JP2017059792A - Housing - Google Patents

Housing Download PDF

Info

Publication number
JP2017059792A
JP2017059792A JP2015185987A JP2015185987A JP2017059792A JP 2017059792 A JP2017059792 A JP 2017059792A JP 2015185987 A JP2015185987 A JP 2015185987A JP 2015185987 A JP2015185987 A JP 2015185987A JP 2017059792 A JP2017059792 A JP 2017059792A
Authority
JP
Japan
Prior art keywords
reinforcing member
cover
bottom cover
joined
top cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015185987A
Other languages
Japanese (ja)
Other versions
JP2017059792A5 (en
JP6736859B2 (en
Inventor
本間 雅登
Masato Honma
雅登 本間
聖 藤岡
Sei Fujioka
聖 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015185987A priority Critical patent/JP6736859B2/en
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to KR1020187007639A priority patent/KR20180056653A/en
Priority to PCT/JP2016/076116 priority patent/WO2017047439A1/en
Priority to US15/760,333 priority patent/US10571963B2/en
Priority to EP16846310.7A priority patent/EP3352540B1/en
Priority to CN201680053896.7A priority patent/CN108029215B/en
Priority to TW105129692A priority patent/TW201717726A/en
Publication of JP2017059792A publication Critical patent/JP2017059792A/en
Publication of JP2017059792A5 publication Critical patent/JP2017059792A5/ja
Application granted granted Critical
Publication of JP6736859B2 publication Critical patent/JP6736859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a housing having high torsional rigidity, and capable of enhancing dimensional stability.SOLUTION: A housing 1 includes a bottom cover 2, a top cover 4, and a reinforcement member 3 having a plane part 31 placed in a space sectioned by the bottom cover 2 and top cover 4, and a standing wall 32 standing at the periphery of the plane part 31. The reinforcement member 3 is bonded to the bottom cover 2, and the ratio of linear expansion coefficient of the reinforcement member 3 to that of the bottom cover 2, to which the reinforcement member 3 is bonded, is in the range of 0.1-10.SELECTED DRAWING: Figure 2

Description

本発明は、電子機器部品を内蔵する筐体(電子機器筐体)や、アタッシュケース、キャリーケースなどの筐体に関するものである。   The present invention relates to a housing (electronic device housing) containing an electronic device component, a housing such as an attache case and a carry case.

近年、高温多湿環境での使用や電子部品のハイスペック化に伴う発熱によって、筐体が高温環境に曝される機会が多くなっている。このような高温環境下において、筐体が異なる材料によって形成されている場合、反りや歪みが発生し、ボタンが操作できなくなる、隙間が空いて防水性が低下する、補強部材が外れて剛性が低下するなどの電子機器本来の機能が損なわれる可能性がある。このような背景から、筐体の寸法安定性を向上させる技術が数多く提案されている。   In recent years, the housing is exposed to a high-temperature environment due to heat generation due to use in a high-temperature and high-humidity environment and high specification of electronic components. In such a high temperature environment, when the housing is formed of different materials, warping and distortion occur, the buttons cannot be operated, the gap is left and the waterproofness is lowered, the reinforcing member is detached and the rigidity is reduced. There is a possibility that the original function of the electronic device may be impaired. Against this background, many techniques for improving the dimensional stability of the housing have been proposed.

具体的には、特許文献1には、第1のケースと第2のケースとが結合された外筐と、外筐内に配置され、外筐に取り付けられた金属フレームとからなる情報処理装置の放熱性を高める発明が記載されている。特許文献2には、電子機器の筐体を2枚のプレートの表面が選択的に張り合わせ接合された構造とすることによって電子機器の筐体の剛性を高める発明が記載されている。   Specifically, Patent Document 1 discloses an information processing apparatus including an outer casing in which a first case and a second case are coupled, and a metal frame disposed in the outer casing and attached to the outer casing. The invention which improves the heat dissipation of the is described. Patent Document 2 describes an invention that increases the rigidity of the casing of the electronic device by making the casing of the electronic device have a structure in which the surfaces of two plates are selectively bonded together.

特開2007−305041号公報JP 2007-305041 A 特開平8−288681号公報JP-A-8-288868

しかしながら、特許文献1記載の発明では、各部材はねじで固定されているために、情報処理装置が稼働することによって固定部分が高熱に曝されると、各部材に歪みが生じ、寸法安定性が損なわれる。同様に、特許文献2記載の発明では、2枚のプレートの表面が張り合わされているために、電子機器が稼働することによって張り合わせ部分が高熱に曝されると、張り合わせ部分に剥離が生じ、寸法安定性が損なわれる。このため、筐体に高い寸法安定性を付与可能な技術の提供が期待されていた。また、固定または接合された部材によって剛性を高めようとしているため、歪みや剥離が生じてしまうと、本来の発現されるはずの剛性が担保できない。   However, in the invention described in Patent Document 1, since each member is fixed with a screw, when the fixed portion is exposed to high heat by operating the information processing apparatus, each member is distorted, resulting in dimensional stability. Is damaged. Similarly, in the invention described in Patent Document 2, since the surfaces of the two plates are bonded to each other, if the bonded portion is exposed to high heat due to the operation of the electronic device, the bonded portion is peeled off and the dimension is increased. Stability is impaired. For this reason, provision of the technique which can provide high dimensional stability to a housing | casing was anticipated. In addition, since the rigidity is increased by a member that is fixed or joined, if distortion or peeling occurs, the rigidity that should be originally expressed cannot be secured.

本発明は、上記課題に鑑みてなされたものであって、その目的は、高いねじり剛性を有し、寸法安定性を向上可能な筐体を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the housing | casing which has high torsional rigidity and can improve dimensional stability.

本発明に係る筐体は、天面カバーと、前記天面カバーに向かって立設され、周縁部が前記天面カバーに接合された立ち壁部を有する底面カバーと、前記天面カバーと前記底面カバーとによって区画された空間内に配置された、開口部を有する補強部材と、を備え、前記補強部材が前記底面カバーまたは前記天面カバーに接合されている筐体であって、前記補強部材と前記補強部材と接合されている前記底面カバーまたは前記天面カバーの線膨張係数に対する前記補強部材の線膨張係数の比が0.1以上、10以下の範囲内にあることを特徴とする。   The housing according to the present invention includes a top cover, a bottom cover that is erected toward the top cover, and has a standing wall portion whose peripheral edge is joined to the top cover, the top cover, A reinforcing member having an opening disposed in a space partitioned by a bottom cover, wherein the reinforcing member is joined to the bottom cover or the top cover, and the reinforcing member A ratio of a linear expansion coefficient of the reinforcing member to a linear expansion coefficient of the bottom cover or the top cover joined to the member and the reinforcing member is in a range of 0.1 or more and 10 or less. .

本発明に係る筐体は、上記発明において、前記補強部材は、前記底面カバーまたは前記天面カバーに熱溶着によって接合されていることを特徴とする。   The housing according to the present invention is characterized in that, in the above invention, the reinforcing member is joined to the bottom cover or the top cover by thermal welding.

本発明に係る筐体は、上記発明において、前記補強部材が、23℃における引き剥がし荷重が60N/cm以上、5000N/cm以下の範囲内になり、且つ、200℃における引き剥がし荷重が60N/cm未満の範囲内になるように、前記底面カバーまたは前記天面カバーに接合されていることを特徴とする。 Housing according to the present invention, in the above invention, the reinforcing member, the peeling load is 60N / cm 2 or more at 23 ° C., it becomes 5000N / cm 2 within the following range and the peeling force at 200 ° C. It is characterized by being joined to the bottom cover or the top cover so as to be within a range of less than 60 N / cm 2 .

本発明に係る筐体は、上記発明において、前記補強部材および該補強部材が接合されている前記天面カバーまたは前記底面カバーの少なくとも一方の接合部分に熱可塑性樹脂が設けられ、前記補強部材と前記天面カバーまたは前記底面カバーとが前記熱可塑性樹脂を介して接合されていることを特徴とする。   The housing according to the present invention is the above-described invention, wherein a thermoplastic resin is provided in at least one joining portion of the reinforcing member and the top cover or the bottom cover to which the reinforcing member is joined, The top cover or the bottom cover is bonded to the thermoplastic resin via the thermoplastic resin.

本発明に係る筐体は、上記発明において、前記補強部材、並びに、該補強部材が接合されている前記天面カバーまたは前記底面カバーが強化繊維とマトリックス樹脂からなるプリプレグの積層体を硬化した繊維強化複合材料によって形成されていることを特徴とする。   The casing according to the present invention is the above-described reinforcing member, and a fiber obtained by curing a prepreg laminate in which the top cover or the bottom cover to which the reinforcing member is bonded is made of a reinforcing fiber and a matrix resin. It is formed by a reinforced composite material.

本発明に係る筐体は、上記発明において、前記補強部材と前記天面カバーまたは底面カバーとが直接接合されていることを特徴とする。   The housing according to the present invention is characterized in that, in the above invention, the reinforcing member and the top cover or the bottom cover are directly joined.

本発明に係る筐体は、上記発明において、前記マトリックス樹脂が熱硬化性樹脂からなることを特徴とする。   The housing according to the present invention is characterized in that, in the above invention, the matrix resin is made of a thermosetting resin.

本発明に係る筐体は、上記発明において、前記補強部材と前記補強部材が接合されている前記底面カバーとの間に形成されている中空構造内において、前記補強部材の内面と前記補強部材が接合されている前記底面カバーとを接続する別の補強部材を備えることを特徴とする。   The housing according to the present invention is the above-described invention, wherein in the hollow structure formed between the reinforcing member and the bottom cover to which the reinforcing member is joined, the inner surface of the reinforcing member and the reinforcing member are It is provided with another reinforcement member which connects the said bottom cover joined.

本発明に係る筐体は、上記発明において、前記補強部材と接合されている前記底面カバーまたは前記天面カバーの方向への前記補強部材の投影面積が、前記補強部材が接合されている前記底面カバーまたは前記天面カバーの面積の60%以上、95%以下の範囲内にあることを特徴とする。   The housing according to the present invention is the above-described invention, wherein the projected area of the reinforcing member in the direction of the bottom cover or the top cover joined to the reinforcing member is equal to the bottom face where the reinforcing member is joined. It is in the range of 60% or more and 95% or less of the area of the cover or the top cover.

本発明に係る筐体は、上記発明において、前記補強部材を前記底面カバーまたは前記天面カバーに接合することによって形成された中空構造の体積が、前記空間の体積の55%以上、95%以下の範囲内にあることを特徴とする。   In the case according to the present invention, the volume of the hollow structure formed by joining the reinforcing member to the bottom cover or the top cover is 55% or more and 95% or less of the volume of the space. It is in the range of.

本発明に係る筐体は、上記発明において、前記補強部材と前記底面カバーまたは前記天面カバーが接合されることによって形成された中空構造において、発熱部材が、前記補強部材の前記中空構造側表面に配設されていることを特徴とする。   The housing according to the present invention is the hollow structure formed by joining the reinforcing member and the bottom cover or the top cover in the above invention, wherein the heat generating member is the hollow structure side surface of the reinforcing member. It is characterized by being arranged.

本発明に係る筐体によれば、高いねじり剛性を有し、寸法安定性を向上可能な筐体を提供することができる。   According to the housing according to the present invention, it is possible to provide a housing having high torsional rigidity and capable of improving dimensional stability.

図1は、本発明の一実施形態である筐体の構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of a housing according to an embodiment of the present invention. 図2は、図1に示す筐体の分解斜視図である。2 is an exploded perspective view of the housing shown in FIG. 図3は、補強部材の構成の一例を示す断面図である。FIG. 3 is a cross-sectional view illustrating an example of the configuration of the reinforcing member. 図4は、図2に示す補強部材の構成の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of the configuration of the reinforcing member shown in FIG. 図5は、図2に示す補強部材の構成の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of the configuration of the reinforcing member shown in FIG. 図6は、筐体の構成の一例を示す断面図である。FIG. 6 is a cross-sectional view illustrating an example of the configuration of the housing. 図7は、別の補強部材の構成を示す平面図および断面図である。FIG. 7 is a plan view and a cross-sectional view showing the configuration of another reinforcing member. 図8は、ねじり剛性試験の方法を説明するための模式図である。FIG. 8 is a schematic diagram for explaining a torsional rigidity test method. 図9は、たわみ剛性試験の方法を説明するための模式図である。FIG. 9 is a schematic diagram for explaining a method of a flexural rigidity test. 図10は、引き剥がし荷重試験の方法を説明するための模式図である。FIG. 10 is a schematic diagram for explaining a method of a peeling load test. 図11は、積層体の構成を示す模式図である。FIG. 11 is a schematic diagram showing the configuration of the laminate. 図12は、プレス成形方法を説明するための模式図である。FIG. 12 is a schematic diagram for explaining the press molding method. 図13は、プレス成形方法を説明するための模式図である。FIG. 13 is a schematic diagram for explaining the press molding method. 図14は、筐体の作製方法を説明するための模式図である。FIG. 14 is a schematic diagram for explaining a method for manufacturing the housing. 図15は、筐体の作製方法を説明するための模式図である。FIG. 15 is a schematic diagram for explaining a method for manufacturing the housing.

