JP2017064647A - Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same - Google Patents

Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same Download PDF

Info

Publication number
JP2017064647A
JP2017064647A JP2015194178A JP2015194178A JP2017064647A JP 2017064647 A JP2017064647 A JP 2017064647A JP 2015194178 A JP2015194178 A JP 2015194178A JP 2015194178 A JP2015194178 A JP 2015194178A JP 2017064647 A JP2017064647 A JP 2017064647A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
hydrodesulfurization catalyst
mass
metal component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015194178A
Other languages
Japanese (ja)
Other versions
JP6489990B2 (en
Inventor
智久 平野
Tomohisa Hirano
智久 平野
秀樹 尾野
Hideki Ono
秀樹 尾野
正典 吉田
Masanori Yoshida
正典 吉田
智靖 香川
Tomoyasu Kagawa
智靖 香川
渡部 光徳
Mitsunori Watabe
光徳 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp, JGC Catalysts and Chemicals Ltd filed Critical JX Nippon Oil and Energy Corp
Priority to JP2015194178A priority Critical patent/JP6489990B2/en
Publication of JP2017064647A publication Critical patent/JP2017064647A/en
Application granted granted Critical
Publication of JP6489990B2 publication Critical patent/JP6489990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrodesulfurization catalyst having higher activity than a conventional one.SOLUTION: A hydrodesulfurization catalyst is made by carrying at least one kind of metal component selected from the group VIA and the group VIII in the periodic table on a support that contains at least boehmite and γ-aluminum and further contains silica and titania. The content of titania in the support is 23 mass% or more and 27 mass% or less. An average length of a metal sulfide crystal after presulfidation is 2.6 nm or less. An average number of laminated layers of the metal sulfide crystal is 1.8 or more.SELECTED DRAWING: Figure 1

Description

本発明は炭化水素油の水素化脱硫触媒およびその製造方法に関する。   The present invention relates to a hydrodesulfurization catalyst for hydrocarbon oil and a method for producing the same.

従来、炭化水素油の水素化処理を目的として広く使用されてきたのは、アルミナ、アルミナ−シリカ、チタニア、アルミナ−チタニアなどの多孔性無機酸化物からなる担体に、周期表第VIA族及び第VIII族から選ばれた金属成分を担持した触媒である。
現在、環境保護の観点から燃料油の硫黄分の品質規制が強化されている。特に、軽油中の硫黄分は10質量ppm以下という厳しい規制となっている。このため、この規制に対応できるよう軽油超深度脱硫触媒の開発が進んでいる。
特許文献1は、シリカ−チタニア−アルミナ担体に周期表第VIA族及び第VIII族から選ばれた金属成分を担持した触媒を開示している。この触媒は,チタニアの含有量や結晶構造、担体の比表面積や細孔容積などを調整することで高い脱硫活性を実現しているが、さらなる脱硫活性の向上が求められている。
Hitherto, hydrocarbon oils have been widely used for the purpose of hydrotreating hydrocarbon carriers such as alumina, alumina-silica, titania, alumina-titania, etc. It is a catalyst carrying a metal component selected from Group VIII.
At present, the quality regulation of sulfur content in fuel oil is being strengthened from the viewpoint of environmental protection. In particular, the sulfur content in light oil is strictly regulated to 10 mass ppm or less. For this reason, development of a light oil ultra-deep desulfurization catalyst is progressing so that it can respond to this regulation.
Patent Document 1 discloses a catalyst in which a metal component selected from Group VIA and Group VIII of the periodic table is supported on a silica-titania-alumina support. This catalyst achieves high desulfurization activity by adjusting the titania content, crystal structure, specific surface area of the support, pore volume, etc., but further improvement in desulfurization activity is required.

特開2011−072928号公報JP 2011-072928 A

本発明の目的は、従来よりも高性能な水素化脱硫触媒、特に軽油留分の水素化脱硫触媒およびその製造方法の提供にある。   An object of the present invention is to provide a hydrodesulfurization catalyst having higher performance than before, particularly a hydrodesulfurization catalyst for a gas oil fraction, and a method for producing the same.

本発明者らは鋭意研究した結果、特定の性状を有する担体を用いるとともに、担持される金属の状態を制御することで、脱硫性能を大きく向上せしめ、前記課題を達成し得ることを見出した。   As a result of intensive studies, the present inventors have found that by using a carrier having specific properties and controlling the state of the metal to be supported, the desulfurization performance can be greatly improved and the above-mentioned problems can be achieved.

すなわち、本発明は、少なくともベーマイトおよびγ−アルミナを含み、さらにシリカとチタニアを含有する担体に周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持してなる水素化脱硫触媒であって、担体中のチタニア含有割合が23質量%以上27質量%以下であり、予備硫化後の金属硫化物結晶の平均長さが2.6nm以下で、かつ金属硫化物結晶の平均積層数が1.8以上であることを特徴とする炭化水素油の水素化脱硫触媒である。   That is, the present invention is a hydrodesulfurization comprising at least one metal component selected from Group VIA and Group VIII of the periodic table on a support containing at least boehmite and γ-alumina, and further containing silica and titania. The catalyst has a titania content in the support of 23% by mass or more and 27% by mass or less, the average length of the metal sulfide crystals after preliminary sulfidation is 2.6 nm or less, and the average stack of metal sulfide crystals A hydrodesulfurization catalyst for hydrocarbon oil, characterized in that the number is 1.8 or more.

また、本発明は、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液と、塩基性アルミニウム塩水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥、及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持する第3工程と、前記第3工程で得られた水素化脱硫触媒を予備硫化処理する第4工程により前記の水素化脱硫触媒を得ることを特徴とする水素化脱硫触媒の製造方法である。   In the present invention, in the presence of silicate ions, a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt and a basic aqueous aluminum salt solution are mixed so that the pH is 6.5 to 9.5. A first step for obtaining a hydrate, a second step for obtaining a carrier by sequentially washing, molding, drying and firing the hydrate, and the carrier selected from Group VIA and Group VIII of the periodic table. Hydrogenation characterized in that said hydrodesulfurization catalyst is obtained by a third step supporting at least one metal component and a fourth step of presulfiding the hydrodesulfurization catalyst obtained in said third step. This is a method for producing a desulfurization catalyst.

本発明の水素化脱硫触媒は、従来の触媒よりも高性能であり、特に軽油留分の水素化脱硫触媒として好適である。   The hydrodesulfurization catalyst of the present invention has higher performance than conventional catalysts, and is particularly suitable as a hydrodesulfurization catalyst for light oil fractions.

予備硫化後の水素化脱硫触媒aのTEM写真である。It is a TEM photograph of hydrodesulfurization catalyst a after preliminary sulfidation. 実施例1で製造した担体a、比較例1で製造した担体e、比較例2で製造した担体fおよび比較例3で製造した担体gのそれぞれの透過型フーリエ変換赤外吸収スペクトルを示す図である。FIG. 4 is a diagram showing transmission type Fourier transform infrared absorption spectra of the carrier a produced in Example 1, the carrier e produced in Comparative Example 1, the carrier f produced in Comparative Example 2, and the carrier g produced in Comparative Example 3. is there. 実施例1で製造した担体a、比較例1で製造した担体e、比較例2で製造した担体fおよび比較例3で製造した担体gのそれぞれのX線回折パターンを示す図である。FIG. 3 is a diagram showing X-ray diffraction patterns of a carrier a produced in Example 1, a carrier e produced in Comparative Example 1, a carrier f produced in Comparative Example 2, and a carrier g produced in Comparative Example 3.

以下、本発明について詳細に説明する。
本発明の水素化脱硫触媒における担体は、少なくともベーマイトおよびγ−アルミナを含み、さらにシリカとチタニアを含む無機酸化物からなる。
担体としては、さらにボリア、五酸化二リン、ジルコニアなどを含んでもよい。
Hereinafter, the present invention will be described in detail.
The carrier in the hydrodesulfurization catalyst of the present invention comprises at least boehmite and γ-alumina, and further comprises an inorganic oxide containing silica and titania.
The carrier may further contain boria, diphosphorus pentoxide, zirconia and the like.

担体中のベーマイトとγ−アルミナの含有量は、それぞれをAlとした場合の合計で53〜76質量%であることが好ましく、より好ましくは60〜75質量%、さらに好ましくは67〜73質量%である。ここで、アルミナの含有量が53質量%未満の場合には、触媒劣化が大きくなる傾向にあるので好ましくない。また、アルミナの含有量が76質量%より多い場合には、触媒性能が低下する傾向にあるため好ましくない。 The total content of boehmite and γ-alumina in the support is preferably 53 to 76% by mass, more preferably 60 to 75% by mass, and still more preferably 67 to 75% by mass when each is Al 2 O 3. 73% by mass. Here, when the content of alumina is less than 53% by mass, catalyst deterioration tends to increase, such being undesirable. Moreover, when there is more content of an alumina than 76 mass%, since there exists a tendency for catalyst performance to fall, it is not preferable.

チタニアは、担体基準でTiOとして23〜27質量%含有することが必要であり、24〜26質量%含有することが特に好ましい。チタニアの含有量を23〜27質量%に制御することにより、得られる触媒の脱硫活性が大幅に向上することが見出された。 The titania needs to be contained in an amount of 23 to 27% by mass as TiO 2 on a carrier basis, and is particularly preferably contained in an amount of 24 to 26% by mass. It has been found that by controlling the titania content to 23 to 27% by mass, the desulfurization activity of the resulting catalyst is greatly improved.

