JP2017056388A - Rapid evaluation method of elimination rate of adsorption target substance - Google Patents

Rapid evaluation method of elimination rate of adsorption target substance Download PDF

Info

Publication number
JP2017056388A
JP2017056388A JP2015181399A JP2015181399A JP2017056388A JP 2017056388 A JP2017056388 A JP 2017056388A JP 2015181399 A JP2015181399 A JP 2015181399A JP 2015181399 A JP2015181399 A JP 2015181399A JP 2017056388 A JP2017056388 A JP 2017056388A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
desorption
amount
target substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015181399A
Other languages
Japanese (ja)
Other versions
JP6566383B2 (en
Inventor
陽子 梅田
Yoko Umeda
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2015181399A priority Critical patent/JP6566383B2/en
Publication of JP2017056388A publication Critical patent/JP2017056388A/en
Application granted granted Critical
Publication of JP6566383B2 publication Critical patent/JP6566383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of rapidly evaluating a rate of elimination of an adsorption target substance from an adsorbent in a polluted water treatment in which the adsorbent is used.SOLUTION: A method of rapidly evaluating a rate of elimination of an adsorption target substance from an adsorbent includes (a) an adsorption step for obtaining an amount of adsorption by agitating an adsorbent and a liquid containing an adsorption target substance, followed by making the adsorption target substance be adsorbed by the adsorbent until an equilibrium state of an amount of adsorption is obtained, (b) a filter step for separating the adsorbent by which the adsorption target substance is adsorbed, (c) an elimination step for solid-liquid separating the adsorbent after agitating by adding a liquid that does not contain the adsorption target substance to the adsorbent separated in the filter step, (d) a step of obtaining an amount of elimination when the adsorption target substance is eliminated from the adsorbent by measuring an amount of the adsorption target substance in the liquid separated in the elimination step, and (e) a step of obtaining a rate of elimination of the adsorption target substance from a ratio of the amount of elimination to the amount of adsorption.SELECTED DRAWING: Figure 3

Description

本発明は、吸着材を用いる汚染水処理において、吸着材からの吸着対象物質の脱離率を迅速に評価する方法に関する。   The present invention relates to a method for quickly evaluating a desorption rate of a substance to be adsorbed from an adsorbent in a contaminated water treatment using the adsorbent.

水処理技術の一つとして吸着材を用いたシステムが広く用いられている。このうち、入口水が、地下水・工業用水・排水などである場合、吸着対象物資の濃度が変動するため、場合によっては、吸着材に吸着された物質が脱離してしまうリスクが存在する。こうしたリスクを評価するためには、吸着材をカラムに充填し、吸着対象物質を含有した液を通液して飽和吸着させたのち、吸着対象物質がない液を通液してカラム出口水中の吸着対象物質濃度を経時的に測定することで、脱離の有無や脱離量を確認する方法が一般的と考えられる(例えば、非特許文献1参照)。   As one of water treatment technologies, a system using an adsorbent is widely used. Among these, when the inlet water is ground water, industrial water, waste water, or the like, the concentration of the material to be adsorbed fluctuates, so that there is a risk that the substance adsorbed on the adsorbent is desorbed in some cases. In order to evaluate such a risk, the column is filled with an adsorbent, and a liquid containing the adsorption target substance is passed through for saturated adsorption. A method of confirming the presence / absence of desorption and the amount of desorption by measuring the concentration of the substance to be adsorbed over time is generally considered (see Non-Patent Document 1, for example).

「各種ゼオライトにおけるセシウムの動的交換特性に及ぼす共存イオン、カラム温度及び流速の影響」東北大学選鉱製錬研究所彙報 37(2),145-152,1982.`` Effects of coexisting ions, column temperature and flow rate on the dynamic exchange characteristics of cesium in various zeolites '' Tohoku University, Research Institute of Beneficiation and Smelting Research, 37 (2), 145-152, 1982.

しかしながら、上記方法で脱離を確認する場合、一般的に飽和吸着や脱離に要する時間が長く、これに伴って大量の溶液を調整する必要がある。また、実験室などでポンプを用いて通水する場合は、漏水リスクを避けるために夜間停止することがあり、さらに時間がかかる場合がある。また、漏水受けを用意して24時間運転を行う場合、通液速度と無人運転時間から算出した溶液量以上の容積が必要となるため、複数の試験を平行して実施する場合に数に限りがでる。たとえば、50ml/minで通水する場合、無人運転時間を10時間と仮定すると30L/本、10本同時実施とすると300Lの漏水受けを用意する必要がある。また溶液を都度調整する必要があり、毎日72L/本の溶液を調整する必要があり、試薬費用が掛かり、調整作業が煩雑である。   However, when desorption is confirmed by the above-described method, generally, the time required for saturated adsorption and desorption is long, and it is necessary to adjust a large amount of solution accordingly. In addition, when using a pump in a laboratory or the like, it may be stopped at night in order to avoid the risk of water leakage, which may require more time. In addition, when 24 hours operation is performed with a water leak receiver, the volume more than the amount of solution calculated from the liquid flow rate and the unmanned operation time is required. I get out. For example, when passing water at 50 ml / min, assuming that the unmanned operation time is 10 hours, it is necessary to prepare a 300 L water leakage receiver if 10 L are implemented simultaneously. In addition, it is necessary to adjust the solution every time, and it is necessary to adjust 72 L / piece of solution every day, which requires a reagent cost and complicated adjustment work.

