JP2017075656A - Storage tank system using hydrogen storage alloy - Google Patents

Storage tank system using hydrogen storage alloy Download PDF

Info

Publication number
JP2017075656A
JP2017075656A JP2015203944A JP2015203944A JP2017075656A JP 2017075656 A JP2017075656 A JP 2017075656A JP 2015203944 A JP2015203944 A JP 2015203944A JP 2015203944 A JP2015203944 A JP 2015203944A JP 2017075656 A JP2017075656 A JP 2017075656A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
storage alloy
storage
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015203944A
Other languages
Japanese (ja)
Inventor
吉田 純
Jun Yoshida
純 吉田
任行 金子
Takayuki Kaneko
任行 金子
伊藤 幸香
Yukitaka Itou
幸香 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Mechanics Co Ltd
Original Assignee
Hitachi Plant Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Mechanics Co Ltd filed Critical Hitachi Plant Mechanics Co Ltd
Priority to JP2015203944A priority Critical patent/JP2017075656A/en
Publication of JP2017075656A publication Critical patent/JP2017075656A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

PROBLEM TO BE SOLVED: To provide a storage tank system using a hydrogen storage alloy and enabled to increase the storage amount of hydrogen gases and to supply hydrogen gases stably to a demand-side without enlarging facilities.SOLUTION: In a storage tank system in a hydrogen gas supply pipe line for supplying hydrogen gases to a device 4 for consuming hydrogen gases, a hydrogen gas reserving bath 14 charged with a hydrogen storage alloy is arranged in a hydrogen gas reservation bath 5 connected to a hydrogen gas supply pipeline 1 for reserving hydrogen gas transiently.SELECTED DRAWING: Figure 2

Description

本発明は、水素ガス供給ラインにおける水素ガスを貯留する貯槽システムにおいて、水素ガス貯留槽に水素ガスを貯留するようにした貯槽システムに関し、特に、この貯槽システムに貯槽水素吸蔵合金を用いるようにした貯槽システムに関するものである。   The present invention relates to a storage tank system for storing hydrogen gas in a hydrogen gas supply line, and more particularly to a storage tank system configured to store hydrogen gas in a hydrogen gas storage tank, and in particular, a storage tank hydrogen storage alloy is used in the storage tank system. It relates to a storage system.

従来、水素ガス供給ラインにおける水素ガスを貯留する貯槽システムにおいては、水素ガス供給ラインに水素ガスを圧縮して貯留する水素ガス貯留槽を設け、圧力変動の吸収やバックアップ用として用いるようにしている。
また、バックアップ用には、液体水素ガス貯留槽を組み込む場合もある。
Conventionally, in a storage tank system for storing hydrogen gas in a hydrogen gas supply line, a hydrogen gas storage tank for compressing and storing hydrogen gas is provided in the hydrogen gas supply line and used for absorbing pressure fluctuations or for backup. .
Further, a liquid hydrogen gas storage tank may be incorporated for backup.

ところで、近年、水素ガスを貯留するために、水素吸蔵合金を用いた技術が開発されてきている。
そして、水素吸蔵合金からの水素放出量は、使用する水素吸蔵合金特有の圧力と温度の関数として平衡吸蔵量(wt%)が変化していくため、ある一定水素量を連続して放出させるために、水素吸蔵合金を加熱して温度を維持する方策が取られている。
By the way, in recent years, in order to store hydrogen gas, a technique using a hydrogen storage alloy has been developed.
The amount of hydrogen released from the hydrogen storage alloy is such that the equilibrium storage amount (wt%) changes as a function of the pressure and temperature peculiar to the hydrogen storage alloy used, so that a certain amount of hydrogen is continuously released. In addition, measures are taken to maintain the temperature by heating the hydrogen storage alloy.