シリカは、担体基準でSiOとして1〜10質量%含有することが好ましく、2〜7質量%含有することがより好ましく、2〜5質量%含有することがさらに好ましい。シリカの含有量が1質量%未満では、比表面積が低くなる上、担体を焼成する際にチタニア粒子が凝集しやすくなり、X線回折分析により測定されるアナターゼ型チタニア及びルチル型チタニアの結晶構造を示す回折ピーク面積が大きくなる。チタニア粒子が凝集すると比表面積が低くなり、周期表第VIA族の金属成分および周期表第VIII族の金属成分の含有量が低くなり、活性が低下してしまう。また、シリカの含有量が10質量%を超える場合には、得られる担体の細孔分布のシャープネスが悪くなり所望の脱硫活性が得られないことがある。 Silica is preferably contained in an amount of 1 to 10% by mass as SiO 2 on a carrier basis, more preferably 2 to 7% by mass, and even more preferably 2 to 5% by mass. When the silica content is less than 1% by mass, the specific surface area becomes low and the titania particles tend to aggregate when the carrier is baked, and the crystal structures of anatase titania and rutile titania measured by X-ray diffraction analysis. Increases the diffraction peak area. When the titania particles are aggregated, the specific surface area is decreased, the contents of the metal component of Group VIA of the periodic table and the metal component of Group VIII of the periodic table are decreased, and the activity is decreased. On the other hand, when the content of silica exceeds 10% by mass, the sharpness of the pore distribution of the obtained carrier is deteriorated and the desired desulfurization activity may not be obtained.

本発明の水素化脱硫触媒の担体は、X線回折分析により測定されるベーマイト(021)面の結晶構造を示す回折ピーク面積が、γ−アルミナ(440)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/10以上であることが好ましく、1/8以上であるのがより好ましく、1/5以上であるのがさらに好ましい。上限については特に限定されないが、1以下であることが好ましく、4/5以下がより好ましい。X線回折分析により測定されるベーマイト(021)面の結晶構造を示す回折ピーク面積が、γ−アルミナ(440)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/10未満であると、周期表第VIA族の金属成分と周期表第VIII族の金属成分の分散度が低くなり、その結果として十分な活性が得られなくなるおそれがある。一方、1を超えると、ベーマイトの割合が多くなり過ぎ、強度が低下するおそれがあるため好ましくない。
ここで、ベーマイト(021)面の結晶構造を示す回折ピークは2θ=28°で測定したものであり、γ−アルミナ(440)面に帰属されるアルミニウム結晶構造を示す回折ピークは2θ=67°で測定したものである。
The carrier of the hydrodesulfurization catalyst of the present invention shows an aluminum crystal structure in which the diffraction peak area indicating the crystal structure of the boehmite (021) plane measured by X-ray diffraction analysis belongs to the γ-alumina (440) plane. The diffraction peak area is preferably 1/10 or more, more preferably 1/8 or more, and still more preferably 1/5 or more. The upper limit is not particularly limited, but is preferably 1 or less, and more preferably 4/5 or less. The diffraction peak area showing the crystal structure of the boehmite (021) plane measured by X-ray diffraction analysis is less than 1/10 of the diffraction peak area showing the aluminum crystal structure attributed to the γ-alumina (440) plane. If so, the degree of dispersion of the metal component of Group VIA of the periodic table and the metal component of Group VIII of the periodic table may be low, and as a result, sufficient activity may not be obtained. On the other hand, when the ratio exceeds 1, the ratio of boehmite is excessively increased, and the strength may be lowered.
Here, the diffraction peak indicating the crystal structure of the boehmite (021) plane was measured at 2θ = 28 °, and the diffraction peak indicating the aluminum crystal structure attributed to the γ-alumina (440) plane was 2θ = 67 °. It was measured by.

それぞれの回折ピーク面積の算出方法は、X線回折装置でX線回折分析によって得られたグラフを最小二乗法によりフィッティングしベースライン補正を行い、最大ピーク値からベースラインまでの高さを求め(ピーク強度W)得られたピーク強度の半分の値(1/2W)のときのピーク幅(半値幅)を求め、この半値幅とピーク強度との積を回折ピーク面積とする。求めた各回折ピーク面積から、「ベーマイト回折ピーク面積/γ−アルミナ回折ピーク面積」を算出する。   Each diffraction peak area is calculated by fitting a graph obtained by X-ray diffraction analysis with an X-ray diffractometer using the least square method and correcting the baseline to obtain the height from the maximum peak value to the baseline ( Peak intensity W) The peak width (half width) at the half value (1/2 W) of the obtained peak intensity is obtained, and the product of this half width and peak intensity is defined as the diffraction peak area. From the obtained diffraction peak areas, “boehmite diffraction peak area / γ-alumina diffraction peak area” is calculated.

本発明の水素化脱硫触媒は、前記の担体に周期表第VIA族(IUPAC 第6族)及び第VIII族(IUPAC 第8族〜第10族)から選ばれる少なくとも1種以上の金属成分が担持されたものである。   In the hydrodesulfurization catalyst of the present invention, at least one metal component selected from Group VIA (IUPAC Group 6) and Group VIII (IUPAC Group 8 to Group 10) of the periodic table is supported on the support. It has been done.

周期表第VIA族の金属成分としては、モリブデン(Mo)、タングステン(W)等を例示することができ、周期表第VIII族の金属成分としては、コバルト(Co)、ニッケル(Ni)等を例示することができる。これらの金属成分は1種を単独で又は2種以上を組合せて用いても良い。触媒性能の点から、金属成分としては、ニッケル−モリブデン、コバルト−モリブデン、ニッケル−モリブデン−コバルト、ニッケル−タングステン、コバルト−タングステン、ニッケル−タングステン−コバルト等の組合せが好ましく、特に、ニッケル−モリブデン、コバルト−モリブデン、ニッケル−モリブデン−コバルトの組合せがより好ましい。   Examples of the metal component of Group VIA of the periodic table include molybdenum (Mo) and tungsten (W). Examples of the metal component of Group VIII of the periodic table include cobalt (Co) and nickel (Ni). It can be illustrated. These metal components may be used alone or in combination of two or more. From the viewpoint of catalyst performance, the metal component is preferably a combination of nickel-molybdenum, cobalt-molybdenum, nickel-molybdenum-cobalt, nickel-tungsten, cobalt-tungsten, nickel-tungsten-cobalt, etc. A combination of cobalt-molybdenum and nickel-molybdenum-cobalt is more preferable.

金属成分の担持量は、触媒基準で、酸化物として、1〜35質量%の範囲が好ましく、15〜30質量%の範囲がさらに好ましい。特に、周期表第VIA族の金属成分は、酸化物として、好ましくは10〜30質量%の範囲、より好ましくは13〜24質量%の範囲、周期表第VIII族の金属成分は、酸化物として、2.6〜4.4質量%の範囲が好ましく、2.8〜4.2質量%の範囲がより好ましく、特に望ましくは3.5〜4.0質量%の範囲である。   The supported amount of the metal component is preferably in the range of 1 to 35% by mass and more preferably in the range of 15 to 30% by mass as the oxide on the catalyst basis. In particular, the metal component of Group VIA of the periodic table is preferably in the range of 10 to 30% by mass, more preferably in the range of 13 to 24% by mass, and the metal component of Group VIII of the periodic table is as oxide. The range of 2.6 to 4.4% by mass is preferable, the range of 2.8 to 4.2% by mass is more preferable, and the range of 3.5 to 4.0% by mass is particularly desirable.

また、周期表第VIII族から選ばれる金属成分の割合は、周期表第VIA族から選ばれる金属成分に対して酸化物重量比(例えば、CoO/MoO比)で、0.13〜0.25であることが好ましく、0.15〜0.24がより好ましく、0.17〜0.23がさらに好ましい。周期表第VIII族から選ばれる金属成分の割合が、周期表第VIA族から選ばれる金属成分に対して酸化物重量比で0.13未満だと、CoMoS相が十分に形成されず好ましくない。一方、周期表第VIII族から選ばれる金属成分の割合が、周期表第VIA族から選ばれる金属成分に対して酸化物重量比で0.25を超えると、CoMoS相を不活性な硫化コバルト種が覆ってしまうため好ましくない。 The ratio of the metal component selected from Group VIII of the periodic table is 0.13 to 0.003 in terms of oxide weight ratio (for example, CoO / MoO 3 ratio) with respect to the metal component selected from Group VIA of the periodic table. 25 is preferred, 0.15 to 0.24 is more preferred, and 0.17 to 0.23 is even more preferred. If the ratio of the metal component selected from Group VIII of the periodic table is less than 0.13 in terms of oxide weight ratio to the metal component selected from Group VIA of the periodic table, the CoMoS phase is not sufficiently formed, which is not preferable. On the other hand, when the ratio of the metal component selected from Group VIII of the periodic table exceeds 0.25 in terms of the oxide weight ratio with respect to the metal component selected from Group VIA of the periodic table, the CoMoS phase is converted into an inert cobalt sulfide species. Is not preferable because it covers.

本発明の水素化脱硫触媒の担体に周期表第VIA族の金属成分を担持・含有させる場合は、酸を用いて該金属成分を溶解させることが好ましい。ここで酸としては、リン酸および/または有機酸を使用することが好ましい。   When the metal component of Group VIA of the periodic table is supported and contained in the carrier of the hydrodesulfurization catalyst of the present invention, it is preferable to dissolve the metal component using an acid. Here, it is preferable to use phosphoric acid and / or an organic acid as the acid.

リン酸を用いる場合、周期表第VIA族の金属成分100質量%に対してリンは酸化物換算で3〜25質量%のリン酸を担持させることが好ましく、より好ましくは10〜15質量%の範囲で担持されることが好ましい。担持量が25質量%を超えると触媒性能が低下する傾向にあるので好ましくなく、3質量%未満だと担持金属溶液の安定性が悪くなり好ましくない。   When using phosphoric acid, phosphorus preferably supports 3 to 25% by mass of phosphoric acid, more preferably 10 to 15% by mass based on 100% by mass of the metal component of Group VIA of the periodic table. It is preferable to be carried in a range. If the loading amount exceeds 25% by mass, the catalyst performance tends to decrease, which is not preferable. If the loading amount is less than 3% by mass, the stability of the supported metal solution is unfavorable.

なお、上記担体に、上記金属成分、あるいはさらにリンを担持・含有させる方法は特に限定されず、含浸法(平衡吸着法、ポアフィリング法、初期湿潤法)、イオン交換法等の公知の方法を用いることができる。ここで、含浸法とは、担体に活性金属を含む溶液を含浸させた後、乾燥、焼成する方法のことである。   The method for supporting and containing the metal component or further phosphorus in the carrier is not particularly limited, and a known method such as an impregnation method (equilibrium adsorption method, pore filling method, initial wetting method), ion exchange method or the like can be used. Can be used. Here, the impregnation method is a method of impregnating a support containing a solution containing an active metal, followed by drying and firing.