本発明は、吸着材を用いる汚染水処理において、吸着材からの吸着対象物質の脱離率を迅速に評価する方法を提供することを課題とする。   An object of the present invention is to provide a method for quickly evaluating the desorption rate of a substance to be adsorbed from an adsorbent in the treatment of contaminated water using the adsorbent.

本発明者は鋭意検討を行い、吸着工程をバッチ試験にし、脱離工程を段階的ろ過で模擬することで、カラムで試験した場合と同等の脱離挙動を確認し、本発明に至った。
すなわち、本発明は、吸着材を用いる汚染水処理において、吸着材からの吸着対象物質の脱離率を迅速に評価する方法であって、
(a)吸着材と、吸着対象物質を含む液を撹拌し、吸着量が平衡状態になるまで吸着対象物質を吸着材に吸着させ、吸着量を求める吸着工程と、
(b)吸着対象物質を吸着させた吸着材を分離するろ過工程と、
(c)ろ過工程で分離した吸着材に、吸着対象物質を含まない液を加え撹拌した後、吸着材を固液分離する脱離工程と、
(d)脱離工程で分離した液中の吸着対象物質の量を測定し、吸着対象物質が吸着材から脱離した量を求める脱離量測定工程と、
(e)脱離量の吸着量に対する割合から、吸着対象物質の脱離率を求める工程と、
を含むことを特徴とする吸着材からの吸着対象物質の脱離率の迅速評価方法を提供する。
The present inventor conducted intensive studies, made the adsorption process a batch test, simulated the desorption process by stepwise filtration, confirmed desorption behavior equivalent to that tested in the column, and reached the present invention.
That is, the present invention is a method for quickly evaluating the desorption rate of a substance to be adsorbed from an adsorbent in contaminated water treatment using the adsorbent,
(A) an adsorbing step of stirring an adsorbent and a liquid containing the adsorption target substance, adsorbing the adsorption target substance on the adsorbent until the adsorption amount reaches an equilibrium state, and obtaining an adsorption amount;
(B) a filtration step for separating the adsorbent that adsorbs the adsorption target substance;
(C) a desorption step of separating the adsorbent into solid and liquid after stirring and adding a liquid not containing the substance to be adsorbed to the adsorbent separated in the filtration step;
(D) a desorption amount measuring step of measuring the amount of the adsorption target substance in the liquid separated in the desorption step and obtaining an amount of the adsorption target substance desorbed from the adsorbent;
(E) obtaining a desorption rate of the substance to be adsorbed from the ratio of the desorption amount to the adsorption amount;
A method for quickly evaluating the desorption rate of a substance to be adsorbed from an adsorbent characterized by comprising:

本評価方法により、試験に要する時間を数か月から2週間程度に短縮することが可能であると共に、使用薬液量も数百Lから数L程度に減量することができる。また、本法の吸着工程では複数の試料を同時に撹拌できるため、カラム試験より多くの吸着材/脱離条件の組み合わせを、迅速・簡易に検討することが可能となる。
水処理吸着材の選定時に正しく脱離特性を把握することで、入口水の濃度変動に対してどれだけシビアに対応すればよいかを確認することができ、特性にあった吸着材の取り替え時期の把握・再生運用が可能となる。これにより、経済性向上、脱離リスク低減を図ることができる。
With this evaluation method, the time required for the test can be shortened from several months to about two weeks, and the amount of the chemical solution used can be reduced from several hundred L to several L. In addition, since a plurality of samples can be stirred at the same time in the adsorption step of this method, it becomes possible to quickly and easily examine more adsorbent / desorption condition combinations than in the column test.
By correctly grasping the desorption characteristics when selecting a water treatment adsorbent, it is possible to confirm how severe it is to cope with fluctuations in the concentration of the inlet water, and when to replace the adsorbent that matches the characteristics Can be grasped and regenerated. Thereby, economic improvement and reduction | restoration risk reduction can be aimed at.

カラム試験方法(従来法)の説明図である。It is explanatory drawing of a column test method (conventional method). 従来法による、吸着工程・脱離工程におけるカラム出口水中のセシウム濃度の推移を示す図である。It is a figure which shows transition of the cesium density | concentration in the column exit water in an adsorption process and a desorption process by a conventional method. 簡易試験方法(本発明法)の説明図である。It is explanatory drawing of a simple test method (invention method). 本発明法による、脱離工程でのろ液中セシウム濃度の推移を示す図である。It is a figure which shows transition of the cesium density | concentration in the filtrate in a desorption process by this invention method.