以下、図1から図7を参照して、本発明の一実施形態である筐体について説明する。なお、本発明の筐体の用途としては、アタッシュケース、キャリーケース、電子機器部品を内蔵する電子機器筐体などをあげることができ、より具体的にはスピーカー、ディスプレイ、HDD、ノートパソコン、携帯電話、デジタルスチルカメラ、PDA、プラズマディスプレイ、テレビ、照明、冷蔵庫、およびゲーム機が挙げられ、中でも、ねじり剛性が高く、且つ、軽量および薄肉が要求される、クラムシェル型パソコンやタブレット型パソコンに好ましく用いられる。   Hereinafter, a housing according to an embodiment of the present invention will be described with reference to FIGS. Examples of the use of the case of the present invention include an attache case, a carry case, an electronic device case containing electronic device parts, and more specifically, a speaker, a display, an HDD, a notebook computer, and a mobile phone. , Digital still cameras, PDAs, plasma displays, televisions, lighting, refrigerators, and game machines. Among them, it is preferable for clamshell computers and tablet computers that have high torsional rigidity and require lightweight and thin walls. Used.

図1は、本発明の一実施形態である筐体の構成を示す斜視図である。図1に示すように、本発明の一実施形態である筐体1は、平面視矩形形状の底面カバー2、底面カバー2に接合された、開口部を有する補強部材3、および平面視矩形形状の天面カバー4と、を主な構成要素として備えている。なお、以下では、底面カバー2および天面カバー4の短辺に平行な方向をx方向、底面カバー2および天面カバー4の長辺に平行な方向をy方向、x方向およびy方向に垂直な方向をz方向(鉛直方向)と定義する。   FIG. 1 is a perspective view showing a configuration of a housing according to an embodiment of the present invention. As shown in FIG. 1, a housing 1 according to an embodiment of the present invention includes a bottom cover 2 having a rectangular shape in plan view, a reinforcing member 3 having an opening joined to the bottom cover 2, and a rectangular shape in plan view. The top cover 4 is provided as a main component. In the following, the direction parallel to the short sides of the bottom cover 2 and the top cover 4 is in the x direction, and the direction parallel to the long sides of the bottom cover 2 and the top cover 4 is perpendicular to the y direction, the x direction, and the y direction. Is defined as the z direction (vertical direction).

図2は、図1に示す筐体1の分解斜視図である。図2に示すように、底面カバー2は、xy平面に対して平行な平面視矩形形状の平面部21と、平面部21の周縁部から+z方向に立設された立ち壁部22と、を備えている。なお、底面カバー2を形成する部材の厚みは、0.1mm以上、0.8mm以下の範囲内にあることが望ましい。また、底面カバー2を形成する部材の弾性率は、20GPa以上、120GPa以下の範囲内にあることが望ましい。   FIG. 2 is an exploded perspective view of the housing 1 shown in FIG. As shown in FIG. 2, the bottom cover 2 includes a planar portion 21 having a rectangular shape in plan view parallel to the xy plane, and a standing wall portion 22 erected in the + z direction from the peripheral portion of the planar portion 21. I have. The thickness of the member forming the bottom cover 2 is desirably in the range of 0.1 mm or more and 0.8 mm or less. The elastic modulus of the member forming the bottom cover 2 is desirably in the range of 20 GPa or more and 120 GPa or less.

また、底面カバー2は、金属材料および繊維強化複合材料のうちのいずれかによって形成されていることが望ましく、これらを組み合わせることによって形成されていてもよい。高いねじり剛性を発現する観点からは、底面カバー2は同一材料によって形成された継ぎ目のない部材であることが望ましい。また、生産性の観点からは、形状が単純な平面部21を力学特性の高い金属材料や繊維強化複合材料を用いて形成し、形状が複雑な立ち壁部22や接合部分を成形性に優れた樹脂材料を用いて射出成形などで形成してもよい。   Moreover, it is desirable that the bottom cover 2 is formed of any one of a metal material and a fiber reinforced composite material, and may be formed by combining these. From the viewpoint of expressing high torsional rigidity, the bottom cover 2 is preferably a seamless member formed of the same material. Further, from the viewpoint of productivity, the flat portion 21 having a simple shape is formed using a metal material or a fiber-reinforced composite material having high mechanical properties, and the standing wall portion 22 and the joint portion having a complicated shape are excellent in moldability. The resin material may be formed by injection molding or the like.

金属材料としては、アルミニウム合金、マグネシウム合金、チタン合金などの軽金属材料を用いることが望ましい。アルミニウム合金としては、Al−Cu系のA2017、A2024、Al−Mn系のA3003、A3004、Al−Si系のA4032、Al−Mg系のA5005、A5052、A5083、Al−Mg−Si系のA6061、A6063、Al−Zn系のA7075などを例示できる。マグネシウム合金としては、Mg−Al−Zn系のAZ31やAZ61、AZ91などを例示できる。チタン合金としては、11〜23種のパラジウムを添加した合金やコバルトとパラジウムを添加した合金、50種(α合金)、60種(α−β合金)、80種(β合金)に該当するTi−6Al−4Vなどを例示できる。   As the metal material, it is desirable to use a light metal material such as an aluminum alloy, a magnesium alloy, or a titanium alloy. Examples of aluminum alloys include Al-Cu A2017, A2024, Al-Mn A3003, A3004, Al-Si A4032, Al-Mg A5005, A5052, A5083, Al-Mg-Si A6061, Examples thereof include A6063 and Al—Zn-based A7075. Examples of the magnesium alloy include Mg-Al-Zn-based AZ31, AZ61, and AZ91. Ti alloys corresponding to 11 to 23 kinds of palladium added alloys, cobalt and palladium added alloys, 50 kinds (α alloy), 60 kinds (α-β alloy), and 80 kinds (β alloy) -6Al-4V etc. can be illustrated.

繊維強化複合材料に用いる強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、PBO繊維、高強力ポリエチレン繊維、アルミナ繊維、および炭化ケイ素繊維などの繊維を用いることができ、これらの繊維を2種以上混合して用いても構わない。これらの強化繊維は、一方向に引き揃えられた長繊維、単一のトウ、織物、ニット、不織布、マット、組み紐などの繊維構造物として用いることができる。   Fibers such as carbon fiber, glass fiber, aramid fiber, boron fiber, PBO fiber, high-strength polyethylene fiber, alumina fiber, and silicon carbide fiber can be used as the reinforcing fiber used in the fiber-reinforced composite material. A mixture of two or more of them may be used. These reinforcing fibers can be used as fiber structures such as long fibers aligned in one direction, a single tow, a woven fabric, a knit, a non-woven fabric, a mat, and a braid.

マトリックス樹脂としては、エポキシ樹脂、フェノール樹脂、ベンゾオキサジン樹脂、および不飽和ポリエステル樹脂などの熱硬化性樹脂やポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート、液晶ポリエステルなどのポリエステル系樹脂や、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレンなどのポリオレフィンや、スチレン系樹脂、ウレタン樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、およびフェノキシ樹脂などの熱硬化性樹脂を用いることができる。生産性や力学特性の観点からは、熱硬化性樹脂を用いることが望ましく、中でもエポキシ樹脂を用いることが望ましい。成形性の観点からは、熱可塑性樹脂を用いるとよく、中でも、強度の観点からはポリアミド樹脂、耐衝撃性の観点からはポリカーボネート樹脂、軽量性の観点からはポリプロピレン樹脂、耐熱性の観点からはポリフェニレンスルフィド樹脂を用いることが望ましい。また、前記樹脂は、繊維強化複合材料のマトリックス樹脂としてだけではなく、樹脂そのものからなる底面カバーや天面カバー、補強部材として用いてもよい。   Matrix resins include thermosetting resins such as epoxy resins, phenol resins, benzoxazine resins, and unsaturated polyester resins, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate. Polyester resins such as phthalate and liquid crystal polyester, polyolefins such as polyethylene (PE), polypropylene (PP) and polybutylene, styrene resins and urethane resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide ( I), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), modified PSU, polyethersulfone (PES), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK) Thermosetting resins such as polyether ketone ketone (PEKK), polyarylate (PAR), polyether nitrile (PEN), phenolic resin, and phenoxy resin can be used. From the viewpoint of productivity and mechanical properties, it is desirable to use a thermosetting resin, and it is particularly desirable to use an epoxy resin. From the viewpoint of moldability, it is better to use a thermoplastic resin. Among them, a polyamide resin from the viewpoint of strength, a polycarbonate resin from the viewpoint of impact resistance, a polypropylene resin from the viewpoint of lightness, and a heat resistance viewpoint. It is desirable to use polyphenylene sulfide resin. The resin may be used not only as a matrix resin of a fiber reinforced composite material but also as a bottom cover, a top cover, or a reinforcing member made of the resin itself.

本発明において、前述した強化繊維とマトリックス樹脂とからなるプリプレグを各部材の材料として用いることが積層などの取扱い性の観点から望ましい。高い力学特性および設計自由度の観点からは、一方向連続繊維プリプレグを用いることが望ましく、等方性の力学特性や成形性の観点からは、織物プリプレグを用いることが望ましい。また、これらのプリプレグの積層体によって構成されていてもよい。   In the present invention, it is desirable from the viewpoint of handleability such as lamination to use the prepreg composed of the above-described reinforcing fiber and matrix resin as the material of each member. From the viewpoint of high mechanical properties and design freedom, it is desirable to use a unidirectional continuous fiber prepreg, and from the viewpoint of isotropic mechanical properties and moldability, it is desirable to use a woven prepreg. Moreover, you may be comprised by the laminated body of these prepregs.

補強部材3は、開口部を有する補強部材である。具体的には、補強部材3は、xy平面に対して平行な平面視矩形形状の平面部31と、平面部31の周縁部から−z方向に立設された立ち壁部32と、を備えている。底面カバー2の平面部21に対向する平面部31の表面には電子機器が装填されている。補強部材3は、底面カバー2の平面部21に立ち壁部22を接合することにより、平面部31と底面カバー2の平面部21との間に中空構造S1を形成した状態で底面カバー2に接合されている。ここでいう“開口部を有する補強部材”とは、補強部材の一部に開口部を有する形状を指しており、図3(a)および(b)に示すような接合部を有した部材でもよい。また、開口部を有する補強部材の一例は、図3(c)に示すように平面部、平面部の周縁部に立設された立ち壁部、および立ち壁部の周縁部から延伸する接合部を有する、または、曲面部、曲面部の周縁部から延伸する接合部を有する補強部材である。   The reinforcing member 3 is a reinforcing member having an opening. Specifically, the reinforcing member 3 includes a planar portion 31 having a rectangular shape in plan view parallel to the xy plane, and a standing wall portion 32 erected from the peripheral portion of the planar portion 31 in the −z direction. ing. An electronic device is loaded on the surface of the flat surface portion 31 facing the flat surface portion 21 of the bottom cover 2. The reinforcing member 3 is attached to the bottom surface cover 2 in a state where a hollow structure S1 is formed between the flat surface portion 31 and the flat surface portion 21 of the bottom surface cover 2 by joining the standing wall portion 22 to the flat surface portion 21 of the bottom surface cover 2. It is joined. The “reinforcing member having an opening” here refers to a shape having an opening in a part of the reinforcing member, and even a member having a joint as shown in FIGS. 3 (a) and 3 (b). Good. Moreover, as shown in FIG. 3C, an example of the reinforcing member having an opening is a flat portion, a standing wall portion standing on the peripheral portion of the flat portion, and a joint portion extending from the peripheral portion of the standing wall portion. Or a reinforcing member having a curved surface portion and a joint portion extending from the peripheral edge portion of the curved surface portion.

xy平面に対して平行な平面における接合面積は、10cm以上、100cm以下の範囲内にあることが望ましい。詳しくは、接合面積が10cm未満である場合、大きな変形を伴う荷重が筐体1に付与された場合、補強部材3が底面カバー2から剥がれ、本来のねじり剛性を発現できないといった問題が生じる。一方、接合面積が100cmより大きい場合には、接合面積の増加に伴う筐体1の重量の増加および中空構造S1の体積の減少といった問題が生じる。このため、接合面積は、10cm以上、100cm以下の範囲内とすることが望ましい。 The bonding area in a plane parallel to the xy plane is desirably in the range of 10 cm 2 or more and 100 cm 2 or less. Specifically, when the bonding area is less than 10 cm 2 , when a load with a large deformation is applied to the housing 1, the reinforcing member 3 is peeled off from the bottom cover 2, and the original torsional rigidity cannot be expressed. On the other hand, when the joining area is larger than 100 cm 2, problems such as an increase in the weight of the casing 1 and a decrease in the volume of the hollow structure S1 occur as the joining area increases. For this reason, it is desirable that the bonding area be in the range of 10 cm 2 or more and 100 cm 2 or less.

補強部材3の平面部31と底面カバー2の平面部21との間の距離(平面部21からの補強部材3の高さ)hの最大値は、3mm以上、30mm以下の範囲内にあることが望ましい。本発明において、補強部材3の高さhはねじり剛性を発現する一因である。このため、距離hの最大値が3mm未満である場合、筐体1において立ち壁部32の効果が小さく、本来のねじり剛性を発現できないといった問題が生じる。一方、距離hの最大値が30mmより長い場合には、立ち壁部32の厚みも厚くする必要が生じ、結果として筐体1の重量増加といった問題が生じる。このため、距離hの最大値は、3mm以上、30mm以下の範囲内とすることが望ましい。   The maximum value of the distance (height of the reinforcing member 3 from the flat surface portion 21) h between the flat surface portion 31 of the reinforcing member 3 and the flat surface portion 21 of the bottom cover 2 is in the range of 3 mm or more and 30 mm or less. Is desirable. In the present invention, the height h of the reinforcing member 3 is one factor that develops torsional rigidity. For this reason, when the maximum value of the distance h is less than 3 mm, the effect of the standing wall part 32 is small in the housing 1, and the problem that the original torsional rigidity cannot be expressed arises. On the other hand, when the maximum value of the distance h is longer than 30 mm, it is necessary to increase the thickness of the standing wall portion 32, resulting in a problem of an increase in the weight of the housing 1. For this reason, it is desirable that the maximum value of the distance h be in the range of 3 mm or more and 30 mm or less.