含浸法では、周期表第VIA族の金属成分と周期表第VIII族の金属成分とを同時に担持することが好ましい。別々に金属を担持すると、脱硫活性または脱窒素活性が不充分になることがある。担持を含浸法により行う場合には、担体上での周期表第VIA族の金属成分の分散性が高くなって、得られる触媒の脱硫活性および脱窒素活性がより高くなることから、酸の共存下、好ましくはリン酸または有機酸の共存下で行う。その際、周期表第VIA族の金属成分100質量%に対して3〜25質量%のリン酸を添加することが好ましい。   In the impregnation method, it is preferable to simultaneously support a metal component of Group VIA of the periodic table and a metal component of Group VIII of the periodic table. If the metals are supported separately, the desulfurization activity or denitrification activity may be insufficient. When the loading is carried out by the impregnation method, the dispersibility of the metal component of Group VIA of the periodic table on the support becomes high, and the desulfurization activity and denitrogenation activity of the resulting catalyst become higher. The reaction is preferably carried out in the presence of phosphoric acid or organic acid. In that case, it is preferable to add 3-25 mass% phosphoric acid with respect to 100 mass% of metal components of a VIA group periodic table.

本発明の水素化脱硫触媒は、BET法で測定した比表面積(SA)が150m/g以上であることが好ましく、より好ましくは170m/g以上である。比表面積(SA)が150m/g未満では、脱硫反応の活性点が少なくなり、脱硫性能が低下する虞があるため好ましくない。一方、上限については特に制限はないが、比表面積(SA)が300m/gを超えると触媒強度が低下する傾向にあるので、300m/g以下であることが好ましく、280m/g以下がより好ましい。 The hydrodesulfurization catalyst of the present invention preferably has a specific surface area (SA) measured by the BET method of 150 m 2 / g or more, more preferably 170 m 2 / g or more. If the specific surface area (SA) is less than 150 m 2 / g, the active point of the desulfurization reaction is decreased, and there is a possibility that the desulfurization performance may be deteriorated. On the other hand, the upper limit is not particularly limited, but if the specific surface area (SA) exceeds 300 m 2 / g, the catalyst strength tends to decrease. Therefore, it is preferably 300 m 2 / g or less, and preferably 280 m 2 / g or less. Is more preferable.

本発明においては、水素化脱硫触媒を予備硫化した後の金属硫化物結晶(例えば、二硫化モリブデン)の平均長さが2.6nm以下、好ましくは2.0〜2.5nmとなるように第VIA族および第VIII族の金属を分散させて担持することが必要である。さらに、金属硫化物結晶の平均積層数が1.8以上、好ましくは1.9以上となるように第VIA族および第VIII族の金属を分散させて担持することが必要である。これは、前記第VIA族の硫化物結晶は、担体に単層で担持されるより、他の第VIA族の硫化物結晶の上に積層されるように担持されたほうが活性点(前記の場合CoMoS相)と担体との相互作用が弱くなる結果、反応物との親和性が高くなり活性が高くなるためである。平均積層数は多い方が好ましいが、担体との相互作用が小さく積層数が多い場合には触媒使用時の反応熱によって金属硫化物結晶のシンタリングが生じ、活性が低下する懸念があるため、10以下が好ましい。   In the present invention, the metal sulfide crystal (for example, molybdenum disulfide) after pre-sulfiding the hydrodesulfurization catalyst has an average length of 2.6 nm or less, preferably 2.0 to 2.5 nm. It is necessary to disperse and carry the Group VIA and Group VIII metals. Furthermore, it is necessary to disperse and carry the Group VIA and Group VIII metals so that the average number of stacked metal sulfide crystals is 1.8 or more, preferably 1.9 or more. This is because the group VIA sulfide crystals are supported on the carrier in a single layer rather than being stacked on the other group VIA sulfide crystals (in the above case). This is because the interaction between the CoMoS phase) and the support is weakened, and as a result, the affinity with the reactant is increased and the activity is increased. Although it is preferable that the average number of layers is large, there is a concern that when the interaction with the support is small and the number of layers is large, sintering of the metal sulfide crystal occurs due to the heat of reaction at the time of using the catalyst, and the activity may decrease. 10 or less is preferable.

ここで、金属硫化物結晶層の平均積層数及び平均値長さは以下の方法によって求められる値である。ここでは、金属硫化物として二硫化モリブデンを用いた例で説明する。
予備硫化済み水素化脱硫触媒の一部を、例えば、20メッシュ以下に粉砕し、得られた粉末の透過型電子顕微鏡(TEM)写真を撮影する(図1参照)。
予備硫化済み水素化脱硫触媒中の二硫化モリブデンの結晶層の平均積層数は、得られたTEM写真から、例えば、20個、好ましくは50個、より好ましくは100個以上の二硫化モリブデン層について、それぞれの積層数を測定し、それらの平均値により算出する。
また、二硫化モリブデン層の長さは、平均積層数と同様にTEM写真から、それぞれの二硫化モリブデン層の長さLを測定し、それらの平均値により算出する。
Here, the average number of laminated layers of metal sulfide crystal layers and the average value length are values obtained by the following method. Here, an example using molybdenum disulfide as the metal sulfide will be described.
A part of the presulfided hydrodesulfurization catalyst is pulverized to, for example, 20 mesh or less, and a transmission electron microscope (TEM) photograph of the obtained powder is taken (see FIG. 1).
The average number of molybdenum disulfide crystal layers in the presulfided hydrodesulfurization catalyst is, for example, about 20, preferably 50, more preferably 100 or more molybdenum disulfide layers from the obtained TEM photograph. Then, the number of each layer is measured, and the average value thereof is calculated.
Further, the length of the molybdenum disulfide layer is calculated by measuring the length L of each molybdenum disulfide layer from the TEM photograph in the same manner as the average number of layers, and calculating the average value thereof.

本発明の水素化脱硫触媒の担体は、その表面に酸性あるいは塩基性OH基を有しており、担体単位表面積当たりこれらOH基が多いほど担持する第VIA族の金属の分散度が増大し、すなわち予備硫化後に第VIA族の金属硫化物の平均長さが短くなり、活性点が増加する。また、塩基性OH基を介して担体と結合した第VIA族の金属よりも酸性OH基を介して担体と結合した第VIA族の金属のほうが担体との相互作用が弱いため、予備硫化後に第VIA族の金属硫化物がより積層しやすくなる。
本発明は、担体中のチタニアの含有量を23〜27質量%という特定範囲に制御するとともに、担体を400〜500℃の温度で焼成することにより、酸性OH基を増やし、塩基性OHを減らした担体を得、この担体を用いることで水素化脱硫活性を高めているものである。この担体に第VIA族および第VIII族の金属を分散担持させて得られる水素化脱硫触媒を予備硫化することで、金属硫化物結晶の平均長さが2.6nm以下で、金属硫化物結晶の平均積層数が1.8以上である本発明の水素化脱硫触媒を得ることができる。
The hydrodesulfurization catalyst carrier of the present invention has acidic or basic OH groups on the surface thereof, and the greater the number of these OH groups per carrier unit surface area, the greater the degree of dispersion of the Group VIA metal supported, That is, the average length of the Group VIA metal sulfide is shortened after the presulfurization, and the active point is increased. In addition, the Group VIA metal bonded to the carrier via the acidic OH group has a weaker interaction with the carrier than the Group VIA metal bonded to the carrier via the basic OH group. Group VIA metal sulfides are easier to stack.
In the present invention, the content of titania in the carrier is controlled to a specific range of 23 to 27% by mass, and the carrier is calcined at a temperature of 400 to 500 ° C., thereby increasing the acidic OH group and reducing the basic OH. The hydrodesulfurization activity is enhanced by using this support. By pre-sulfiding a hydrodesulfurization catalyst obtained by dispersing and supporting the Group VIA and Group VIII metals on this support, the average length of the metal sulfide crystals is 2.6 nm or less. The hydrodesulfurization catalyst of the present invention having an average number of layers of 1.8 or more can be obtained.

このような酸性OH基や塩基性OH基は、本発明の水素化脱硫触媒の担体を透過型フーリエ変換赤外吸収スペクトル測定装置(FT−IR)によって測定することで知ることができる。好適な酸性OH基と塩基性OH基の量は、例えば、透過型フーリエ変換赤外吸収スペクトル測定装置(FT−IR)によって測定される酸性OH基に起因する本担体単位表面積当たりの吸光度と弱塩基性OH基に起因する当該担体単位表面積当たりの吸光度の比が0.9以上であることが好ましく、より好ましくは1.0以上であり、さらに好ましくは1.1以上である。担体表面の酸性OH基の割合が多くなると、あるいは塩基性OH基の割合が少なくなると、周期表第VIA族の金属成分と担体との相互作用が弱まるため、予備硫化後に第VIA族の金属硫化物がより積層しやすくなり、その結果活性点の数が増えて活性が上がり好ましい。
ここで、前記酸性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3670〜3695cm-1の範囲にあり、前記弱塩基性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3720〜3740cm−1の範囲にある(図2参照)。
なお、上記したFT−IRによる測定法に関しては後述する。
Such acidic OH groups and basic OH groups can be known by measuring the carrier of the hydrodesulfurization catalyst of the present invention with a transmission type Fourier transform infrared absorption spectrum measuring apparatus (FT-IR). Suitable amounts of acidic OH groups and basic OH groups are, for example, absorbance and weakness per unit surface area of the carrier due to acidic OH groups measured by a transmission Fourier transform infrared absorption spectrum measuring apparatus (FT-IR). The ratio of absorbance per unit surface area of the carrier due to the basic OH group is preferably 0.9 or more, more preferably 1.0 or more, and even more preferably 1.1 or more. When the proportion of acidic OH groups on the support surface increases or the proportion of basic OH groups decreases, the interaction between the metal component of group VIA of the periodic table and the carrier weakens, so that the metal sulfide of group VIA after preliminary sulfidation. It is preferable that the objects are more easily laminated, and as a result, the number of active points increases and the activity increases.
Here, the wave number of the maximum peak position of the absorption spectrum due to the acidic OH group is in the range of 3670 to 3695 cm −1 , and the wave number of the maximum peak position of the absorption spectrum due to the weakly basic OH group is 3720 to 3740 cm. −1 (see FIG. 2).
The above-described measurement method using FT-IR will be described later.

