JP2017068920A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2017068920A
JP2017068920A JP2015189964A JP2015189964A JP2017068920A JP 2017068920 A JP2017068920 A JP 2017068920A JP 2015189964 A JP2015189964 A JP 2015189964A JP 2015189964 A JP2015189964 A JP 2015189964A JP 2017068920 A JP2017068920 A JP 2017068920A
Authority
JP
Japan
Prior art keywords
electrode plate
hydrophilic
negative electrode
film
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015189964A
Other languages
Japanese (ja)
Inventor
素子 原田
Motoko Harada
素子 原田
真吾 荒城
Shingo Araki
真吾 荒城
柴原 敏夫
Toshio Shibahara
敏夫 柴原
岩崎 富生
Tomio Iwasaki
富生 岩崎
大越 哲郎
Tetsuro Okoshi
哲郎 大越
箕浦 敏
Satoshi Minoura
敏 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015189964A priority Critical patent/JP2017068920A/en
Publication of JP2017068920A publication Critical patent/JP2017068920A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To suppress both of the stratification of an electrolytic solution, and the rise in internal resistance.SOLUTION: A lead storage battery comprises: a positive electrode plate 7; a negative electrode plate 5; a separator 6 disposed between the positive electrode plate 7 and the negative electrode plate 5; an electrolytic solution; a battery case 1 in which the positive and negative electrode plates, the separator and the electrolytic solution are encased. The negative electrode plate 5 has a film body 8 provided on its surface. The film body 8 has: a base material 18 which allows the electrolytic solution to permeate therethrough; and a hydrophilic coating 9 covering the surface of the base material 18. The hydrophilic coating 9 includes: a hydrophilic material 10; and a retainer material 11. The hydrophilic material 10 includes alumina or silica. The retainer material 11 is acrylic amide, silica sol or silane coupling agent. As to the porosity of the base material 18, an upper portion of the negative electrode plate 5 is higher than a lower portion of the negative electrode plate 5.SELECTED DRAWING: Figure 3

Description

本発明は、鉛蓄電池に関する。   The present invention relates to a lead-acid battery.

鉛蓄電池は、産業用に広く用いられており、例えば自動車のバッテリー及びバックアップ用電源並びに電動車の主電源に用いられる。近年の自動車では、炭酸ガス排出規制対策や低燃費化を目的として、発電制御や信号待ち時にエンジンを停止させるアイドリングストップアンドスタートシステム(以下、「ISS」と称する。)が採用されるようになった。   Lead-acid batteries are widely used for industrial purposes, and are used, for example, as automobile batteries and backup power supplies, and as main power sources for electric vehicles. In recent automobiles, an idling stop-and-start system (hereinafter referred to as “ISS”) that stops the engine during power generation control or waiting for a signal has been adopted for the purpose of carbon dioxide emission regulation measures and fuel efficiency reduction. It was.

アイドリングストップ中はオルタネータによる発電が行われないため、電動装備への電力は全て鉛蓄電池から供給され、鉛蓄電池は従来よりも深い放電が行われる。また、走行中もオルタネータの発電が制御されるため、充電不足の状態となる。   Since no power is generated by the alternator during idling stop, all electric power to the electric equipment is supplied from the lead storage battery, and the lead storage battery is discharged deeper than before. Moreover, since the power generation of the alternator is controlled even during traveling, the battery is in a state of insufficient charging.

特許文献1には、鉛蓄電池の正極と負極との間に、電解液に含まれるイオンを透過する孔を有するシート状部材を設け、このシート状部材を、基材である疎水性樹脂と、疎水性樹脂の表面に設けた多孔質の親水性被覆層とで構成する技術が開示されている。特許文献1には、親水性被覆層は、二酸化ケイ素、酸化アルミニウム、二酸化ジルコニウム又は二酸化チタンの粒子を含むことが望ましいことも記載されている。   In Patent Document 1, a sheet-like member having holes that transmit ions contained in the electrolytic solution is provided between a positive electrode and a negative electrode of a lead-acid battery, and the sheet-like member is made of a hydrophobic resin as a base material, A technique is disclosed that comprises a porous hydrophilic coating layer provided on the surface of a hydrophobic resin. Patent Document 1 also describes that the hydrophilic coating layer desirably contains particles of silicon dioxide, aluminum oxide, zirconium dioxide, or titanium dioxide.

特開2014−194911号公報JP 2014-194911 A

鉛蓄電池において深い放電と充電不足とが繰り返される場合、電解液の成層化が生じ、鉛蓄電池の短寿命化の要因として顕在化してきている。正極では、放電時に発生した水が電解液の混合を促進するため、成層化の影響は小さい。一方、負極では、そうした作用がないために、成層化が起こりやすい。ここで、成層化とは、充放電の繰り返しにより、電槽の上下で電解液の比重に差が生じる現象をいう。   When deep discharge and insufficient charging are repeated in a lead storage battery, stratification of the electrolyte occurs, which has become apparent as a cause of shortening the life of the lead storage battery. In the positive electrode, water generated at the time of discharge promotes the mixing of the electrolytic solution, so that the influence of stratification is small. On the other hand, since there is no such effect in the negative electrode, stratification is likely to occur. Here, stratification refers to a phenomenon in which a difference in the specific gravity of the electrolyte occurs between the top and bottom of the battery case due to repeated charge and discharge.

また、ISS用鉛蓄電池では、電解液の成層化の抑制による長寿命化のほかに、エンジン始動性である高率放電性能、充電受入れ性等の電池性能の向上や、内部抵抗低減の技術開発も課題である。過酷な環境下で使用されるISS用鉛蓄電池の高性能化には、長寿命化と電池性能の向上が必要不可欠である。電槽内の硫酸イオン濃度を均一に保ちながら硫酸イオンの拡散速度を向上させることで、これらの課題を解決することが可能であると考えられる。   In addition, in ISS lead-acid batteries, in addition to extending the life by suppressing the stratification of the electrolyte, the battery performance such as high-rate discharge performance that is engine startability and charge acceptance, and the development of technology to reduce internal resistance Is also an issue. In order to improve the performance of lead storage batteries for ISS used in harsh environments, it is indispensable to extend the life and improve battery performance. It is thought that these problems can be solved by improving the diffusion rate of sulfate ions while keeping the concentration of sulfate ions in the battery case uniform.

特許文献1に記載のシート状部材においては、鉛蓄電池の電解液の成層化を抑制する観点から、親水性被覆層を構成する酸化物粒子等が検討されている。しかしながら、特許文献1に記載の構成では、極板の重力方向における多孔質の構造と親水性被覆層の膜厚は均一であり、極板の重力方向における電池反応とそれに伴う硫酸イオン濃度分布の不均一性を考慮していない。したがって、硫酸イオンの拡散性は最適化されておらず、内部抵抗の上昇の抑制は不十分であると考えられる。   In the sheet-like member described in Patent Document 1, from the viewpoint of suppressing the stratification of the electrolyte solution of the lead storage battery, oxide particles and the like constituting the hydrophilic coating layer have been studied. However, in the configuration described in Patent Document 1, the porous structure in the gravity direction of the electrode plate and the film thickness of the hydrophilic coating layer are uniform, and the cell reaction in the gravity direction of the electrode plate and the accompanying sulfate ion concentration distribution. Does not consider inhomogeneities. Therefore, the diffusibility of sulfate ions is not optimized, and the suppression of the increase in internal resistance is considered insufficient.

本発明は、電解液の成層化の抑制と内部抵抗の上昇の抑制とを両立することを目的とする。   An object of this invention is to make compatible suppression of the stratification of electrolyte solution, and suppression of a raise of internal resistance.

本発明の鉛蓄電池は、正極板と、負極板と、正極板と負極板との間に配置されたセパレータと、電解液と、正極板と負極板とセパレータと電解液とを収容する電槽と、を備え、負極板の表面には、膜体が付設され、膜体は、電解液が浸透可能な基材と、基材の表面を覆う親水被膜と、を有し、親水被膜は、親水材料と、保持体材料と、を含み、親水材料は、アルミナ又はシリカを含み、保持体材料は、アクリルアミド、シリカゾル又はシランカップリング剤であり、基材の空孔率は、負極板の上部の方が負極板の下部より高い。   The lead storage battery of the present invention includes a positive electrode plate, a negative electrode plate, a separator disposed between the positive electrode plate and the negative electrode plate, an electrolytic solution, a positive electrode plate, a negative electrode plate, a separator, and an electrolytic solution containing the electrolytic solution. A film body is attached to the surface of the negative electrode plate, and the film body has a base material into which the electrolytic solution can permeate and a hydrophilic film covering the surface of the base material. The hydrophilic material includes alumina or silica, the support material is acrylamide, silica sol, or a silane coupling agent, and the porosity of the base material is the upper part of the negative electrode plate. Is higher than the lower part of the negative electrode plate.

本発明によれば、電解液の成層化の抑制と内部抵抗の上昇の抑制とを両立することができる。   According to the present invention, it is possible to achieve both suppression of stratification of the electrolyte and suppression of increase in internal resistance.

本発明の鉛蓄電池の全体構成を示す概略斜視図である。It is a schematic perspective view which shows the whole structure of the lead acid battery of this invention. 実施形態の鉛蓄電池の電極群の一部を示す模式断面図である。It is a schematic cross section which shows a part of electrode group of the lead acid battery of embodiment. 実施形態の鉛蓄電池における一対の正極及び負極の組み合わせを示す概略斜視図である。It is a schematic perspective view which shows the combination of a pair of positive electrode and negative electrode in the lead acid battery of embodiment. 実施形態の鉛蓄電池における一対の正極及び負極の組み合わせを示す模式斜視図、並びに負極板を覆う不織布及びその不織布の繊維を示す模式拡大図である。It is the model perspective view which shows the combination of a pair of positive electrode and negative electrode in the lead acid battery of embodiment, and the model enlarged view which shows the nonwoven fabric which covers a negative electrode plate, and the fiber of the nonwoven fabric. 実施形態の鉛蓄電池における膜体の分布を示す部分断面図である。It is a fragmentary sectional view which shows distribution of the film body in the lead acid battery of embodiment. 基材の空孔率と実電池の内部抵抗との関係を示すグラフである。It is a graph which shows the relationship between the porosity of a base material, and the internal resistance of a real battery. 親水塗料の濃度と実電池の内部抵抗との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of a hydrophilic coating material, and the internal resistance of a real battery.

本発明による鉛蓄電池は、次のような特徴を有する。二酸化鉛を含む正極板と、金属鉛を含む負極板と、正極板と負極板との間に配置されたセパレータと、希硫酸からなり、正極板と負極板とセパレータとからなる電極群が浸される電解液と、電極群と電解液とを収納する電槽と、負極板の周囲に配置された有機織布、有機不織布または多孔質膜とを備える。有機織布、有機不織布または多孔質膜の表面に親水膜(以下「親水被膜」ともいう。)が形成され、親水膜は、SiO(シリカ)若しくはAl(アルミナ)からなり、又は、AlとSiOとの混合物からなる親水材料と、無機材料または有機高分子材料からなる保持体材料(バインダ)とから構成される。 The lead acid battery according to the present invention has the following characteristics. A positive electrode plate containing lead dioxide, a negative electrode plate containing metallic lead, a separator disposed between the positive electrode plate and the negative electrode plate, and a dilute sulfuric acid electrode group consisting of the positive electrode plate, the negative electrode plate and the separator are immersed. A battery case for storing the electrolyte solution, the electrode group and the electrolyte solution, and an organic woven fabric, an organic nonwoven fabric or a porous membrane disposed around the negative electrode plate. A hydrophilic film (hereinafter also referred to as “hydrophilic film”) is formed on the surface of the organic woven fabric, organic nonwoven fabric or porous film, and the hydrophilic film is made of SiO 2 (silica) or Al 2 O 3 (alumina), or , A hydrophilic material made of a mixture of Al 2 O 3 and SiO 2 and a holding material (binder) made of an inorganic material or an organic polymer material.