吸着材を用いる汚染水処理においては、ゼオライト系吸着材、チタン酸塩系吸着材、フェロシアン化物系吸着材など様々な種類の吸着材が用いられている。本発明では、これら吸着材を用いた除染処理システムにおけるリスク低減対策の一つとして、処理水中のセシウムなどの放射性物質の濃度の変動による吸着物質の脱離挙動について検討した。
吸着材は、上記の吸着材の他、一般的な汚染水処理に用いられる吸着材にも本発明による評価方法を適用することができ、例えば、イオン交換樹脂やキレート樹脂などの樹脂系吸着材、活性炭系吸着材、活性アルミナ、シリカゲル、ハイドロタルサイト様化合物または混合系吸着材(ゼオライトとフェロシアン化物の混合物や、活性炭とフェロシアン化物の混合物など)などが挙げられる。
In the contaminated water treatment using an adsorbent, various types of adsorbents such as zeolite adsorbent, titanate adsorbent, and ferrocyanide adsorbent are used. In the present invention, as one of the risk reduction measures in the decontamination treatment system using these adsorbents, the desorption behavior of the adsorbent due to the change in the concentration of radioactive substances such as cesium in the treated water was examined.
As the adsorbent, the evaluation method according to the present invention can be applied to adsorbents used for general contaminated water treatment in addition to the above adsorbents, for example, resin-based adsorbents such as ion exchange resins and chelate resins. Activated carbon-based adsorbent, activated alumina, silica gel, hydrotalcite-like compound or mixed adsorbent (a mixture of zeolite and ferrocyanide, a mixture of activated carbon and ferrocyanide, etc.).

本発明に係る吸着材からの吸着対象物質の脱離率を迅速に評価する方法は、下記(a)〜(e)工程を含む。
(a)吸着材と吸着対象物質を含む液を撹拌し、吸着量が平衡状態になるまで吸着対象物質を吸着材に吸着させ、吸着量を求める吸着工程。
(b)吸着対象物質を吸着させた吸着材を分離するろ過工程。
(c)ろ過工程で分離した吸着材に、吸着対象物質を含まない液を加え撹拌した後、吸着材を固液分離する脱離工程。
(d)脱離工程で分離した液中の吸着対象物質の量を測定し、吸着対象物質が吸着材から脱離した量を求める脱離量測定工程。
(e)脱離量の吸着量に対する割合から、吸着対象物質の脱離率を求める工程。
The method for quickly evaluating the desorption rate of the substance to be adsorbed from the adsorbent according to the present invention includes the following steps (a) to (e).
(A) An adsorption step of stirring the liquid containing the adsorbent and the substance to be adsorbed, adsorbing the adsorbent substance on the adsorbent until the adsorption amount reaches an equilibrium state, and obtaining the adsorption amount.
(B) The filtration process which isolate | separates the adsorbent which made the adsorption | suction object substance adsorb | suck.
(C) A desorption step of solid-liquid separation of the adsorbent after adding and stirring the liquid not containing the substance to be adsorbed to the adsorbent separated in the filtration step.
(D) A desorption amount measurement step in which the amount of the adsorption target substance in the liquid separated in the desorption step is measured to determine the amount of the adsorption target substance desorbed from the adsorbent.
(E) A step of obtaining the desorption rate of the substance to be adsorbed from the ratio of the desorption amount to the adsorption amount.

(a)吸着工程
吸着工程では、吸着材に、吸着対象物質を含んだ液を添加し、吸着材を懸濁させた懸濁液を撹拌しながら、吸着量が平衡状態になるまで吸着対象物質を吸着材に吸着させ、吸着量を求める。なお、吸着対象物質を追添加せずに平衡状態にする方法の他、吸着対象物質を適時追添加して、平衡状態になるまで吸着させて飽和吸着量を求める方法をとることもできる。
(A) Adsorption process In the adsorption process, a liquid containing the substance to be adsorbed is added to the adsorbent, and the substance to be adsorbed is stirred until the amount of adsorption reaches an equilibrium state while stirring the suspension in which the adsorbent is suspended. Is adsorbed on an adsorbent, and the amount of adsorption is determined. In addition to the method of bringing the adsorption target substance into the equilibrium state without additional addition, a method of adding the adsorption target substance in a timely manner and adsorbing until the equilibrium state is reached to obtain the saturated adsorption amount can be used.