本発明の水素化脱硫触媒は、炭化水素油、特に軽油留分の水素化処理に好適に使用される。該触媒を使用した水素化脱硫処理は、固定床反応装置に触媒を充填して水素雰囲気下、高温高圧条件で行なわれる。
軽油留分としては、原油の常圧蒸留装置から得られる直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解して得られる接触分解軽油、減圧重質軽油あるいは脱硫重油を水素化分解して得られる水素化分解軽油等が挙げられる。
The hydrodesulfurization catalyst of this invention is used suitably for the hydroprocessing of hydrocarbon oil, especially a light oil fraction. The hydrodesulfurization treatment using the catalyst is carried out under a high-temperature and high-pressure condition in a hydrogen atmosphere by filling the catalyst in a fixed bed reactor.
Gas oil fractions include straight-run light oil obtained from a crude oil atmospheric distillation apparatus, straight-run heavy oil obtained from an atmospheric distillation apparatus and residual oil obtained by treating the crude oil with a vacuum distillation apparatus, Examples include catalytic cracking gas oil obtained by catalytic cracking of light diesel oil or desulfurized heavy oil, hydrocracked gas oil obtained by hydrocracking depressurized heavy gas oil or desulfurized heavy oil and the like.

反応圧力(水素分圧)は3〜15MPaであることが好ましく、より好ましくは4〜10MPaである。反応圧力が3MPa未満では脱硫および脱窒素が著しく低下する傾向にあり、また、15MPaを超えると水素消費が大きくなり運転コストが増加するので好ましくない。   The reaction pressure (hydrogen partial pressure) is preferably 3 to 15 MPa, more preferably 4 to 10 MPa. If the reaction pressure is less than 3 MPa, desulfurization and denitrogenation tend to be remarkably reduced, and if it exceeds 15 MPa, hydrogen consumption increases and the operating cost increases, which is not preferable.

反応温度は300〜420℃であることが好ましく、より好ましくは320〜380℃である。反応温度が300℃未満では脱硫および脱窒素活性が著しく低下する傾向にあり実用的でない。また、420℃を超えると触媒劣化が顕著になると共に、反応装置の耐熱温度(通常約425℃)に近づくため好ましくない。   The reaction temperature is preferably 300 to 420 ° C, more preferably 320 to 380 ° C. If the reaction temperature is less than 300 ° C., the desulfurization and denitrification activities tend to be remarkably lowered, which is not practical. Moreover, when it exceeds 420 degreeC, while catalyst deterioration will become remarkable and it will approach the heat resistant temperature (usually about 425 degreeC) of a reaction apparatus, it is unpreferable.

液空間速度は特に制限されないが、0.5〜4.0h−1であることが好ましく、より好ましくは0.5〜2.0h−1である。液空間速度が0.5h−1未満では処理量が低いので生産性が低くなり実用的ではない。また、液空間速度が4.0h−1を超えると反応温度が高くなり、触媒劣化が速くなるので好ましくない。 But not liquid hourly space velocity particularly limited, is preferably a 0.5~4.0H -1, more preferably 0.5~2.0h -1. If the liquid space velocity is less than 0.5 h −1 , the throughput is low and the productivity is low, which is not practical. Further, if the liquid space velocity exceeds 4.0 h −1 , the reaction temperature is increased, and the catalyst deterioration is accelerated.

水素/油比は120〜420NL/Lであることが好ましく、より好ましくは170〜340NL/Lである。水素/油比が120NL/L未満では脱硫率が低下するので好ましくない。また、420NL/Lを超えても脱硫活性に大きな変化がなく、運転コストが増加するだけなので好ましくない。   The hydrogen / oil ratio is preferably 120 to 420 NL / L, more preferably 170 to 340 NL / L. A hydrogen / oil ratio of less than 120 NL / L is not preferable because the desulfurization rate decreases. Moreover, even if it exceeds 420 NL / L, since there is no big change in desulfurization activity and only an operating cost increases, it is not preferable.

次に、本発明の水素化脱硫触媒の製造方法について説明する。
本発明の水素化脱硫触媒の製造方法は、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液(以下、単に「混合水溶液」ともいう。)と、塩基性アルミニウム塩水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥、及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族(IUPAC 第6族)及び第VIII族(IUPAC 第8族〜第10族)から選ばれる少なくとも1種の金属成分を担持する第3工程と、前記第3工程で得られた水素化脱硫触媒を、反応装置中で予備硫化処理することにより本発明の予備硫化済みの水素化脱硫触媒を製造する第4工程を有する。以下、それぞれの工程について説明する。
Next, the manufacturing method of the hydrodesulfurization catalyst of this invention is demonstrated.
The method for producing a hydrodesulfurization catalyst of the present invention comprises a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt (hereinafter also simply referred to as “mixed aqueous solution”), a basic aluminum salt aqueous solution, in the presence of silicate ions. The first step of obtaining a hydrate by mixing the hydrate so that the pH is 6.5 to 9.5, and the second step of obtaining a carrier by sequentially washing, molding, drying and baking the hydrate A third step of supporting at least one metal component selected from Group VIA (IUPAC Group 6) and Group VIII (IUPAC Group 8 to Group 10) of the periodic table on the carrier; The hydrodesulfurization catalyst obtained in the three steps is pre-sulfided in the reaction apparatus to have a fourth step of producing the pre-sulfided hydrodesulfurization catalyst of the present invention. Hereinafter, each process will be described.

(第1工程)
まず、珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液(これは酸性の水溶液である。)と、塩基性アルミニウム塩水溶液(これはアルカリ性の水溶液である。)とを、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜7.5になるように混合して、シリカ、チタニア及びアルミナを含む水和物を得る。
(First step)
First, in the presence of silicate ions, a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt (this is an acidic aqueous solution) and a basic aqueous aluminum salt solution (this is an alkaline aqueous solution), Mixing so that the pH is 6.5 to 9.5, preferably 6.5 to 8.5, more preferably 6.5 to 7.5, to obtain a hydrate containing silica, titania and alumina. .

この工程では、(1)珪酸イオンを含む塩基性アルミニウム塩水溶液に、混合水溶液を添加する場合と、(2)珪酸イオンを含む混合水溶液に、塩基性アルミニウム塩水溶液を添加する場合とがある。
ここで、(1)の場合、塩基性アルミニウム塩水溶液に含有される珪酸イオンは、塩基性または中性のものが使用できる。塩基性の珪酸イオン源としては、珪酸ナトリウムなどの水中で珪酸イオンを生じる珪酸化合物が使用可能である。また、(2)の場合、チタニウム鉱酸塩及び酸性アルミニウム塩水溶液の混合液に含有される珪酸イオンは、酸性または中性のものが使用できる。酸性の珪酸イオン源としては、珪酸などの水中で珪酸イオンを生じる珪酸化合物が使用可能である。
In this step, (1) a mixed aqueous solution may be added to the basic aluminum salt aqueous solution containing silicate ions, and (2) a basic aluminum salt aqueous solution may be added to the mixed aqueous solution containing silicate ions.
Here, in the case of (1), the silicate ion contained in the basic aluminum salt aqueous solution can be basic or neutral. As the basic silicate ion source, a silicate compound that generates silicate ions in water such as sodium silicate can be used. In the case of (2), the silicate ions contained in the mixed solution of the titanium mineral acid salt and the acidic aluminum salt aqueous solution can be acidic or neutral. As the acidic silicate ion source, a silicate compound that generates silicate ions in water such as silicic acid can be used.

塩基性アルミニウム塩としては、アルミン酸ナトリウム、アルミン酸カリウムなどが好適に使用される。また、酸性アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどが好適に使用され、チタニウム鉱酸塩としては、四塩化チタン、三塩化チタン、硫酸チタン、硫酸チタニル、硝酸チタンなどが例示され、特に硫酸チタンおよび硫酸チタニルは安価であるので好適に使用される。チタニウム鉱酸塩は、生成する担体中に含まれるチタニアの量が23〜27質量%となる量を使用する必要がある。   As the basic aluminum salt, sodium aluminate, potassium aluminate or the like is preferably used. Further, as the acidic aluminum salt, aluminum sulfate, aluminum chloride, aluminum nitrate and the like are preferably used, and as the titanium mineral salt, titanium tetrachloride, titanium trichloride, titanium sulfate, titanyl sulfate, titanium nitrate and the like are exemplified. In particular, titanium sulfate and titanyl sulfate are preferably used because they are inexpensive. The amount of titania contained in the carrier to be produced must be 23 to 27% by mass.

例えば、所定量の塩基性の珪酸イオンを含有する塩基性アルミニウム塩水溶液を攪拌機付きタンクに張り込み、通常40〜90℃、好ましくは50〜70℃に加温して保持し、この溶液の温度±5℃、好ましくは±2℃、より好ましくは±1℃に加温した所定量のチタニウム鉱酸塩及び酸性アルミニウム塩水溶液の混合水溶液をpHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜7.5になるように、通常5〜20分、好ましくは7〜15分で連続添加し沈殿を生成させ、水和物のスラリーを得る。ここで、塩基性アルミニウム塩水溶液への混合水溶液の添加は、時間が長くなると擬ベーマイトの他にバイヤライトやギブサイトなどの好ましくない結晶物が生成することがあるので、15分以下が望ましく、13分以下がさらに望ましい。バイヤライトやギブサイトは、焼成した時に比表面積が低下するので、好ましくない。   For example, a basic aluminum salt aqueous solution containing a predetermined amount of basic silicate ions is placed in a tank equipped with a stirrer, and is usually kept at 40 to 90 ° C., preferably 50 to 70 ° C., and the temperature of this solution ± A mixed aqueous solution of a predetermined amount of a titanium mineral acid salt and an acidic aluminum salt aqueous solution heated to 5 ° C., preferably ± 2 ° C., more preferably ± 1 ° C. has a pH of 6.5 to 9.5, preferably 6.5. It is added continuously in 5 to 20 minutes, preferably 7 to 15 minutes so as to be ˜8.5, more preferably 6.5 to 7.5, to form a precipitate, thereby obtaining a hydrate slurry. Here, the addition of the mixed aqueous solution to the basic aluminum salt aqueous solution is desirably 15 minutes or less because undesirable crystals such as bayerite and gibbsite may be generated in addition to pseudoboehmite as time goes on. More preferably less than a minute. Bayerite and gibbsite are not preferred because their specific surface area decreases when fired.