図4および図5は、図2に示す補強部材3の構成の一例を示す断面図である。図4(a)に示すように、立ち壁部32の周縁部からxy平面に対して平行な外方方向に延伸するように接合部33を設けてもよい。また、図4(b)に示すように、立ち壁部32の周辺部からxy平面に対して平行な内方方向に延伸するように接合部33を設けてもよい。また、図5(a),(b)に示すように、底面カバー2の平面部21(または補強部材3の接合部33)に対する立ち壁部32の角度αは、45°以上、135°以下の範囲内にあることが望ましい。なお、図5(a)は立ち壁部32の角度αが鋭角である状態を示し、図5(b)は立ち壁部32の角度αが鈍角である状態を示している。   4 and 5 are cross-sectional views showing an example of the configuration of the reinforcing member 3 shown in FIG. As shown in FIG. 4A, the joint portion 33 may be provided so as to extend from the peripheral portion of the standing wall portion 32 in the outward direction parallel to the xy plane. Further, as shown in FIG. 4B, the joint portion 33 may be provided so as to extend in the inward direction parallel to the xy plane from the peripheral portion of the standing wall portion 32. Further, as shown in FIGS. 5A and 5B, the angle α of the standing wall portion 32 with respect to the flat portion 21 of the bottom cover 2 (or the joint portion 33 of the reinforcing member 3) is 45 ° or more and 135 ° or less. It is desirable to be within the range. 5A shows a state where the angle α of the standing wall portion 32 is an acute angle, and FIG. 5B shows a state where the angle α of the standing wall portion 32 is an obtuse angle.

図6は、筐体の構成の一例を示す断面図である。図6(a),(b)に示すように補強部材3と底面カバー2または天面カバー4とが接合されることによって形成される中空構造S1内に発熱部材D1,D2が配置されている。発熱部材D1,D2は、補強部材3の中空構造S1側表面に配置されていることが望ましい。このような構成とすることにより、電子機器の使用者が触れる底面カバー2と発熱部材D1,D2との間の距離を離し、底面カバー2の温度上昇を抑制できる。なお、本明細書中において“発熱部材”とは、電子機器の稼動に伴い発熱する部品のことを意味し、特に電子機器の稼働に伴い10℃以上の温度上昇が生じるものを指す。このような発熱部材としては、LED、コンデンサ、インバータ、リアクトル素子、サーミスタ素子、パワートランジスタ素子、モーター、CPU、これらを搭載した電子基板などを例示できる。   FIG. 6 is a cross-sectional view illustrating an example of the configuration of the housing. As shown in FIGS. 6A and 6B, the heating members D1 and D2 are disposed in the hollow structure S1 formed by joining the reinforcing member 3 and the bottom cover 2 or the top cover 4 together. . The heating members D1 and D2 are desirably disposed on the surface of the reinforcing member 3 on the hollow structure S1 side. By setting it as such a structure, the distance between the bottom face cover 2 and the heat generating members D1 and D2 which the user of an electronic device touches can be separated, and the temperature rise of the bottom face cover 2 can be suppressed. In the present specification, the “heat generating member” means a part that generates heat as the electronic device is operated, and particularly indicates a member that increases in temperature by 10 ° C. or more as the electronic device is operated. Examples of such a heat generating member include an LED, a capacitor, an inverter, a reactor element, a thermistor element, a power transistor element, a motor, a CPU, and an electronic board on which these are mounted.

補強部材3の平面部31と底面カバー2の平面部21との間に形成された中空構造S1内に別の補強部材を配置することによって、たわみ剛性を高めるようにしてもよい。図7(a)は別の補強部材の構成を示す平面図を示し、図7(b)は図7(a)のA−A線断面図を示す。図7(a),(b)に示すように、別の補強部材5は、中空構造S1のy方向中央部においてx方向に延伸するように配置された部材であり、底面カバー2の平面部21と補強部材3の平面部31とに接続されている。別の補強部材5を介して底面カバー2の平面部21と補強部材3の平面部31とを一体化することにより、荷重が加わった時には底面カバー2と補強部材3とが同期して変形するので、筐体1のたわみ剛性を向上できる。また、底面カバー2の立ち壁部22や補強部材3の立ち壁部32と別の補強部材5とが一体化されることによって、底面カバー2および補強部材3の立ち壁部が特に筐体1の内側方向に変形しにくくなり、筐体1のねじり剛性を向上できる。   The bending rigidity may be increased by disposing another reinforcing member in the hollow structure S <b> 1 formed between the flat portion 31 of the reinforcing member 3 and the flat portion 21 of the bottom cover 2. Fig.7 (a) shows the top view which shows the structure of another reinforcement member, FIG.7 (b) shows the AA sectional view taken on the line of Fig.7 (a). As shown in FIGS. 7A and 7B, another reinforcing member 5 is a member arranged to extend in the x direction at the center in the y direction of the hollow structure S1, and is a flat portion of the bottom cover 2. 21 and the flat portion 31 of the reinforcing member 3. By integrating the flat surface portion 21 of the bottom cover 2 and the flat surface portion 31 of the reinforcing member 3 via another reinforcing member 5, the bottom surface cover 2 and the reinforcing member 3 are deformed synchronously when a load is applied. Therefore, the bending rigidity of the housing 1 can be improved. Further, the standing wall portion 22 of the bottom cover 2 or the standing wall portion 32 of the reinforcing member 3 and the other reinforcing member 5 are integrated, so that the standing wall portion of the bottom cover 2 and the reinforcing member 3 is particularly the housing 1. The torsional rigidity of the housing 1 can be improved.

なお、別の補強部材5は、底面カバー2の平面部21と補強部材3の平面部31とに接続されている限り、中空構造S1のx方向中央部においてy方向に延伸するように配置された部材であってもよいし、中空構造S1の対角線方向に延伸するように配置された部材であってもよい。とりわけ、別の補強部材5は、厚み方向に荷重が付与された場合に底面カバー2の平面部21のたわみ量が大きくなる位置を通過するように配置されていることが好ましく、配置される部材が複数配置され、部材同士が交差していてもよい。また、別の補強部材5は、エラストマーやゴム成分を有した樹脂材料、ゲルなどの弾力性に優れた衝撃吸収材料によって形成されていることが望ましく、これにより、たわみ剛性のみならず、衝撃に対しても効果を発現しうる。   The other reinforcing member 5 is disposed so as to extend in the y direction at the center in the x direction of the hollow structure S1 as long as it is connected to the flat portion 21 of the bottom cover 2 and the flat portion 31 of the reinforcing member 3. The member may be a member arranged so as to extend in the diagonal direction of the hollow structure S1. In particular, the other reinforcing member 5 is preferably arranged so as to pass through a position where the amount of deflection of the flat portion 21 of the bottom cover 2 increases when a load is applied in the thickness direction. May be arranged, and members may cross each other. Further, it is desirable that the other reinforcing member 5 be formed of an impact absorbing material having excellent elasticity such as a resin material having an elastomer or a rubber component, gel, and the like. The effect can also be expressed.

本実施形態では、補強部材3は、平面部31および立ち壁部32によって構成されていることとしたが、平面部31を曲面形状の部材とし、曲面形状の部材の周縁部に接合部33を形成することによって補強部材3を構成してもよい。すなわち、平面部31を曲面形状の部材とすることによって立ち壁部32を省略してもよい。また、剛性を高める観点や空間を有効に活用する観点から平面部31に凹凸形状が形成されていてもよい。本実施形態では、補強部材3は、底面カバー2に接合されていることとしたが、補強部材3を天面カバー4に接合し、補強部材3の平面部31と天面カバー4との間に中空構造S1を形成してもよい。   In the present embodiment, the reinforcing member 3 is configured by the flat surface portion 31 and the standing wall portion 32. However, the flat surface portion 31 is a curved member, and the joint portion 33 is provided at the peripheral edge of the curved member. You may comprise the reinforcement member 3 by forming. That is, the standing wall portion 32 may be omitted by using the flat surface portion 31 as a curved member. Moreover, the uneven | corrugated shape may be formed in the plane part 31 from a viewpoint which raises rigidity, or a viewpoint which utilizes space effectively. In the present embodiment, the reinforcing member 3 is joined to the bottom cover 2, but the reinforcing member 3 is joined to the top cover 4, and the space between the flat surface portion 31 of the reinforcing member 3 and the top cover 4. A hollow structure S1 may be formed on the substrate.

本実施形態では、平面部31の辺毎に形成された4つの立ち壁部32の全てに接合部33が形成されているが、4つの立ち壁部32のうちの少なくとも一つに接合部33が形成されていればよい。また、4つの立ち壁部32のうち、隣接している2つ以上の立ち壁部32に接合部33が形成されていてもよい。また、1つの立ち壁部32に形成されている接合部33の面積は1cm以上であることが望ましい。また、補強部材3を形成する部材の厚みは、筐体の軽量化および薄型化の観点から0.3mm以上、1.0mm以下の範囲内にあることが望ましい。また、補強部材3を形成する部材の弾性率は、20GPa以上、120GPa以下の範囲内にあることが望ましい。 In the present embodiment, the joint portions 33 are formed on all of the four standing wall portions 32 formed for each side of the plane portion 31, but the joint portion 33 is formed on at least one of the four standing wall portions 32. Should just be formed. Moreover, the junction part 33 may be formed in two or more standing wall parts 32 adjacent among the four standing wall parts 32. In addition, the area of the joint portion 33 formed on one standing wall portion 32 is desirably 1 cm 2 or more. Further, the thickness of the member forming the reinforcing member 3 is preferably in the range of 0.3 mm or more and 1.0 mm or less from the viewpoint of weight reduction and thickness reduction of the housing. The elastic modulus of the member forming the reinforcing member 3 is preferably in the range of 20 GPa or more and 120 GPa or less.

また、補強部材3は、上述した金属材料および繊維強化複合材料のうちのいずれかによって形成されていることが望ましく、補強部材3の目的に応じて材料を選択できる。すなわち、高い補強効果を発現させる観点からは、弾性率の高い金属材料や繊維強化複合材料を用いるとよく、放熱性の観点からは、熱伝導率の高い金属材料を用いるとよく、電波透過性(アンテナ性)を発現させる観点からは、非導電性材料である樹脂やガラス繊維強化複合材料を用いるとよく、電磁波シールド性(電波遮蔽性)を発現させる観点からは、導電性材料である金属材料や炭素繊維複合材料を用いるとよい。さらに、補強部材3が繊維強化複合材料によって形成されている場合、補強部材3は連続繊維プリプレグの積層体によって構成されていることが望ましい。また、補強部材3が接合されている底面カバー2の線膨張係数に対する補強部材3の線膨張係数の比が0.1以上、10以下の範囲内にある。前記範囲外の関係となる材料を組み合わせて用いることにより、各材料の膨張または収縮の差が大きいため、電子機器の稼動による発熱の影響を受け、歪みや剥離が生じる。この結果、本来の発現されるはずの剛性が発現されなくなるという問題が生じる。各部材に用いる材料の線膨張係数において、特に限定はされないが、50×10−6/℃以下であることが好ましく、より好ましくは30×10−6/℃以下であり、さらに好ましくは10×10−6/℃以下である。 The reinforcing member 3 is preferably formed of any one of the above-described metal material and fiber-reinforced composite material, and the material can be selected according to the purpose of the reinforcing member 3. That is, from the viewpoint of developing a high reinforcing effect, it is preferable to use a metal material or fiber reinforced composite material having a high elastic modulus, and from the viewpoint of heat dissipation, it is preferable to use a metal material having a high thermal conductivity, and radio wave permeability From the viewpoint of developing (antenna properties), it is preferable to use a resin or glass fiber reinforced composite material that is a non-conductive material. From the viewpoint of developing electromagnetic shielding properties (radio wave shielding properties), a metal that is a conductive material. A material or a carbon fiber composite material may be used. Furthermore, when the reinforcing member 3 is formed of a fiber reinforced composite material, it is desirable that the reinforcing member 3 is constituted by a laminated body of continuous fiber prepregs. The ratio of the linear expansion coefficient of the reinforcing member 3 to the linear expansion coefficient of the bottom cover 2 to which the reinforcing member 3 is joined is in the range of 0.1 or more and 10 or less. By using a combination of materials having a relationship outside the above range, the difference in expansion or contraction between the materials is large, so that the material is affected by heat generated by the operation of the electronic device, and distortion and peeling occur. As a result, there arises a problem that the rigidity that should be originally expressed cannot be expressed. The linear expansion coefficient of the material used for each member is not particularly limited, but is preferably 50 × 10 −6 / ° C. or less, more preferably 30 × 10 −6 / ° C. or less, and further preferably 10 ×. 10 −6 / ° C. or lower.

また、補強部材3は熱溶着によって底面カバー2の平面部21に接着されることが望ましい。23℃における引き剥がし荷重が60N/cm以上、5000N/cm以下の範囲内にあることが望ましく、100N/cm以上、5000N/cm以下の範囲内にあることが望ましい。熱溶着方法としては、インサート射出法、アウトサート射出法、振動溶着法、超音波溶着法、レーザ溶着法、熱板溶着法などを例示できる。また、この場合、補強部材3と平面部21の接着面は200℃における引き剥がし荷重が60N/cm未満であることが望ましい。200℃における引き剥がし荷重は、30N/cm以下であることがより望ましい。 Further, it is desirable that the reinforcing member 3 is bonded to the flat portion 21 of the bottom cover 2 by heat welding. 23 peel load at ℃ is 60N / cm 2 or more, it is desirable in the 5000N / cm 2 within the range, 100 N / cm 2 or more, it is desirable that the 5000N / cm 2 within the following ranges. Examples of the heat welding method include an insert injection method, an outsert injection method, a vibration welding method, an ultrasonic welding method, a laser welding method, and a hot plate welding method. In this case, it is desirable that the adhesive surface between the reinforcing member 3 and the flat portion 21 has a peeling load at 200 ° C. of less than 60 N / cm 2 . The peeling load at 200 ° C. is more preferably 30 N / cm 2 or less.

