the same
JP2004361046A (en) * 2003-06-06 2004-12-24 Denso Corp Heat pump hot water supply apparatus
JP2005098530A (en) * 2003-09-22 2005-04-14 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008224156A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Heat pump type water heater
JP2010060193A (en) * 2008-09-03 2010-03-18 Corona Corp Heat pump type hot water supply device
JP2011052873A (en) * 2009-08-31 2011-03-17 Fujitsu General Ltd Heat pump cycle device
JP2014081196A (en) * 2014-02-12 2014-05-08 Mitsubishi Electric Corp Refrigeration cycle device, and refrigeration cycle control method
JP2015145742A (en) * 2014-01-31 2015-08-13 ダイキン工業株式会社 Refrigeration device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123165U (en) * 1988-02-16 1989-08-22
JPH0996452A (en) * 1995-09-29 1997-04-08 Toshiba Corp Air conditioner
JPH10246516A (en) * 1997-02-28 1998-09-14 Fujitsu General Ltd Control for air conditioner
JP2001208434A (en) * 2000-01-31 2001-08-03 Matsushita Electric Ind Co Ltd Heat pump hot water supplier
JP2002031419A (en) * 2000-07-14 2002-01-31 Daikin Ind Ltd Refrigerating apparatus
JP2002139258A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Method of operating heat pump type hot water supplier, and heat pump type hot water supplier
JP2003028538A (en) * 2001-07-12 2003-01-29 Sanyo Electric Co Ltd Heat pump water heater and method for controlling the same
JP2004361046A (en) * 2003-06-06 2004-12-24 Denso Corp Heat pump hot water supply apparatus
JP2005098530A (en) * 2003-09-22 2005-04-14 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008224156A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Heat pump type water heater
JP2010060193A (en) * 2008-09-03 2010-03-18 Corona Corp Heat pump type hot water supply device
JP2011052873A (en) * 2009-08-31 2011-03-17 Fujitsu General Ltd Heat pump cycle device
JP2015145742A (en) * 2014-01-31 2015-08-13 ダイキン工業株式会社 Refrigeration device
JP2014081196A (en) * 2014-02-12 2014-05-08 Mitsubishi Electric Corp Refrigeration cycle device, and refrigeration cycle control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007026A (en) * 2017-11-20 2018-05-08 美意(浙江)空调设备有限公司 A kind of temperature logic initialization system
CN114234447A (en) * 2021-12-23 2022-03-25 广东纽恩泰新能源科技发展有限公司 Low-temperature variable-frequency heat pump compressor frequency control method and device

Also Published As

Publication number Publication date
JP6332226B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6149912B2 (en) Heat pump type heating device
KR101805334B1 (en) Heat source device
JP5882120B2 (en) Hot water storage water heater
EP2685177B1 (en) Heat pump-type water heater
JP2016079894A (en) Heat recovery system
JP6332226B2 (en) Heat pump type heating device
JP6330779B2 (en) Heat pump type heating device
JP2015148387A (en) Air conditioning device
JP6198796B2 (en) Heat pump type heating device
JP2007113897A (en) Heat pump type water heater
JP2012052736A (en) Hot water supply system and method of controlling heat pump device
JP5861577B2 (en) Water heater
KR101810769B1 (en) Hot water supply system
CN109073273B (en) Hot water supply system
JP6330778B2 (en) Heat pump type heating device
KR20170018890A (en) Heat source machine and heat source device
KR101567185B1 (en) Heating system
JP2016138702A (en) Heat pump type water heater
JP2010054068A (en) Heating system
WO2018100729A1 (en) Refrigeration cycle device
JP6208633B2 (en) Heat pump water heater
JP4715908B2 (en) Heat pump water heater
WO2016075741A1 (en) Fluid circulation system
JP2015148426A (en) Heat pump type heating device
JP6094302B2 (en) Hot water system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R151 Written notification of patent or utility model registration

Ref document number: 6332226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151