(第2工程)
第1工程で得られた水和物のスラリーを、所望により熟成した後、洗浄して副生塩を除き、シリカ、チタニア及びアルミナを含む水和物のスラリーを得る。得られた水和物のスラリーを、所望によりさらに加熱熟成した後、慣用の手段により、例えば、加熱捏和して成型可能な捏和物とした後、押出成型などにより所望の形状に成型し、通常70〜150℃、好ましくは90〜130℃で乾燥した後、好ましくは400〜500℃、より好ましくは400〜480℃、さらに好ましくは430〜470℃、最も好ましくは440〜460℃で、通常0.5〜10時間、好ましくは2〜5時間焼成することにより、シリカ、チタニア及びアルミナを含むシリカ−チタニア−アルミナ担体を得る。
このときの焼成条件、特に焼成温度を制御することで、X線回折分析により測定されるベーマイト(021)面の結晶構造を示す回折ピーク面積が、γ−アルミナ(440)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/10以上である担体を調製することができる。
(Second step)
The hydrate slurry obtained in the first step is aged as desired, and then washed to remove by-product salts to obtain a hydrate slurry containing silica, titania and alumina. The obtained hydrate slurry is further heat-aged if desired, and then, by conventional means, for example, heat-kneaded to form a kneaded product, which is then molded into a desired shape by extrusion molding or the like. In general, after drying at 70 to 150 ° C, preferably 90 to 130 ° C, preferably 400 to 500 ° C, more preferably 400 to 480 ° C, still more preferably 430 to 470 ° C, most preferably 440 to 460 ° C, The silica-titania-alumina carrier containing silica, titania and alumina is usually obtained by firing for 0.5 to 10 hours, preferably 2 to 5 hours.
By controlling the firing conditions at this time, particularly the firing temperature, the diffraction peak area indicating the crystal structure of the boehmite (021) plane measured by X-ray diffraction analysis is attributed to the γ-alumina (440) plane. A carrier that is 1/10 or more of the diffraction peak area showing the crystal structure can be prepared.

(第3工程)
得られたシリカ−チタニア−アルミナ担体に、周期表第VIA族及び第VIII族から選ばれた少なくとも1種の金属成分を上述したとおり、慣用の手段(含浸法、浸漬法など)で担持した後、好ましくは400〜500℃、より好ましくは400〜480℃、さらに好ましくは430〜470℃で、通常0.5〜10時間、好ましくは2〜5時間焼成し、本発明の水素化脱硫触媒を製造する。
金属成分の原料としては、例えば、硝酸ニッケル、炭酸ニッケル、硝酸コバルト、炭酸コバルト、三酸化モリブデン、モリブデン酸アンモン、パラタングステン酸アンモンなどが好ましく使用される。
(Third step)
After loading the obtained silica-titania-alumina support with at least one metal component selected from Group VIA and Group VIII of the periodic table by conventional means (impregnation method, dipping method, etc.) as described above. The hydrodesulfurization catalyst of the present invention is preferably calcined at 400 to 500 ° C., more preferably 400 to 480 ° C., further preferably 430 to 470 ° C., usually for 0.5 to 10 hours, preferably 2 to 5 hours. To manufacture.
As a raw material for the metal component, for example, nickel nitrate, nickel carbonate, cobalt nitrate, cobalt carbonate, molybdenum trioxide, ammonium molybdate, and ammonium paratungstate are preferably used.

(第4工程)
次に、前記第3工程で得られた水素化脱硫触媒を、反応装置中で予備硫化処理することにより本発明の予備硫化済みの水素化脱硫触媒を製造することができる。
すなわち、第4工程においては、(1)水素化脱硫触媒と硫黄化合物を含む石油蒸留物(本発明における「炭化水素油」である。)及び硫化剤(例えば、ジメチルサルファイド、ジメチルジスルフィドや二硫化炭素等)を混合した混合油とを、或いは、(2)水素化脱硫触媒と硫化水素とを、200〜400℃、好ましくは240℃〜340℃、常圧あるいはそれ以上の水素分圧(例えば2〜15MPa)の水素雰囲気下で接触させて予備硫化処理を行い、予備硫化済み水素化脱硫触媒を得る。
ここで、予備硫化処理の温度が200℃未満の場合には、担持金属の硫化度が低いため、脱硫活性が低下する傾向にあるので好ましくなく、また、400℃を超える場合には、第VIA族の金属硫化物の結晶層の積層数が著しく増加し、脱硫活性が低下する傾向にあるので好ましくない。
(4th process)
Next, the hydrodesulfurization catalyst of the present invention can be produced by subjecting the hydrodesulfurization catalyst obtained in the third step to a presulfidation treatment in a reactor.
That is, in the fourth step, (1) a petroleum distillate containing a hydrodesulfurization catalyst and a sulfur compound (“hydrocarbon oil” in the present invention) and a sulfidizing agent (for example, dimethyl sulfide, dimethyl disulfide, disulfide) (2) Hydrodesulfurization catalyst and hydrogen sulfide are mixed at 200 to 400 ° C, preferably 240 to 340 ° C, at a normal pressure or higher (for example, hydrogen desulfurization catalyst and hydrogen sulfide). 2 to 15 MPa) is contacted under a hydrogen atmosphere to perform a presulfidation treatment to obtain a presulfided hydrodesulfurization catalyst.
Here, when the temperature of the preliminary sulfidation treatment is less than 200 ° C., the degree of sulfidation of the supported metal is low, and therefore the desulfurization activity tends to decrease, and when the temperature exceeds 400 ° C., it is not preferable. The number of laminated metal sulfide crystal layers is remarkably increased, and the desulfurization activity tends to decrease.

予備硫化終了後、予備硫化済み水素化脱硫触媒を室温まで冷却し、窒素雰囲気下で保存する。
前記予備硫化処理により第VIA族の金属が金属硫化物結晶となって担体上に層状に配設される。
このように上記第1工程から第4工程を経ることにより、水素化脱硫触媒を予備硫化した後の金属硫化物結晶の平均長さが2.6nm以下で、金属硫化物結晶の平均積層数が1.8以上である本発明の水素化脱硫触媒を製造することができる。
After the presulfurization is completed, the presulfided hydrodesulfurization catalyst is cooled to room temperature and stored in a nitrogen atmosphere.
By the preliminary sulfidation treatment, the Group VIA metal becomes a metal sulfide crystal and is disposed on the carrier in layers.
As described above, through the first to fourth steps, the average length of the metal sulfide crystals after preliminary sulfidation of the hydrodesulfurization catalyst is 2.6 nm or less, and the average number of stacked metal sulfide crystals is The hydrodesulfurization catalyst of this invention which is 1.8 or more can be manufactured.

<酸性OH基の吸光度、弱塩基性OH基の吸光度>
透過型フーリエ変換赤外分光計(日本分光(株)製:FT−IR/6100)にて、以下のようにして酸性OH基の極大ピーク波数、その波数における吸光度、弱塩基性OH墓の極大ピーク波数、その波数における吸光度を測定した。
<Absorptivity of acidic OH group, absorbance of weakly basic OH group>
Using a transmission type Fourier transform infrared spectrometer (manufactured by JASCO Corporation: FT-IR / 6100), the maximum peak wave number of the acidic OH group, the absorbance at that wave number, the maximum of the weak basic OH tomb The peak wave number and the absorbance at that wave number were measured.

(測定法)
試料20mgを成型容器(内径20mm)に充填して4ton/cm(39227N/cm)で加圧圧縮し、薄い円盤状に成型した。この成型体を、真空度が1.0×10−3Pa以下の条件下、400〜500℃で2時間保持した後、室温に冷却して吸光度を測定した。
具体的には、TGS検出器にて、分解能4cm−1、積算回数を200回とし、波数範囲3000〜4000cm−1でベースライン補正し、その後、比表面積で補正した。吸光度は、単位表面積当りに換算した。
単位表面積当たりの吸光度(m−2)=(吸光度)/(成型体質量×比表面積)
(Measurement method)
20 mg of a sample was filled in a molding container (inner diameter 20 mm), and compressed and compressed with 4 ton / cm 2 (39227 N / cm 2 ), and molded into a thin disk shape. The molded body was held at 400 to 500 ° C. for 2 hours under a condition where the degree of vacuum was 1.0 × 10 −3 Pa or less, and then cooled to room temperature, and the absorbance was measured.
Specifically, in TGS detector, resolution 4 cm -1, the number of integrations is 200 times baseline corrected wavenumber range 3000~4000Cm -1, then corrected with a specific surface area. Absorbance was converted per unit surface area.
Absorbance per unit surface area (m −2 ) = (Absorbance) / (Molded body mass × Specific surface area)

なお、以下の実施例・比較例いずれにおいても酸性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3670〜3695cm−1の範囲にあり、弱塩基性OH基に起因する吸収スペクトルの極大ピーク位置の波数は3720〜3740cm−1の範囲にあった。 In any of the following Examples and Comparative Examples, the wave number at the maximum peak position of the absorption spectrum due to the acidic OH group is in the range of 3670 to 3695 cm −1 , and the maximum peak of the absorption spectrum due to the weak basic OH group. The wave number of the position was in the range of 3720-3740 cm −1 .

以下、本発明の内容を実施例および比較例によってさらに具体的に説明するが、本発明はこれらに何ら限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these.