さらに、極板の重力方向において有機織布、有機不織布または多孔質膜の空孔率と、親水膜と有機織布、有機不織布または多孔質膜との質量比に分布をつけることで硫酸イオンの拡散性が向上し、極板の重力方向の電流密度が緩和されることで、成層化抑制と内部抵抗上昇の抑制の両立が可能となる。   Furthermore, in the gravity direction of the electrode plate, the porosity of the organic woven fabric, organic non-woven fabric or porous membrane and the mass ratio of the hydrophilic membrane to the organic woven fabric, organic non-woven fabric or porous membrane are distributed so that sulfate ions can be distributed. By improving the diffusibility and reducing the current density in the gravity direction of the electrode plate, it is possible to achieve both suppression of stratification and suppression of increase in internal resistance.

ISS用途のように大電流で充電する際には、極板から硫酸イオンが大量に放出されるため、極板下部付近での硫酸イオンの蓄積量は多く、極板下部の利用率が極端に低いと考えられる。重力方向に向けて密度が大きくなっている多孔質膜を用いることにより、下部に蓄積した硫酸イオンが引き上げられて上下方向における硫酸イオンの濃度分布が解消された結果、重力方向の硫酸イオンの拡散性が向上して電流密度分布が緩和されると考えられる。また、多孔質膜に対する親水膜の質量比が重力方向に向けて大きくなっている多孔質膜を用いても、硫酸イオンの濃度分布が解消される。特にISS用の鉛蓄電池では急速充電性能が必要とされるため、大電流で充電する場合での性能向上が重要である。   When charging with a large current as in ISS applications, a large amount of sulfate ions are released from the electrode plate, so there is a large amount of sulfate ion accumulation near the bottom of the electrode plate, and the utilization factor at the bottom of the electrode plate is extremely high. It is considered low. By using a porous membrane that increases in density toward the direction of gravity, the sulfate ions accumulated in the lower part are pulled up, and the concentration distribution of sulfate ions in the vertical direction is eliminated, resulting in diffusion of sulfate ions in the direction of gravity. It is considered that the current density distribution is relaxed by improving the properties. Even if a porous membrane in which the mass ratio of the hydrophilic membrane to the porous membrane is increased in the direction of gravity is used, the concentration distribution of sulfate ions is eliminated. In particular, since lead storage batteries for ISS require rapid charging performance, it is important to improve performance when charging with a large current.

ここでは多孔質膜の密度と、親水膜と多孔質膜の質量比に分布のつけ方を単純に二分割した例を述べたが、多孔質膜の密度と、親水膜と多孔質膜の質量比が重力方向において不均一であれば良い。また、充電反応時に放出される硫酸イオン量の制御を目的として電極構造を重力方向に不均一に作製し、電極構造にあわせて多孔質膜の密度と、親水膜と多孔質膜の質量比に分布をつけても構わない。   Here, an example in which the distribution of the density of the porous film and the mass ratio of the hydrophilic film to the porous film is simply divided into two parts is described. However, the density of the porous film and the mass of the hydrophilic film and the porous film are described. It is sufficient if the ratio is not uniform in the direction of gravity. In addition, the electrode structure is made uneven in the direction of gravity for the purpose of controlling the amount of sulfate ions released during the charging reaction, and the density of the porous film and the mass ratio of the hydrophilic film to the porous film are adjusted according to the electrode structure. Distribution may be applied.

多孔質膜の密度は、例えば、基材の空孔率を調整することにより制御可能である。重力方向に対して上部に空孔率の高い基材からなる膜体を用い、下部に空孔率の低い基材からなる膜体を用いることで、重力方向に向けて密度が大きくなっている多孔質膜を得ることができる。   The density of the porous film can be controlled, for example, by adjusting the porosity of the substrate. By using a film body made of a base material with a high porosity in the upper part with respect to the direction of gravity and using a film body made of a base material with a low porosity in the lower part, the density increases in the direction of gravity. A porous membrane can be obtained.

以下、本発明の好ましい実施形態を詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

(1)電解液の成層化
鉛蓄電池、特に液式鉛蓄電池における電解液の成層化は、電解液中の硫酸イオンと硫酸水素イオンが沈降して、電槽の上下で電解液の比重に差が生じる現象である。以下では、硫酸イオン(SO 2−)と硫酸水素イオン(HSO )とを「硫酸イオン」と総称する。
(1) Electrolyte stratification Electrolyte stratification in lead-acid batteries, particularly liquid lead-acid batteries, causes the sulfate and hydrogen sulfate ions in the electrolyte to settle, resulting in a difference in the specific gravity of the electrolyte above and below the battery case. Is a phenomenon that occurs. Hereinafter, sulfate ions (SO 4 2− ) and hydrogen sulfate ions (HSO 4 ) are collectively referred to as “sulfate ions”.

後述するように、負極板の表面に膜体(有機織布、有機不織布または多孔質膜を基材とするもの)を密着した状態で設けることにより、電槽下部における硫酸イオンの蓄積を抑制し、電解液の成層化を抑制することができる。言い換えると、電槽内部の硫酸イオンの濃度を均一に保持することができる。   As will be described later, by providing a film body (organic woven fabric, organic nonwoven fabric or porous membrane as a base material) in close contact with the surface of the negative electrode plate, the accumulation of sulfate ions in the lower part of the battery case is suppressed. The stratification of the electrolytic solution can be suppressed. In other words, the concentration of sulfate ions inside the battery case can be kept uniform.

(2)内部抵抗
鉛蓄電池の内部抵抗は、硫酸イオンの拡散速度に大きな影響を受ける。硫酸イオンの挙動を阻害する障害物が多い場合は、硫酸イオンの拡散速度が低下するため、内部抵抗は大きくなると考えられる。逆に障害物が少ない場合は、硫酸イオンの拡散速度は向上するため、内部抵抗は小さくなると考えられる。鉛蓄電池の高性能化のためには、内部抵抗の上昇を抑制する必要がある。このため、硫酸イオンの挙動を阻害しないような電池の構成を考案しなければならない。
(2) Internal resistance The internal resistance of lead-acid batteries is greatly affected by the diffusion rate of sulfate ions. When there are many obstacles that inhibit the behavior of sulfate ions, the diffusion rate of sulfate ions decreases, so the internal resistance is considered to increase. Conversely, when the number of obstacles is small, the diffusion rate of sulfate ions is improved, so that the internal resistance is considered to be small. In order to improve the performance of lead-acid batteries, it is necessary to suppress an increase in internal resistance. For this reason, a battery configuration that does not inhibit the behavior of sulfate ions must be devised.

硫酸イオンの挙動に影響を及ぼす因子としては、セパレータと、負極板の表面に付設された膜体とが挙げられる。セパレータ及び膜体の孔径、目付け等(空孔率、密度)の構造特性によって硫酸イオンの拡散速度は大きく左右されるため、これらの構造の最適化が必要である。ここで、空孔率とは、不織布の単位体積あたりの隙間の割合を百分率で表したものをいう。   Factors affecting the behavior of sulfate ions include a separator and a film attached to the surface of the negative electrode plate. Since the diffusion rate of sulfate ions is greatly influenced by the structural characteristics such as the pore diameter and basis weight (porosity, density) of the separator and the membrane body, it is necessary to optimize these structures. Here, the porosity means the percentage of the gap per unit volume of the nonwoven fabric expressed as a percentage.

(3)高率放電性能
高率放電性能は、膜体の基材に親水被膜を設けた場合には、親水被膜を設けない場合よりも優れていた。これは、硫酸イオンと親水被膜との間に化学的な相互作用が働いているためと考えられる。親水被膜に用いられるSiOやAlの表面には、−OH基が生成される。この−OH基は、電解液である硫酸水溶液中でプロトンが付与された結果、−OH2+の形で存在する。硫酸イオン(SO 2−及びHSO )は、この−OH へ引き寄せられて化学的な相互作用を生じていると考えられる。
(3) High rate discharge performance The high rate discharge performance was better when the hydrophilic coating was provided on the substrate of the film body than when the hydrophilic coating was not provided. This is presumably because a chemical interaction works between the sulfate ion and the hydrophilic film. On the surface of SiO 2 or Al 2 O 3 used for the hydrophilic film, —OH groups are generated. This —OH group exists in the form of —OH 2+ as a result of protonation in an aqueous sulfuric acid solution that is an electrolytic solution. It is considered that sulfate ions (SO 4 2− and HSO 4 ) are attracted to this —OH 2 + to cause a chemical interaction.

すなわち、膜体の基材に設けられた親水被膜は、硫酸イオンと相互作用を生じ、硫酸イオンを吸着して集め、電極へ供給すると考えられる。よって、親水被膜から電極への硫酸イオンの供給効率が、高率放電性能に影響すると考えられる。   That is, it is considered that the hydrophilic coating provided on the base material of the film body interacts with sulfate ions, and adsorbs and collects sulfate ions and supplies them to the electrodes. Therefore, it is considered that the supply efficiency of sulfate ions from the hydrophilic coating to the electrode affects the high rate discharge performance.

そこで、親水被膜から電極への硫酸イオンの供給効率を向上させるため、以下の点に基づき、親水被膜の材質を検討した。   Therefore, in order to improve the supply efficiency of sulfate ions from the hydrophilic coating to the electrode, the material of the hydrophilic coating was examined based on the following points.

親水被膜の表面に存在する−OH基等の親水性官能基の量が多い場合、すなわち親水性が高い場合は、硫酸イオンが重力に抗する方向(重力方向)に引き上げられ、電槽内における硫酸の濃度分布が解消されるため、電極への硫酸イオンの供給速度が向上すると考えられる。このような親水被膜表面を形成するには、親水被膜表面の官能基の配向性を制御することが必要である。親水被膜表面の官能基の配向性を制御しない場合は、親水材料表面が保持体材料由来の疎水性官能基で被覆されてしまう可能性があるため、好ましくない。一般に、親水性の指標として接触角が用いられるが、親水被膜の水または硫酸に対する接触角が10°以下である場合に親水性は特に優れており、好ましい。ただし、例えばAlのように硫酸イオンの吸着力が高い親水材料を用いる場合には、接触角30°程度の一定レベルの親水性が得られていれば硫酸イオンの吸着と併せた相乗効果が得られるため、必ずしも接触角が10°以下である材料を選択しなければならないというわけではない。 When the amount of hydrophilic functional groups such as —OH groups present on the surface of the hydrophilic coating is large, that is, when the hydrophilicity is high, sulfate ions are pulled up in the direction against gravity (the direction of gravity) Since the concentration distribution of sulfuric acid is eliminated, it is considered that the supply rate of sulfate ions to the electrode is improved. In order to form such a hydrophilic coating surface, it is necessary to control the orientation of functional groups on the hydrophilic coating surface. If the orientation of the functional group on the surface of the hydrophilic coating is not controlled, the hydrophilic material surface may be coated with the hydrophobic functional group derived from the support material, which is not preferable. In general, a contact angle is used as a hydrophilicity index. However, when the contact angle of water or sulfuric acid of the hydrophilic coating is 10 ° or less, the hydrophilicity is particularly excellent and preferable. However, in the case of using a hydrophilic material having a high sulfate ion adsorbing power, such as Al 2 O 3 , if a certain level of hydrophilicity with a contact angle of about 30 ° is obtained, synergisticity with the adsorption of sulfate ions is obtained. In order to obtain an effect, it is not always necessary to select a material having a contact angle of 10 ° or less.

親水被膜表面の官能基を制御するには、親水被膜の基材である有機織布、有機不織布または多孔質膜の表面の官能基組成に合わせて、保持体材料を選定することが必要となる。   In order to control the functional group on the surface of the hydrophilic coating, it is necessary to select a support material according to the functional group composition of the surface of the organic woven fabric, organic nonwoven fabric or porous membrane that is the base of the hydrophilic coating. .

以下、有機織布、有機不織布、親水材料及び保持体材料について詳細に説明する。   Hereinafter, the organic woven fabric, the organic nonwoven fabric, the hydrophilic material, and the holding material will be described in detail.