液中の吸着材濃度は1〜20%程度にすることが好ましく、吸着材濃度が低すぎると液中の吸着対象物質と十分に接触できないために平衡状態に達するまでの時間が長くなり、また特に吸着対象物質を追添加せずに平衡状態にする方法の場合、吸着量の絶対値が小さすぎて脱離量が検出しにくくなり、脱離率を正確に評価しにくくなることが懸念される。また、反対に吸着材濃度が高すぎると吸着材と液との接触が均一でなくなり、ムラのある吸着状態になってしまう恐れがある。また撹拌時に吸着材同士の衝突による摩耗、粉末化が起きやすくなり、吸着材の表面積が変化することで正しい脱離率を求められなくなる事が懸念される。また、吸着材を分散させる液は実運用で想定される液を用いるのが理想であるが、模擬液を用いる場合は、実運用で想定される液とイオン濃度を同等にすることが好ましく、このような濃度で試験することにより、吸着工程においても共雑イオンとの量比を合わせてより実運用時に近い吸着状態を模擬することが可能となる。   The concentration of the adsorbent in the liquid is preferably about 1 to 20%. If the concentration of the adsorbent is too low, the adsorbent substance in the liquid cannot be sufficiently brought into contact with the substance to be adsorbed. In particular, in the case of a method of bringing the substance to be adsorbed into an equilibrium state without additional addition, there is a concern that the absolute value of the adsorption amount is too small to detect the desorption amount, and it becomes difficult to accurately evaluate the desorption rate. The On the other hand, if the concentration of the adsorbent is too high, contact between the adsorbent and the liquid is not uniform, and there is a possibility that the adsorbed state will be uneven. Further, abrasion and powdering due to collision between adsorbents are likely to occur during stirring, and there is a concern that a correct desorption rate cannot be obtained due to a change in the surface area of the adsorbent. In addition, it is ideal to use the liquid assumed in actual operation as the liquid for dispersing the adsorbent, but when using the simulated liquid, it is preferable to make the ion concentration equal to the liquid assumed in actual operation, By testing at such a concentration, it is possible to simulate the adsorption state closer to the actual operation by combining the amount ratio with the mixed ions in the adsorption step.

液中の吸着対象物質濃度は、実運用で想定される濃度と同等とするか、あるいは分析の容易さから1ppm〜1%(重量基準。以下同様。)程度にすることが好ましい。吸着材濃度が低すぎると、特に追添加せずに平衡状態にする方法の場合に、吸着量の絶対値が小さすぎて脱離量が検出しにくくなり、脱離率を正確に評価しにくくなることが懸念される。また追添加して飽和吸着させる場合においては、飽和するまでの時間が長くなり何度も追添加することが必要となる。反対に、吸着材濃度が高すぎると、実運用で想定される吸着状態を正しく模擬出来なくなる恐れがあり、また試薬代が高くなり経済的でない。   The concentration of the substance to be adsorbed in the liquid is preferably equal to the concentration assumed in actual operation, or about 1 ppm to 1% (weight basis; the same applies hereinafter) for ease of analysis. If the adsorbent concentration is too low, the adsorption value is too small to detect the desorption amount, especially in the case of an equilibrium state without additional addition, making it difficult to accurately evaluate the desorption rate. There is concern about becoming. In addition, in the case of additional addition and saturated adsorption, the time until saturation becomes longer, and additional addition is required many times. On the other hand, if the concentration of the adsorbent is too high, there is a possibility that the adsorption state assumed in actual operation cannot be correctly simulated, and the reagent cost becomes high, which is not economical.

吸着工程における温度条件は特に限定されないが、室温で行うのが簡便である。また、拌速度が遅すぎると吸着材と吸着対象物質との接触機会が減少することにより、飽和吸着に達するまでに時間を要するため、迅速評価にはなり得ない。一方、撹拌速度が速すぎると、吸着材同士の衝突による摩耗、粉末化が起きやすくなり、表面積が変化することで正しい脱離率が出せなくなる事が懸念されるため、10〜50rpm程度とすることが好ましい。撹拌は吸着対象物質の吸着量が平衡状態になるまで行い、この間、液をサンプリングしながら平衡状態になったことを確認する。平衡状態になるまでの所要時間は、一般的には36〜96時間である。   The temperature condition in the adsorption step is not particularly limited, but it is easy to carry out at room temperature. In addition, if the stirring speed is too slow, the opportunity for contact between the adsorbent and the substance to be adsorbed decreases, and it takes time to reach saturated adsorption. On the other hand, if the stirring speed is too fast, wear and powdering due to the collision between the adsorbents are likely to occur, and there is a concern that a correct desorption rate cannot be obtained due to a change in the surface area. It is preferable. Stirring is performed until the amount of adsorption of the substance to be adsorbed reaches an equilibrium state, and during this period, it is confirmed that the equilibrium state is reached while sampling the liquid. The time required to reach the equilibrium state is generally 36 to 96 hours.