[実施例1:水素化脱硫触媒aの調製]
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液(日揮触媒化成(株)製)8.10kgを入れ、イオン交換水43kgで希釈後、SiO濃度換算で5質量%の珪酸ナトリウム溶液(AGCエスアイテック(株)製;SiO濃度24質量%)1.80kgを攪拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。また、Al濃度換算で7質量%の硫酸アルミニウム水溶液(日揮触媒化成(株)製)5.40kgを9.73kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタニル(テイカ(株)製)2.28kgを13kgのイオン交換水に溶解したチタニウム鉱酸塩水溶液とを混合し、60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、シリカ、チタニア、及びアルミナを含む水和物のスラリーaを調製した。
[Example 1: Preparation of hydrodesulfurization catalyst a]
A tank with a capacity of 100 L and a steam jacket is charged with 8.10 kg of a 22 mass% sodium aluminate aqueous solution (manufactured by JGC Catalysts & Chemicals Co., Ltd.) in terms of Al 2 O 3 concentration, diluted with 43 kg of ion-exchanged water, and then SiO 2 2 converted concentration of 5 wt% of sodium silicate solution (manufactured by AGC Si-Tech (Ltd.); SiO 2 concentration of 24% by mass) 1.80 kg was added with stirring, warmed to 60 ° C., basic aluminum salt solution It was created. In addition, an acidic aluminum salt aqueous solution obtained by diluting 5.40 kg of an aluminum sulfate aqueous solution (manufactured by JGC Catalysts & Chemicals Co., Ltd.) 5.40 kg with 9.73 kg of ion-exchanged water in terms of Al 2 O 3 concentration, and in terms of TiO 2 concentration A mixed aqueous solution was prepared by mixing 2.28 kg of 33% by mass of titanyl sulfate (manufactured by Teika Co., Ltd.) with an aqueous solution of titanium mineral salt dissolved in 13 kg of ion-exchanged water and heating to 60 ° C. Add a mixed aqueous solution to a tank containing a basic aqueous aluminum salt solution at a constant rate using a roller pump until the pH is 7.2 (addition time: 10 minutes), and hydrate containing silica, titania, and alumina. A slurry a of the product was prepared.

得られた水和物スラリーaを攪拌しながら60℃で1時間熟成した後、平板フィルターを用いて脱水し、更に、0.3質量%アンモニア水溶液150Lで洗浄した。洗浄後のケーキ状のスラリーをAl濃度換算で10質量%となるようにイオン交換水で希釈した後、15質量%アンモニア水でpHを10.5に調整した。これを還流機付熟成タンクに移し、攪拌しながら95℃で10時間熟成した。熟成終了後のスラリーを脱水し、スチームジャケットを備えた双腕式ニーダーにて練りながら所定の水分量まで濃縮捏和した。得られた捏和物を押出成型機にて直径が1.8mmの円柱形状に成型し、110℃で乾燥した。乾燥した成型品は電気炉で450℃の温度で3時間焼成し、担体aを得た。担体aは、シリカがSiO濃度換算で3質量%(担体基準)、チタニアがTiO濃度換算で25質量%(担体基準)、アルミニウムがAl濃度換算で72質量%(担体基準)含有されていた。 The obtained hydrate slurry a was aged at 60 ° C. for 1 hour with stirring, dehydrated using a flat plate filter, and further washed with 150 L of a 0.3 mass% aqueous ammonia solution. The cake-like slurry after washing was diluted with ion-exchanged water so as to be 10% by mass in terms of Al 2 O 3 concentration, and then the pH was adjusted to 10.5 with 15% by mass ammonia water. This was transferred to an aging tank equipped with a reflux machine and aged at 95 ° C. for 10 hours with stirring. The slurry after completion of aging was dehydrated and concentrated and kneaded to a predetermined moisture content while kneading with a double-arm kneader equipped with a steam jacket. The obtained kneaded product was molded into a cylindrical shape having a diameter of 1.8 mm by an extrusion molding machine and dried at 110 ° C. The dried molded product was baked in an electric furnace at a temperature of 450 ° C. for 3 hours to obtain a carrier a. As for the carrier a, silica is 3% by mass in terms of SiO 2 (carrier standard), titania is 25% by mass in terms of TiO 2 (carrier standard), and aluminum is 72% by mass in terms of Al 2 O 3 concentration (carrier standard). Contained.

図2に担体aの透過型フーリエ変換赤外吸収スペクトルを示す。
また、担体aをリガク社製のX線回折装置RINT2100にて、X線回折分析を行った。その結果を図3に示す。ここで、得られたグラフを最小二乗法によりフィッティングし、ベースライン補正を行い2θ=28°に示されるベーマイト(021)面の結晶構造を示す回折ピークの半値幅を求め、この半値幅とベースラインからのピーク強度との積をベーマイト回折ピーク面積とした。同様に2θ=67°に示されるγ−アルミナ(440)面に帰属されるアルミニウム結晶構造を示す回折ピークの半減値を求め、この半減値とベースラインからのピーク強度との積をγ−アルミナ回折ピーク面積とした。ベーマイトの結晶構造を示す回折ピーク面積が、γ−アルミナに帰属される結晶構造を示す回折ピーク面積に対して、1/4であった(ベーマイト回折ピーク面積/γ−アルミナ回折ピーク面積=1/4)。
FIG. 2 shows a transmission Fourier transform infrared absorption spectrum of the carrier a.
Further, the carrier a was subjected to X-ray diffraction analysis with an X-ray diffraction apparatus RINT2100 manufactured by Rigaku Corporation. The result is shown in FIG. Here, the obtained graph was fitted by the least square method, the baseline was corrected, and the half width of the diffraction peak indicating the crystal structure of the boehmite (021) plane shown at 2θ = 28 ° was obtained. The product of the peak intensity from the line was defined as the boehmite diffraction peak area. Similarly, the half value of the diffraction peak indicating the aluminum crystal structure attributed to the γ-alumina (440) plane shown at 2θ = 67 ° is determined, and the product of the half value and the peak intensity from the baseline is determined as γ-alumina. The diffraction peak area was used. The diffraction peak area showing the crystal structure of boehmite was 1/4 with respect to the diffraction peak area showing the crystal structure attributed to γ-alumina (boehmite diffraction peak area / γ-alumina diffraction peak area = 1 / 4).

更に、三酸化モリブデン(Climax(株)製;MoO濃度99質量%)270gと炭酸コバルト((株)田中化学研究所製;CoO濃度61質量%)77gとを、イオン交換水500mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸(関東化学(株)製;P濃度62質量%)54gを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて450℃で1時間焼成して水素化脱硫触媒a(以下、単に「触媒a」ともいう。以下の実施例についても同様である。)を得た。表1に触媒aの性状を示す。 Further, 270 g of molybdenum trioxide (Climax Co., Ltd .; MoO 3 concentration 99% by mass) and 77 g of cobalt carbonate (Tanaka Chemical Laboratory Co., Ltd .; CoO concentration 61% by mass) are suspended in 500 ml of ion-exchanged water. The suspension was heated at 95 ° C. for 5 hours with an appropriate refluxing apparatus so that the liquid volume did not decrease, and then phosphoric acid (manufactured by Kanto Chemical Co., Inc .; P 2 O 5 concentration 62 mass%) 54 g Was added and dissolved to prepare an impregnating solution. The impregnating solution is spray impregnated on 1000 g of support a, dried at 250 ° C., and further calcined at 450 ° C. for 1 hour in an electric furnace to be hydrodesulfurized catalyst a (hereinafter also simply referred to as “catalyst a”. The same applies to the examples of the above. Table 1 shows the properties of catalyst a.

[実施例2:水素化脱硫触媒bの調製]
担体aを用いて、含浸液調製において、三酸化モリブデンを272g、炭酸コバルトを88g、リン酸を55g用いたこと以外は触媒aと同様の調製を行い、触媒bを得た。表1に触媒bの性状を示す。
[Example 2: Preparation of hydrodesulfurization catalyst b]
A catalyst b was obtained in the same manner as the catalyst a except that 272 g of molybdenum trioxide, 88 g of cobalt carbonate, and 55 g of phosphoric acid were used in the preparation of the impregnation solution using the carrier a. Table 1 shows the properties of the catalyst b.

[実施例3:水素化脱硫触媒cの調製]
担体aを用いて、含浸液調製において、三酸化モリブデンを272g、炭酸ニッケル(正同化学工業(株)製;NiO濃度55質量%)を37g、炭酸コバルトを55g、リン酸を55g用いたこと以外は触媒aと同様の調製を行い、触媒cを得た。表1に触媒cの性状を示す。
[Example 3: Preparation of hydrodesulfurization catalyst c]
In the preparation of the impregnation solution using the carrier a, 272 g of molybdenum trioxide, 37 g of nickel carbonate (manufactured by Shodo Chemical Industry Co., Ltd .; NiO concentration 55% by mass), 55 g of cobalt carbonate, and 55 g of phosphoric acid were used. Except that, catalyst c was prepared in the same manner as catalyst a. Table 1 shows the properties of the catalyst c.

[実施例4:水素化脱硫触媒dの調製]
担体調製において、アルミン酸ナトリウム水溶液を7.87kg、硫酸アルミニウム水溶液を5.25kg、硫酸アルミニウムを希釈するイオン交換水9.46kg、硫酸チタニルを2.45kg、硫酸チタニルを希釈するイオン交換水14kgを用いた以外は、実施例1と同様にして担体dを得た。担体dは、シリカがSiO濃度換算で3質量%(担体基準)、チタニアがTiO濃度換算で27質量%(担体基準)、アルミニウムがAl濃度換算で70質量%(担体基準)含有されていた。
また、実施例1と同様に担体dについてX線回折分析を行った結果、ベーマイト回折ピーク面積/γ−アルミナ回折ピーク面積は2/5であった。
次に、この担体dを用いて、実施例2と同様にして触媒dを得た。表1に触媒dの性状を示す。
[Example 4: Preparation of hydrodesulfurization catalyst d]
In preparing the carrier, 7.87 kg of sodium aluminate aqueous solution, 5.25 kg of aluminum sulfate aqueous solution, 9.46 kg of ion exchange water for diluting aluminum sulfate, 2.45 kg of titanyl sulfate, and 14 kg of ion exchange water for diluting titanyl sulfate A carrier d was obtained in the same manner as in Example 1 except that it was used. As for the support d, silica is 3% by mass in terms of SiO 2 (support standard), titania is 27% by mass in terms of TiO 2 (support standard), and aluminum is 70% by mass in terms of Al 2 O 3 concentration (support standard). Contained.
Further, as a result of performing X-ray diffraction analysis on the carrier d in the same manner as in Example 1, the boehmite diffraction peak area / γ-alumina diffraction peak area was 2/5.
Next, using this carrier d, a catalyst d was obtained in the same manner as in Example 2. Table 1 shows the properties of the catalyst d.