上記従来の水素ガス供給ラインにおける水素ガスを貯留する貯槽システムにおいては、以下の改善すべき課題があった。
1)水素ガスラインの貯槽に、水素ガスを圧縮して貯留する水素ガス貯留槽を備えた場合、水素のガス密度自体が非常に小さいため、かなりの高圧に圧縮するか、容積自体を増やさねばならない。すなわち、小型の水素ガスタンクで、保持圧力が5MPa程度であれば、常温でわずかな量の水素ガスしか貯留できない。
2)1)の問題を改善するために、水素吸蔵合金を用いた場合、一旦水素を吸蔵保持した状態から、水素吸蔵合金からその水素吸蔵合金特有の温度圧力で決まる水素吸蔵平衡量(wt%)が降下することで水素ガスが放出されるが、この放出反応が吸熱反応のため、水素吸蔵合金自体の温度が下がる。そして、水素吸蔵合金の温度が下がると、それに伴い水素吸蔵平衡量が上昇し、十分な水素ガスの放出速度が得られない。
3)2)の課題に対応するため、水素吸蔵合金全体を加熱して元の平衡温度に近づける方策が必要になるが、水素吸蔵合金への伝熱が粉体への伝熱となるため、時間遅れが生じやすく、制御がハンチングしやすい。
4)さらに、需要側からは貯槽システムに対して一定の共有流量を要求されるが、貯槽システムの1次圧が刻々と変化していくため、単純なTIC制御では限界がある。
The storage tank system for storing hydrogen gas in the conventional hydrogen gas supply line has the following problems to be improved.
1) When the hydrogen gas storage tank is equipped with a hydrogen gas storage tank that compresses and stores hydrogen gas, the hydrogen gas density itself is very small, so it must be compressed to a considerably high pressure or the volume itself must be increased. Don't be. That is, if a holding pressure is about 5 MPa in a small hydrogen gas tank, only a small amount of hydrogen gas can be stored at room temperature.
2) In order to improve the problem of 1), when a hydrogen storage alloy is used, the hydrogen storage equilibrium amount (wt%) determined from the hydrogen storage alloy to the temperature pressure peculiar to the hydrogen storage alloy from the state where the hydrogen is stored once. ) Falls, hydrogen gas is released, but since this release reaction is an endothermic reaction, the temperature of the hydrogen storage alloy itself decreases. When the temperature of the hydrogen storage alloy is lowered, the hydrogen storage equilibrium amount is increased accordingly, and a sufficient hydrogen gas release rate cannot be obtained.
3) In order to cope with the problem of 2), it is necessary to take measures to heat the entire hydrogen storage alloy and bring it closer to the original equilibrium temperature. Time delay is likely to occur and control is likely to be hunting.
4) Furthermore, the demand side requires a certain shared flow rate for the storage tank system, but since the primary pressure of the storage tank system changes every moment, there is a limit in simple TIC control.

本発明は、上記従来の水素ガス供給ラインにおける水素ガスを貯留する貯槽システムの有する問題点に鑑み、設備を大型化することなく、水素ガスの貯留量を増大させることができるようにするとともに、需要側に対して水素ガスを安定して供給することができるようにした水素吸蔵合金を用いた貯槽システムを提供することを目的とする。   In view of the problems of the storage tank system for storing hydrogen gas in the conventional hydrogen gas supply line, the present invention allows the storage amount of hydrogen gas to be increased without increasing the size of the facility, It is an object of the present invention to provide a storage tank system using a hydrogen storage alloy capable of stably supplying hydrogen gas to the demand side.

上記目的を達成するため、本発明の水素吸蔵合金を用いた貯槽システムは、水素ガスを消費する機器に水素ガスを供給する水素ガス供給パイプラインにおける貯槽システムにおいて、水素ガス供給パイプラインに接続され、一時的に水素ガスを貯留する水素ガス貯留槽内に、水素吸蔵合金を充填した水素吸蔵合金槽を配置するようにしたことを特徴とする。   To achieve the above object, a storage tank system using a hydrogen storage alloy according to the present invention is connected to a hydrogen gas supply pipeline in a storage system in a hydrogen gas supply pipeline that supplies hydrogen gas to a device that consumes hydrogen gas. A hydrogen storage alloy tank filled with a hydrogen storage alloy is disposed in a hydrogen gas storage tank that temporarily stores hydrogen gas.

この場合において、貯槽システムの2次側に対して一定流量に制御可能な自動弁を介して接続され、2次側の圧力変化に応じ水素ガス貯留槽内の水素を2次側に自動連続供給可能なライン構成と制御構成を有するようにすることができる。   In this case, it is connected to the secondary side of the storage tank system via an automatic valve that can be controlled at a constant flow rate, and hydrogen in the hydrogen gas storage tank is automatically and continuously supplied to the secondary side in accordance with the pressure change on the secondary side. It is possible to have possible line configurations and control configurations.

また、水素吸蔵合金からの水素の放出ガス量の制御に水素吸蔵合金槽の温度を検知し、吸蔵された水素の放出による反応吸熱による水素吸蔵合金槽の温度降下を抑制するための温度制御機構を有するようにすることができる。   In addition, the temperature control mechanism for detecting the temperature of the hydrogen storage alloy tank to control the amount of hydrogen released from the hydrogen storage alloy and suppressing the temperature drop of the hydrogen storage alloy tank due to the reaction endotherm due to the release of the stored hydrogen It can be made to have.

また、水素吸蔵合金からの水素の放出ガス量の制御に水素吸蔵合金槽の温度及び圧力を検知し、放出水素平衡点を自動演算して、水素吸蔵合金槽の温度を制御する制御機構を有するようにすることができる。   In addition, it has a control mechanism that controls the temperature of the hydrogen storage alloy tank by detecting the temperature and pressure of the hydrogen storage alloy tank and automatically calculating the released hydrogen equilibrium point to control the amount of hydrogen released from the hydrogen storage alloy. Can be.