また、この引き剥がし荷重が、180℃において60N/cm未満であることが望ましく、より低い温度領域で容易に引き剥がすことが可能なものであることが解体性接着の観点からよい。しかしながら、解体する温度が低くなると、筐体として用いた際、電子部品の稼動に伴う温度上昇や使用環境の温度によって、補強部材が剥離する可能性がある。従って、筐体を使用する温度領域では高い接着強度で補強部材が接合されており、解体する温度領域では容易に引き剥がし可能なことが望ましい。このため、80℃における引き剥がし荷重が60N/cm以上、5000N/cm以下の範囲内にあることがより望ましい。 Moreover, it is desirable that this peeling load is less than 60 N / cm 2 at 180 ° C., and that it can be easily peeled off at a lower temperature range, from the viewpoint of dismantling adhesion. However, when the temperature for disassembling is low, the reinforcing member may be peeled off when used as a casing due to a temperature rise associated with the operation of the electronic component or the temperature of the usage environment. Therefore, it is desirable that the reinforcing member is bonded with high adhesive strength in the temperature range in which the housing is used, and that it can be easily peeled off in the temperature range where the housing is disassembled. Therefore, the peeling load at 80 ℃ 60N / cm 2 or more, and more preferably in the 5000N / cm 2 within the following ranges.

なお、200℃における引き剥がし荷重は低いほど望ましく、10N/cm以下であることが最も望ましい。そして、200℃における引き剥がし荷重は低いほど好ましいため下限は特に限定されず、0N/cm以上であることが好ましいが、低すぎると取扱い性に劣ることもあるため、1N/cm以上であることがより好ましい。このような構成とすることにより、補強部材3を容易に取り外し可能な解体接着性を発現することが可能となり、電子機器の修理やリサイクルを容易にすることができる。また、補強部材3および補強部材3が接合されている底面カバー2が繊維強化複合材料によって形成され、補強部材3および底面カバー2の少なくとも一方の接合部分に熱可塑性樹脂が設けられ、補強部材3と底面カバー2とが熱可塑性樹脂を介して接合されていることが望ましい。 In addition, the peeling load at 200 ° C. is desirably as low as possible, and is most desirably 10 N / cm 2 or less. The preferred because the lower limit as low peel force at 200 ° C. is not particularly limited, but is preferably 0N / cm 2 or more, because sometimes inferior in handling properties too low, with 1N / cm 2 or more More preferably. By adopting such a configuration, it is possible to develop dismantling adhesiveness that allows the reinforcing member 3 to be easily removed, and it is possible to facilitate repair and recycling of the electronic device. Further, the reinforcing member 3 and the bottom cover 2 to which the reinforcing member 3 is joined are formed of a fiber reinforced composite material, and a thermoplastic resin is provided on at least one joining portion of the reinforcing member 3 and the bottom cover 2. It is desirable that the bottom cover 2 and the bottom cover 2 are joined via a thermoplastic resin.

接合部分に熱可塑性樹脂を設ける方法としては、マトリックス樹脂として熱可塑性樹脂を用いた繊維強化シート(プリプレグーシート)を用いて補強部材3および補強部材3が接合されている底面カバー2または天面カバー4を成形して得る方法が挙げられる。この方法で得られた成形体であれば、表面に熱可塑性樹脂が高い割合で存在するため、接合の際に広い接着面積を有することが可能であり、接合箇所の選択自由度が高くなるため好ましい。各部材の力学特性の観点からは、マトリックス樹脂として熱硬化性樹脂を用いた繊維強化複合材料であることが好ましく、このような部材に熱可塑性樹脂を設ける方法としては、熱可塑性樹脂を加熱して溶融させた溶融物や熱可塑性樹脂を溶剤で溶解させた溶液を塗布して繊維強化複合材料に熱可塑性樹脂を設ける方法が挙げられる。また、マトリックス樹脂として熱硬化性樹脂を用いた繊維強化シート(プリプレグシート)を成形、硬化させる際に、繊維強化シート(プリプレグシート)の最外層に熱可塑性樹脂からなるフィルムや不織布を表面に積層した積層体を加熱、加圧成形する方法が例示できる。   As a method of providing the thermoplastic resin at the joint portion, the reinforcing member 3 and the bottom cover 2 to which the reinforcing member 3 is joined using a fiber reinforced sheet (prepreg sheet) using a thermoplastic resin as a matrix resin or the top cover. A method obtained by molding the face cover 4 may be mentioned. Since the molded body obtained by this method has a high proportion of thermoplastic resin on the surface, it is possible to have a wide adhesion area during bonding, and the degree of freedom of selection of the bonding location is increased. preferable. From the viewpoint of the mechanical properties of each member, it is preferably a fiber-reinforced composite material using a thermosetting resin as a matrix resin. As a method of providing a thermoplastic resin on such a member, the thermoplastic resin is heated. There is a method in which a melted melt or a solution obtained by dissolving a thermoplastic resin with a solvent is applied to provide the fiber reinforced composite material with the thermoplastic resin. When a fiber reinforced sheet (prepreg sheet) using a thermosetting resin as a matrix resin is molded and cured, a film or nonwoven fabric made of a thermoplastic resin is laminated on the outermost layer of the fiber reinforced sheet (prepreg sheet). Examples of the method include heating and pressure forming the laminated body.

また、補強部材3と底面カバー2または天面カバー4とが直接接合されていることが望ましい。補強部材3および/または補強部材3と接着する底面カバー2または天面カバー4の接合部に熱可塑性樹脂を有する繊維強化複合材料を用いることで、各部材以外の接着剤を用いる必要がなくなり、各部材を直接接合することが可能となるので、筐体1の重量増加を抑制できる。補強部材3と底面カバー2または天面カバー4とを直接接合するために好適な方法は、マトリックス樹脂として熱硬化性樹脂を用いた繊維強化シート(プリプレグシート)の最外層に熱可塑性樹脂からなるフィルムや不織布を表面に積層した積層体を用いる方法であるが、ここで用いる熱可塑性樹脂としては、前記マトリックス樹脂として例示した熱可塑性樹脂の群から選択することも可能である。   Further, it is desirable that the reinforcing member 3 and the bottom cover 2 or the top cover 4 are directly joined. By using a fiber-reinforced composite material having a thermoplastic resin at the joint between the reinforcing member 3 and / or the bottom surface cover 2 or the top surface cover 4 to be bonded to the reinforcing member 3, it is not necessary to use an adhesive other than each member. Since it becomes possible to join each member directly, the weight increase of the housing | casing 1 can be suppressed. A suitable method for directly joining the reinforcing member 3 and the bottom cover 2 or the top cover 4 is made of a thermoplastic resin in the outermost layer of a fiber reinforced sheet (prepreg sheet) using a thermosetting resin as a matrix resin. In this method, a laminate in which a film or a non-woven fabric is laminated on the surface is used, but the thermoplastic resin used here can be selected from the group of thermoplastic resins exemplified as the matrix resin.

好ましくは、マトリックス樹脂が熱硬化性樹脂からなる繊維強化シート(プリプレグシート)を成形、硬化させる成形温度よりも低い融点を有する熱可塑性樹脂を選択することが好ましい。熱可塑性樹脂の融点の下限は特に限定されないが、本発明の筐体を電子機器に適応した際の耐熱性を発現する観点から、80℃以上が好ましく、100℃以上がより好ましい。また、熱可塑性樹脂の形態は特に限定されず、フィルム、連続繊維、織物、粒子、不織布などの形態が例示できるが、成形作業時の取扱い性の観点からフィルム、不織布の形態であることが好ましい。このような樹脂を選択することにより、成形時に、熱可塑性樹脂が溶融し、成形体表面に熱可塑性樹脂が膜のように広がって形成され、接合時に接合面積が広くなることや繊維強化シートの強化繊維に含浸して強固な熱可塑性樹脂層を形成し、高い引き剥がし強度を発現することが可能となる。これらの方法で得られた補強部材3および補強部材3と接合される底面カバー2または天面カバー4の少なくとも一方でもよいが、接合される部材の両方の接合部材に熱可塑性樹脂が設けられていることが好ましい。また、設けられる熱可塑性樹脂は、互いに実質的に同じ熱可塑性樹脂が選択されていることが望ましい。   Preferably, it is preferable to select a thermoplastic resin having a melting point lower than a molding temperature for molding and curing a fiber reinforced sheet (prepreg sheet) whose matrix resin is made of a thermosetting resin. Although the minimum of melting | fusing point of a thermoplastic resin is not specifically limited, From a viewpoint of expressing the heat resistance at the time of applying the housing | casing of this invention to an electronic device, 80 degreeC or more is preferable and 100 degreeC or more is more preferable. The form of the thermoplastic resin is not particularly limited, and examples thereof include films, continuous fibers, woven fabrics, particles, and non-woven fabrics. From the viewpoint of handleability during the molding operation, it is preferable to be in the form of a film and non-woven fabric. . By selecting such a resin, the thermoplastic resin melts at the time of molding, and the thermoplastic resin spreads like a film on the surface of the molded body. By impregnating the reinforcing fibers to form a strong thermoplastic resin layer, it becomes possible to exhibit high peel strength. At least one of the reinforcing member 3 obtained by these methods and the bottom cover 2 or the top cover 4 to be joined to the reinforcing member 3 may be used, but a thermoplastic resin is provided on both joining members to be joined. Preferably it is. Moreover, as for the provided thermoplastic resin, it is desirable that the substantially same thermoplastic resin is mutually selected.

本明細書中において、“解体性接着”とは、補強部材3を容易に取り外し可能である点でだけはなく、再接着可能であることも含んでおり、再接着の際、接着性を発現するために熱可塑性樹脂を付与しても良いが、熱可塑性樹脂などの重量増加なしで再接着可能であることが好ましい。また、再接着をした際の引き剥がし荷重が、元の引き剥がし荷重の50%以上であることが望ましく、70%以上であることがさらに望ましい。本発明の解体性接着は、熱可塑性樹脂の特性である、加熱より樹脂が溶融して力学特性が低下する点と、冷却または常温で固化して樹脂本来の高い力学特性を発現する特性を接合技術に適応したことにより成し得たことである。   In this specification, “disassembly adhesive” includes not only that the reinforcing member 3 can be easily removed but also that it can be reattached, and exhibits adhesiveness during reattachment. For this purpose, a thermoplastic resin may be added, but it is preferable that the resin can be reattached without increasing the weight of the thermoplastic resin or the like. Further, the peeling load upon re-adhesion is preferably 50% or more, more preferably 70% or more of the original peeling load. The dismantling adhesion of the present invention joins the characteristics of thermoplastic resin, the point that the resin melts by heating and the mechanical characteristics decrease, and the characteristic that expresses the original high mechanical characteristics by cooling or solidifying at room temperature. This was achieved by adapting to technology.

また、補強部材3の平面部31および立ち壁部32に本発明のねじり剛性が向上する範囲において開孔部を形成することができる。このような構造とすることで、中空構造S1に内蔵した電子部品と底面カバー2と天面カバー4とによって区画された中空構造S1以外の空間に配置した電子部品や天面カバー4に該当するディスプレイやキーボードなどとを接続するための配線ケーブルを配置することが可能となる。この開孔部は放熱性の観点から空気の流れを良くするための配置、例えば対向する立ち壁部32に形成することがよい。これらの開孔部は、補強部材3の表面積に対して30%以下であることが望ましく、ねじり剛性の観点からは15%以下であることがさらに望ましい。   Moreover, an opening part can be formed in the plane part 31 and the standing wall part 32 of the reinforcement member 3 in the range which the torsional rigidity of this invention improves. By adopting such a structure, it corresponds to the electronic component and the top cover 4 arranged in a space other than the hollow structure S1 defined by the electronic component built in the hollow structure S1, the bottom cover 2 and the top cover 4. It is possible to arrange a wiring cable for connecting a display, a keyboard, and the like. The opening is preferably formed in an arrangement for improving the air flow from the viewpoint of heat dissipation, for example, in the opposing standing wall 32. These apertures are desirably 30% or less with respect to the surface area of the reinforcing member 3, and more desirably 15% or less from the viewpoint of torsional rigidity.

天面カバー4は、底面カバー2の立ち壁部22の周縁部に接合されている。図1においては、天面カバー4は、平滑な板状形状であるが、曲面や凹凸を有した板状形状でもよい。また、天面カバー4は、底面カバー2と同じ材料、形状であってもよく、補強部材3が底面カバー2と天面カバー4とによって区画されて空間内に複数配置、接合されていてもよく、このような構成とすることによってどちらの面に対しても高い剛性を有した筐体1を得ることができる。また、天面カバー4は、液晶ディスプレイやキーボードなどの電子機器部品であってもよく、このような構成とすることによってクラムシェル型パソコンやタブレット型パソコンへの適応が可能となる。   The top surface cover 4 is joined to the peripheral edge portion of the standing wall portion 22 of the bottom surface cover 2. In FIG. 1, the top cover 4 has a smooth plate shape, but may have a plate shape having a curved surface or unevenness. Moreover, the top cover 4 may be the same material and shape as the bottom cover 2, and even if the reinforcing member 3 is partitioned by the bottom cover 2 and the top cover 4 and is arranged and joined in the space. The casing 1 having high rigidity with respect to either surface can be obtained by adopting such a configuration. Further, the top cover 4 may be an electronic device part such as a liquid crystal display or a keyboard. With such a configuration, the top cover 4 can be applied to a clamshell personal computer or a tablet personal computer.