親水被膜は、親水材料と保持体材料とから構成されている。親水被膜は、親水材料と保持体材料とからなる混合液を水溶性溶媒(例えばアルコール系溶媒や水)で希釈して得られた親水塗料を、基材の表面に塗布することで形成される。親水材料には、硫酸イオンと親水被膜との間に働く化学的相互作用を考慮すると、SiO、Al、AlとSiOとの混合物、BaSO及びTiOのうちの少なくとも1つを用いるのが好ましい。Alを用いる場合には、親水材料として親水性アルミナゾルを利用することができ、AlとSiOとの混合物を用いる場合には、親水材料としてアルミナゾルとコロイダルシリカとの混合物を利用することができる。保持体材料には、無機材料または有機高分子材料を用いることができ、例えばシリカゾル、アクリルアミド、またはアルコキシシランを用いることができる。 The hydrophilic film is composed of a hydrophilic material and a holding material. The hydrophilic film is formed by applying a hydrophilic paint obtained by diluting a mixed liquid composed of a hydrophilic material and a support material with a water-soluble solvent (for example, an alcohol solvent or water) to the surface of the substrate. . In consideration of the chemical interaction between sulfate ions and the hydrophilic film, the hydrophilic material includes SiO 2 , Al 2 O 3 , a mixture of Al 2 O 3 and SiO 2 , BaSO 4 and TiO 2 . It is preferable to use at least one. When Al 2 O 3 is used, a hydrophilic alumina sol can be used as the hydrophilic material. When a mixture of Al 2 O 3 and SiO 2 is used, a mixture of alumina sol and colloidal silica is used as the hydrophilic material. Can be used. As the support material, an inorganic material or an organic polymer material can be used. For example, silica sol, acrylamide, or alkoxysilane can be used.

膜体の厚さは、硫酸イオンの沈降の防止能力、電池反応への影響、強度等を考慮すると、0.03mm〜0.1mmが好ましい。基材として有機織布又は有機不織布を用いる場合には、有機織布又は有機不織布の繊維に応じて厚さを定めることができる。一方、基材として多孔質膜を用いる場合には、多孔質膜の孔径や材料に応じて厚さを定めることができる。   The thickness of the film body is preferably 0.03 mm to 0.1 mm in consideration of the ability to prevent the precipitation of sulfate ions, the influence on the battery reaction, the strength, and the like. When an organic woven fabric or organic nonwoven fabric is used as the substrate, the thickness can be determined according to the fiber of the organic woven fabric or organic nonwoven fabric. On the other hand, when a porous membrane is used as the substrate, the thickness can be determined according to the pore size and material of the porous membrane.

有機織布及び有機不織布は、無機織布及び無機不織布に比べると製造が容易という利点を持つ。このため、本発明の鉛蓄電池においては、有機織布又は有機不織布を用いることが望ましい。多孔質膜の孔径は、100nm〜100μmであることが好ましく、特に1μm〜50μmであることが更に好ましい。孔の構造は、有機織布の繊維と繊維との間に生じる規則的な構造でもよいし、有機不織布の繊維と繊維との間に生じるような不規則な構造でもよい。   Organic woven fabrics and organic nonwoven fabrics have the advantage that they are easier to manufacture than inorganic woven fabrics and inorganic nonwoven fabrics. For this reason, in the lead acid battery of this invention, it is desirable to use an organic woven fabric or an organic nonwoven fabric. The pore diameter of the porous membrane is preferably 100 nm to 100 μm, and more preferably 1 μm to 50 μm. The pore structure may be a regular structure generated between the fibers of the organic woven fabric or an irregular structure generated between the fibers of the organic nonwoven fabric.

親水被膜は、10nm〜1000nmの厚さで形成するのが好ましい。10nmより薄いと硫酸イオンを吸着して保持する効果が小さくなり、1000nmより厚いと電池の内部抵抗が大きくなり、どちらも好ましくない。10nm〜500nmの範囲が電池の内部抵抗の観点からは特に好ましい。   The hydrophilic film is preferably formed with a thickness of 10 nm to 1000 nm. If it is thinner than 10 nm, the effect of adsorbing and holding sulfate ions is reduced, and if it is thicker than 1000 nm, the internal resistance of the battery is increased. The range of 10 nm to 500 nm is particularly preferable from the viewpoint of the internal resistance of the battery.

特に、本発明による鉛蓄電池では、親水被膜を有する膜体をセパレータとは別に負極板の周囲に設けると、膜体が負極板に密着した状態で配置されるので、セパレータに成層化の抑制効果を持たせた場合よりも、成層化の抑制効果が高い。なお、ここで、「負極板の周囲」とは、「負極板の表面」又は「負極板とセパレータとの間」をいう。   In particular, in the lead-acid battery according to the present invention, when a film body having a hydrophilic film is provided around the negative electrode plate separately from the separator, the film body is arranged in close contact with the negative electrode plate, so that the effect of suppressing stratification on the separator is achieved. The effect of suppressing stratification is higher than in the case of providing Here, “around the negative electrode plate” means “the surface of the negative electrode plate” or “between the negative electrode plate and the separator”.

本発明では、さらに極板の重力方向において多孔質膜の密度、親水被膜と多孔質膜の質量比に分布をつけることを特徴とする。すなわち、基材である多孔質膜の空孔率が、負極板の上部の方が負極板の下部より高いことを特徴とする。ここで、負極板の上部とは、重力方向において負極板の上端から負極板の全体の高さの30%までの部分であり、負極板の下部とは、重力方向において負極板の下端から負極板の全体の高さの30%までの部分をいう。   In the present invention, the density of the porous film and the mass ratio of the hydrophilic film to the porous film are further distributed in the gravity direction of the electrode plate. That is, the porosity of the porous film as the base material is characterized in that the upper part of the negative electrode plate is higher than the lower part of the negative electrode plate. Here, the upper part of the negative electrode plate is a portion from the upper end of the negative electrode plate to 30% of the total height of the negative electrode plate in the direction of gravity, and the lower part of the negative electrode plate is the negative electrode from the lower end of the negative electrode plate in the direction of gravity. The part up to 30% of the total height of the board.

ISS用途のように大電流で充電する場合には、例えば負極板の半分から上に対応する部分に低密度の多孔質膜を、負極板の半分から下に対応する部分に対して前者よりも高密度の多孔質膜を配置すれば良い。すなわち、密度の異なる2種類の多孔質膜を準備して負極板の周囲に配置する。   When charging with a large current as in ISS applications, for example, a low-density porous film is applied to a portion corresponding to the upper half of the negative electrode plate, and a portion corresponding to the lower portion of the negative electrode plate is lower than the former. What is necessary is just to arrange | position a high-density porous membrane. That is, two types of porous films having different densities are prepared and arranged around the negative electrode plate.

さらに、前述の低密度の多孔質膜に対しては膜厚の薄い親水被膜を、高密度の多孔質膜に対しては膜厚の厚い親水被膜を形成することで本発明の構成を達成することが可能である。   Furthermore, the constitution of the present invention is achieved by forming a thin hydrophilic film on the low-density porous film and forming a thick hydrophilic film on the high-density porous film. It is possible.

以下、本発明を適用した鉛蓄電池の構成について説明する。   Hereinafter, the configuration of the lead storage battery to which the present invention is applied will be described.

図1Aは、本発明の鉛蓄電池の全体構成を示す概略斜視図である。   FIG. 1A is a schematic perspective view showing the overall configuration of the lead storage battery of the present invention.

本図において、鉛蓄電池100は、外装部分として電槽1と端子2とを備えている。電槽1の内部には、極柱3と電極群4とが収容されている。極柱3は、端子2及び電極群4に接続されている。鉛蓄電池100は、通常、その上面に端子2を設けている。   In this figure, the lead storage battery 100 includes a battery case 1 and a terminal 2 as an exterior part. Inside the battery case 1, a pole 3 and an electrode group 4 are accommodated. The pole 3 is connected to the terminal 2 and the electrode group 4. The lead storage battery 100 normally has a terminal 2 on its upper surface.

図1Bは、本発明の鉛蓄電池の電極群の一部を示す模式断面図である。   FIG. 1B is a schematic cross-sectional view showing a part of the electrode group of the lead storage battery of the present invention.

電極群4は、金属鉛(Pb)を活物質として含む負極板5と、二酸化鉛(PbO)を活物質として含む正極板7と、負極板5と正極板7との間に配置されたセパレータ6とを備えている。負極板5及び正極板7は板状である。セパレータ6を介して負極板5と正極板7とが交互に積層された構造であり、これらが電極群4を構成している。電極群4は、希硫酸からなる電解液に浸されて電槽1内に収納され、鉛蓄電池を構成する。負極板5の表面には、膜体8(有機織布、有機不織布または多孔質膜を基材とするもの)が密着した状態で設けられている。 The electrode group 4 is disposed between a negative electrode plate 5 containing metal lead (Pb) as an active material, a positive electrode plate 7 containing lead dioxide (PbO 2 ) as an active material, and the negative electrode plate 5 and the positive electrode plate 7. And a separator 6. The negative electrode plate 5 and the positive electrode plate 7 are plate-shaped. The negative electrode plate 5 and the positive electrode plate 7 are alternately stacked via the separator 6, and these constitute the electrode group 4. The electrode group 4 is immersed in an electrolytic solution made of dilute sulfuric acid and stored in the battery case 1 to constitute a lead storage battery. On the surface of the negative electrode plate 5, a film body 8 (organic woven fabric, organic nonwoven fabric or porous membrane as a base material) is provided in close contact.

なお、図1A及び1Bに示すように、負極板5及び正極板7は、水平方向に積層されている。よって、負極板5及び正極板7は、面積が大きい平面部が上下方向に広がっている。   In addition, as shown to FIG. 1A and 1B, the negative electrode plate 5 and the positive electrode plate 7 are laminated | stacked in the horizontal direction. Therefore, the negative electrode plate 5 and the positive electrode plate 7 have a flat portion with a large area spreading in the vertical direction.

図1Cは、図1Bの電極群に含まれる一対の正極板及び負極板の組み合わせを示す概略斜視図である。   FIG. 1C is a schematic perspective view showing a combination of a pair of a positive electrode plate and a negative electrode plate included in the electrode group of FIG. 1B.

本図に示すセパレータ6は、袋状であり、その内部に負極板5を収納している。よって、負極板5の両面は、1つのセパレータ6によって覆われている。本図においては、負極板5の片面を覆うセパレータ6が負極板5と正極板7との間に挟み込まれている。   The separator 6 shown in this figure is bag-shaped, and the negative electrode plate 5 is accommodated therein. Therefore, both surfaces of the negative electrode plate 5 are covered with one separator 6. In this figure, a separator 6 covering one surface of the negative electrode plate 5 is sandwiched between the negative electrode plate 5 and the positive electrode plate 7.

図2は、本発明の鉛蓄電池における一対の正極及び負極の組み合わせを模式的に示す斜視図、並びに負極板を覆う不織布及びその不織布の繊維を示す模式拡大図である。   FIG. 2 is a perspective view schematically showing a combination of a pair of positive electrode and negative electrode in the lead storage battery of the present invention, and a schematic enlarged view showing a nonwoven fabric covering the negative electrode plate and fibers of the nonwoven fabric.

本図においては、負極板5の表面には、膜体8(有機織布、有機不織布または多孔質膜を基材とするもの)が密着した状態で設けられている。セパレータ6は、板状でも袋状でもよく、負極板5の周囲に設けられた膜体8と正極板7との間に配置されている。セパレータ6が袋状の場合は、セパレータ6の内部には負極板5と膜体8とが収納されている。   In this figure, a film body 8 (based on an organic woven fabric, organic nonwoven fabric or porous membrane) is provided on the surface of the negative electrode plate 5 in close contact. The separator 6 may be plate-shaped or bag-shaped, and is disposed between the film body 8 and the positive electrode plate 7 provided around the negative electrode plate 5. When the separator 6 has a bag shape, the negative electrode plate 5 and the film body 8 are accommodated inside the separator 6.

膜体8の拡大図は、糸状の繊維が不規則に絡み合った構成を有する有機不織布を示したものである。   The enlarged view of the film body 8 shows an organic nonwoven fabric having a configuration in which thread-like fibers are entangled irregularly.