本発明の水素吸蔵合金を用いた貯槽システムによれば、水素ガスを消費する機器に水素ガスを供給する水素ガス供給パイプラインにおける貯槽システムにおいて、水素ガス供給パイプラインに接続され、一時的に水素ガスを貯留する水素ガス貯留槽内に、水素吸蔵合金を充填した水素吸蔵合金槽を配置することにより、水素ガスの貯留量を増大させることができる。   According to the storage tank system using the hydrogen storage alloy of the present invention, in the storage system in the hydrogen gas supply pipeline that supplies hydrogen gas to the device that consumes hydrogen gas, the hydrogen storage alloy system is temporarily connected to the hydrogen gas supply pipeline. By disposing a hydrogen storage alloy tank filled with a hydrogen storage alloy in a hydrogen gas storage tank that stores gas, the amount of hydrogen gas stored can be increased.

また、貯槽システムの2次側に対して一定流量に制御可能な自動弁を介して接続され、2次側の圧力変化に応じ水素ガス貯留槽内の水素を2次側に自動連続供給可能なライン構成と制御構成を有するようにしたり、水素吸蔵合金からの水素の放出ガス量の制御に水素吸蔵合金槽の温度を検知し、吸蔵された水素の放出による反応吸熱による水素吸蔵合金槽の温度降下を抑制するための温度制御機構を有するようにしたり、さらに、水素吸蔵合金からの水素の放出ガス量の制御に水素吸蔵合金槽の温度及び圧力を検知し、放出水素平衡点を自動演算して、水素吸蔵合金槽の温度を制御する制御機構を有するようにすることにより、需要側に対して水素ガスを安定して供給することができる。   In addition, it is connected to the secondary side of the storage tank system via an automatic valve that can be controlled at a constant flow rate, and hydrogen in the hydrogen gas storage tank can be automatically and continuously supplied to the secondary side according to changes in pressure on the secondary side. The temperature of the hydrogen storage alloy tank is detected by detecting the temperature of the hydrogen storage alloy tank to control the amount of hydrogen released from the hydrogen storage alloy and controlling the amount of hydrogen released from the hydrogen storage alloy. It has a temperature control mechanism to suppress the descent, and also detects the temperature and pressure of the hydrogen storage alloy tank to control the amount of hydrogen released from the hydrogen storage alloy, and automatically calculates the released hydrogen equilibrium point. By providing a control mechanism that controls the temperature of the hydrogen storage alloy tank, hydrogen gas can be stably supplied to the demand side.

本発明の水素吸蔵合金を用いた貯槽システムの一実施例を示す基本構成図である。It is a basic lineblock diagram showing one example of a storage system using a hydrogen storage alloy of the present invention. 本発明の水素吸蔵合金を用いた貯槽システムの第1実施例を示す構成図である。It is a block diagram which shows 1st Example of the storage tank system using the hydrogen storage alloy of this invention. 本発明の水素吸蔵合金を用いた貯槽システムの第2実施例を示す構成図である。It is a block diagram which shows 2nd Example of the storage tank system using the hydrogen storage alloy of this invention. 本発明の水素吸蔵合金を用いた貯槽システムの第3実施例を示す構成図である。It is a block diagram which shows 3rd Example of the storage tank system using the hydrogen storage alloy of this invention. 水素ガス貯留槽単独使用の場合の水素ガスの供給可能時間を示す説明図である。It is explanatory drawing which shows the supply time of hydrogen gas in the case of hydrogen gas storage tank single use. 水素ガス貯留槽内に水素吸蔵合金槽を設置した場合の水素ガスの供給可能時間を示す説明図である。It is explanatory drawing which shows the supply time of hydrogen gas at the time of installing a hydrogen storage alloy tank in a hydrogen gas storage tank. 水素吸蔵合金の平衡性能事例を示すグラフである。It is a graph which shows the equilibrium performance example of a hydrogen storage alloy. 水素ガス貯留槽内に水素吸蔵合金槽を設置した場合の水素ガスの蓄積能力を示す説明図である。It is explanatory drawing which shows the hydrogen gas storage capability at the time of installing a hydrogen storage alloy tank in a hydrogen gas storage tank.

以下、本発明の水素吸蔵合金を用いた貯槽システムの実施の形態を、図面に基づいて説明する。   Embodiments of a storage tank system using the hydrogen storage alloy of the present invention will be described below with reference to the drawings.