以上の説明から明らかなように、本発明の一実施形態である筐体1は、天面カバー4と、天面カバー4に向かって立設され、周縁部が天面カバー4に接合された立ち壁部21を有する底面カバー2と、天面カバー4と底面カバー2とによって区画された空間S1内に配置された、開口部を有する補強部材3と、を備え、補強部材3が底面カバー2に接合されている筐体であって、底面カバー2の線膨張係数に対する補強部材3の線膨張係数の比が0.1以上、10以下の範囲内にあることを特徴とする。これにより、高いねじり剛性を有し、寸法安定性を向上可能な筐体を提供することができる。   As is apparent from the above description, the housing 1 according to an embodiment of the present invention is erected toward the top cover 4 and the top cover 4, and the peripheral edge is joined to the top cover 4. A bottom cover 2 having a standing wall portion 21, and a reinforcing member 3 having an opening disposed in a space S1 defined by the top cover 4 and the bottom cover 2, and the reinforcing member 3 is a bottom cover. 2, wherein the ratio of the linear expansion coefficient of the reinforcing member 3 to the linear expansion coefficient of the bottom cover 2 is in the range of 0.1 or more and 10 or less. Thereby, the housing | casing which has high torsional rigidity and can improve dimensional stability can be provided.

なお、開口部を有する部材によって補強部材3を構成し、補強部材3が底面カバー2または天面カバー4に接合されることによって中空構造S1を形成してもよい。この場合、補強部材3が接合されている底面カバー2または天面カバー4の方向への補強部材3の投影面積が、周縁部が接合されている底面カバー2または天面カバー4の投影面積の60%以上、95%以下の範囲内に調整されていることが望ましい。なお、補強部材3の配置位置は特に限定はされないが、底面カバー2または天面カバー4の中心位置から均等な位置にあることが好ましく、このような配置とすることによって、x方向またはy方向へのねじり剛性を等方的にできる。また、底面カバー2と天面カバー4とによって区画される空間のうち、中空構造S1以外の空間を有効活用する観点からは、補強部材3を底面カバー2または天面カバー4のどちらか一方に寄せても良い。   Note that the reinforcing member 3 may be configured by a member having an opening, and the reinforcing member 3 may be joined to the bottom cover 2 or the top cover 4 to form the hollow structure S1. In this case, the projected area of the reinforcing member 3 in the direction of the bottom cover 2 or the top cover 4 to which the reinforcing member 3 is joined is equal to the projected area of the bottom cover 2 or the top cover 4 to which the peripheral edge is joined. It is desirable to adjust within the range of 60% or more and 95% or less. In addition, although the arrangement position of the reinforcing member 3 is not particularly limited, it is preferable that the reinforcement member 3 is located at an equal position from the center position of the bottom surface cover 2 or the top surface cover 4. Torsional rigidity can be made isotropic. Further, from the viewpoint of effectively using a space other than the hollow structure S <b> 1 among the spaces defined by the bottom cover 2 and the top cover 4, the reinforcing member 3 is attached to either the bottom cover 2 or the top cover 4. You may bring it.

詳しくは、補強部材3の投影面積が補強部材3の接合されている底面カバー2または天面カバー4の面積の60%未満である場合、本発明のねじり剛性を発現する一因である立ち壁部が底面カバー2または天面カバー4の中心位置に近い位置に形成されてしまい、本来のねじり剛性を発現できないといった問題が生じる。一方、補強部材3の投影面積Sが補強部材3の接合されている底面カバー2または天面カバー4の面積の95%より大きい場合には、高いねじり剛性を発現しうるが、中空構造S1以外の空間が小さくなるために、電子機器を構成するための電子部品および配線などを配置することが困難となり、筐体として適応することが困難となるといった問題が生じる。このため、周縁部が接合されている底面カバー2または天面カバー4の方向への投影面積は、周縁部が接合されている底面カバー2または天面カバー4の面積の60%以上、95%以下の範囲内であることが望ましい。   Specifically, when the projected area of the reinforcing member 3 is less than 60% of the area of the bottom cover 2 or the top cover 4 to which the reinforcing member 3 is joined, the standing wall that contributes to the torsional rigidity of the present invention. The portion is formed at a position close to the center position of the bottom cover 2 or the top cover 4, and there arises a problem that the original torsional rigidity cannot be expressed. On the other hand, when the projected area S of the reinforcing member 3 is larger than 95% of the area of the bottom cover 2 or the top cover 4 to which the reinforcing member 3 is joined, high torsional rigidity can be expressed, but other than the hollow structure S1. Since the space of the space becomes small, it is difficult to arrange electronic components and wirings for configuring the electronic device, and it becomes difficult to adapt as a housing. For this reason, the projected area in the direction of the bottom cover 2 or the top cover 4 to which the peripheral part is joined is 60% or more and 95% of the area of the bottom cover 2 or the top cover 4 to which the peripheral part is joined. It is desirable to be within the following range.

このとき、補強部材3の投影面の形状、すなわち平面部31の形状は特に限定されないが、矩形形状以外にも円形形状や多角形形状でも良く、高いたわみ剛性を発現する観点からは、底面カバー2および/または天面カバー4の形状に即した形状であることが好ましい。具体的には、補強部材3の投影面の形状は矩形形状であることが好ましい。また、中空構造S1および中空構造S1以外の空間を有効に活用する観点からは、補強部材3の投影面の形状は装填される電子部品の形状に合わせた形状であることが好ましい。また、いずれの荷重に対しても等方的な剛性を発現する観点からは、補強部材3の投影面の形状はx方向および/またはy方向の軸に対称な形状であることが好ましい。   At this time, the shape of the projection surface of the reinforcing member 3, that is, the shape of the flat surface portion 31 is not particularly limited, but may be a circular shape or a polygonal shape other than the rectangular shape, and from the viewpoint of developing high deflection rigidity, the bottom cover 2 and / or a shape corresponding to the shape of the top cover 4 is preferable. Specifically, the shape of the projection surface of the reinforcing member 3 is preferably a rectangular shape. Further, from the viewpoint of effectively utilizing the space other than the hollow structure S1 and the hollow structure S1, the shape of the projection surface of the reinforcing member 3 is preferably a shape that matches the shape of the electronic component to be loaded. Further, from the viewpoint of expressing isotropic rigidity with respect to any load, the shape of the projection surface of the reinforcing member 3 is preferably symmetric with respect to the axis in the x direction and / or the y direction.

また、開口部を有する部材によって補強部材3を構成し、補強部材3の周縁部が底面カバー2または天面カバー4に接合されることによって中空構造S1が形成されている場合、底面カバー2の補強部材3によって形成される中空構造S1の体積が、底面カバー2と天面カバー4とによって区画される空間の体積の55%以上、95%以下の範囲内にあることが望ましい。詳しくは、中空構造S1の体積が底面カバー2と天面カバー4とによって区画される空間の体積の55%未満である場合、本発明のねじり剛性を発現する一因である立ち壁部の高さが低いおよび/または補強部材3の投影面積が小さい場合であり、本来のねじり剛性を発現できないといった問題が生じる。一方、中空構造S1の体積が底面カバー2と天面カバー4とによって区画される空間の体積の95%より大きい場合には、高いねじり剛性を発現しうるが、中空構造S1以外の空間が小さくなり、電子機器を構成するための電子部品および配線などを配置することが困難となり筐体として適応することが困難となるといった問題が生じる。このため、中空構造S1の体積は、底面カバー2と天面カバー4とによって区画される空間の体積の55%以上、95%以下の範囲内とすることが望ましい。   Further, when the reinforcing member 3 is configured by a member having an opening, and the hollow structure S1 is formed by joining the peripheral edge of the reinforcing member 3 to the bottom cover 2 or the top cover 4, the bottom cover 2 The volume of the hollow structure S1 formed by the reinforcing member 3 is preferably in the range of 55% or more and 95% or less of the volume of the space defined by the bottom cover 2 and the top cover 4. Specifically, when the volume of the hollow structure S1 is less than 55% of the volume of the space defined by the bottom surface cover 2 and the top surface cover 4, the height of the standing wall portion that contributes to the torsional rigidity of the present invention. This is a case where the height is low and / or the projected area of the reinforcing member 3 is small, which causes a problem that the original torsional rigidity cannot be expressed. On the other hand, when the volume of the hollow structure S1 is larger than 95% of the volume of the space defined by the bottom cover 2 and the top cover 4, high torsional rigidity can be expressed, but the space other than the hollow structure S1 is small. Thus, there arises a problem that it is difficult to arrange electronic components and wiring for configuring the electronic device, and it is difficult to adapt as a housing. For this reason, it is desirable that the volume of the hollow structure S1 is in the range of 55% or more and 95% or less of the volume of the space defined by the bottom cover 2 and the top cover 4.

以上、本発明者らによってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施形態、実施例、および運用技術などは全て本発明の範疇に含まれる。   As mentioned above, although embodiment which applied the invention made by the present inventors was described, this invention is not limited by the description and drawing which make a part of indication of this invention by this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

以下、実施例を用いて、本発明を具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.

<評価・測定方法>
(1)ねじり剛性試験
図8(a)に示すように筐体1の1辺をコの字型の固定治具100で固定し、固定した1辺に対向するもう一方の辺を支持治具101で保持する形で試験機に固定した後、図8(b)に示すように角度θの変化速度を1°/minとして10Nの荷重を付与した時の筐体1の変位量を測定し、測定値を筐体のねじり剛性値とした。
<Evaluation and measurement method>
(1) Torsional rigidity test As shown in FIG. 8A, one side of the housing 1 is fixed with a U-shaped fixing jig 100, and the other side opposite to the fixed side is a supporting jig. After being fixed to the testing machine while being held at 101, the amount of displacement of the housing 1 when a load of 10 N is applied with a change rate of the angle θ of 1 ° / min as shown in FIG. 8B is measured. The measured value was the torsional rigidity value of the casing.

(2)たわみ剛性試験
図9に示すように、補強部材が接合された底面カバー2または天面カバー4側から荷重Fを付与できるように筐体を試験機に設置した。試験機として“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いた。直径20mmの圧子102を用いて筐体1の中心位置をクロスヘッド速度1.0mm/minで押し、底面カバー2または天面カバー4のたわみ量を測定し、測定値をたわみ剛性値とした。
(2) Flexural Rigidity Test As shown in FIG. 9, the casing was installed in the testing machine so that the load F could be applied from the bottom cover 2 or top cover 4 side to which the reinforcing member was joined. An “Instron” (registered trademark) universal testing machine 4201 type (manufactured by Instron) was used as a testing machine. Using the indenter 102 with a diameter of 20 mm, the center position of the casing 1 was pushed at a crosshead speed of 1.0 mm / min, the amount of deflection of the bottom cover 2 or the top cover 4 was measured, and the measured value was taken as the deflection stiffness value.

(3)曲げ弾性率の評価
ASTM D−790(1997)の規格に準拠し、補強部材3、底面カバー2、および天面カバー4に用いる材料の曲げ弾性率を評価した。実施例または比較例により得られた各部材からそれぞれ、長さ80±1mm、幅25±0.2mmの曲げ試験片を、任意の方向を0°方向とした場合に、0°、+45°、−45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定回数nは5回とし、全ての測定値(n=20)の平均値を曲げ弾性率とした。試験機として“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用い、3点曲げ試験冶具(圧子直径10mm、支点直径10mm)を用いて支持スパンを試験片厚みの16倍に設定し、曲げ弾性率を測定した。試験片の水分率0.1質量%以下、雰囲気温度23℃、および湿度50質量%の条件下において試験を行った。
(3) Evaluation of bending elastic modulus Based on the standard of ASTM D-790 (1997), the bending elastic modulus of the material used for the reinforcing member 3, the bottom cover 2, and the top cover 4 was evaluated. From each member obtained by the example or the comparative example, a bending test piece having a length of 80 ± 1 mm and a width of 25 ± 0.2 mm is set to 0 °, + 45 ° when an arbitrary direction is set to 0 °. Test specimens were produced by cutting out the four directions of -45 ° and 90 °. The number of measurements n for each direction was 5 times, and the average value of all measured values (n = 20) was taken as the flexural modulus. An "Instron" (registered trademark) universal testing machine 4201 type (manufactured by Instron) is used as a testing machine, and a support span is set to a test piece thickness of 16 using a 3-point bending test jig (indenter diameter 10 mm, fulcrum diameter 10 mm). The bending elastic modulus was measured by setting to double. The test piece was tested under the conditions of a moisture content of 0.1% by mass or less, an atmospheric temperature of 23 ° C., and a humidity of 50% by mass.