[比較例1:水素化脱硫触媒eの調製]
担体調製において、アルミン酸ナトリウム水溶液を8.16kg、硫酸アルミニウム水溶液を7.38kg、硫酸アルミニウムを希釈するイオン交換水13kg、硫酸チタニルを1.82kg、硫酸チタニルを希釈するイオン交換水10kgを用いた以外は、実施例1と同様にして担体eを得た。担体eは、シリカがSiO濃度換算で3質量%(担体基準)、チタニアがTiO濃度換算で20質量%(担体基準)、アルミニウムがAl濃度換算で77質量%(担体基準)含有されていた。
また、実施例1と同様に担体eについてX線回折分析を行った結果、ベーマイト回折ピーク面積/γ−アルミナ回折ピーク面積は1/3であった。
次に、この担体eを用いて、実施例1と同様にして触媒eを得た。表1に触媒eの性状を示す。
また、図2に担体eの透過型フーリエ変換赤外吸収スペクトルを示す。
[Comparative Example 1: Preparation of hydrodesulfurization catalyst e]
In the carrier preparation, 8.16 kg of sodium aluminate aqueous solution, 7.38 kg of aluminum sulfate aqueous solution, 13 kg of ion exchange water for diluting aluminum sulfate, 1.82 kg of titanyl sulfate, and 10 kg of ion exchange water for diluting titanyl sulfate were used. Except for the above, a carrier e was obtained in the same manner as in Example 1. As for the carrier e, silica is 3% by mass in terms of SiO 2 (carrier standard), titania is 20% by mass in terms of TiO 2 (carrier standard), and aluminum is 77% by mass in terms of Al 2 O 3 concentration (carrier standard). Contained.
Further, as a result of performing X-ray diffraction analysis on the carrier e in the same manner as in Example 1, the boehmite diffraction peak area / γ-alumina diffraction peak area was 1/3.
Next, using this carrier e, catalyst e was obtained in the same manner as in Example 1. Table 1 shows the properties of the catalyst e.
FIG. 2 shows a transmission Fourier transform infrared absorption spectrum of the carrier e.

[比較例2:水素化脱硫触媒fの調製]
担体調製において、乾燥した成型品を電気炉で550℃で焼成したこと以外は担体deと同様の調製を行い、担体fを得た。
図2に担体fの透過型フーリエ変換赤外吸収スペクトルを示す。
また、実施例1と同様に担体fについてX線回折分析を行った結果、図3に示すようにベーマイト回折ピークは存在せず、ベーマイト回折ピーク面積/γ−アルミナ回折ピーク面積は0であった。
次に、この担体fを用いて、実施例1と同様にして触媒fを得た。表1に触媒fの性状を示す。
[Comparative Example 2: Preparation of hydrodesulfurization catalyst f]
In the carrier preparation, a carrier f was obtained in the same manner as the carrier de except that the dried molded product was fired at 550 ° C. in an electric furnace.
FIG. 2 shows a transmission Fourier transform infrared absorption spectrum of the carrier f.
Further, as a result of X-ray diffraction analysis of the carrier f as in Example 1, no boehmite diffraction peak was present as shown in FIG. 3, and the boehmite diffraction peak area / γ-alumina diffraction peak area was 0. .
Next, using this carrier f, a catalyst f was obtained in the same manner as in Example 1. Table 1 shows the properties of the catalyst f.

[比較例3:水素化脱硫触媒gの調製]
担体調製において、乾燥した成型品を電気炉で550℃で焼成したこと以外は担体aと同様の調製を行い、担体gを得た。
図2に担体gの透過型フーリエ変換赤外吸収スペクトルを示す。
また、実施例1と同様に担体gについてX線回折分析を行った結果、図3に示すようにベーマイト回折ピークは存在せず、ベーマイト回折ピーク面積/γ−アルミナ回折ピーク面積は0であった。
次に、この担体gを用いて、実施例1と同様にして触媒gを得た。表1に触媒gの性状を示す。
[Comparative Example 3: Preparation of hydrodesulfurization catalyst g]
In the carrier preparation, a carrier g was obtained in the same manner as the carrier a except that the dried molded product was fired at 550 ° C. in an electric furnace.
FIG. 2 shows a transmission Fourier transform infrared absorption spectrum of the carrier g.
Further, as a result of X-ray diffraction analysis of the carrier g as in Example 1, no boehmite diffraction peak was present as shown in FIG. 3, and the boehmite diffraction peak area / γ-alumina diffraction peak area was 0. .
Next, using this carrier g, catalyst g was obtained in the same manner as in Example 1. Table 1 shows the properties of catalyst g.

[比較例4:水素化脱硫触媒hの調製]
担体調製において、アルミン酸ナトリウム水溶液を7.54kg、アルミン酸ナトリウム希釈するイオン交換水42kg、硫酸アルミニウム水溶液を5.03kg、硫酸アルミニウムを希釈するイオン交換水9.05kg、硫酸チタニルを2.73kg、硫酸チタニルを希釈するイオン交換水15kgを用いた以外は、実施例1と同様にして担体hを得た。担体hは、シリカがSiO濃度換算で3質量%(担体基準)、チタニアがTiO濃度換算で30質量%(担体基準)、アルミニウムがAl濃度換算で67質量%(担体基準)含有されていた。
また、実施例1と同様に担体hについてX線回折分析を行った結果、ベーマイト回折ピーク面積/γ−アルミナ回折ピーク面積は3/4であった。
次に、この担体hを用いて、実施例2と同様にして触媒hを得た。表1に触媒hの性状を示す。
[Comparative Example 4: Preparation of hydrodesulfurization catalyst h]
In the carrier preparation, 7.54 kg of sodium aluminate aqueous solution, 42 kg of ion exchange water diluted with sodium aluminate, 5.03 kg of aluminum sulfate aqueous solution, 9.05 kg of ion exchange water diluted with aluminum sulfate, 2.73 kg of titanyl sulfate, A carrier h was obtained in the same manner as in Example 1 except that 15 kg of ion-exchanged water for diluting titanyl sulfate was used. As for the carrier h, silica is 3% by mass in terms of SiO 2 (carrier standard), titania is 30% by mass in terms of TiO 2 (carrier standard), and aluminum is 67% by mass in terms of Al 2 O 3 concentration (carrier standard). Contained.
Further, as a result of performing X-ray diffraction analysis on the carrier h in the same manner as in Example 1, the boehmite diffraction peak area / γ-alumina diffraction peak area was 3/4.
Next, using this carrier h, catalyst h was obtained in the same manner as in Example 2. Table 1 shows the properties of catalyst h.

[水素化脱硫試験]
触媒を充填した反応管を固定床流通式水素化脱硫装置に取り付けた。その後、硫黄分濃度が1重量%の炭化水素油を用いて触媒層平均温度300℃、水素分圧6.0MPa、液空間速度1.0h−1、水素/油比200NL/Lの条件下で、5時間以上触媒の予備硫化を行った。
予備硫化された触媒a〜hの金属硫化物(MoS)結晶の平均長さと、平均積層数を表1に示す。
予備硫化された触媒a〜hを使用して、次の性状を有する原料油をザイテル社製の水素化脱硫装置により水素化処理した。水素化処理反応は以下の条件で行った。各触媒について反応温度330℃および340℃における反応速度定数を求め、330℃、340℃それぞれについて触媒fの反応速度定数を100として求めた相対脱硫活性の平均を表1に示す。
《原料油の性状》
原料油:直留軽油(沸点範囲208〜390℃)
密度@15℃:0.8493g/cm
硫黄分:1.32質量%
窒素分:105質量ppm
《反応条件》
反応温度:330℃、340℃
液空間速度:1.36hr−1
水素圧力:6.0MPa
水素/油比:250NL/L
[Hydrodesulphurization test]
The reaction tube filled with the catalyst was attached to a fixed bed flow type hydrodesulfurization apparatus. Thereafter, using hydrocarbon oil having a sulfur concentration of 1% by weight, under conditions of an average catalyst layer temperature of 300 ° C., a hydrogen partial pressure of 6.0 MPa, a liquid space velocity of 1.0 h −1 , and a hydrogen / oil ratio of 200 NL / L. The catalyst was presulfided for 5 hours or more.
Table 1 shows the average length of the metal sulfide (MoS 2 ) crystals of the presulfided catalysts a to h and the average number of layers.
Using the presulfided catalysts a to h, a raw material oil having the following properties was hydrotreated with a hydrodesulfurizer manufactured by Zeitel. The hydrotreatment reaction was performed under the following conditions. Table 1 shows the average of the relative desulfurization activities obtained by determining reaction rate constants at reaction temperatures of 330 ° C. and 340 ° C. for each catalyst, and setting the reaction rate constant of catalyst f to 100 for each of 330 ° C. and 340 ° C.
<Properties of raw oil>
Raw material oil: straight run diesel oil (boiling range 208-390 ° C)
Density @ 15 ° C: 0.8493 g / cm 3
Sulfur content: 1.32% by mass
Nitrogen content: 105 ppm by mass
<Reaction conditions>
Reaction temperature: 330 ° C, 340 ° C
Liquid space velocity: 1.36 hr −1
Hydrogen pressure: 6.0 MPa
Hydrogen / oil ratio: 250 NL / L

実施例1の担体aはチタニア含有量が25質量%(担体基準)で、予備硫化後の触媒aの二硫化モリブデン層の長さの平均値は2.4nmであり、二硫化モリブデン層の平均積層数は2.1であった。この触媒cを用いた脱硫活性は比較例2の触媒fを100とした場合、135と極めて高活性であった。また比較例1の触媒eと比べても高活性であった。

The carrier a of Example 1 has a titania content of 25% by mass (based on the carrier), the average value of the length of the molybdenum disulfide layer of the catalyst a after preliminary sulfidation is 2.4 nm, and the average of the molybdenum disulfide layer The number of layers was 2.1. The desulfurization activity using this catalyst c was as extremely high as 135 when the catalyst f of Comparative Example 2 was taken as 100. Further, it was highly active as compared with the catalyst e of Comparative Example 1.