図1〜図2に、本発明の水素吸蔵合金を用いた貯槽システムの第1実施例を示す。
この水素吸蔵合金を用いた貯槽システムの基本構成は、水素ガスを消費する機器4に水素ガスを供給する水素ガス供給パイプラインにおける貯槽システムにおいて、水素ガス供給パイプラインとしての水素ガスライン母管1に接続され、一時的に水素ガスを貯留する水素ガス貯留槽5内に、水素吸蔵合金を充填した水素吸蔵合金槽14を配置するようにしている。
1 to 2 show a first embodiment of a storage tank system using the hydrogen storage alloy of the present invention.
The basic configuration of the storage system using this hydrogen storage alloy is that a hydrogen gas line main pipe 1 as a hydrogen gas supply pipeline is used in a storage system in a hydrogen gas supply pipeline that supplies hydrogen gas to a device 4 that consumes hydrogen gas. The hydrogen storage alloy tank 14 filled with the hydrogen storage alloy is disposed in the hydrogen gas storage tank 5 that is connected to the hydrogen gas storage tank 5 and temporarily stores the hydrogen gas.

より具体的には、この水素吸蔵合金を用いた貯槽システムは、水素ガスを消費する機器4、例えば、燃料電池等に対して、水素ガスが水素ガスライン枝管2から圧力P2で連続供給するために、水素ガスライン枝管2に対して、水素ガスが水素ガスライン母管1から圧力P0にてネットワーク的に接続されている。   More specifically, in this storage tank system using the hydrogen storage alloy, hydrogen gas is continuously supplied from the hydrogen gas line branch pipe 2 to the device 4 that consumes hydrogen gas, for example, a fuel cell, at a pressure P2. Therefore, hydrogen gas is connected to the hydrogen gas line branch pipe 2 from the hydrogen gas line main pipe 1 at a pressure P0 in a network.

そして、供給ライン構成に対して、並列的に、水素ガス貯留槽5が接続されている。
この水素ガス貯留槽5は、一時的なバッファー、圧力変動の吸収のみならず、メインラインからの水素供給量が低下した場合のバックアップの機能を備えている。
水素ガス貯留槽5には、水素ガスが、水素ガスライン母管1から分岐した水素ガス貯槽充填ライン8から圧力P0(又は外部圧縮設備10の水素ガス貯槽充填ライン9から所定の圧力P1)で充填、貯留される。
The hydrogen gas storage tank 5 is connected in parallel to the supply line configuration.
This hydrogen gas storage tank 5 has not only a temporary buffer and absorption of pressure fluctuations, but also a backup function when the amount of hydrogen supplied from the main line is reduced.
In the hydrogen gas storage tank 5, hydrogen gas is supplied from the hydrogen gas storage tank filling line 8 branched from the hydrogen gas line main pipe 1 at a pressure P0 (or a predetermined pressure P1 from the hydrogen gas storage tank filling line 9 of the external compression facility 10). Filled and stored.

ここで、水素ガスライン母管1は、水素ガスライン供給弁3を介して、水素ガスライン枝管2に接続されるとともに、水素ガスライン母管1から分岐した水素ガス貯槽充填ライン8を、水素ガス貯留槽5に接続するようにしている。   Here, the hydrogen gas line mother pipe 1 is connected to the hydrogen gas line branch pipe 2 via the hydrogen gas line supply valve 3 and also has a hydrogen gas storage tank filling line 8 branched from the hydrogen gas line mother pipe 1. It connects to the hydrogen gas storage tank 5.

また、水素ガスライン枝管2には、水素ガスライン枝管2の圧力を検知する圧力検知器7を設けるようにしている。   Further, the hydrogen gas line branch pipe 2 is provided with a pressure detector 7 for detecting the pressure of the hydrogen gas line branch pipe 2.

この水素ガス貯留槽5から需要側に対しての水素払い出し運転では、水素ガスライン枝管2側の圧力降下を検知して、必要な質量の水素ガスを水素ガスライン放出弁6を介してバックアップ供給する。
一例として、3.5mの水素ガス貯留槽5の充填保持圧5MPa、30℃で、水素ガスライン枝管2側の最低圧力が0.15MPaであり、バックアップ供給水素ガス量を20g/sである場合の水素ガス供給の可能時間は、約10分になる(図5に示す、水素ガス貯留槽5に水素吸蔵合金を充填した水素吸蔵合金槽14を配置しない場合参照。)。
In the hydrogen discharge operation from the hydrogen gas storage tank 5 to the demand side, the pressure drop on the hydrogen gas line branch pipe 2 side is detected, and a required mass of hydrogen gas is backed up via the hydrogen gas line release valve 6. Supply.
As an example, the filling pressure of the hydrogen gas storage tank 5 of 3.5 m 3 is 5 MPa, 30 ° C., the minimum pressure on the hydrogen gas line branch 2 side is 0.15 MPa, and the backup supply hydrogen gas amount is 20 g / s. In some cases, the hydrogen gas can be supplied for about 10 minutes (refer to FIG. 5 when the hydrogen storage alloy tank 14 filled with the hydrogen storage alloy is not disposed in the hydrogen gas storage tank 5).