(4)補強部材の引き剥がし荷重試験(23℃および200℃)
JIS K6849(1994)に規定される「接着剤の引張接着強さ試験方法」に基づいて補強部材の引き剥がし荷重を評価した。本試験における試験片は、実施例または比較例で得られる筐体を用いた。この時、補強部材の引き剥がし強度を測定するために、補強部材が接合されていない天面カバーまたは底面カバーがない状態(接合される前)で評価を行った。具体的には、図10に示すように筐体1の底面カバー2または天面カバー4を固定治具103で固定し、補強部材3を引張治具104で固定した。そして、各部材を固定した状態のまま引張荷重Fを付与し、補強部材3が剥がれるまたは引張治具104が補強部材4から外れるまで評価を行った。この時の接着面積は、接合前の補強部材3の接合面の幅や長さを測定して算出した。接合が部分的になされている場合は、それらの面積を測定し、合算して接合面積とした。得られた引張荷重値と接合面積から補強部材3の引き剥がし荷重を算出した。また、200℃における補強部材3の引き剥がし荷重は、筐体1を固定する治具ごと恒温槽内に設置し、恒温槽内の雰囲気温度を200℃まで昇温した。昇温後、10分間その状態を保持した後、補強部材3の引き剥がし荷重試験と同様に引張荷重を付与し、評価を行った。
(4) Peeling load test of reinforcing member (23 ° C and 200 ° C)
The peeling load of the reinforcing member was evaluated based on “Test method of tensile adhesive strength of adhesive” defined in JIS K6849 (1994). As the test piece in this test, the casing obtained in the example or the comparative example was used. At this time, in order to measure the peeling strength of the reinforcing member, evaluation was performed in a state where there is no top cover or bottom cover to which the reinforcing member is not joined (before joining). Specifically, as shown in FIG. 10, the bottom cover 2 or the top cover 4 of the housing 1 is fixed with a fixing jig 103, and the reinforcing member 3 is fixed with a tension jig 104. Then, a tensile load F was applied with each member fixed, and evaluation was performed until the reinforcing member 3 was peeled off or the tensile jig 104 was detached from the reinforcing member 4. The adhesion area at this time was calculated by measuring the width and length of the joining surface of the reinforcing member 3 before joining. When joining was made partially, those areas were measured and added together to obtain the joining area. The peeling load of the reinforcing member 3 was calculated from the obtained tensile load value and the bonding area. Moreover, the peeling load of the reinforcing member 3 at 200 ° C. was set in the thermostatic chamber together with the jig for fixing the housing 1, and the ambient temperature in the thermostatic bath was raised to 200 ° C. After the temperature rise, the state was maintained for 10 minutes, and a tensile load was applied in the same manner as in the peeling load test of the reinforcing member 3 for evaluation.

(5)各部材の線膨張係数の評価
JIS K7197(1991)に規定される「プラスチックの熱機械分析による線膨張率試験方法」を参考にして、各部材の線膨張係数を評価した。本評価における試験片は、実施例または比較例で得られる各部材を用いた。この時、厚みは各部材の厚みとし、一辺の長さが5mmとなるように加工を行って、試験片を作製した。測定数はn=5とし、平均値を各部材の線膨張係数とした。
(5) Evaluation of linear expansion coefficient of each member The linear expansion coefficient of each member was evaluated with reference to the “linear expansion coefficient test method by thermomechanical analysis of plastic” defined in JIS K7197 (1991). As the test piece in this evaluation, each member obtained in the example or the comparative example was used. At this time, the thickness was set to the thickness of each member, and processing was performed so that the length of one side was 5 mm to prepare a test piece. The number of measurements was n = 5, and the average value was the linear expansion coefficient of each member.

(6)熱サイクル試験
得られた筐体を庫内の雰囲気温度を制御可能な試験機に入れ、プログラム運転を行った。プログラム運転の条件は、最低温度を−25℃、最高温度を85℃とし、各温度に到達してから10分間その温度を保持し、その後、1℃/分の温度変化となるようにした。この最低温度から最高温度、最高温度から最低温度に到達する周期を1サイクルとして、10サイクル行った後、筐体に剥離や反りが生じていないか確認を行った。試験前と比較して変化がない場合を○、剥離や反りが生じた場合を×とした。
(6) Thermal cycle test The obtained casing was put into a testing machine capable of controlling the atmospheric temperature in the cabinet, and a program operation was performed. The program operation was performed at a minimum temperature of −25 ° C. and a maximum temperature of 85 ° C. The temperature was maintained for 10 minutes after reaching each temperature, and then the temperature was changed by 1 ° C./min. The cycle from the lowest temperature to the highest temperature and from the highest temperature to the lowest temperature was taken as one cycle, and after 10 cycles, it was confirmed whether the casing was peeled off or warped. The case where there was no change compared with before the test was marked with ◯, and the case where peeling or warping occurred was marked with ×.

<使用した材料>
評価に用いた材料を以下に示す。
<Materials used>
The materials used for the evaluation are shown below.

[材料1]
東レ(株)製“トレカ”プリプレグP3252S−12を材料1として準備した。材料1の特性は以下の表1に示す。
[Material 1]
“Torayca” prepreg P3252S-12 manufactured by Toray Industries, Inc. was prepared as material 1. The properties of Material 1 are shown in Table 1 below.

[材料2]
スーパーレジン工業(株)製SCF183 EP−BL3を材料2として準備した。材料2の特性は以下の表1に示す。
[Material 2]
SCF183 EP-BL3 manufactured by Super Resin Industry Co., Ltd. was prepared as Material 2. The properties of Material 2 are shown in Table 1 below.

[材料3]
アルミニウム合金A5052を材料3として準備した。材料3の特性は以下の表1に示す。
[Material 3]
Aluminum alloy A5052 was prepared as material 3. The properties of Material 3 are shown in Table 1 below.

[材料4]
マグネシウム合金AZ31を材料4として準備した。材料4の特性は以下の表1に示す。
[Material 4]
Magnesium alloy AZ31 was prepared as material 4. The properties of Material 4 are shown in Table 1 below.

[材料5]
ポリアミド6樹脂(東レ(株)製“アミラン”(登録商標)CM1021T)90質量%と、ポリアミド6/66/610からなる3元共重合ポリアミド樹脂(東レ(株)製 “アミラン”(登録商標)CM4000)10質量%とからなるマスターバッチを用いて、目付124g/mの熱可塑性樹脂フィルムを作製し、材料5として準備した。材料5の特性は以下の表1に示す。
[Material 5]
A terpolymer of polyamide 6 resin (“Amilan” (registered trademark) CM1021T manufactured by Toray Industries, Inc.) and 90% by mass of polyamide 6/66/610 (“Amilan” (registered trademark) manufactured by Toray Industries, Inc.) CM4000) using a master batch consisting of 10% by mass, a thermoplastic resin film having a basis weight of 124 g / m 2 was prepared and prepared as Material 5. The properties of Material 5 are shown in Table 1 below.

[材料6]
ポリカーボネート樹脂(三菱エンジニアリングプラスチック(株)製“ユーピロン”(登録商標)H−4000)の樹脂ペレットを準備した。成形前に庫内温度を120℃に設定した熱風循環式乾燥機で5時間乾燥させた。材料6の特性は以下の表1に示す。
[Material 6]
Resin pellets of polycarbonate resin (“Iupilon” (registered trademark) H-4000 manufactured by Mitsubishi Engineering Plastics Co., Ltd.) were prepared. Prior to molding, it was dried for 5 hours in a hot air circulating dryer with the internal temperature set to 120 ° C. The properties of Material 6 are shown in Table 1 below.

Figure 2017059792
Figure 2017059792

(実施例1)
実施例1−(1):底面カバーの作製
材料1から所定の大きさを有するシートを7枚切り出した。このうち4枚は、プリプレグの繊維方向と縦方向(図1でいうx方向)が平行となるようにしてカットし、残りの3枚は繊維方向が横方向(図1でいうy方向)と平行となるようにした。本実施例においては、横方向(y方向)を0°とし、図11に示すように、繊維方向が90°のプリプレグシート105aと繊維方向が0°のプリプレグシート105bとの対称積層となるように7枚のプリプレグシートからなる積層体を得た。
Example 1
Example 1- (1): Production of bottom cover Seven sheets having a predetermined size were cut out from the material 1. Of these, four sheets were cut so that the fiber direction of the prepreg and the longitudinal direction (x direction in FIG. 1) were parallel, and the remaining three sheets had the fiber direction in the lateral direction (y direction in FIG. 1). It was made parallel. In this embodiment, the lateral direction (y direction) is 0 °, and as shown in FIG. 11, the prepreg sheet 105a having a fiber direction of 90 ° and the prepreg sheet 105b having a fiber direction of 0 ° are symmetrically laminated. A laminate composed of seven prepreg sheets was obtained.

ここで、プレス成形装置と図12(a)に示すような一対の金型106を用い、一対の金型106内に得られた積層体107を配置した。このとき、プレス成形機の熱盤温度が150℃となるように設定しており、図12(b)に示すように金型を移動させ、成形圧力1.0MPaを保持した状態で加圧した。そして、30分後、成形金型を開放し、成形品を金型から取り出した。得られた成形品の立ち壁が所望の高さとなるようにトリミングを行い、底面カバーを得た。   Here, using a press molding apparatus and a pair of molds 106 as shown in FIG. 12A, the laminate 107 obtained in the pair of molds 106 was disposed. At this time, the hot platen temperature of the press molding machine was set to 150 ° C., and the mold was moved as shown in FIG. . Then, after 30 minutes, the molding die was opened, and the molded product was taken out from the die. Trimming was performed so that the standing wall of the obtained molded product had a desired height, and a bottom cover was obtained.

実施例1−(2):天面カバーの作製
得られる成形品の形状が平滑となる金型を用いること以外は、実施例1−(1)と同様にして成形品を得た。得られた成形品の寸法が所望の大きさとなるようにトリミングを行い、天面カバーを得た。
Example 1- (2): Production of top cover A molded product was obtained in the same manner as in Example 1- (1) except that a mold having a smooth molded product was used. Trimming was performed so that the dimension of the obtained molded product was a desired size, and a top cover was obtained.

実施例1−(3):補強部材の作製
図13に示すような金型106を用いること以外は、実施例1−(1)と同様にして成形品を得た。得られた成形品の接合面が所望の幅となるようにトリミングを行い、補強部材を得た。
Example 1- (3): Production of reinforcing member A molded product was obtained in the same manner as in Example 1- (1) except that a mold 106 as shown in FIG. 13 was used. Trimming was performed so that the joint surface of the obtained molded product had a desired width, and a reinforcing member was obtained.

実施例1−(4):筐体の作製
実施例1−(1)〜(3)で得た各部材を図14に示すように接着剤108を用いて接合した。実施例1における成形条件および評価結果は以下の表2に示す。
Example 1- (4): Production of Case Each member obtained in Example 1- (1) to (3) was joined using an adhesive 108 as shown in FIG. The molding conditions and evaluation results in Example 1 are shown in Table 2 below.

(実施例2)
表2に記載の材料を用いること以外は、実施例1−(1)〜(4)と同様にして、筐体を得た。実施例2における成形条件および評価結果は以下の表2に示す。
(Example 2)
A case was obtained in the same manner as in Examples 1- (1) to (4) except that the materials listed in Table 2 were used. The molding conditions and evaluation results in Example 2 are shown in Table 2 below.

(実施例3)
表2に記載の材料を用い、熱盤温℃を220℃、成形圧力を10MPaとすること以外は、実施例1−(1)〜(4)と同様にして、筐体を得た。実施例3における成形条件および評価結果は以下の表2に示す。
(Example 3)
A case was obtained in the same manner as in Examples 1- (1) to (4) except that the materials shown in Table 2 were used, the hot platen temperature was set to 220 ° C., and the molding pressure was set to 10 MPa. The molding conditions and evaluation results in Example 3 are shown in Table 2 below.

(実施例4)
表2に記載の材料を射出成形機を用いて、シリンダ温度260℃、金型温度80℃となるように設定して射出成形を行い、各部材を得た。得られた部材を用い、実施例1−(4)と同様にして、筐体を得た。実施例4における成形条件および評価結果は以下の表2に示す。
Example 4
Using the injection molding machine, the materials listed in Table 2 were set so that the cylinder temperature was 260 ° C. and the mold temperature was 80 ° C., and injection molding was performed to obtain each member. Using the obtained member, a housing was obtained in the same manner as in Example 1- (4). The molding conditions and evaluation results in Example 4 are shown in Table 2 below.

(実施例5)
実施例3と同様にして底面カバーおよび天面カバーを作製し、実施例4と同様にして補強部材を作製した。得られた部材を用い、実施例1−(4)と同様にして、筐体を得た。実施例5における成形条件および評価結果は以下の表3に示す。
(Example 5)
A bottom cover and a top cover were produced in the same manner as in Example 3, and a reinforcing member was produced in the same manner as in Example 4. Using the obtained member, a housing was obtained in the same manner as in Example 1- (4). The molding conditions and evaluation results in Example 5 are shown in Table 3 below.

(実施例6)
実施例3と同様にして底面カバーおよび天面カバーを作製し、実施例2と同様にして補強部材を作製した。得られた部材を用い、実施例1−(4)と同様にして、筐体を得た。実施例6における成形条件および評価結果は以下の表3に示す。
(Example 6)
A bottom cover and a top cover were produced in the same manner as in Example 3, and a reinforcing member was produced in the same manner as in Example 2. Using the obtained member, a housing was obtained in the same manner as in Example 1- (4). The molding conditions and evaluation results in Example 6 are shown in Table 3 below.

(実施例7)
実施例1−(1)および(2)と同様にして得られた底面カバーと補強部材を、補強部材の接合部に140℃のホットメルトアプリケーターで溶融させたホットメルト樹脂(セメダイン(株)製HM712)を塗布し、補強部材を重ね合わせ上から錘を乗せ、3分間そのままの状態として接合した。接合の仕方以外は、実施例1−(1)〜(4)と同様にして筐体を得た。実施例7における成形条件および評価結果は以下の表3に示す。
(Example 7)
Example 1 A hot melt resin (manufactured by Cemedine Co., Ltd.) obtained by melting the bottom cover and the reinforcing member obtained in the same manner as in (1) and (2) with a hot melt applicator at 140 ° C. at the joint of the reinforcing member. HM712) was applied, the reinforcing members were overlapped, and a weight was placed from above, and joined as they were for 3 minutes. A casing was obtained in the same manner as in Examples 1- (1) to (4) except for the joining method. The molding conditions and evaluation results in Example 7 are shown in Table 3 below.