さらに、その繊維を拡大した図においては、膜体8は、基材18と、基材18の表面を覆う親水被膜9と、で構成されている。そして、親水被膜9は、親水材料10と保持体材料11とを含む。膜体8は、少なくともセパレータ6に対向する負極板5の面と、この面の裏側に当たる負極板5の面とに設けられている。さらに、膜体8は、負極板5の側面部(幅が小さい周縁部)にも設けてもよく、負極板5の底面に設けてもよい。   Furthermore, in the figure which expanded the fiber, the film | membrane body 8 is comprised with the base material 18 and the hydrophilic film 9 which covers the surface of the base material 18. FIG. The hydrophilic film 9 includes a hydrophilic material 10 and a holding material 11. The film body 8 is provided on at least the surface of the negative electrode plate 5 that faces the separator 6 and the surface of the negative electrode plate 5 that contacts the back side of this surface. Furthermore, the film body 8 may be provided on the side surface portion (peripheral edge portion having a small width) of the negative electrode plate 5 or may be provided on the bottom surface of the negative electrode plate 5.

例えば、膜体8は、負極板5に巻き付けることにより負極板5の全面に設けてもよい。   For example, the film body 8 may be provided on the entire surface of the negative electrode plate 5 by being wound around the negative electrode plate 5.

また、膜体8の形状を袋状とし、負極板5を収納するようにしてもよい。親水被膜9は、膜体8のほかに、セパレータ6の表面にも形成してもよい。また、膜体8を負極板5の周囲に設けないで、セパレータ6の表面に親水被膜9を形成してもよい。   The shape of the film body 8 may be a bag shape and the negative electrode plate 5 may be accommodated. The hydrophilic film 9 may be formed on the surface of the separator 6 in addition to the film body 8. Alternatively, the hydrophilic film 9 may be formed on the surface of the separator 6 without providing the film body 8 around the negative electrode plate 5.

以上の実施形態における望ましい構成をまとめると、次のようになる。   The desirable configuration in the above embodiment is summarized as follows.

基材の表面の官能基は、実質的に疎水性官能基からなり、保持体材料は、ビニル基、メタクリル基、アクリル基又はスチリル基を有するシランカップリング剤である。ここで、「実質的に疎水性官能基からなる」とは、基材の表面が疎水性を呈する状態をいう。   The functional group on the surface of the substrate is substantially composed of a hydrophobic functional group, and the holding material is a silane coupling agent having a vinyl group, a methacryl group, an acrylic group or a styryl group. Here, “consisting essentially of a hydrophobic functional group” means a state in which the surface of the substrate exhibits hydrophobicity.

基材の表面の官能基は、実質的に親水性官能基からなり、保持体材料は、エポキシ基を有するシランカップリング剤である。ここで、「実質的に親水性官能基からなる」とは、基材の表面が親水性を呈する状態をいう。   The functional group on the surface of the substrate is substantially composed of a hydrophilic functional group, and the support material is a silane coupling agent having an epoxy group. Here, “consisting essentially of a hydrophilic functional group” means a state in which the surface of the substrate exhibits hydrophilicity.

後述のとおり、親水材料と保持体材料との固形成分の質量比が90:10〜70:30であることが望ましい。また、親水被膜は、厚さが10nm〜100nmであることが望ましい。   As will be described later, it is desirable that the mass ratio of the solid component of the hydrophilic material and the support material is 90:10 to 70:30. Further, the hydrophilic film preferably has a thickness of 10 nm to 100 nm.

膜体は、厚さが0.03mm〜0.1mmである。   The film body has a thickness of 0.03 mm to 0.1 mm.

セパレータの表面には、親水被膜が形成されている。   A hydrophilic film is formed on the surface of the separator.

基材は、有機織布、有機不織布又は多孔質膜である。後述の実施例においては、有機不織布を用いたが、電解液が浸透可能なものであれば、基材として有機織布又は多孔質膜を用いてもよい。   The substrate is an organic woven fabric, an organic nonwoven fabric or a porous membrane. In the examples described later, an organic nonwoven fabric is used. However, an organic woven fabric or a porous membrane may be used as a base material as long as the electrolyte solution can permeate.

膜体は、負極板の表面に密着している。ここで、「密着」とは、膜体の見かけ上の外表面が負極板の表面に隙間なく接触している状態をいう。この場合に、膜体が負極板の表面に固定されていることが望ましい。   The film body is in close contact with the surface of the negative electrode plate. Here, “adhesion” refers to a state in which the apparent outer surface of the film body is in contact with the surface of the negative electrode plate without any gap. In this case, it is desirable that the film body is fixed to the surface of the negative electrode plate.

図3は、本発明の実施形態に係る鉛蓄電池の電極群の一部の構造、特に負極板5の周囲の構造を示したものである。   FIG. 3 shows a partial structure of the electrode group of the lead storage battery according to the embodiment of the present invention, particularly the structure around the negative electrode plate 5.

本図においては、膜体8の分布を示している。上述のとおり、負極板5及び正極板7は、面積が大きい平面部が上下方向に広がっている。膜体8は、負極板5の上半分においては密度が低い膜体領域8−1を有し、負極板5の下半分においては密度が高い膜体領域8−2を有する。膜体領域8−1の表面には親水被膜9−1、膜体領域8−2の表面には親水被膜9−2がそれぞれ形成されている。   In this figure, the distribution of the film body 8 is shown. As described above, in the negative electrode plate 5 and the positive electrode plate 7, the plane portion having a large area spreads in the vertical direction. The film body 8 has a film body region 8-1 with a low density in the upper half of the negative electrode plate 5, and a film body region 8-2 with a high density in the lower half of the negative electrode plate 5. A hydrophilic film 9-1 is formed on the surface of the film body region 8-1 and a hydrophilic film 9-2 is formed on the surface of the film body region 8-2.

本実施形態は、主に大電流で充電する場合など、負極板5から硫酸イオンが多量に放出される場合に、硫酸イオン濃度が高くなり密度が高くなった電解液の、負極板5の上部への拡散を促進するとともに、負極板5の上部における電極間抵抗を小さくする作用を有する。これにより、全体として充電の促進をすることができる。   In the present embodiment, when a large amount of sulfate ions are released from the negative electrode plate 5 such as when charging mainly with a large current, the electrolyte solution having a high sulfate ion concentration and a high density is formed above the negative electrode plate 5. And has the effect of reducing the interelectrode resistance in the upper part of the negative electrode plate 5. Thereby, charge can be promoted as a whole.

本図においては、膜体8の密度が重力方向で分布を有する構成を例として描いたが、親水被膜9と多孔質膜8との質量比についても重力方向で異なるように構成してもよい。   In this drawing, the configuration in which the density of the film body 8 is distributed in the direction of gravity is illustrated as an example, but the mass ratio between the hydrophilic film 9 and the porous film 8 may also be configured to be different in the direction of gravity. .

図4は、膜体(基材)の目付けと実電池の内部抵抗との関係を示すグラフである。負極板の周囲に有機不織布等の膜体を配置しない場合の内部抵抗を100(基準値)とした。膜体の厚さは一定とした。   FIG. 4 is a graph showing the relationship between the basis weight of the film body (base material) and the internal resistance of the actual battery. The internal resistance when a film body such as an organic nonwoven fabric was not disposed around the negative electrode plate was set to 100 (reference value). The thickness of the film body was constant.

本図から、膜体の空孔率が小さくなると、内部抵抗が増大することが分かる。   From this figure, it can be seen that the internal resistance increases as the porosity of the film body decreases.

図5は、膜体の表面に親水被膜を形成する際に用いる親水塗料の濃度と、親水被膜を形成した膜体を用いた実電池の内部抵抗との関係を示すグラフである。膜体を配置しない場合の内部抵抗を100(基準値)とした。膜体の厚さは一定とした。   FIG. 5 is a graph showing the relationship between the concentration of the hydrophilic paint used when forming the hydrophilic film on the surface of the film body and the internal resistance of the actual battery using the film body on which the hydrophilic film is formed. The internal resistance when the film body was not arranged was set to 100 (reference value). The thickness of the film body was constant.

本図から、膜体の表面に親水被膜を形成するために親水塗料に浸漬する際の塗料濃度を大きくすると、内部抵抗が増大する傾向があることが分かる。なお、塗料濃度が大きい場合に、膜体の表面に形成される親水被膜の膜厚が増加し、膜体に対する親水被膜の質量比が大きくなる。   From this figure, it can be seen that increasing the coating concentration when dipped in a hydrophilic coating to form a hydrophilic coating on the surface of the film body tends to increase the internal resistance. When the paint concentration is high, the thickness of the hydrophilic film formed on the surface of the film body increases, and the mass ratio of the hydrophilic film to the film body increases.

以下、本実施例による鉛蓄電池について説明する。   Hereinafter, the lead acid battery according to the present embodiment will be described.

〔1〕セパレータ
セパレータの材料の例としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。これらの材料で形成された織布、不織布又は多孔質膜にSiOやAl等の無機系粒子を付着させたものを用いても構わない。セパレータの厚さは、0.1mm〜0.5mmの範囲であることが好ましく、特に0.2mm〜0.3mmの範囲であることがより好ましい。0.1mmよりも薄い場合はセパレータの強度が劣り、0.5mmよりも厚い場合は電池の内部抵抗が大きくなるため、好ましくない。また、セパレータの孔径範囲は10nm〜500nmであることが好ましく、孔径の平均が30nm〜200nmであることが特に好ましい。孔径が10nmよりも小さいと硫酸イオンの通過が困難となって硫酸イオンの拡散速度が大幅に低下し、孔径が500nmよりも大きいと鉛のデンドライトが成長して短絡を引き起こす可能性がある。本発明では、厚さ0.2mm、孔径範囲が30nm〜200nmであるセパレータを用いて検討した。
[1] Separator Examples of the material of the separator include polyethylene (PE) and polypropylene (PP). Fabric formed of these materials may be used after depositing the inorganic particles such as SiO 2, Al 2 O 3 to the nonwoven fabric or porous membrane. The thickness of the separator is preferably in the range of 0.1 mm to 0.5 mm, and more preferably in the range of 0.2 mm to 0.3 mm. If it is thinner than 0.1 mm, the strength of the separator is inferior, and if it is thicker than 0.5 mm, the internal resistance of the battery increases, which is not preferable. Further, the pore diameter range of the separator is preferably 10 nm to 500 nm, and the average pore diameter is particularly preferably 30 nm to 200 nm. If the pore size is smaller than 10 nm, it is difficult to pass sulfate ions, and the diffusion rate of sulfate ions is greatly reduced. If the pore size is larger than 500 nm, lead dendrites may grow and cause a short circuit. In this invention, it examined using the separator whose thickness is 0.2 mm and whose hole diameter range is 30 nm-200 nm.

〔2〕膜体
膜体は、基材である有機織布、有機不織布または多孔質膜の表面に親水被膜を形成することにより作製したものである。有機織布、有機不織布または多孔質膜に用いられる材料の例としては、ポリプロピレン、セルロース、ポリエチレン、ナイロン、アラミド、ポリエステル等が挙げられる。基材に以下に述べる親水塗料を塗布し、加熱して熱硬化させることで、有機織布、有機不織布または多孔質膜の表面に親水被膜を形成できる。基材は、無処理であっても親水化処理をしてあっても構わない。
[2] Film body The film body is produced by forming a hydrophilic film on the surface of an organic woven fabric, organic nonwoven fabric or porous membrane as a base material. Examples of the material used for the organic woven fabric, organic nonwoven fabric or porous membrane include polypropylene, cellulose, polyethylene, nylon, aramid, polyester and the like. A hydrophilic coating described below can be applied to the substrate, and heated and thermally cured to form a hydrophilic coating on the surface of the organic woven fabric, organic nonwoven fabric or porous membrane. The base material may be untreated or hydrophilized.

親水化処理は、ポリグリセリンやシリコーン系などの界面活性剤の塗布、プラズマ処理のような乾式の表面処理のどちらでも構わない。ただし、親水塗料に含まれる保持体材料は、基材の表面に存在する官能基の種類に合わせて選択するものとし、後述の〔3〕(b)保持体材料にて詳細に説明する。   The hydrophilization treatment may be either application of a surfactant such as polyglycerin or silicone or a dry surface treatment such as plasma treatment. However, the holder material contained in the hydrophilic paint is selected according to the type of functional group present on the surface of the substrate, and will be described in detail in [3] (b) Holder material described later.