Claims (8)

少なくともベーマイトおよびγ−アルミナを含み、さらにシリカとチタニアを含有する担体に周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持してなる水素化脱硫触媒であって、担体中のチタニア含有割合が23質量%以上27質量%以下であり、予備硫化後の金属硫化物結晶の平均長さが2.6nm以下で、かつ金属硫化物結晶の平均積層数が1.8以上であることを特徴とする炭化水素油の水素化脱硫触媒。   A hydrodesulfurization catalyst comprising at least one metal component selected from Group VIA and Group VIII of the periodic table supported on a support containing at least boehmite and γ-alumina, and further containing silica and titania, The content of titania in the mixture is 23% by mass or more and 27% by mass or less, the average length of the metal sulfide crystals after preliminary sulfidation is 2.6 nm or less, and the average number of stacked metal sulfide crystals is 1.8 or more. A hydrodesulfurization catalyst for hydrocarbon oil, characterized in that 透過型フーリエ変換赤外吸収スペクトル測定装置(FT−IR)によって測定される酸性OH基に起因する担体単位表面積当たりの吸光度と弱塩基性OH基に起因する担体単位表面積当たりの吸光度の比が0.9以上である担体であることを特徴とする請求項1に記載の炭化水素油の水素化脱硫触媒。   The ratio of the absorbance per carrier unit surface area caused by acidic OH groups to the absorbance per carrier unit surface area caused by weakly basic OH groups measured by a transmission type Fourier transform infrared absorption spectrum measuring apparatus (FT-IR) is 0. The hydrodesulfurization catalyst for hydrocarbon oil according to claim 1, wherein the catalyst is a support of .9 or more. X線回折分析により測定されるベーマイト(021)面の結晶構造を示す回折ピーク面積が、γ−アルミナ(440)面に帰属されるアルミニウム結晶構造を示す回折ピーク面積に対して、1/10以上である担体であることを特徴とする請求項1または2に記載の炭化水素油の水素化脱硫触媒。   The diffraction peak area showing the crystal structure of the boehmite (021) plane measured by X-ray diffraction analysis is 1/10 or more than the diffraction peak area showing the aluminum crystal structure attributed to the γ-alumina (440) plane. The hydrodesulfurization catalyst for hydrocarbon oil according to claim 1 or 2, wherein the catalyst is a carrier. 前記周期表第VIA族及び第VIII族から選ばれる金属成分が、モリブデン、タングステン、コバルトおよびニッケルから選ばれることを特徴とする請求項1〜3のいずれかに記載の炭化水素油の水素化脱硫触媒。   The hydrodesulfurization of hydrocarbon oil according to any one of claims 1 to 3, wherein the metal component selected from Group VIA and Group VIII of the periodic table is selected from molybdenum, tungsten, cobalt and nickel. catalyst. 前記第VIII族から選ばれる金属成分が第VIA族から選ばれる金属成分に対して、酸化物重量比で0.13〜0.25であることを特徴とする請求項1〜4のいずれかに記載の炭化水素油の水素化脱硫触媒。   5. The metal component selected from Group VIII is 0.13-0.25 in terms of oxide weight ratio with respect to the metal component selected from Group VIA. The hydrodesulfurization catalyst of the hydrocarbon oil as described. 前記第VIII族から選ばれる金属成分が酸化物として2.6〜4.4質量%含有することを特徴とする請求項1〜5のいずれかに記載の炭化水素油の水素化脱硫触媒。   The hydrodesulfurization catalyst for hydrocarbon oil according to any one of claims 1 to 5, wherein the metal component selected from Group VIII contains 2.6 to 4.4 mass% as an oxide. 珪酸イオンの存在下で、チタニウム鉱酸塩及び酸性アルミニウム塩の混合水溶液と、塩基性アルミニウム塩水溶液とを、pHが6.5〜9.5になるように混合して水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥、及び焼成して担体を得る第2工程と、前記担体に、周期表第VIA族及び第VIII族から選ばれる少なくとも1種の金属成分を担持する第3工程と、前記第3工程で得られた水素化脱硫触媒を予備硫化処理する第4工程により請求項1に記載の水素化脱硫触媒を得ることを特徴とする水素化脱硫触媒の製造方法。   In the presence of silicate ions, a mixed aqueous solution of titanium mineral acid and acidic aluminum salt and an aqueous basic aluminum salt solution are mixed so that the pH is 6.5 to 9.5 to obtain a hydrate. One step, a second step of sequentially obtaining, washing, molding, drying and firing the hydrate to obtain a carrier, and the carrier comprising at least one metal component selected from Group VIA and Group VIII of the Periodic Table The hydrodesulfurization catalyst according to claim 1, wherein the hydrodesulfurization catalyst according to claim 1 is obtained by a third step of supporting the catalyst and a fourth step of presulfiding the hydrodesulfurization catalyst obtained in the third step. Manufacturing method. 前記第2工程における焼成温度が400〜500℃であることを特徴とする請求項7に記載の水素化脱硫触媒の製造方法。
The method for producing a hydrodesulfurization catalyst according to claim 7, wherein the firing temperature in the second step is 400 to 500C.
JP2015194178A 2015-09-30 2015-09-30 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same Active JP6489990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015194178A JP6489990B2 (en) 2015-09-30 2015-09-30 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015194178A JP6489990B2 (en) 2015-09-30 2015-09-30 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017064647A true JP2017064647A (en) 2017-04-06
JP6489990B2 JP6489990B2 (en) 2019-03-27

Family

ID=58493436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015194178A Active JP6489990B2 (en) 2015-09-30 2015-09-30 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP6489990B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111815A (en) * 2016-02-01 2018-10-11 니끼 쇼꾸바이 카세이 가부시키가이샤 Process for hydrotreating hydrocarbon oil, process for producing same, and hydrotreating process
WO2018221694A1 (en) 2017-05-31 2018-12-06 古河電気工業株式会社 Hydrodesulfurization catalyst structure, hydrodesulfurization device provided with said catalyst structure, and production method of hydrodesulfurization catalyst structure
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075829A (en) * 2004-09-08 2006-03-23 Inst Fr Petrole Doped catalyst and improved method for treating hydrocarbon feed stream
JP2011088044A (en) * 2009-10-20 2011-05-06 Jgc Catalysts & Chemicals Ltd Hydrodesulfurization catalyst for hydrocarbon oil
JP2012007098A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrorefining method of hydrocarbon oil
JP2012005976A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method of producing the same
JP2012139617A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Hydrogenation treatment catalyst for hydrocarbon oil and hydrogen treatment method using the same
US20130153467A1 (en) * 2010-06-25 2013-06-20 Jgc Catalysts And Chemicals Ltd. Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
JP2013209529A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil
US20150209766A1 (en) * 2012-08-29 2015-07-30 Indian Oil Corporation Ltd. Hydrotreating catalyst and process for preparing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075829A (en) * 2004-09-08 2006-03-23 Inst Fr Petrole Doped catalyst and improved method for treating hydrocarbon feed stream
US20060070915A1 (en) * 2004-09-08 2006-04-06 Patrick Euzen Doped catalyst and improved process for treatment of hydrocarbon feedstocks
JP2011088044A (en) * 2009-10-20 2011-05-06 Jgc Catalysts & Chemicals Ltd Hydrodesulfurization catalyst for hydrocarbon oil
JP2012007098A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrorefining method of hydrocarbon oil
JP2012005976A (en) * 2010-06-25 2012-01-12 Jx Nippon Oil & Energy Corp Hydrodesulfurization catalyst for hydrocarbon oil and method of producing the same
US20130153467A1 (en) * 2010-06-25 2013-06-20 Jgc Catalysts And Chemicals Ltd. Hydrodesulfurization catalyst for hydrocarbon oil, process of producing same and method for hydrorefining
JP2012139617A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Hydrogenation treatment catalyst for hydrocarbon oil and hydrogen treatment method using the same
JP2013209529A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil
US20150209766A1 (en) * 2012-08-29 2015-07-30 Indian Oil Corporation Ltd. Hydrotreating catalyst and process for preparing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111815A (en) * 2016-02-01 2018-10-11 니끼 쇼꾸바이 카세이 가부시키가이샤 Process for hydrotreating hydrocarbon oil, process for producing same, and hydrotreating process
KR102608017B1 (en) 2016-02-01 2023-11-30 니끼 쇼꾸바이 카세이 가부시키가이샤 Hydrocarbon oil catalyst, production method, and hydrogenation method thereof
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
WO2018221694A1 (en) 2017-05-31 2018-12-06 古河電気工業株式会社 Hydrodesulfurization catalyst structure, hydrodesulfurization device provided with said catalyst structure, and production method of hydrodesulfurization catalyst structure
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure

Also Published As

Publication number Publication date
JP6489990B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6489990B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
WO2011162228A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
US10569254B2 (en) Catalyst support and catalysts prepared therefrom
WO2011040224A1 (en) Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
JP5517541B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
WO2013061913A1 (en) Hydrogenation catalyst and method for producing same
WO2016189982A1 (en) Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method
JP5610874B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP6284403B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
WO2018180377A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing hydrodesulfurization catalyst
JP5340101B2 (en) Hydrorefining method of hydrocarbon oil
JP5610875B2 (en) Hydrorefining method of hydrocarbon oil
JP2016007552A (en) Hydrodesulfurization catalyst for hydrocarbon oil, manufacturing method thereof, and hydrodesulfurization method
EP2723494B1 (en) Method of making a hydroprocessing catalyst
JP6251107B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
JP4970966B2 (en) Titanium-supported refractory inorganic oxide support, hydrocarbon oil hydrotreating catalyst, and hydrotreating method using the same
JP2017113715A (en) Hydrogen treatment catalyst and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6489990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250