ところで、本発明の水素吸蔵合金を用いた貯槽システムにおいては、水素ガス貯留槽5内に、水素吸蔵合金を充填した水素吸蔵合金槽を配置するようにしている。   By the way, in the storage tank system using the hydrogen storage alloy of the present invention, a hydrogen storage alloy tank filled with a hydrogen storage alloy is disposed in the hydrogen gas storage tank 5.

より具体的には、図2に示すように、水素ガス貯留槽5内に、水素吸蔵合金槽14を配置し、水素吸蔵合金槽14に充填された水素吸蔵合金に、水素ガスを吸蔵させることにより、水素ガスの貯留量を、水素ガス貯留槽5単独の場合と比較して、数倍以上に増大させることができるようにしている(図8に示される水素ガス貯留槽内に水素吸蔵合金槽を設置した場合の水素ガスの蓄積能力参照。)。   More specifically, as shown in FIG. 2, a hydrogen storage alloy tank 14 is arranged in the hydrogen gas storage tank 5, and the hydrogen storage alloy filled in the hydrogen storage alloy tank 14 stores hydrogen gas. Thus, the hydrogen gas storage amount can be increased several times or more compared with the case of the hydrogen gas storage tank 5 alone (the hydrogen storage alloy in the hydrogen gas storage tank shown in FIG. 8). (Refer to the hydrogen gas storage capacity when the tank is installed.)

ここで、水素吸蔵合金槽14に充填する水素吸蔵合金には、Ti−Fe系(Ti−Fe−Mn系、Ti−Fe−V系)のほか、La−Ce−Ni系、La−Ni系等の水素吸蔵合金を用いることができるが、水素吸蔵能力、放出時の圧力依存性、ヒステリシス性及び温度依存性がいずれも高いTi−Fe系の水素吸蔵合金を好適に用いることができる(図7に示す水素吸蔵合金の平衡性能事例参照。)。   Here, the hydrogen storage alloy filled in the hydrogen storage alloy tank 14 includes Ti—Fe (Ti—Fe—Mn, Ti—Fe—V), La—Ce—Ni, and La—Ni. However, Ti-Fe-based hydrogen storage alloys having high hydrogen storage capacity, pressure dependency during release, hysteresis property, and temperature dependency can be preferably used (see FIG. Refer to the example of equilibrium performance of hydrogen storage alloy shown in Fig. 7.)

水素吸蔵合金槽14には、水素ガスが、水素ガスライン母管1から圧力P0(又は外部圧縮設備10により所定の圧力P1)で供給され、この圧力が保持されることで、温度平衡に伴い、最終的に水素ガスは、その水素吸蔵合金の最大平衡量(wt%)まで吸蔵される。
この貯槽システムでは、水素ガス貯留槽5における水素ガスの圧縮貯留と、水素吸蔵合金槽14における水素吸蔵合金での吸蔵とを合算した量を貯留することが可能になる。
Hydrogen gas is supplied to the hydrogen storage alloy tank 14 from the hydrogen gas line main pipe 1 at a pressure P0 (or a predetermined pressure P1 by the external compression equipment 10). Finally, the hydrogen gas is stored up to the maximum equilibrium amount (wt%) of the hydrogen storage alloy.
In this storage tank system, it is possible to store a total amount of compression storage of hydrogen gas in the hydrogen gas storage tank 5 and storage by the hydrogen storage alloy in the hydrogen storage alloy tank 14.

そして、この貯槽システムから水素を払い出す場合には、まず、図1と同様に、放出弁を制御することで、水素ガス貯留槽5から所定量の水素ガスを下流側へ供給するが、水素ガス貯留槽5の圧力の降下に伴い、その温度での水素吸蔵合金の平衡量(wt%)とのバランスで、水素吸蔵合金槽14の水素吸蔵合金に貯留されていた水素の一部が、水素ガスとなって放出が開始され、水素ガス貯留槽5の圧力が徐々に下がるとそれに伴い水素ガスの放出量は増加していく。   When hydrogen is discharged from the storage tank system, first, as in FIG. 1, a predetermined amount of hydrogen gas is supplied from the hydrogen gas storage tank 5 to the downstream side by controlling the release valve. As the pressure of the gas storage tank 5 drops, a part of the hydrogen stored in the hydrogen storage alloy in the hydrogen storage alloy tank 14 is balanced with the equilibrium amount (wt%) of the hydrogen storage alloy at that temperature. As hydrogen gas starts to be released and the pressure in the hydrogen gas storage tank 5 gradually decreases, the amount of hydrogen gas released increases accordingly.

水素吸蔵合金の温度をほぼ一定に保った場合の放出事例を図6に示す。
この事例では、図5の10分に対して、118分間連続供給することができる。
FIG. 6 shows an example of release when the temperature of the hydrogen storage alloy is kept substantially constant.
In this case, 118 minutes can be continuously supplied, compared to 10 minutes in FIG.