(実施例8)
実施例2−(1)および(2)と同様にして得られた底面カバーと補強部材を、補強部材の接合部に140℃のホットメルトアプリケーターで溶融させたホットメルト樹脂(セメダイン(株)製HM712)を塗布し、補強部材を重ね合わせ上から錘を乗せ、3分間そのままの状態として接合した。接合の仕方以外は、実施例2−(1)〜(4)と同様にして筐体を得た。実施例8における成形条件および評価結果は以下の表3に示す。
(Example 8)
Example 2 A hot melt resin (manufactured by Cemedine Co., Ltd.) obtained by melting the bottom cover and the reinforcing member obtained in the same manner as in (1) and (2) with a 140 ° C. hot melt applicator at the joint of the reinforcing member. HM712) was applied, the reinforcing members were overlapped, and a weight was placed from above, and joined as they were for 3 minutes. A casing was obtained in the same manner as in Example 2- (1) to (4) except for the joining method. The molding conditions and evaluation results in Example 8 are shown in Table 3 below.

(実施例9)
実施例3−(1)および(2)と同様にして得られた底面カバーと補強部材を、補強部材の接合部に140℃のホットメルトアプリケーターで溶融させたホットメルト樹脂(セメダイン(株)製HM712)を塗布し、補強部材を重ね合わせ上から錘を乗せ、3分間そのままの状態として接合した。接合の仕方以外は、実施例3−(1)〜(4)と同様にして筐体を得た。実施例9における成形条件および評価結果は以下の表4に示す。
Example 9
Example 3 A hot melt resin (manufactured by Cemedine Co., Ltd.) obtained by melting the bottom cover and the reinforcing member obtained in the same manner as in (1) and (2) with a hot melt applicator at 140 ° C. at the joint of the reinforcing member. HM712) was applied, the reinforcing members were overlapped, and a weight was placed from above, and joined as they were for 3 minutes. A casing was obtained in the same manner as in Example 3- (1) to (4) except for the joining method. The molding conditions and evaluation results in Example 9 are shown in Table 4 below.

(実施例10)
実施例4−(1)および(2)と同様にして得られた底面カバーと補強部材を、補強部材の接合部に140℃のホットメルトアプリケーターで溶融させたホットメルト樹脂(セメダイン(株)製HM712)を塗布し、補強部材を重ね合わせ上から錘を乗せ、3分間そのままの状態として接合した。接合の仕方以外は、実施例4−(1)〜(4)と同様にして筐体を得た。実施例10における成形条件および評価結果は以下の表4に示す。
(Example 10)
Example 4 A hot melt resin (manufactured by Cemedine Co., Ltd.) obtained by melting the bottom cover and the reinforcing member obtained in the same manner as in (1) and (2) with a 140 ° C. hot melt applicator at the joint of the reinforcing member. HM712) was applied, the reinforcing members were overlapped, and a weight was placed from above, and joined as they were for 3 minutes. A casing was obtained in the same manner as in Example 4- (1) to (4) except for the joining method. The molding conditions and evaluation results in Example 10 are shown in Table 4 below.

(実施例11)
実施例5−(1)および(2)と同様にして得られた底面カバーと補強部材を、補強部材の接合部に140℃のホットメルトアプリケーターで溶融させたホットメルト樹脂(セメダイン(株)製HM712)を塗布し、補強部材を重ね合わせ上から錘を乗せ、3分間そのままの状態として接合した。接合の仕方以外は、実施例5−(1)〜(4)と同様にして筐体を得た。実施例11における成形条件および評価結果は以下の表4に示す。
(Example 11)
Example 5 A hot-melt resin (manufactured by Cemedine Co., Ltd.) obtained by melting the bottom cover and the reinforcing member obtained in the same manner as in (1) and (2) with a hot melt applicator at 140 ° C. at the joint of the reinforcing member. HM712) was applied, the reinforcing members were overlapped, and a weight was placed from above, and joined as they were for 3 minutes. A casing was obtained in the same manner as in Example 5- (1) to (4) except for the joining method. The molding conditions and evaluation results in Example 11 are shown in Table 4 below.

(実施例12)
実施例4と同様にして底面カバーおよび天面カバーを作製した。表4に記載の材料を射出成形機を用いて、シリンダ温度280℃、金型温度100℃となるように設定して射出成形を行い、補強部材を得た。得られた底面カバーと補強部材を、補強部材の接合部に140℃のホットメルトアプリケーターで溶融させたホットメルト樹脂(セメダイン(株)製HM712)を塗布し、補強部材を重ね合わせ上から錘を乗せ、3分間そのままの状態として接合した。接合の仕方以外は、実施例10−(1)〜(4)と同様にして筐体を得た。実施例12における成形条件および評価結果は以下の表4に示す。
(Example 12)
A bottom cover and a top cover were produced in the same manner as in Example 4. Using the injection molding machine, the materials listed in Table 4 were set to a cylinder temperature of 280 ° C. and a mold temperature of 100 ° C., and injection molding was performed to obtain a reinforcing member. Apply the hot melt resin (HM712 manufactured by Cemedine Co., Ltd.) obtained by melting the bottom cover and the reinforcing member to the joint of the reinforcing member with a hot melt applicator at 140 ° C. It was put on and joined as it was for 3 minutes. A casing was obtained in the same manner as in Example 10- (1) to (4) except for the joining method. The molding conditions and evaluation results in Example 12 are shown in Table 4 below.

(実施例13)
実施例6と同様にして、各部材を得た。得られた底面カバーと補強部材を、補強部材の接合部に140℃のホットメルトアプリケーターで溶融させたホットメルト樹脂(セメダイン(株)製HM712)を塗布し、補強部材を重ね合わせ上から錘を乗せ、3分間そのままの状態として接合した。接合の仕方以外は、実施例6−(1)〜(4)と同様にして筐体を得た。実施例13における成形条件および評価結果は以下の表5に示す。
(Example 13)
Each member was obtained in the same manner as in Example 6. Apply the hot melt resin (HM712 manufactured by Cemedine Co., Ltd.) obtained by melting the bottom cover and the reinforcing member to the joint of the reinforcing member with a hot melt applicator at 140 ° C. It was put on and joined as it was for 3 minutes. A casing was obtained in the same manner as in Examples 6- (1) to (4) except for the joining method. The molding conditions and evaluation results in Example 13 are shown in Table 5 below.

(実施例14)
別の補強部材として材料5を射出成形機を用いて、シリンダ温度260℃、金型温度80℃となるように設定して射出成形を行い、厚み3mmとなる板状の成形品を得た。得られた成形品を幅7.2mmとなるように加工を行い、表5に記載の寸法となる別の補強部材を得た。得られた別の補強部材を図7に示すように配置して接着剤で接合し、その他は実施例10−(1)〜(4)と同様にして、筐体を得た。実施例14における成形条件および評価結果は以下の表5に示す。
(Example 14)
As another reinforcing member, the material 5 was injection-molded using an injection molding machine at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. to obtain a plate-shaped molded product having a thickness of 3 mm. The obtained molded product was processed so as to have a width of 7.2 mm, and another reinforcing member having the dimensions shown in Table 5 was obtained. Another reinforcing member obtained was arranged as shown in FIG. 7 and joined with an adhesive, and the other cases were obtained in the same manner as in Example 10- (1) to (4). The molding conditions and evaluation results in Example 14 are shown in Table 5 below.

(実施例15)
実施例10−(1),(2)と同様にして得られた底面カバーおよび補強部材を、超音波溶着法で接合した。接合の仕方以外は、実施例10−(1)〜(4)と同様にして筐体を得た。実施例15における成形条件および評価結果は以下の表5に示す。
(Example 15)
Example 10- The bottom cover and the reinforcing member obtained in the same manner as in (1) and (2) were joined by an ultrasonic welding method. A casing was obtained in the same manner as in Example 10- (1) to (4) except for the joining method. The molding conditions and evaluation results in Example 15 are shown in Table 5 below.

(実施例16)
実施例16−(1):底面カバーの作製
補強部材との接合面となる側の面に共重合ポリアミド樹脂(東レ(株)製“アミラン(登録商標)”CM8000)からなる厚み50μmとなるフィルムを積層して積層体を得た。得られた積層体を用いること以外は実施例1−(1)と同様にして、底面カバーを得た。
(Example 16)
Example 16- (1): Production of Bottom Cover Film having a thickness of 50 μm made of copolymerized polyamide resin (“Amilan (registered trademark)” CM8000 manufactured by Toray Industries, Inc.) on the side to be joined to the reinforcing member Were laminated to obtain a laminate. A bottom cover was obtained in the same manner as in Example 1- (1) except that the obtained laminate was used.

実施例16−(2):天面カバーの作製
実施例16−(1)と同様に底面カバーとの接合面となる側の面に共重合ポリアミド樹脂(東レ(株)製“アミラン(登録商標)”CM8000)からなる厚み50μmとなるフィルムを積層して積層体を得た。得られた積層体を用いること以外は実施例1−(2)と同様にして、天面カバーを得た。
Example 16- (2): Production of top cover As in Example 16- (1), a copolymerized polyamide resin (“Amilan” manufactured by Toray Industries, Inc.) was formed on the surface to be joined to the bottom cover. ) A film having a thickness of 50 μm made of “CM8000) was laminated to obtain a laminate. A top cover was obtained in the same manner as in Example 1- (2) except that the obtained laminate was used.

実施例16−(3):補強部材の作製
実施例16−(1)と同様に底面カバーとの接合面となる側の面に共重合ポリアミド樹脂(東レ(株)製“アミラン(登録商標)”CM8000)からなる厚み50μmとなるフィルムを積層して積層体を得た。得られた積層体を用いること以外は実施例1−(3)同様にして、補強部材を得た。
Example 16- (3): Production of Reinforcing Member Similar to Example 16- (1), a copolymerized polyamide resin ("Amilan (registered trademark)" manufactured by Toray Industries, Inc.) was formed on the surface to be joined to the bottom cover. A film made of “CM8000” and having a thickness of 50 μm was laminated to obtain a laminate. A reinforcing member was obtained in the same manner as in Example 1- (3) except that the obtained laminate was used.

実施例16−(4):筐体の作製
実施例16−(1)で得た底面カバーの実施例16−(3)で得た補強部材を接合形態に重ね合わせ、図15に示すような接合用治具109を用い、接合用治具109の表面温度が180℃となるように設定したプレス成形機の中に配置して加熱・加圧した。1分後、底面カバー2、補強部材3、および接合用治具109をプレス機から取り出し冷却した。5分後、接合用治具109を取り外して底面カバー2と補強部材3の一体化品を得た。その後、実施例1−(4)と同様にして天面カバー4を接着剤を用いて接合した。実施16における成形条件および評価結果は以下の表5に示す。
Example 16- (4): Production of casing The reinforcing member obtained in Example 16- (3) of the bottom cover obtained in Example 16- (1) was superposed on the joining form, as shown in FIG. The joining jig 109 was used and placed in a press molding machine set so that the surface temperature of the joining jig 109 was 180 ° C., and heated and pressurized. After 1 minute, the bottom cover 2, the reinforcing member 3, and the joining jig 109 were removed from the press and cooled. After 5 minutes, the joining jig 109 was removed to obtain an integrated product of the bottom cover 2 and the reinforcing member 3. Thereafter, the top cover 4 was joined using an adhesive in the same manner as in Example 1- (4). The molding conditions and evaluation results in Example 16 are shown in Table 5 below.

(実施例17)
表6に記載の材料を用いること以外は、実施例16−(1)〜(4)と同様にして、筐体を得た。実施例17における成形条件および評価結果は以下の表6に示す。
(Example 17)
A case was obtained in the same manner as Example 16- (1) to (4) except that the materials listed in Table 6 were used. The molding conditions and evaluation results in Example 17 are shown in Table 6 below.

(実施例18)
実施例3と同様にして得た補強部材を用いること以外は、実施例17と同様にして、筐体を得た。実施例18における成形条件および評価結果は以下の表6に示す。
(Example 18)
A casing was obtained in the same manner as in Example 17 except that the reinforcing member obtained in the same manner as in Example 3 was used. The molding conditions and evaluation results in Example 18 are shown in Table 6 below.

(実施例19)
熱盤温度を200℃とすること以外は、実施例3と同様にして底面カバーおよび天面カバーを得た。また、実施例17と同様にして補強部材を得た。得られた各部材を用いること以外は、実施例16と同様にして、筐体を得た。実施例19における成形条件および評価結果は以下の表6に示す。
(Example 19)
A bottom cover and a top cover were obtained in the same manner as in Example 3 except that the hot platen temperature was 200 ° C. Further, a reinforcing member was obtained in the same manner as in Example 17. A casing was obtained in the same manner as in Example 16 except that each member obtained was used. The molding conditions and evaluation results in Example 19 are shown in Table 6 below.

(実施例20)
実施例3と同様に底面カバーおよび天面カバーを得た。また、実施例17と同様にして補強部材を得た。得られた各部材を用いること以外は、実施例16と同様にして、筐体を得た。実施例20における成形条件および評価結果は以下の表6に示す。
(Example 20)
A bottom cover and a top cover were obtained in the same manner as in Example 3. Further, a reinforcing member was obtained in the same manner as in Example 17. A casing was obtained in the same manner as in Example 16 except that each member obtained was used. The molding conditions and evaluation results in Example 20 are shown in Table 6 below.