なお、膜体の表面に形成される親水被膜の質量は、塗料濃度の調整や余分な塗料を除去する際の圧力を変化させることで調整可能である。   In addition, the mass of the hydrophilic film formed on the surface of the film body can be adjusted by changing the pressure at the time of adjusting the paint concentration or removing excess paint.

〔3〕親水塗料
親水被膜を形成するための親水塗料は、(a)親水材料、(b)保持体材料、および(c)溶媒から構成される。親水材料と保持体材料は、ともに、固形成分が一定の濃度で分散媒中に存在するものとする。親水材料の固形成分と保持体材料との固形成分の質量比は、90:10〜70:30であるのが好ましい。固形成分の質量比がこの範囲であると、親水材料と保持体材料とを混合して親水塗料を作製するのに好適である。親水材料が含まれる分散液と保持体材料が含まれる分散液とを混合した後、親水材料及び保持体材料各々の固形成分の合計濃度が、混合して得た分散液(混合分散液)に対して0.5質量%〜5質量%となるように、この混合分散液を溶媒で希釈する。固形成分の濃度が0.5質量%より小さいと親水被膜の厚さが不均一になり、5質量%より大きいと親水被膜が形成しづらくなり、どちらも好ましくない。
[3] Hydrophilic paint The hydrophilic paint for forming the hydrophilic film is composed of (a) a hydrophilic material, (b) a support material, and (c) a solvent. In both the hydrophilic material and the support material, solid components are present in the dispersion medium at a constant concentration. The mass ratio of the solid component of the hydrophilic material to the support material is preferably 90:10 to 70:30. When the mass ratio of the solid components is within this range, it is suitable for preparing a hydrophilic paint by mixing the hydrophilic material and the support material. After the dispersion containing the hydrophilic material and the dispersion containing the holding material are mixed, the total concentration of the solid components of the hydrophilic material and the holding material is mixed into the dispersion (mixed dispersion) obtained by mixing. On the other hand, this mixed dispersion is diluted with a solvent so as to be 0.5 to 5% by mass. If the concentration of the solid component is less than 0.5% by mass, the thickness of the hydrophilic film becomes nonuniform, and if it is more than 5% by mass, it is difficult to form the hydrophilic film, which is not preferable.

(a)親水材料
酸性水溶液に浸漬しても溶け出さない無機材料は、親水性を長期間保てることから、親水材料として好ましい。このような無機材料として、親水性シリカ粒子や親水性アルミナゾルが挙げられる。具体的には、日産化学工業(株)製コロイダルシリカIPA−ST−UP、IPA−ST、ST−OXS、ST−K2およびLSS−35、日産化学工業(株)製アルミナゾルAS−200などが挙げられる。コロイダルシリカはアルコールを分散媒とし、アルミナゾルは水を分散媒としているため、これらは容易に混ぜ合わせることができる。
(A) Hydrophilic material An inorganic material that does not dissolve even when immersed in an acidic aqueous solution is preferable as a hydrophilic material because it can maintain hydrophilicity for a long period of time. Examples of such inorganic materials include hydrophilic silica particles and hydrophilic alumina sol. Specific examples include colloidal silica IPA-ST-UP, IPA-ST, ST-OXS, ST-K2 and LSS-35 manufactured by Nissan Chemical Industries, Ltd., and alumina sol AS-200 manufactured by Nissan Chemical Industries, Ltd. It is done. Since colloidal silica uses alcohol as a dispersion medium and alumina sol uses water as a dispersion medium, they can be easily mixed together.

コロイダルシリカは、比表面積が130m/g〜1000m/g程度である粒子を用いるのが好ましい。コロイダルシリカの形状が球形であると仮定すると、粒子径は2nm〜20nmである。アルミナゾルは、含まれているアルミナ粒子の比表面積が200m/g〜400m/g程度であるものを用いるのが好ましい。アルミナ粒子の形状が板状であると仮定すると、例えば寸法(縦、横および高さ)が10nm×10nm×100nmであるアルミナ粒子を含むアルミナゾルを用いることができる。 Colloidal silica has a specific surface area preferably used particles is 130m 2 / g~1000m 2 / g approximately. Assuming that the colloidal silica has a spherical shape, the particle diameter is 2 nm to 20 nm. Alumina sol, preferably the specific surface area of the contained alumina particles to use those which are 200m 2 / g~400m 2 / g approximately. Assuming that the shape of the alumina particles is plate-like, for example, an alumina sol containing alumina particles having dimensions (length, width, and height) of 10 nm × 10 nm × 100 nm can be used.

(b)保持体材料
保持体材料には、有機高分子材料または無機材料を用いることができる。保持体材料に用いる有機高分子材料の例としては、ポリエチレングリコールやポリビニルアルコール等を加熱して得られる重合体を挙げることができる。保持体材料に用いる無機材料の例としては、シリカゾルやシランカップリング剤のように加熱により保持体となる材料が挙げられる。なお、シランカップリング剤は、実際には有機材料に分類される物質が多いが、本明細書においては、基材に親水性官能基を付与するために用いるため、無機材料として記載している。この中でも酸性水溶液中の長期安定性が優れているのは、アクリルアミド、シリカゾル及びシランカップリング剤である。特にシランカップリング剤は、シランカップリング剤を構成する官能基の種類によって保持体材料の配向性を以下のように制御できるため、好ましい。
(B) Holder material An organic polymer material or an inorganic material can be used for the holder material. Examples of the organic polymer material used for the holding material include a polymer obtained by heating polyethylene glycol, polyvinyl alcohol, or the like. Examples of the inorganic material used for the holder material include materials that become the holder when heated, such as silica sol and silane coupling agents. In addition, although many silane coupling agents are actually classified into organic materials, in this specification, they are described as inorganic materials because they are used to impart hydrophilic functional groups to a substrate. . Among them, acrylamide, silica sol and silane coupling agent are excellent in long-term stability in an acidic aqueous solution. In particular, a silane coupling agent is preferable because the orientation of the support material can be controlled as follows depending on the type of functional group constituting the silane coupling agent.

保持体材料は、基材の表面の官能基の種類に合わせて以下のように選択するものとする。基材が無処理の場合は、疎水性官能基が多い表面になっていると考えられる。疎水性官能基として、メチル基、メチレン基等が挙げられる。その場合には、ビニル基、メタクリル基、アクリル基またはスチリル基等の官能基を持つシランカップリング剤を保持体材料として選択すると、ビニル基、メタクリル基、アクリル基、スチリル基等が基材の表面側に配向し、加水分解反応で生じたシラノール基は逆側に配向すると考えられる。   The holding material is selected as follows according to the type of functional group on the surface of the substrate. When the substrate is not treated, it is considered that the surface has a large amount of hydrophobic functional groups. Examples of the hydrophobic functional group include a methyl group and a methylene group. In that case, when a silane coupling agent having a functional group such as vinyl group, methacryl group, acrylic group or styryl group is selected as the support material, vinyl group, methacryl group, acrylic group, styryl group, etc. It is considered that the silanol groups that are oriented on the surface side and produced by the hydrolysis reaction are oriented on the opposite side.

一方、基材が親水化処理されている場合は、親水性官能基が多い表面になっていると考えられる。親水性官能基として、水酸基(−OH基)、カルボキシル基、アミノ基等が挙げられる。その場合にはアミノ基またはエポキシ基を持つシランカップリング剤を保持体材料として選択すると、アミノ基またはエポキシ基が基材の表面の官能基と反応するため、加水分解で生じたシラノール基は逆側に配向すると考えられる。特に、アミノ基は、水酸基と水素結合を作りやすいため、シラノール基を親水被膜の最表面側に配向させやすいことから特に好ましい。   On the other hand, when the base material is hydrophilized, it is considered that the surface has many hydrophilic functional groups. Examples of the hydrophilic functional group include a hydroxyl group (—OH group), a carboxyl group, and an amino group. In that case, if a silane coupling agent having an amino group or an epoxy group is selected as the support material, the amino group or epoxy group reacts with a functional group on the surface of the substrate, so that the silanol group generated by hydrolysis is reversed. It is considered to be oriented to the side. In particular, an amino group is particularly preferable because it easily forms a hydrogen bond with a hydroxyl group, so that the silanol group is easily oriented on the outermost surface side of the hydrophilic film.

このように基材の表面の官能基の種類に合わせて保持体材料を選択することで、官能基の配向性を制御でき、親水被膜の外面(電解液に接する面)にシラノール基すなわち−OH基を形成することができる。   Thus, by selecting the support material according to the type of functional group on the surface of the base material, the orientation of the functional group can be controlled, and a silanol group, that is, —OH, is provided on the outer surface of the hydrophilic coating (surface in contact with the electrolyte). Groups can be formed.

特に、無処理の基材と、ビニル基、メタクリル基、アクリル基、スチリル基等の官能基を持つシランカップリング剤を保持体材料として選択するのは、基材の親水化処理が不要であるために、工程を短縮できることから特に好ましい。   In particular, selecting a silane coupling agent having a non-treated base material and a functional group such as a vinyl group, a methacryl group, an acrylic group, or a styryl group as a support material does not require a hydrophilic treatment of the base material. Therefore, it is particularly preferable because the process can be shortened.

(c)溶媒
親水材料と保持体材料との混合分散液を希釈するために用いられる溶媒は、親水材料及び保持体材料の分散性及び相溶性が良く、熱硬化の際に揮発しやすいものが望ましい。これらの条件を満たす溶媒としては、アルコール系の溶媒や水が好ましい。さらに、基材の耐熱性を考慮すると、沸点は100℃以下であることが更に好ましい。溶媒の具体例として、水、メタノール、エタノールおよびイソプロピルアルコールが挙げられる。
(C) Solvent The solvent used for diluting the mixed dispersion of the hydrophilic material and the support material has good dispersibility and compatibility with the hydrophilic material and the support material, and is likely to volatilize during thermosetting. desirable. As a solvent satisfying these conditions, an alcohol solvent or water is preferable. Furthermore, considering the heat resistance of the substrate, the boiling point is more preferably 100 ° C. or lower. Specific examples of the solvent include water, methanol, ethanol and isopropyl alcohol.

表1は、実施例の鉛蓄電池の構成、並びに電解液の成層化の抑制効果及び内部抵抗の評価を示したものである。本表には、鉛蓄電池の構成として、負極板上半分/下半分を覆う膜体である多孔質膜の空孔率、多孔質膜の表面に形成した親水被膜の種類及び膜厚を記載している。また、本表には、比較例として作製した鉛蓄電池についても記載した。   Table 1 shows the configuration of the lead storage battery of the example, the effect of suppressing the stratification of the electrolyte, and the evaluation of the internal resistance. This table describes the porosity of the porous film, which is the film body covering the upper half / lower half of the negative electrode plate, the type and thickness of the hydrophilic film formed on the surface of the porous film, as the configuration of the lead storage battery. ing. Further, this table also describes a lead storage battery manufactured as a comparative example.

以下の実施例及び比較例2では、負極板5の周囲に多孔質膜を設けた。実施例1〜5及び比較例2では、多孔質膜8の厚さは0.1mmに、親水被膜形成前の多孔質膜8の材質は、ポリプロピレン(表面官能基:−CH基、−CH基)に統一した。実施例6では、多孔質膜8の厚さを0.5mmとしているが、多孔質膜8の材質は実施例1〜5と同じである。 In the following Examples and Comparative Example 2, a porous film was provided around the negative electrode plate 5. In Examples 1 to 5 and Comparative Example 2, the thickness of the porous film 8 is 0.1 mm, and the material of the porous film 8 before forming the hydrophilic film is polypropylene (surface functional group: —CH 2 group, —CH 3 units). In Example 6, although the thickness of the porous membrane 8 is 0.5 mm, the material of the porous membrane 8 is the same as that of Examples 1-5.

実施例1〜6では、多孔質膜8の空孔率の範囲及び多孔質膜8の表面に形成した親水被膜9の膜厚を重力方向で変化させた。   In Examples 1 to 6, the range of the porosity of the porous film 8 and the film thickness of the hydrophilic coating 9 formed on the surface of the porous film 8 were changed in the direction of gravity.