さらに、貯槽システムから水素を払い出す場合には、水素吸蔵合金の水素放出による温度低下を抑制する必要から、例えば、需要側の水素ガスを消費する機器4である燃料電池の排熱を加熱源として温水供給ライン11を構成し、必要に応じて、冷却水供給ライン12からの冷却水と混合して、水素吸蔵合金槽14内に設けた熱交換器13に導入し、水素吸蔵合金槽14の内部を効率的に加熱するようにする。
なお、運用当初の水素吸蔵合金への水素加圧吸蔵時には、水素吸蔵合金の温度を適宜下げていくことが求められるため、このときは冷却水のみを使用する。
Further, when hydrogen is discharged from the storage tank system, it is necessary to suppress a temperature drop due to hydrogen release from the hydrogen storage alloy. For example, the exhaust heat of the fuel cell that is the device 4 that consumes hydrogen gas on the demand side is used as a heating source. The hot water supply line 11 is configured as follows, and if necessary, mixed with the cooling water from the cooling water supply line 12 and introduced into the heat exchanger 13 provided in the hydrogen storage alloy tank 14. To efficiently heat the inside.
In addition, at the time of hydrogen pressure occlusion to the hydrogen occlusion alloy at the beginning of operation, it is required to appropriately lower the temperature of the hydrogen occlusion alloy. At this time, only cooling water is used.

このように、水素ガス貯留槽5内に、水素吸蔵合金を充填した水素吸蔵合金槽14を配置することにより、水素ガスの貯留量を増大させることができ、水素ガスの供給可能時間を、水素ガス貯留槽5単独使用の場合と比較して、より長い払い出し運転時間を実現することができる(図5及び図6参照。)。   Thus, by arranging the hydrogen storage alloy tank 14 filled with the hydrogen storage alloy in the hydrogen gas storage tank 5, the amount of hydrogen gas stored can be increased, and the hydrogen gas can be supplied for a long time. Compared with the case of using the gas storage tank 5 alone, a longer payout operation time can be realized (see FIGS. 5 and 6).

そして、水素吸蔵合金槽14の温度を検知し、吸蔵された水素の放出による反応吸熱による水素吸蔵合金槽14の温度降下を抑制するための、温水供給ライン11、冷却水供給ライン12、熱交換器13等からなる温度制御機構を設けることにより、水素ガスを安定して供給することができるようにすることができる。   And the temperature of the hydrogen storage alloy tank 14 is detected, and the hot water supply line 11, the cooling water supply line 12, and the heat exchange for suppressing the temperature drop of the hydrogen storage alloy tank 14 due to the reaction endotherm due to the release of the stored hydrogen. By providing a temperature control mechanism including the vessel 13 and the like, it is possible to supply hydrogen gas stably.

この場合、水素吸蔵合金槽14の温度の検知は、本実施例においては、温水供給ライン11の水素吸蔵合金槽14の出口側の温度を測定することにより行うようにしているが、図3に示す、本発明の水素吸蔵合金を用いた貯槽システムの第2実施例のように、水素吸蔵合金槽14の内部の温度を直接測定することによって行うようにしてもよい。   In this case, the temperature of the hydrogen storage alloy tank 14 is detected by measuring the temperature on the outlet side of the hydrogen storage alloy tank 14 of the hot water supply line 11 in this embodiment. As shown in the second embodiment of the storage tank system using the hydrogen storage alloy of the present invention, the temperature inside the hydrogen storage alloy tank 14 may be directly measured.

この場合、水素吸蔵合金槽14の温度を単純なTIC機能でほぼ一定に維持するだけでなく、払い出し2次側圧力からの要求量も加味して常に最適な放出水素平衡点に制御することもできる。   In this case, not only can the temperature of the hydrogen storage alloy tank 14 be maintained almost constant by a simple TIC function, but also the amount of demand from the discharge secondary pressure can be taken into account to always control the optimal released hydrogen equilibrium point. it can.

より具体的には、図4に示す、本発明の水素吸蔵合金を用いた貯槽システムの第3実施例においては、水素ガスを常に最適な量を払い出すことを実現するために、水素吸蔵合金槽14の圧力と温度を検知し、かつ、2次側の圧力変動速度との関係から、水素ガスを所定流量供給するための水素吸蔵合金の現在の状態から放出水素平衡点を水素平衡条件演算器15で求め、その温度になるように温水供給ライン11、冷却水供給ライン12、熱交換器13等からなる温度制御機構を制御する機能を持たせるようにしている。
これにより、より正確に時間遅れも補償した制御を行うことができる。
More specifically, in the third embodiment of the storage tank system using the hydrogen storage alloy of the present invention shown in FIG. 4, in order to realize that the optimal amount of hydrogen gas is always dispensed, Calculating the hydrogen equilibrium condition from the current state of the hydrogen storage alloy for detecting the pressure and temperature of the tank 14 and supplying the hydrogen gas at a predetermined flow rate based on the relationship between the pressure fluctuation speed on the secondary side The temperature control mechanism including the hot water supply line 11, the cooling water supply line 12, the heat exchanger 13, and the like is obtained so as to obtain the temperature obtained by the vessel 15.
As a result, it is possible to perform control with more accurate compensation for time delay.