簡易かつ迅速評価を行うためには、試験管、試験用バイアル瓶などの耐圧透明容器に、吸着材、吸着対象物質及び海水を入れて密栓した後、ロータリーミキサー(図3参照)などに取り付け、装置の設置面と垂直方向に回転させる方法が好ましい。この方法により、吸着材への摩耗を低く抑えた状態でカラム通水時と同様の吸着状況を再現することが可能となる。また、耐圧透明容器を複数本設置することができるため、同時に多数の吸着試験を行うことができる。一方、複数の回転盤を有する回転磁場装置(マルチスターラー)を用いる場合は、活性炭などの吸着材の比重が軽いものには適しているが、比重が重いものについては、吸着材が常に懸濁する条件とするためには回転数をある程度上げる必要があり、そうすると回転子により摩耗・粉末化が起きやすくなり、表面積が変化することから正しい脱離率を評価出来なくなる可能性がある。   In order to perform a simple and rapid evaluation, after putting an adsorbent, a substance to be adsorbed and seawater into a pressure-resistant transparent container such as a test tube or a test vial, and sealing it, attach it to a rotary mixer (see Fig. 3), A method of rotating in a direction perpendicular to the installation surface of the apparatus is preferable. By this method, it is possible to reproduce the same adsorption state as when passing through the column while keeping the wear on the adsorbent low. In addition, since a plurality of pressure-resistant transparent containers can be installed, a large number of adsorption tests can be performed simultaneously. On the other hand, when using a rotating magnetic field device (multi-stirrer) having a plurality of rotating disks, it is suitable for those with a low specific gravity of an adsorbent such as activated carbon, but for those with a high specific gravity, the adsorbent is always suspended. In order to achieve this condition, it is necessary to increase the number of revolutions to some extent. If this happens, the rotor is likely to be worn and powdered, and the surface area may change, making it impossible to evaluate the correct desorption rate.

(b)ろ過工程
ろ過工程では、吸着対象物質を吸着させた吸着材をろ過により分離する。ろ過装置としては、少量サンプルに適していること、ろ過が簡単であることなどの理由から、遠沈管用フィルターユニット装置などが好適である。ろ過回数は一回で良い。多数回行うと吸着材に吸着された吸着対象物質が脱離する恐れがある。
(B) Filtration process In a filtration process, the adsorbent which made adsorption object substance adsorb | suck is isolate | separated by filtration. As the filtration device, a centrifuge tube filter unit device or the like is preferable because it is suitable for a small amount of sample and filtration is easy. One filtration is sufficient. If it is performed many times, the adsorption target substance adsorbed on the adsorbent may be desorbed.

(c)脱離工程
脱離工程では、ろ過工程で分離した吸着材に、吸着対象物質を含まない液を加え撹拌した後、吸着材を固液分離し、液を分取する。分取量は、液中の吸着対象物質の分析が可能な量であれば良く、分析方法にもよるが一般的には1〜40mL程度で良い。
固液分離装置としては、上記の(b)ろ過工程と同様の装置が好適である。吸着対象物質を含まない液として純水または海水を用いることにより、脱離工程における共雑イオン濃度の影響度合いを明確に把握することができる。海水濃度は、実運用において想定される最大の共雑イオン濃度と同等になるよう調整するのが望ましいが、分析機器としてICP−MSなど塩分により導入部に汚れを生じる場合や分析誤差を生じる装置を用いる場合で、吸着対象物質の量がppm程度の微量である場合は、塩分の希釈のニーズと分析可能な範囲での希釈限界値との兼ね合いを取るとの理由から0.5〜20%程度が好ましい。
(C) Desorption step In the desorption step, a liquid that does not contain the substance to be adsorbed is added to the adsorbent separated in the filtration step and stirred, and then the adsorbent is solid-liquid separated to separate the liquid. The amount to be collected may be an amount that allows analysis of the adsorption target substance in the liquid, and it may generally be about 1 to 40 mL although it depends on the analysis method.
As the solid-liquid separator, an apparatus similar to the above (b) filtration step is suitable. By using pure water or seawater as a liquid that does not contain the substance to be adsorbed, it is possible to clearly grasp the degree of influence of the mixed ion concentration in the desorption process. It is desirable to adjust the seawater concentration to be equivalent to the maximum concentration of common ions expected in actual operation. However, as an analytical instrument, ICP-MS or other equipment that causes contamination in the introduction part due to salinity or an analysis error When the amount of the substance to be adsorbed is a very small amount of about ppm, it is 0.5 to 20% because the balance between the need for dilution of salt and the dilution limit value in the analyzable range is taken into account. The degree is preferred.