(実施例21〜23)
表7に記載の寸法とすること以外は、実施例20と同様にして、各部材を得た。えら得た部材を用いて、実施例16と同様にして筐体を得た。実施例21〜23における成形条件および評価結果は以下の表7に示す。
(Examples 21 to 23)
Each member was obtained in the same manner as in Example 20 except that the dimensions shown in Table 7 were used. Using the obtained member, a housing was obtained in the same manner as in Example 16. The molding conditions and evaluation results in Examples 21 to 23 are shown in Table 7 below.

(参考例1)
表7に記載の寸法とすること以外は実施例20と同様にして、底面カバーと補強部材を得た。底面カバーと補強部材によって形成される中空構造S1,空間S3内に電子部品を配置し、接合部を実施例30と同様に超音波溶着機で接合した。また、天面カバーとして、液晶ディスプレイを準備し、両面テープで底面部材と接合した。参考例1における成形条件および評価結果は以下の表7に示す。
(Reference Example 1)
A bottom cover and a reinforcing member were obtained in the same manner as in Example 20 except that the dimensions shown in Table 7 were used. Electronic components were placed in the hollow structure S1 and the space S3 formed by the bottom cover and the reinforcing member, and the joint was joined by an ultrasonic welder in the same manner as in Example 30. In addition, a liquid crystal display was prepared as a top cover and joined to the bottom member with a double-sided tape. The molding conditions and evaluation results in Reference Example 1 are shown in Table 7 below.

(比較例1)
実施例1と同様にして底面カバーおよび天面カバーを得た。また、実施例4と同様にして補強部材を得た。得られた各部材を用いること以外は、実施例1−(1)〜(4)と同様にして、筐体を得た。比較例1における成形条件および評価結果は以下の表8に示す。
(Comparative Example 1)
A bottom cover and a top cover were obtained in the same manner as in Example 1. Further, a reinforcing member was obtained in the same manner as in Example 4. A casing was obtained in the same manner as in Examples 1- (1) to (4) except that each member obtained was used. The molding conditions and evaluation results in Comparative Example 1 are shown in Table 8 below.

〔評価〕
実施例で得られた筐体は、熱サイクル試験後も補強部材と底面カバーで剥離や反りは発生しない寸法安定性に優れたものであることを確認した。また、これらの筐体は、高いねじり剛性もあわせもっていることが確認された。中でも、実施例7〜23は熱溶着により天面カバーと補強部材が接合されているため、高いねじり剛性やたわみ剛性を発現しつつ、加熱により補強部材を解体することが可能であるため、修理やリサイクルの観点で好ましい。また、実施例15〜23は、補強部材と底面カバーとが直接接合されているため、接着剤やホットメルト樹脂などを用いた場合と比較して重量の増加が少なく、軽量化の観点から好ましい。実施例14は、別の補強部材の効果もあり、ねじり剛性のみならず、たわみ剛性も発現することが確認された。
[Evaluation]
It was confirmed that the casings obtained in the examples were excellent in dimensional stability without peeling or warping between the reinforcing member and the bottom cover even after the thermal cycle test. In addition, these cases were confirmed to have high torsional rigidity. Among them, in Examples 7 to 23, the top cover and the reinforcing member are joined by heat welding, so that the reinforcing member can be disassembled by heating while exhibiting high torsional rigidity and deflection rigidity. Or from the viewpoint of recycling. In Examples 15 to 23, since the reinforcing member and the bottom cover are directly joined, there is little increase in weight compared to the case where an adhesive, a hot melt resin, or the like is used, which is preferable from the viewpoint of weight reduction. . In Example 14, it was confirmed that not only torsional rigidity but also flexural rigidity was exhibited due to the effect of another reinforcing member.

底面カバーの力学特性の高いガラス繊維強化複合材料や炭素繊維複合材料、金属材料を用いた実施例では、高いねじり剛性のみならず、たわみ剛性も発現した。また、金属材料は熱伝導率が高い材料でもあるため、熱特性の観点からも好ましい。樹脂やガラス繊維強化複合材料を底面カバーに用いた実施例では、底面カバーが電磁波透過性を有することになるため、高いねじり剛性のみならず、電波通信を可能とする観点から好ましい。樹脂材料のみを用いた実施例は、たわみ剛性は劣るが、ねじり剛性を発現することを確認した。また、参考例1は、筐体の活用方法として、中空構造内に電子部品を配置し、天面カバーとして液晶ディスプレイを用いて電子機器を作製した。本発明の要件を満たすことにより、高いねじり剛性とたわみ剛性を発現した電子機器を提供することが可能であることを確認した。   In Examples using a glass fiber reinforced composite material, a carbon fiber composite material, and a metal material with high mechanical properties of the bottom cover, not only high torsional rigidity but also flexural rigidity was exhibited. Further, since the metal material is also a material having high thermal conductivity, it is preferable from the viewpoint of thermal characteristics. In an embodiment in which a resin or glass fiber reinforced composite material is used for the bottom cover, the bottom cover has electromagnetic wave permeability, which is preferable from the viewpoint of enabling radio wave communication as well as high torsional rigidity. It was confirmed that the example using only the resin material exhibited torsional rigidity although the flexural rigidity was inferior. In Reference Example 1, as a method of utilizing the casing, electronic components were arranged in a hollow structure, and an electronic device was manufactured using a liquid crystal display as a top cover. It was confirmed that by satisfying the requirements of the present invention, it is possible to provide an electronic device that exhibits high torsional rigidity and flexural rigidity.

一方、比較例1は、ねじり剛性およびたわみ剛性を発現していたが、熱サイクル試験後に、補強部材と底面カバーが剥離した。このような筐体では、限られた環境下でしか使用することができず、市場で求めら得ている要件を満足するものではなかった。   On the other hand, Comparative Example 1 exhibited torsional rigidity and deflection rigidity, but the reinforcing member and the bottom cover were peeled off after the thermal cycle test. Such a casing can be used only in a limited environment and does not satisfy the requirements obtained in the market.

Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792
Figure 2017059792

1 筐体
2 底面カバー
3 補強部材
4 天面カバー
5 別の補強部材
21 平面部
22 立ち壁部
31 平面部
32 立ち壁部
33 接合部
DESCRIPTION OF SYMBOLS 1 Housing | casing 2 Bottom cover 3 Reinforcement member 4 Top cover 5 Another reinforcement member 21 Plane part 22 Standing wall part 31 Plane part 32 Standing wall part 33 Joining part

Claims (11)

天面カバーと、前記天面カバーに向かって立設され、周縁部が前記天面カバーに接合された立ち壁部を有する底面カバーと、前記天面カバーと前記底面カバーとによって区画された空間内に配置された、開口部を有する補強部材と、を備え、前記補強部材が底面カバーまたは天面カバーに接合されている筐体であって、
前記補強部材と前記補強部材と接合されている底面カバーまたは天面カバーの線膨張係数に対する前記補強部材の線膨張係数の比が0.1以上、10以下の範囲内にあることを特徴とする筐体。
A space defined by a top surface cover, a bottom surface cover that is erected toward the top surface cover and has a peripheral wall joined to the top surface cover, and the top surface cover and the bottom surface cover. A reinforcing member having an opening disposed therein, wherein the reinforcing member is joined to a bottom cover or a top cover,
The ratio of the linear expansion coefficient of the reinforcing member to the linear expansion coefficient of the reinforcing member and the bottom cover or the top cover joined to the reinforcing member is in the range of 0.1 or more and 10 or less. Enclosure.
前記補強部材が、前記底面カバーまたは天面カバーに熱溶着によって接合されていることを特徴とする請求項1に記載の筐体。   The housing according to claim 1, wherein the reinforcing member is joined to the bottom cover or the top cover by heat welding. 前記補強部材は、23℃における引き剥がし荷重が60N/cm以上、5000N/cm以下の範囲内になり、且つ、200℃における引き剥がし荷重が60N/cm未満の範囲内になるように、前記底面カバーまたは天面カバーに接合されていることを特徴とする請求項2に記載の筐体。 The reinforcing member 23 peel load at ° C. is 60N / cm 2 or more, the 5000N / cm 2 within the range, and, as the peeling force at 200 ° C. fall within a range of less than 60N / cm 2 The casing according to claim 2, wherein the casing is joined to the bottom cover or the top cover. 前記補強部材および該補強部材が接合されている前記天面カバーまたは前記底面カバーの少なくとも一方の接合部分に熱可塑性樹脂が設けられ、前記補強部材と天面カバーまたは底面カバーとが前記熱可塑性樹脂を介して接合されていることを特徴とする請求項1〜3のうち、いずれか1項に記載の筐体。   A thermoplastic resin is provided on at least one joined portion of the reinforcing member and the top cover or the bottom cover to which the reinforcing member is joined, and the reinforcing member and the top cover or the bottom cover are provided with the thermoplastic resin. The housing according to any one of claims 1 to 3, wherein the housing is joined via a wire. 前記補強部材、並びに、該補強部材が接合されている前記天面カバーまたは前記底面カバーが強化繊維とマトリックス樹脂からなるプリプレグの積層体を硬化した繊維強化複合材料によって形成されていることを特徴とする請求項1〜4のうち、いずれか1項に記載の筐体。   The reinforcing member and the top cover or the bottom cover to which the reinforcing member is bonded are formed of a fiber reinforced composite material obtained by curing a laminate of prepregs made of reinforcing fibers and a matrix resin. The housing according to any one of claims 1 to 4. 前記補強部材と、前記天面カバーまたは底面カバーとが直接接合されていることを特徴とする請求項1〜5のうち、いずれか1項に記載の筐体。   The casing according to any one of claims 1 to 5, wherein the reinforcing member and the top cover or the bottom cover are directly joined. 前記マトリックス樹脂が熱硬化性樹脂からなることを特徴とする請求項1〜6のうち、いずれか1項に記載の筐体。   The housing according to any one of claims 1 to 6, wherein the matrix resin is made of a thermosetting resin. 前記補強部材と前記補強部材が接合されている前記底面カバーとの間に形成されている中空構造内において、前記補強部材の内面と前記補強部材が接合されている前記底面カバーとを接続する別の補強部材を備えることを特徴とする請求項1〜7のうち、いずれか1項に記載の筐体。   In the hollow structure formed between the reinforcing member and the bottom cover to which the reinforcing member is joined, the inner surface of the reinforcing member is connected to the bottom cover to which the reinforcing member is joined. The casing according to claim 1, further comprising: a reinforcing member. 前記補強部材と接合されている底面カバーまたは天面カバーの方向への前記補強部材の投影面積が、前記補強部材が接合されている底面カバーまたは天面カバーの面積の60%以上、95%以下の範囲内にあることを特徴とする請求項1〜8のうち、いずれか1項に記載の筐体。   The projected area of the reinforcing member in the direction of the bottom cover or the top cover joined to the reinforcing member is 60% or more and 95% or less of the area of the bottom cover or the top cover joined to the reinforcing member. The housing according to any one of claims 1 to 8, wherein the housing is within the range. 前記補強部材を前記底面カバーまたは前記天面カバーに接合することによって形成された中空構造の体積が、前記空間の体積の55%以上、95%以下の範囲内にあることを特徴とする請求項1〜9のうち、いずれか1項に記載の筐体。   The volume of the hollow structure formed by joining the reinforcing member to the bottom cover or the top cover is in a range of 55% or more and 95% or less of the volume of the space. The housing | casing of any one among 1-9. 前記補強部材と前記底面カバーまたは前記天面カバーが接合されることによって形成された中空構造において、発熱部材が、前記補強部材の前記中空構造側表面に配設されていることを特徴とする請求項1〜10のうち、いずれか1項に記載の筐体。   The hollow structure formed by joining the reinforcing member and the bottom cover or the top cover, wherein a heat generating member is disposed on the hollow structure side surface of the reinforcing member. The housing | casing of any one among claim | item 1 -10.
JP2015185987A 2015-09-18 2015-09-18 Electronic device housing Active JP6736859B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015185987A JP6736859B2 (en) 2015-09-18 2015-09-18 Electronic device housing
PCT/JP2016/076116 WO2017047439A1 (en) 2015-09-18 2016-09-06 Housing
US15/760,333 US10571963B2 (en) 2015-09-18 2016-09-06 Housing
EP16846310.7A EP3352540B1 (en) 2015-09-18 2016-09-06 Housing
KR1020187007639A KR20180056653A (en) 2015-09-18 2016-09-06 housing
CN201680053896.7A CN108029215B (en) 2015-09-18 2016-09-06 Shell body
TW105129692A TW201717726A (en) 2015-09-18 2016-09-13 Housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015185987A JP6736859B2 (en) 2015-09-18 2015-09-18 Electronic device housing

Publications (3)

Publication Number Publication Date
JP2017059792A true JP2017059792A (en) 2017-03-23
JP2017059792A5 JP2017059792A5 (en) 2018-06-21
JP6736859B2 JP6736859B2 (en) 2020-08-05

Family

ID=58391811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185987A Active JP6736859B2 (en) 2015-09-18 2015-09-18 Electronic device housing

Country Status (1)

Country Link
JP (1) JP6736859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412996A (en) * 2021-06-18 2021-09-21 安徽亦宣金属科技有限公司 Preparation process of stamped glasses box

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218444A (en) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd Superconducting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218444A (en) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd Superconducting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412996A (en) * 2021-06-18 2021-09-21 安徽亦宣金属科技有限公司 Preparation process of stamped glasses box

Also Published As

Publication number Publication date
JP6736859B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6942961B2 (en) Electronic device housing
WO2017047439A1 (en) Housing
WO2017047440A1 (en) Electronic device housing
JP6168242B1 (en) Enclosure
WO2017047442A1 (en) Housing
JP6728607B2 (en) Electronic device housing
JP6736859B2 (en) Electronic device housing
JP6728606B2 (en) Electronic device housing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6736859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151