以上、本発明の水素吸蔵合金を用いた貯槽システムについて、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、各実施例に記載した構成を適宜組み合わせる等、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the storage tank system using the hydrogen storage alloy of the present invention was explained based on the example, the present invention is not limited to the composition described in the above-mentioned example, and the composition described in each example The configuration can be changed as appropriate without departing from the spirit of the invention, for example, by appropriately combining them.

本発明の水素吸蔵合金を用いた貯槽システムは、設備を大型化することなく、水素ガスの貯留量を増大させることができるようにするとともに、需要側に対して水素ガスを安定して供給することができる特性を有していることから、水素ガス供給ラインにおける水素ガスを貯留する貯槽システムの用途に好適に用いることができる。   The storage tank system using the hydrogen storage alloy of the present invention can increase the storage amount of hydrogen gas without increasing the size of the equipment, and stably supply hydrogen gas to the demand side. Since it has the characteristic which can be used, it can use suitably for the use of the storage tank system which stores the hydrogen gas in a hydrogen gas supply line.

1 水素ガスライン母管(水素ガス供給パイプライン)
2 水素ガスライン枝管
3 水素ガスライン供給弁
4 水素ガスを消費する機器
5 水素ガス貯留槽
6 水素ガスライン放出弁
7 圧力検知器
8 水素ガス貯槽充填ライン
9 水素ガス貯槽充填ライン
10 外部圧縮設備
11 温水供給ライン
12 冷却水供給ライン
13 熱交換器
14 水素吸蔵合金槽
15 水素平衡条件演算器
1 Hydrogen gas line main pipe (hydrogen gas supply pipeline)
2 Hydrogen gas line branch pipe 3 Hydrogen gas line supply valve 4 Hydrogen gas consuming equipment 5 Hydrogen gas storage tank 6 Hydrogen gas line release valve 7 Pressure detector 8 Hydrogen gas storage tank filling line 9 Hydrogen gas storage tank filling line 10 External compression equipment 11 Hot Water Supply Line 12 Cooling Water Supply Line 13 Heat Exchanger 14 Hydrogen Storage Alloy Tank 15 Hydrogen Equilibrium Condition Calculator

Claims (4)

水素ガスを消費する機器に水素ガスを供給する水素ガス供給パイプラインにおける貯槽システムにおいて、水素ガス供給パイプラインに接続され、一時的に水素ガスを貯留する水素ガス貯留槽内に、水素吸蔵合金を充填した水素吸蔵合金槽を配置するようにしたことを特徴とする水素吸蔵合金を用いた貯槽システム。   In a storage tank system in a hydrogen gas supply pipeline that supplies hydrogen gas to equipment that consumes hydrogen gas, a hydrogen storage alloy is placed in the hydrogen gas storage tank that is connected to the hydrogen gas supply pipeline and temporarily stores hydrogen gas. A storage tank system using a hydrogen storage alloy, wherein a filled hydrogen storage alloy tank is arranged. 貯槽システムの2次側に対して一定流量に制御可能な自動弁を介して接続され、2次側の圧力変化に応じ水素ガス貯留槽内の水素を2次側に自動連続供給可能なライン構成と制御構成を有することを特徴とする請求項1記載の水素吸蔵合金を用いた貯槽システム。   A line configuration that is connected to the secondary side of the storage tank system via an automatic valve that can be controlled at a constant flow rate, and can automatically supply hydrogen in the hydrogen gas storage tank to the secondary side in response to changes in pressure on the secondary side. The storage system using the hydrogen storage alloy according to claim 1, wherein the storage system has a control configuration. 水素吸蔵合金からの水素の放出ガス量の制御に水素吸蔵合金槽の温度を検知し、吸蔵された水素の放出による反応吸熱による水素吸蔵合金槽の温度降下を抑制するための温度制御機構を有することを特徴とする請求項1又は2記載の水素吸蔵合金を用いた貯槽システム。   It has a temperature control mechanism to detect the temperature of the hydrogen storage alloy tank to control the amount of hydrogen released from the hydrogen storage alloy, and to suppress the temperature drop of the hydrogen storage alloy tank due to reaction heat absorption due to the release of the stored hydrogen. A storage tank system using the hydrogen storage alloy according to claim 1 or 2. 水素吸蔵合金からの水素の放出ガス量の制御に水素吸蔵合金槽の温度及び圧力を検知し、放出水素平衡点を自動演算して、水素吸蔵合金槽の温度を制御する制御機構を有することを特徴とする請求項3記載の水素吸蔵合金を用いた貯槽システム。   It has a control mechanism that controls the temperature of the hydrogen storage alloy tank by detecting the temperature and pressure of the hydrogen storage alloy tank and automatically calculating the released hydrogen equilibrium point to control the amount of hydrogen released from the hydrogen storage alloy. A storage tank system using the hydrogen storage alloy according to claim 3.
JP2015203944A 2015-10-15 2015-10-15 Storage tank system using hydrogen storage alloy Pending JP2017075656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203944A JP2017075656A (en) 2015-10-15 2015-10-15 Storage tank system using hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203944A JP2017075656A (en) 2015-10-15 2015-10-15 Storage tank system using hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JP2017075656A true JP2017075656A (en) 2017-04-20