吸着材に添加する吸着対象物質を含まない液の量としては、吸着材の5〜100容量倍が好ましく、吸着対象物質を含まない液の量が少なすぎると、吸着材と液との接触が均一でなくなり、ムラのある脱離状態になってしまう恐れがある。また撹拌時に吸着材同士の衝突による摩耗、粉末化が起きやすくなり、表面積が変化することで正しい脱離率が出せなくなる事が懸念されることとなる。反対に、吸着対象物質を含まない液の量が多すぎると、ろ過が完了するまで時間がかかり、吸着材との接触時間が長くなることで、一度脱離した吸着対象物質が再吸着を起こすなど新たな吸着平衡状態に達してしまうことがあるため、不適である。なお、吸着工程では緩やかな垂直撹拌により吸着材の粉末化を最小限に抑える条件を採用しているが、それでも多少の粉末は生じる場合がある。この粉末によってろ過完了までの所要時間が数十秒で収まらない場合は、適時遠心分離器のフラッシュ機能などを併用したデカンテーションによる上澄み分取を行い、脱離工程での吸着材と脱離液との接触を合計で数十秒以内に抑えるのが良い。水は、共雑イオンが無い場合の脱離状況を評価したい場合に使用すれば良く、海水は、共雑イオンがある場合の脱離状況を評価したい場合に使用すれば良い。   The amount of the liquid that does not contain the adsorption target substance added to the adsorbent is preferably 5 to 100 times the volume of the adsorbent, and if the amount of the liquid that does not contain the adsorption target substance is too small, contact between the adsorbent and the liquid occurs. There is a possibility that it becomes non-uniform and becomes a non-uniform detachment state. Further, wear and powdering due to collision between adsorbents are likely to occur during agitation, and there is a concern that a correct desorption rate cannot be obtained due to a change in surface area. On the other hand, if the amount of the liquid that does not contain the adsorption target substance is too large, it takes time to complete the filtration, and the contact time with the adsorbent becomes longer, so that the adsorption target substance once desorbed causes re-adsorption. It is not suitable because it may reach a new adsorption equilibrium state. In addition, although the conditions which minimize powdering of an adsorbent by the gentle vertical stirring are employ | adopted in the adsorption | suction process, some powder may still arise. If the time required to complete filtration with this powder does not fit in several tens of seconds, the supernatant is separated by decantation in combination with the flash function of the centrifuge in a timely manner, and the adsorbent and desorbed liquid in the desorption process. It is better to keep the total contact within a few tens of seconds. Water may be used when it is desired to evaluate the desorption situation when there are no coherent ions, and seawater may be used when it is desired to evaluate the desorption situation when there are coexisting ions.

脱離の操作は、吸着対象物質を含まない液を複数回分用意して、繰り返し行うことが好ましい。脱離回数は、固液分離した液中に吸着対象物質が検出できなくなるまで行うのが理想的であるが、脱離量の推移が傾向としてつかめる程度の回数を繰り返すのでも良く、5〜10回程度を目安として決定すると良い。   The desorption operation is preferably performed repeatedly by preparing a plurality of liquids not containing the substance to be adsorbed. The number of desorptions is ideally performed until the substance to be adsorbed can no longer be detected in the solid-liquid separated liquid. However, the number of desorptions may be repeated so that the transition of the desorption amount can be grasped as a tendency. It is better to determine the number of times as a guide.

(d)脱離量測定工程
脱離量測定工程では、脱離工程で分離した液中の吸着対象物質の量を測定し、吸着対象物質が吸着材から脱離した脱離量を求める。脱離量は、液の量と、液中の吸着対象物質濃度を測定し、これらの積として求めることができる。
(D) Desorption amount measurement step In the desorption amount measurement step, the amount of the adsorption target substance in the liquid separated in the desorption step is measured to determine the desorption amount of the adsorption target substance desorbed from the adsorbent. The desorption amount can be obtained as a product of the amount of the liquid and the concentration of the substance to be adsorbed in the liquid.

(e)脱離率を求める工程
この工程では、上記で求めた脱離量と飽和吸着量の値を用い、下記式にて求めることができる。
脱離率(%)=[(脱離量)/(飽和吸着量)]×100
(E) Step of obtaining the desorption rate In this step, the value of the desorption amount and the saturated adsorption amount obtained above can be used to obtain the following equation.
Desorption rate (%) = [(desorption amount) / (saturated adsorption amount)] × 100

次に、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited only to a following example.

(比較例)
<試験方法>
図1にカラム試験方法を示す。本試験は吸着対象物質はセシウムイオン、実運用時の溶液の模擬液として10%海水を用いた例である。本試験では脱離現象が最も確認しやすいよう、セシウムが飽和吸着した状態の吸着材に対して、セシウムを含有していない液を通液することとした。吸着材は、ゼオライト系吸着材2種、チタン酸塩系吸着材1種、フェロシアン化物系吸着材1種を用いた。各種吸着材5gをカラム(内径20mm)に充填し、非放射性塩化セシウムをセシウムとして2ppm添加した10%海水を5.5〜55ml/minで通液し、一定時間毎にカラム出口水中のセシウム濃度をICP−MSで測定し、セシウムが飽和吸着するまで通液を継続した(飽和吸着工程)。
その後、セシウムを含有していない純水、次いで10%海水を5.5〜55ml/minで通液し、一定時間毎にカラム出口水中のセシウム濃度を測定し、吸着材からのセシウム脱離挙動を確認した(脱離工程)。
各吸着材のセシウム脱離率は、(セシウム脱離量)/(セシウム吸着量)[%]で求めた。
(Comparative example)
<Test method>
FIG. 1 shows a column test method. This test is an example in which cesium ions are used as the adsorption target substance and 10% seawater is used as a simulation solution for the actual operation. In this test, a solution containing no cesium was passed through the adsorbent in a state where cesium was saturated and adsorbed so that the desorption phenomenon could be confirmed most easily. As the adsorbents, two zeolite adsorbents, one titanate adsorbent, and one ferrocyanide adsorbent were used. 5 g of various adsorbents are packed into a column (inner diameter 20 mm), 10% seawater to which 2 ppm of non-radioactive cesium chloride is added as cesium is passed at a rate of 5.5 to 55 ml / min, and the cesium concentration in the column outlet water at regular intervals. Was measured by ICP-MS, and liquid passage was continued until cesium was saturated and adsorbed (saturated adsorption step).
Thereafter, pure water not containing cesium and then 10% seawater were passed at 5.5 to 55 ml / min, and the cesium concentration in the column outlet water was measured at regular intervals, and cesium desorption behavior from the adsorbent. Was confirmed (desorption step).
The cesium desorption rate of each adsorbent was determined by (cesium desorption amount) / (cesium adsorption amount) [%].