実施例1による鉛蓄電池には、図2に示すように親水被膜9が形成されたPP製多孔質膜8が負極板5の周囲に配置されている。負極板5の上半分に対応する部分に空孔率80%の多孔質膜8−1を、負極板5の下半分に対応する部分に空孔率70%の多孔質膜8−2を配置した。   In the lead storage battery according to Example 1, a PP porous film 8 on which a hydrophilic film 9 is formed is arranged around the negative electrode plate 5 as shown in FIG. A porous film 8-1 having a porosity of 80% is disposed in a portion corresponding to the upper half of the negative electrode plate 5, and a porous film 8-2 having a porosity of 70% is disposed in a portion corresponding to the lower half of the negative electrode plate 5. did.

多孔質膜(基材)の空孔率は、多孔質膜を5cm角に切り取り、下記の式に従い実際の体積と見かけの体積から算出した。実施例1においては、真密度が0.9cm/cmのポリプロピレン製の多孔質膜を用いた。なお、多孔質膜の真密度は、ピクノメータ法等により測定できる。 The porosity of the porous membrane (base material) was calculated from the actual volume and the apparent volume according to the following formula after cutting the porous membrane into 5 cm square. In Example 1, a polypropylene porous film having a true density of 0.9 cm / cm 3 was used. The true density of the porous membrane can be measured by a pycnometer method or the like.

空孔率(%)={1−(実際の体積)/(見かけの体積)}×100 …(式1)
実際の体積(cm)=重量の実測値(g)/真密度(g/cm) …(式2)
ここで、多孔質膜の見かけの体積は、下記の(式3)により算出した。(式3)において、厚さの実測値は、光学顕微鏡で多孔質膜の厚み方向を観察することにより測定し、2箇所の測定値の平均値とした。
Porosity (%) = {1− (actual volume) / (apparent volume)} × 100 (Formula 1)
Actual volume (cm 3 ) = actual value of weight (g) / true density (g / cm 3 ) (Formula 2)
Here, the apparent volume of the porous membrane was calculated by the following (Formula 3). In (Formula 3), the measured value of the thickness was measured by observing the thickness direction of the porous film with an optical microscope, and was taken as the average value of the measured values at two locations.

見かけの体積(cm)=5(cm)×5(cm)×厚さの実測値(cm) …(式3)
多孔質膜8−1及び多孔質膜8−2の表面には、以下のようにして親水被膜9−1と親水被膜9−2を形成した。
Apparent volume (cm 3 ) = 5 (cm) × 5 (cm) × measured value of thickness (cm) (Formula 3)
A hydrophilic film 9-1 and a hydrophilic film 9-2 were formed on the surfaces of the porous film 8-1 and the porous film 8-2 as follows.

多孔質膜としては、無処理のポリプロピレン(PP)製を用いた。親水材料としてはコロイダルシリカ(SiO)のみを用い、保持体材料としてはシリカゾルを用いた。すなわち、親水材料には100質量%のコロイダルシリカ(SiO)が含まれる。具体的には、コロイダルシリカとして日産化学工業(株)製のコロイダルシリカIPA−ST−UPを、保持体材料としてコルコート社製のコルコートPXを用いた。 As the porous film, untreated polypropylene (PP) was used. Only colloidal silica (SiO 2 ) was used as the hydrophilic material, and silica sol was used as the holding material. That is, the hydrophilic material contains 100% by mass of colloidal silica (SiO 2 ). Specifically, colloidal silica IPA-ST-UP manufactured by Nissan Chemical Industries, Ltd. was used as colloidal silica, and Colcoat PX manufactured by Colcoat was used as the support material.

親水材料10(X)と保持体材料11(Y)の固形成分の質量比(X:Y)が80:20になるように、親水材料10と保持体材料11とを混合した。この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。   The hydrophilic material 10 and the support material 11 were mixed so that the mass ratio (X: Y) of the solid components of the hydrophilic material 10 (X) and the support material 11 (Y) was 80:20. A hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5% by mass.

この親水塗料に多孔質膜8−1を浸漬させた後、速度156mm/分にて多孔質膜8−1を引き上げた。キムタオル(登録商標)に親水塗料を塗布した多孔質膜8−1を挟んで上から約10kg加圧しながらローラーを転がすことで多孔質膜8−1に付着した余分な親水塗料を除去した後、多孔質膜8−1を60℃に加温した恒温槽内に1時間置いて溶媒を除去した。   After the porous film 8-1 was immersed in this hydrophilic paint, the porous film 8-1 was pulled up at a speed of 156 mm / min. After removing the extra hydrophilic paint adhering to the porous membrane 8-1 by rolling the roller while pressing about 10 kg from above with the porous membrane 8-1 coated with a hydrophilic paint on Kim Towel (registered trademark), The porous membrane 8-1 was placed in a constant temperature bath heated to 60 ° C. for 1 hour to remove the solvent.

このようにして、多孔質膜8−1上に親水被膜9−1を形成した。親水被膜9−2も同様にして多孔質膜8−2上にしたが、余分な親水塗料の除去時の加圧は約5kgとした。親水被膜9−1と親水被膜9−2の膜厚は、それぞれ100nmと300nmであった。   In this way, a hydrophilic film 9-1 was formed on the porous membrane 8-1. The hydrophilic coating 9-2 was also formed on the porous membrane 8-2 in the same manner, but the pressure when removing the excess hydrophilic coating was about 5 kg. The film thicknesses of the hydrophilic film 9-1 and the hydrophilic film 9-2 were 100 nm and 300 nm, respectively.

親水被膜9−1と親水被膜9−2が形成された多孔質膜8−1と多孔質膜8−2を負極板5の周囲に配置し、電解液として希硫酸を用い、図1に示すような鉛蓄電池を作製した。   The porous film 8-1 and the porous film 8-2 on which the hydrophilic film 9-1 and the hydrophilic film 9-2 are formed are arranged around the negative electrode plate 5, and diluted sulfuric acid is used as an electrolytic solution, as shown in FIG. Such a lead storage battery was produced.

この鉛蓄電池に、まず電解液の成層化を抑制する効果を評価した。サイクル試験では、5時間率電流(6A)にて30分間放電し、SOC(State Of Charge、電池の充電状態を示す指標)を90%に調整して6時間休止し、2.33V(上限100A)で10分間充電する工程を1サイクルとした。電界液の成層化が顕著に表れる初期のサイクル(50回目)における、電槽内の上部と下部での電解液の比重差を成層化の指標とした。すなわち、50回目のサイクルでの、電槽内の下部における電解液の比重と上部における電解液の比重とを測定し、これらの比重を求め、この比重差の値により、成層化の抑制効果を評価した。   This lead storage battery was first evaluated for the effect of suppressing stratification of the electrolyte. In the cycle test, the battery was discharged at a 5 hour rate current (6A) for 30 minutes, the SOC (State Of Charge) was adjusted to 90%, paused for 6 hours, and 2.33 V (upper limit of 100 A). ) For 10 minutes was defined as one cycle. The difference in specific gravity of the electrolyte solution between the upper part and the lower part in the battery case in the initial cycle (50th) in which the stratification of the electrolysis solution appears remarkably was used as the stratification index. That is, in the 50th cycle, the specific gravity of the electrolyte solution in the lower part of the battery case and the specific gravity of the electrolyte solution in the upper part are measured, and these specific gravities are obtained. evaluated.

電槽内の上部とは極板群4の上端から1cm上の位置であり、電槽内の下部とは、極板群4の下端から1cm下の位置である。極板群4の高さは、極板群4の下部からセパレータ6の上端までの長さ116mmを指す。具体的な評価基準は、比重差が0.02以下の場合を「A」、0.02より大きく0.04以下の場合を「B」、0.04より大きく0.07以下の場合を「C」、0.07より大きい場合を「D」とした。この評価基準では、A、B、C、Dの順に成層化が抑制されていることになる。   The upper part in the battery case is a position 1 cm above the upper end of the electrode plate group 4, and the lower part in the battery case is a position 1 cm below the lower end of the electrode plate group 4. The height of the electrode plate group 4 indicates a length of 116 mm from the lower part of the electrode plate group 4 to the upper end of the separator 6. Specific evaluation criteria are “A” when the specific gravity difference is 0.02 or less, “B” when 0.02 or more and 0.04 or less, and “B” or more than 0.04 and 0.07 or less. The case where “C” was greater than 0.07 was designated “D”. In this evaluation standard, stratification is suppressed in the order of A, B, C, and D.

本実施例による鉛電池は電解液の比重差が0.02と小さく、評価Aとなり、成層化が抑制されていることが分かった。   The lead battery according to this example had a small specific gravity difference of 0.02 as the electrolyte, and was evaluated as A, indicating that stratification was suppressed.

次に、鉛蓄電池の内部抵抗を評価した。内部抵抗は、1kHz交流mΩメータにより評価した。具体的な評価基準は、多孔質膜8がない場合を100とした場合の内部抵抗の上昇率が5%以下の上昇率である場合を「A」、6%以上10%未満の上昇率である場合を「B」、10%以上20%未満の上昇率である場合を「C」、20%以上の上昇率である場合を「D」とした。この評価基準では、A、B、C、Dの順に内部抵抗の上昇を抑制していることになる。   Next, the internal resistance of the lead storage battery was evaluated. The internal resistance was evaluated with a 1 kHz AC mΩ meter. The specific evaluation criteria are “A” when the rate of increase in internal resistance is 5% or less when the case where the porous film 8 is not present is 100, and the rate of increase between 6% and less than 10%. A case where the rate of increase was 10% or more and less than 20% was “C”, and a rate of increase of 20% or more was “D”. In this evaluation standard, an increase in internal resistance is suppressed in the order of A, B, C, and D.

本実施例による鉛蓄電池は、内部抵抗の上昇率が104で評価Aとなった。すなわち、親水被膜に覆われ、かつ負極板の上部の方が負極板の下部より空孔率が高い多孔質膜を用いることにより、内部抵抗上昇の抑制と成層化の抑制が両立できる鉛蓄電池を提供できることが分かった。   The lead storage battery according to this example was evaluated as A when the rate of increase in internal resistance was 104. That is, by using a porous film that is covered with a hydrophilic film and has a higher porosity in the upper part of the negative electrode plate than in the lower part of the negative electrode plate, a lead-acid battery that can simultaneously suppress the increase in internal resistance and the suppression of stratification It turns out that it can provide.

実施例2による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。   The lead acid battery according to Example 2 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.

本実施例による鉛蓄電池では、負極板の上半分に空孔率80%の多孔質膜8−1を、負極板の下半分に空孔率70%の多孔質膜8−2を配置した。   In the lead storage battery according to the present example, a porous film 8-1 with a porosity of 80% was arranged in the upper half of the negative electrode plate, and a porous film 8-2 with a porosity of 70% was arranged in the lower half of the negative electrode plate.

親水材料としてアルミナゾル(Al)のみを用い、保持体材料としてシリカゾルを用いた。すなわち、親水材料には100質量%のアルミナゾル(Al)が含まれる。具体的には、アルミナゾルとして日産化学工業(株)製のアルミナゾルAS−200を、保持体材料としてコルコート社製のコルコートPXを用いた。 Only alumina sol (Al 2 O 3 ) was used as the hydrophilic material, and silica sol was used as the holding material. That is, the hydrophilic material contains 100% by mass of alumina sol (Al 2 O 3 ). Specifically, alumina sol AS-200 manufactured by Nissan Chemical Industries, Ltd. was used as the alumina sol, and Colcoat PX manufactured by Colcoat was used as the support material.

親水材料10(X)と保持体材料11(Y)の固形成分の質量比(X:Y)が90:10になるように、親水材料10と保持体材料11とを混合した。この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。   The hydrophilic material 10 and the support material 11 were mixed so that the mass ratio (X: Y) of the solid components of the hydrophilic material 10 (X) and the support material 11 (Y) was 90:10. A hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5% by mass.

本実施例による鉛蓄電池は、電解液の比重差が0.02と小さく、評価Aとなり、成層化が抑制されていることが分かった。また、本実施例による鉛蓄電池は、内部抵抗が103で評価Aとなり、内部抵抗上昇の抑制と成層化の抑制が両立できることが分かった。   The lead acid battery according to this example had a small specific gravity difference of 0.02 as the electrolyte, and was evaluated as A, indicating that stratification was suppressed. In addition, the lead storage battery according to this example had an internal resistance of 103, which was evaluated as A, and it was found that both suppression of increase in internal resistance and suppression of stratification can be achieved.