Family

ID=58551191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203944A Pending JP2017075656A (en) 2015-10-15 2015-10-15 Storage tank system using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2017075656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021131054A1 (en) * 2019-12-27 2021-07-01

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196498A (en) * 1986-02-21 1987-08-29 Nippon Steel Corp Operating method for hydrogen storage tank
JP2000017408A (en) * 1998-07-03 2000-01-18 Japan Metals & Chem Co Ltd Apparatus for activating hydrogen storage alloy and method therefor
JP2002252009A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen supply equipment for fuel cell
JP2004183076A (en) * 2002-12-05 2004-07-02 Nissan Motor Co Ltd Hydrogen storage alloy and hydrogen storage system using the same
US20120312701A1 (en) * 2010-02-24 2012-12-13 Hydrexia Pty Ltd Hydrogen storage unit
JP2015152091A (en) * 2014-02-14 2015-08-24 株式会社神戸製鋼所 Gas supply device, hydrogen station, and gas supply method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196498A (en) * 1986-02-21 1987-08-29 Nippon Steel Corp Operating method for hydrogen storage tank
JP2000017408A (en) * 1998-07-03 2000-01-18 Japan Metals & Chem Co Ltd Apparatus for activating hydrogen storage alloy and method therefor
JP2002252009A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen supply equipment for fuel cell
JP2004183076A (en) * 2002-12-05 2004-07-02 Nissan Motor Co Ltd Hydrogen storage alloy and hydrogen storage system using the same
US20120312701A1 (en) * 2010-02-24 2012-12-13 Hydrexia Pty Ltd Hydrogen storage unit
JP2015152091A (en) * 2014-02-14 2015-08-24 株式会社神戸製鋼所 Gas supply device, hydrogen station, and gas supply method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021131054A1 (en) * 2019-12-27 2021-07-01
WO2021131054A1 (en) * 2019-12-27 2021-07-01 サンスター技研株式会社 Gas supply system, mechanical foaming system, and method for supplying gas

Similar Documents

Publication Publication Date Title
JP6793259B2 (en) Hydrogen refueling system
JP6288496B2 (en) Heat source machine operation number control device, heat source system, control method and program
KR101915624B1 (en) Hydrogen release system
CN1942979B (en) Circulation cooling system for cryogenic cable
JP2011174528A (en) Method for filling hydrogen gas in hydrogen gas packing equipment
US11754227B2 (en) Gas charging device
JP2012047234A (en) Gas filling device
KR20070092599A (en) Method and apparatus for charging a hydrogen gas
KR101437151B1 (en) Gas supply control system and Method thereof
JP2016153656A (en) Gas filling system
JP2012047439A (en) Heat pump steam generator
JP2019535981A (en) Hydrogen fuel supply system
JP6267070B2 (en) Method for detecting refrigerant leakage in cooling system
JP2017075656A (en) Storage tank system using hydrogen storage alloy
JP2006177535A (en) Device and method for detecting deterioration of hydrogen storage material of hydrogen storage tank, and hydrogen storage supply system
JP6834999B2 (en) Evaporative gas suppression device and evaporative gas suppression method for LNG tanks
JP2007138973A (en) Hydrogen filling method and hydrogen filling monitoring device to hydrogen storage vessel
JP2015169262A (en) Fuel gas charging system, control device, fuel gas charging method, control method and computer program
JP2009019842A (en) Water delivery control system and water delivery control method
JP6324120B2 (en) Gas filling device
JP2015183727A (en) Gas filling device
JP6196659B2 (en) Hydrogen gas filling system and hydrogen gas filling method
JP2013148120A (en) Hydrogen gas filling device and method for measuring hydrogen gas release amount
JP2017157411A (en) Fuel cell system
WO2019049924A1 (en) Space environment test apparatus and initial cooling method for the space environment test apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191204

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200117

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200624

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200729

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201111

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201216

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201216