<結果と考察>
飽和吸着工程・脱離工程におけるカラム出口水中のセシウム濃度の推移を図2に示す。脱離工程のうち純水通水時には、試験で用いたいずれの吸着材からも、セシウムの脱離は認められなかった。一方、10%海水通液時においては、各吸着材で脱離が認められた。各吸着材のセシウム脱離率は、ゼオライト系吸着材で約90%、チタン酸塩系吸着材で約30%、フェロシアン化物系吸着材で約6%であった(表1)。このことから、共雑イオンがごく微量の場合は、一度吸着したセシウムは保持される傾向にあること、共雑イオンが一定量存在する場合は、セシウムが脱離する傾向であり、脱離量は吸着材の種類(おそらくはセシウム吸着部位周辺の構造の違い)によって大きく異なることが確認された。
<Results and discussion>
The transition of the cesium concentration in the column outlet water in the saturated adsorption step / desorption step is shown in FIG. When pure water was passed through the desorption process, no cesium was desorbed from any of the adsorbents used in the test. On the other hand, desorption was observed in each adsorbent when passing 10% seawater. The cesium desorption rate of each adsorbent was about 90% for the zeolite adsorbent, about 30% for the titanate adsorbent, and about 6% for the ferrocyanide adsorbent (Table 1). From this, when the amount of coherent ions is very small, cesium once adsorbed tends to be retained, and when a certain amount of coherent ions are present, cesium tends to be desorbed. It was confirmed that the difference greatly depends on the type of adsorbent (probably the difference in the structure around the cesium adsorption site).

Figure 2017056388
Figure 2017056388

(実施例1)
<試験方法>
カラム試験よりも短時間で脱離挙動を確認することを目的に、簡易試験方法の検討を行った。簡易試験方法では、吸着工程を撹拌により加速化し、脱離工程を脱離溶液によるろ過で簡易に模擬した。試験方法を図3に示す。
試験管に分取した吸着材1gに、非放射性セシウムを20ppm添加した10%海水40mlを加え、密栓した後、試験管をロータリーミキサー(Appropriate Technical Resourse,Inc.製のロータ・ミックス RKVSD装置、)に設置し、20rpmにて設置面と直角方向に360度回転させながら、液中セシウム濃度の減少が見られなくなるまで撹拌し、吸着工程とした。
ろ過工程では、吸着材をNALGENE製遠沈管用フィルターユニット564−0020を用いてろ過した。
次の脱離工程では、吸着工程後ろ過してフィルターユニットのろ過面に残った吸着材に、40mlの純水を加え、加えた液が吸着材に均一に接触するように、フィルターユニットを緩やかに旋回させて約15秒かけて30回ほど撹拌した後、直ちに吸引ろ過し、続いてフィルターユニットのろ過面に残った吸着材に新たな40ml純水を加え、同様の操作で撹拌後ろ過することを3回繰り返した(全4回)。次に、フィルターユニットのろ過面に残った吸着材に40mlの10%海水を加え、上記と同様の操作で撹拌、ろ過することを5回繰り返した。これら吸引ろ過に要した時間は約15秒間/回あった。分取したろ液中のセシウム濃度を測定して、吸着材からのセシウム脱離挙動を確認した。
Example 1
<Test method>
In order to confirm the desorption behavior in a shorter time than the column test, a simple test method was examined. In the simple test method, the adsorption process was accelerated by stirring, and the desorption process was simply simulated by filtration with a desorption solution. The test method is shown in FIG.
After adding 40 ml of 10% seawater to which 20 ppm of non-radioactive cesium was added to 1 g of the adsorbent separated into the test tube, and sealing tightly, the test tube was turned into a rotary mixer (Rotor Mix RKVSD device manufactured by Appropriate Technical Resources, Inc.) The mixture was stirred at 20 rpm while rotating 360 degrees in a direction perpendicular to the installation surface until no decrease in the concentration of cesium in the liquid was observed, and the adsorption step was performed.
In the filtration step, the adsorbent was filtered using a filter unit for centrifuge tube 564-0020 manufactured by NALGENE.
In the next desorption process, 40 ml of pure water is added to the adsorbent that has been filtered after the adsorption process and remains on the filter unit, and the filter unit is gently moved so that the added liquid contacts the adsorbent evenly. Then, the mixture is stirred for 30 times over about 15 seconds and immediately filtered by suction. Subsequently, 40 ml of pure water is added to the adsorbent remaining on the filtration surface of the filter unit, and the mixture is stirred and filtered in the same manner. This was repeated 3 times (4 times in total). Next, 40 ml of 10% seawater was added to the adsorbent remaining on the filtration surface of the filter unit, and stirring and filtration were repeated 5 times in the same manner as described above. The time required for these suction filtrations was about 15 seconds / time. The cesium concentration in the collected filtrate was measured to confirm the cesium desorption behavior from the adsorbent.