実施例3による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。   The lead acid battery according to Example 3 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.

本実施例による鉛蓄電池では、負極板の上半分に空孔率90%の多孔質膜8−1を、負極板の下半分に空孔率75%の多孔質膜の有機不織布8−2を配置した。   In the lead storage battery according to this example, a porous film 8-1 with a porosity of 90% is formed in the upper half of the negative electrode plate, and an organic nonwoven fabric 8-2 with a porous film with a porosity of 75% is formed in the lower half of the negative electrode plate. Arranged.

親水材料としてコロイダルシリカ(SiO)とアルミナゾル(Al)を用い、保持体材料としてシリカゾルを用いた。親水材料において、アルミナゾルとコロイダルシリカの質量比は80:20とした。すなわち、親水材料には、80質量%のアルミナゾル(Al)が含まれる。具体的には、コロイダルシリカとしてIPA−ST−UPを、アルミナゾルとして日産化学工業(株)製のアルミナゾルAS−200を、シリカゾルとしてコルコート社製のコルコートPXを用いた。 Colloidal silica (SiO 2 ) and alumina sol (Al 2 O 3 ) were used as the hydrophilic material, and silica sol was used as the holding material. In the hydrophilic material, the mass ratio of alumina sol to colloidal silica was 80:20. That is, the hydrophilic material contains 80% by mass of alumina sol (Al 2 O 3 ). Specifically, IPA-ST-UP was used as colloidal silica, Alumina Sol AS-200 manufactured by Nissan Chemical Industries, Ltd. was used as the alumina sol, and Colcoat PX manufactured by Colcoat was used as the silica sol.

親水材料10(X)と保持体材料11(Y)の固形成分の質量比(X:Y)が80:20になるように、親水材料10と保持体材料11とを混合した。   The hydrophilic material 10 and the support material 11 were mixed so that the mass ratio (X: Y) of the solid components of the hydrophilic material 10 (X) and the support material 11 (Y) was 80:20.

この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。親水被膜9−1と親水被膜9−2の膜厚は、それぞれ100nmと200nmであった。   A hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5% by mass. The film thicknesses of the hydrophilic coating 9-1 and the hydrophilic coating 9-2 were 100 nm and 200 nm, respectively.

本実施例による鉛蓄電池は、電解液の比重差が0.03と小さく、評価Bとなり、成層化が抑制されていることが分かった。また、本実施例による鉛蓄電池は、内部抵抗が102で評価Aとなり、内部抵抗の上昇を抑制できることが分かった。   The lead acid battery according to this example had a small specific gravity difference of 0.03 as the electrolyte, and was evaluated as B, indicating that stratification was suppressed. In addition, the lead storage battery according to this example had an internal resistance of 102, which was evaluated as A, and it was found that an increase in the internal resistance could be suppressed.

実施例4による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。   The lead acid battery according to Example 4 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.

本実施例による鉛蓄電池では、負極板の上半分には多孔質膜を配置せず(すなわち空孔率100%の多孔質膜を配置したと同じ)、負極板の下半分に空孔率70%の多孔質膜の有機不織布8−2を配置した。   In the lead storage battery according to this example, the porous film is not disposed in the upper half of the negative electrode plate (that is, the same as the case where a porous film having a porosity of 100% is disposed), and the porosity is 70 in the lower half of the negative electrode plate. % Organic membrane 8-2 of porous membrane was disposed.

親水材料としてコロイダルシリカ(SiO)とアルミナゾル(Al)を用い、保持体材料としてシリカゾルを用いた。親水材料において、アルミナゾルとコロイダルシリカの質量比は80:20とした。すなわち、親水材料には、80質量%のアルミナゾル(Al)が含まれる。具体的には、コロイダルシリカとしてIPA−ST−UPを、アルミナゾルとして日産化学工業(株)製のアルミナゾルAS−200を、シリカゾルとしてコルコート社製のコルコートPXを用いた。 Colloidal silica (SiO 2 ) and alumina sol (Al 2 O 3 ) were used as the hydrophilic material, and silica sol was used as the holding material. In the hydrophilic material, the mass ratio of alumina sol to colloidal silica was 80:20. That is, the hydrophilic material contains 80% by mass of alumina sol (Al 2 O 3 ). Specifically, IPA-ST-UP was used as colloidal silica, Alumina Sol AS-200 manufactured by Nissan Chemical Industries, Ltd. was used as the alumina sol, and Colcoat PX manufactured by Colcoat was used as the silica sol.

親水材料10(X)と保持体材料11(Y)の固形成分の質量比(X:Y)が80:20になるように、親水材料10と保持体材料11とを混合した。   The hydrophilic material 10 and the support material 11 were mixed so that the mass ratio (X: Y) of the solid components of the hydrophilic material 10 (X) and the support material 11 (Y) was 80:20.

この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。親水被膜9−2の膜厚は、200nmであった。   A hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5% by mass. The film thickness of the hydrophilic coating 9-2 was 200 nm.

本実施例による鉛蓄電池は、電解液の比重差が0.04と小さく、評価Bとなり、成層化が抑制されていることが分かった。しかし、本実施例による鉛蓄電池は、内部抵抗が107で評価Bとなった。重力方向において多孔質膜8−1と多孔質膜8−2の空孔率差が大きすぎると硫酸イオンの拡散速度に偏りができるため、空孔率差は極端に大きくしない方が良いと考えられる。   The lead acid battery according to this example has a small specific gravity difference of 0.04, which is evaluated as B, indicating that stratification is suppressed. However, the lead storage battery according to this example had an internal resistance of 107 and was evaluated as B. If the porosity difference between the porous membrane 8-1 and the porous membrane 8-2 in the gravitational direction is too large, the diffusion rate of sulfate ions can be biased, so it is better not to make the porosity difference extremely large. It is done.

実施例5による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。   The lead acid battery according to Example 5 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.

本実施例による鉛蓄電池では、負極板の上半分に空孔率90%の多孔質膜8−1を、負極板の下半分に空孔率70%の多孔質膜8−2を配置した。   In the lead storage battery according to this example, a porous film 8-1 with a porosity of 90% was disposed in the upper half of the negative electrode plate, and a porous film 8-2 with a porosity of 70% was disposed in the lower half of the negative electrode plate.

親水材料としてアルミナゾル(Al)のみを用い、保持体材料としてシリカゾルを用いた。すなわち、親水材料には100質量%のアルミナゾル(Al)が含まれる。具体的には、アルミナゾルとして日産化学工業(株)製のアルミナゾルAS−200を、保持体材料としてコルコート社製のコルコートPXを用いた。 Only alumina sol (Al 2 O 3 ) was used as the hydrophilic material, and silica sol was used as the holding material. That is, the hydrophilic material contains 100% by mass of alumina sol (Al 2 O 3 ). Specifically, alumina sol AS-200 manufactured by Nissan Chemical Industries, Ltd. was used as the alumina sol, and Colcoat PX manufactured by Colcoat was used as the support material.

親水材料10(X)と保持体材料11(Y)の固形成分の質量比(X:Y)が90:10になるように、親水材料10と保持体材料11とを混合した。この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。親水被膜9−1と親水被膜9−2の膜厚は、それぞれ100nmと300nmであった。   The hydrophilic material 10 and the support material 11 were mixed so that the mass ratio (X: Y) of the solid components of the hydrophilic material 10 (X) and the support material 11 (Y) was 90:10. A hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5% by mass. The film thicknesses of the hydrophilic film 9-1 and the hydrophilic film 9-2 were 100 nm and 300 nm, respectively.

本実施例による鉛蓄電池は、電解液の比重差が0.02と小さく、評価Aとなり、成層化が抑制されていることが分かった。また、本実施例による鉛蓄電池は、内部抵抗が103で評価Aとなり、内部抵抗上昇の抑制と成層化の抑制が両立できることが分かった。実施例4と5の結果より、多孔質膜8−1と多孔質膜8−2の空孔率差は20%以内にするのが成層化抑制と内部抵抗上昇の抑制の観点から良いと考えられる。   The lead acid battery according to this example had a small specific gravity difference of 0.02 as the electrolyte, and was evaluated as A, indicating that stratification was suppressed. In addition, the lead storage battery according to this example had an internal resistance of 103, which was evaluated as A, and it was found that both suppression of increase in internal resistance and suppression of stratification can be achieved. From the results of Examples 4 and 5, it is considered that the difference in porosity between the porous membrane 8-1 and the porous membrane 8-2 should be within 20% from the viewpoint of suppressing stratification and increasing internal resistance. It is done.

実施例6による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。本実施例では、多孔質膜8−1と多孔質膜8−2の空孔率は同様として、多孔質膜8−1と多孔質膜8−2の厚さを0.5mmとした。親水被膜9−1と親水被膜9−2の組成は実施例1と同様とした。   The lead acid battery according to Example 6 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below. In this example, the porosity of the porous membrane 8-1 and the porous membrane 8-2 was the same, and the thickness of the porous membrane 8-1 and the porous membrane 8-2 was 0.5 mm. The compositions of the hydrophilic coating 9-1 and the hydrophilic coating 9-2 were the same as those in Example 1.

本実施例による鉛蓄電池は、電解液の比重差が0.02と小さく、評価Aとなり、成層化が抑制されていることが分かった。しかし、本実施例による鉛蓄電池は、内部抵抗が130で評価Dとなり、内部抵抗が大幅に上昇することが分かった。多孔質膜8の厚膜化は成層化抑制には効果を発揮するものの、内部抵抗上昇の点からは好ましくないことが分かった。   The lead acid battery according to this example had a small specific gravity difference of 0.02 as the electrolyte, and was evaluated as A, indicating that stratification was suppressed. However, the lead-acid battery according to this example has an internal resistance of 130 and an evaluation D, which indicates that the internal resistance is significantly increased. Although the thickening of the porous film 8 is effective in suppressing stratification, it has been found that it is not preferable from the viewpoint of an increase in internal resistance.

実施例7による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみを説明する。   The lead acid battery according to Example 7 has the same configuration as the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.

本実施例による鉛蓄電池では、負極板の上半分に空孔率70%の多孔質膜8−1を、負極板の下半分に空孔率70%の多孔質膜8−2を配置した。つまり、多孔質膜8−1と多孔質膜8−2の空孔率は同じである。   In the lead storage battery according to this example, a porous film 8-1 with a porosity of 70% was arranged in the upper half of the negative electrode plate, and a porous film 8-2 with a porosity of 70% was arranged in the lower half of the negative electrode plate. That is, the porosity of the porous membrane 8-1 and the porous membrane 8-2 is the same.

親水材料としてアルミナゾル(Al)のみを用い、保持体材料としてシリカゾルを用いた。すなわち、親水材料には100質量%のアルミナゾル(Al)が含まれる。具体的には、アルミナゾルとして日産化学工業(株)製のアルミナゾルAS−200を、保持体材料としてコルコート社製のコルコートPXを用いた。 Only alumina sol (Al 2 O 3 ) was used as the hydrophilic material, and silica sol was used as the holding material. That is, the hydrophilic material contains 100% by mass of alumina sol (Al 2 O 3 ). Specifically, alumina sol AS-200 manufactured by Nissan Chemical Industries, Ltd. was used as the alumina sol, and Colcoat PX manufactured by Colcoat was used as the support material.

親水材料10(X)と保持体材料11(Y)の固形成分の質量比(X:Y)が90:10になるように、親水材料10と保持体材料11とを混合した。この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。   The hydrophilic material 10 and the support material 11 were mixed so that the mass ratio (X: Y) of the solid components of the hydrophilic material 10 (X) and the support material 11 (Y) was 90:10. A hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5% by mass.

本実施例による鉛蓄電池は、電解液の比重差が0.03と小さく、評価Bとなり、成層化が抑制されていることが分かった。また、本実施例による鉛蓄電池は、内部抵抗が106で評価Bとなり、内部抵抗はやや上昇した。   The lead acid battery according to this example had a small specific gravity difference of 0.03 as the electrolyte, and was evaluated as B, indicating that stratification was suppressed. Further, the lead storage battery according to this example had an internal resistance of 106, which was evaluated as B, and the internal resistance slightly increased.

(比較例1)
比較例1による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみ説明する。
(Comparative Example 1)
The lead acid battery according to Comparative Example 1 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.

本比較例による鉛蓄電池では、負極板5の周囲に多孔質膜8を設けなかった。本比較例による鉛蓄電池は、電解液の比重差が0.08と極めて大きく、評価Dとなり、成層化が抑制できないことが分かった。また、本比較例による鉛蓄電池は、負極板5の周囲に多孔質膜8を設けていないため、内部抵抗は評価基準の100である。   In the lead storage battery according to this comparative example, the porous film 8 was not provided around the negative electrode plate 5. The lead acid battery according to this comparative example has an extremely large specific gravity difference of 0.08, which is evaluated as D, and it has been found that stratification cannot be suppressed. Moreover, since the lead acid battery according to this comparative example does not have the porous film 8 around the negative electrode plate 5, the internal resistance is 100, which is an evaluation standard.

本比較例と実施例1〜5により、負極板5の周囲に多孔質膜8を設けることにより、電解液の比重差を小さくすることができ、電解液の成層化を抑制できることが確認できた。   By providing the porous film 8 around the negative electrode plate 5 according to this comparative example and Examples 1 to 5, it was confirmed that the specific gravity difference of the electrolytic solution can be reduced and the stratification of the electrolytic solution can be suppressed. .

(比較例2)
比較例2による鉛蓄電池は、実施例1による鉛蓄電池と同様の構成を備えるが、次の点が相違する。以下では、相違点のみ説明する。
(Comparative Example 2)
The lead acid battery according to Comparative Example 2 has the same configuration as that of the lead acid battery according to Example 1, except for the following points. Only the differences will be described below.

本比較例による鉛蓄電池では、負極板5の周囲に、空孔率70%のPP製の多孔質膜8を設けた。親水材料としてコロイダルシリカ(SiO)を用い、保持体材料としてシリカゾルを用いた。すなわち、親水材料には、100質量%のコロイダルシリカ(SiO)が含まれる。具体的には、コロイダルシリカとしてIPA−ST−UPを、シリカゾルとしてコルコート社製のコルコートPXを用いた。親水材料10(X)と保持体材料11(Y)の固形成分の質量比(X:Y)が80:20になるように、親水材料10と保持体材料11とを混合した。この混合液を、固形成分の濃度が5質量%になるようにエタノールで希釈することで、親水塗料を調製した。親水被膜9の膜厚は、500nmであった。 In the lead storage battery according to this comparative example, a porous film 8 made of PP having a porosity of 70% was provided around the negative electrode plate 5. Colloidal silica (SiO 2 ) was used as the hydrophilic material, and silica sol was used as the holding material. That is, the hydrophilic material contains 100% by mass of colloidal silica (SiO 2 ). Specifically, IPA-ST-UP was used as colloidal silica, and Colcoat PX manufactured by Colcoat was used as silica sol. The hydrophilic material 10 and the support material 11 were mixed so that the mass ratio (X: Y) of the solid components of the hydrophilic material 10 (X) and the support material 11 (Y) was 80:20. A hydrophilic paint was prepared by diluting this mixed solution with ethanol so that the concentration of the solid component was 5% by mass. The film thickness of the hydrophilic coating 9 was 500 nm.

本比較例による鉛蓄電池は、電解液の比重差が0.05で評価Cとなり、内部抵抗は111で評価Cとなった。   The lead acid battery according to this comparative example was evaluated C when the specific gravity difference of the electrolyte was 0.05, and the internal resistance was evaluated C at 111.

Figure 2017068920
Figure 2017068920

以上の結果から、本比較例による鉛蓄電池は、成層化の抑制と内部抵抗上昇の抑制を両立できないことが分かった。さらに、本比較例と実施例1〜4により、多孔質膜に親水被膜を形成することにより、成層化の抑制と内部抵抗上昇の抑制を両立可能であることを確認した。   From the above results, it was found that the lead-acid battery according to this comparative example cannot achieve both suppression of stratification and suppression of increase in internal resistance. Furthermore, it was confirmed by this comparative example and Examples 1-4 that it is possible to achieve both suppression of stratification and suppression of increase in internal resistance by forming a hydrophilic film on the porous film.

なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。   In addition, this invention is not limited to said Example, Various modifications are included. For example, the above-described embodiments are described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to an aspect including all the configurations described.

1:電槽、2:端子、3:極柱、4:電極群、5:負極板、6:セパレータ、7:正極板、8:膜体、9:親水被膜、10:親水材料、11:保持体材料、18:基材、100:鉛蓄電池。   1: battery case, 2: terminal, 3: pole column, 4: electrode group, 5: negative electrode plate, 6: separator, 7: positive electrode plate, 8: film body, 9: hydrophilic coating, 10: hydrophilic material, 11: Retainer material, 18: base material, 100: lead acid battery.

Claims (9)

正極板と、
負極板と、
前記正極板と前記負極板との間に配置されたセパレータと、
電解液と、
前記正極板と前記負極板と前記セパレータと前記電解液とを収容する電槽と、を備え、
前記負極板の表面には、膜体が付設され、
前記膜体は、基材と、前記基材の表面を覆う親水被膜と、を有し、
前記親水被膜は、親水材料と、保持体材料と、を含み、
前記親水材料は、アルミナ又はシリカを含み、
前記保持体材料は、アクリルアミド、シリカゾル又はシランカップリング剤であり、
前記基材の空孔率は、前記負極板の上部の方が前記負極板の下部より高い、鉛蓄電池。
A positive electrode plate;
A negative electrode plate;
A separator disposed between the positive electrode plate and the negative electrode plate;
An electrolyte,
A battery case containing the positive electrode plate, the negative electrode plate, the separator, and the electrolytic solution;
A film body is attached to the surface of the negative electrode plate,
The film body has a base material and a hydrophilic film covering the surface of the base material,
The hydrophilic film includes a hydrophilic material and a holding material,
The hydrophilic material includes alumina or silica,
The holding material is acrylamide, silica sol or silane coupling agent,
The porosity of the base material is a lead acid battery in which the upper part of the negative electrode plate is higher than the lower part of the negative electrode plate.
正極板と、
負極板と、
前記正極板と前記負極板との間に配置されたセパレータと、
電解液と、
前記正極板と前記負極板と前記セパレータと前記電解液とを収容する電槽と、を備え、
前記負極板の表面には、膜体が付設され、
前記膜体は、基材と、前記基材の表面を覆う親水被膜と、を有し、
前記親水被膜は、親水材料と、保持体材料と、を含み、
前記親水材料は、アルミナ又はシリカを含み、
前記保持体材料は、アクリルアミド、シリカゾル又はシランカップリング剤であり、
前記親水被膜と前記膜体との質量比は、前記負極板の上部の方が前記負極板の下部より低い、鉛蓄電池。
A positive electrode plate;
A negative electrode plate;
A separator disposed between the positive electrode plate and the negative electrode plate;
An electrolyte,
A battery case containing the positive electrode plate, the negative electrode plate, the separator, and the electrolytic solution;
A film body is attached to the surface of the negative electrode plate,
The film body has a base material and a hydrophilic film covering the surface of the base material,
The hydrophilic film includes a hydrophilic material and a holding material,
The hydrophilic material includes alumina or silica,
The holding material is acrylamide, silica sol or silane coupling agent,
The lead acid battery in which the mass ratio between the hydrophilic coating and the film body is lower in the upper part of the negative electrode plate than in the lower part of the negative electrode plate.
前記基材の表面には、疎水性官能基を有し、
前記保持体材料は、ビニル基、メタクリル基、アクリル基又はスチリル基を有するシランカップリング剤である、請求項1又は2に記載の鉛蓄電池。
The surface of the substrate has a hydrophobic functional group,
The lead-acid battery according to claim 1 or 2, wherein the holding material is a silane coupling agent having a vinyl group, a methacryl group, an acrylic group, or a styryl group.
前記基材の表面には、親水性官能基を有し、
前記保持体材料は、アミノ基又はエポキシ基を有するシランカップリング剤である、請求項1又は2に記載の鉛蓄電池。
The surface of the substrate has a hydrophilic functional group,
The lead acid battery according to claim 1 or 2, wherein the holding material is a silane coupling agent having an amino group or an epoxy group.
前記親水材料は、アルミナ若しくはシリカの単体又はアルミナとシリカとの混合物からなる、請求項1〜4のいずれか一項に記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 4, wherein the hydrophilic material is made of alumina or silica alone or a mixture of alumina and silica. 前記親水被膜は、前記親水材料と前記保持体材料との固形成分の質量比が90:10〜70:30である、請求項1〜5のいずれか一項に記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 5, wherein the hydrophilic coating has a solid component mass ratio of 90:10 to 70:30 of the hydrophilic material and the support material. 前記親水被膜は、厚さが10nm〜1000nmである、請求項1〜6のいずれか一項に記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 6, wherein the hydrophilic coating has a thickness of 10 nm to 1000 nm. 前記膜体は、厚さが0.03mm〜0.1mmである、請求項1〜7のいずれか一項に記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 7, wherein the film body has a thickness of 0.03 mm to 0.1 mm. 前記セパレータの表面には、前記親水被膜が形成されている、請求項1〜8のいずれか一項に記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 8, wherein the hydrophilic film is formed on a surface of the separator.
JP2015189964A 2015-09-28 2015-09-28 Lead storage battery Pending JP2017068920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015189964A JP2017068920A (en) 2015-09-28 2015-09-28 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015189964A JP2017068920A (en) 2015-09-28 2015-09-28 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2017068920A true JP2017068920A (en) 2017-04-06

Family

ID=58494968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015189964A Pending JP2017068920A (en) 2015-09-28 2015-09-28 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2017068920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978580B (en) * 2020-10-23 2021-01-08 河南银金达新材料股份有限公司 Polyethylene film without coating fragments and preparation method thereof
JP2021064534A (en) * 2019-10-15 2021-04-22 古河電池株式会社 Lead acid battery
JP2021530851A (en) * 2018-07-23 2021-11-11 ダラミック エルエルシー Improved lead-acid battery separator
JP7352870B2 (en) 2018-05-23 2023-09-29 株式会社Gsユアサ lead acid battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116597A (en) * 1997-06-26 1999-01-22 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116597A (en) * 1997-06-26 1999-01-22 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352870B2 (en) 2018-05-23 2023-09-29 株式会社Gsユアサ lead acid battery
JP2021530851A (en) * 2018-07-23 2021-11-11 ダラミック エルエルシー Improved lead-acid battery separator
JP2021064534A (en) * 2019-10-15 2021-04-22 古河電池株式会社 Lead acid battery
CN111978580B (en) * 2020-10-23 2021-01-08 河南银金达新材料股份有限公司 Polyethylene film without coating fragments and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6197945B2 (en) Lead acid battery
JP5798962B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
JP6378196B2 (en) Ceramic coating on battery separator
JP2017068920A (en) Lead storage battery
JP5064800B2 (en) Capacitor having ceramic separation layer
JP5994714B2 (en) Lead acid battery
JP2008503049A5 (en)
JP4928137B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
JP6620579B2 (en) Lead acid battery
CA2865475C (en) New pasting paper made of glass fiber nonwoven comprising carbon graphite
EP3067964A1 (en) Acid resistant glass mats that include binders with hydrophilic agents
TW201351758A (en) Isolation film of electrochemical device and manufacturing method thereof
KR20040058330A (en) Electrophoretically deposited hydrophilic coatings for fuel cell diffuser/current collector
JP6237922B2 (en) Lead acid battery
JP2016177872A (en) Lead storage battery
JP2015053180A (en) Battery separator
JP6908052B2 (en) Liquid lead-acid battery
JP4737815B2 (en) Sealed lead acid battery
CN106299201B (en) A kind of AGM partition can inhibit electrolyte stratification
JP2019003838A (en) Liquid-type lead storage battery
JP6436092B2 (en) Lead-acid battery separator and lead-acid battery
TW200405602A (en) Production of a separator, especially for lithium ion batteries
JP7152831B2 (en) lead acid battery
JP3511858B2 (en) Lead storage battery
KR101067261B1 (en) Capacitor comprising a ceramic separating layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820