<結果と考察>
簡易試験は、ゼオライト系吸着材2種、フェロシアン化物系吸着材1種を用いて実施した。結果を図4に示す。
簡易試験の脱離工程においても、純水では、いずれの吸着材からもセシウムの脱離は見られず、10%海水で脱離が確認された。10%海水での脱離においては、5回のろ過では、ろ液中のセシウム濃度が検出限界以下には下がらなかったため、近似式によってろ液中セシウム濃度の低減を推測し、これを元に全脱離量の予測を行った。その結果、各吸着材のセシウム脱離率は、ゼオライト系吸着材で76〜99%、フェロシアン化物系吸着材で0%となり、脱離率の大小がカラム試験とほぼ同様の傾向として得られることを確認した(表2)。
<Results and discussion>
The simple test was carried out using two types of zeolite-based adsorbents and one type of ferrocyanide-based adsorbent. The results are shown in FIG.
In the desorption process of the simple test, desorption of cesium was not observed from any adsorbent in pure water, and desorption was confirmed in 10% seawater. In desorption with 10% seawater, the cesium concentration in the filtrate did not fall below the detection limit after 5 filtrations. Therefore, the reduction of the cesium concentration in the filtrate was estimated using an approximate expression. The total amount of desorption was predicted. As a result, the cesium desorption rate of each adsorbent is 76-99% for the zeolite-based adsorbent and 0% for the ferrocyanide-based adsorbent, and the magnitude of the desorption rate is obtained as a tendency similar to that in the column test. This was confirmed (Table 2).

Figure 2017056388
Figure 2017056388

さらに別法として、吸着工程において、20〜2000ppmセシウム溶液を用い、適時液中のセシウム減分を追添加しながら撹拌する方法で飽和するまで吸着を行う試験も実施した。
フェロシアン化物系吸着材を用いて行った飽和吸着試験では、単位吸着材重量あたりのセシウム吸着量がカラム通液条件時と同等量とすることができた(130.00mg/5gメディア)。また、この試験での脱離量は4.56mg/5gメディア、脱離率は約4%(3.51%)と試算され、カラム試験時の値とほぼ同等の結果を得ることが可能となった。
Furthermore, as another method, in the adsorption step, a 20-2000 ppm cesium solution was used, and a test was carried out until the mixture was saturated by adding the cesium depletion in the solution at an appropriate time and stirring.
In a saturated adsorption test performed using a ferrocyanide-based adsorbent, the amount of cesium adsorbed per unit adsorbent weight could be equivalent to that in the column flow condition (130.00 mg / 5 g media). Also, the desorption amount in this test is 4.56 mg / 5g media, and the desorption rate is estimated to be about 4% (3.51%), and it is possible to obtain a result almost equivalent to the value in the column test. became.

また、カラム試験と簡易試験に要した時間を比較した結果、表3に示すように、簡易試験方法によって試験期間を数か月から2週間程度に短縮することが可能となり、使用薬液量も数百Lから数L程度に減量することができた。簡易試験の吸着工程では複数の試料を同時に撹拌できるため、カラム試験より多くの吸着材/脱離条件の組み合わせを、迅速・簡易に検討することが可能となった。   Moreover, as a result of comparing the time required for the column test and the simple test, as shown in Table 3, the test period can be shortened from several months to about two weeks by the simple test method, and the amount of the chemical solution used is also several. The weight could be reduced from 100 L to several L. Since a plurality of samples can be stirred at the same time in the adsorption process of the simple test, it has become possible to quickly and easily examine more adsorbent / desorption condition combinations than in the column test.

Figure 2017056388
Figure 2017056388

(実施例2)
ビーカー(UMサンプル瓶450ml アズワン)に分取した吸着材5gに、非放射性セシウムを20ppm添加した10%海水200mlを加え、密栓した後、ビーカーをマグネチックスターラーを用いて約200rpmにて回転させながら、液中セシウム濃度の減少が見られなくなるまで撹拌し、吸着工程とした。固液分離工程では、デカンテーションにより上澄みを除去し、吸着材を回収した。次の脱離工程では、吸着工程後回収した吸着材に、まずは100mlの純水を加え、加えた液が吸着材に均一に接触するように、10秒間緩やかに撹拌したのち、デカンテーションにより上澄みを回収した。これを4回繰り返した後、続いて200mlの10%海水を加え、10秒間緩やかに撹拌した後デカンテーションにより上澄みを回収した。10%海水による脱離は5回繰り返した。分取した上澄み液中のセシウム濃度を測定して、吸着材からのセシウム脱離挙動を確認した。なお、本試験ではデカンテーションの前後で容器を含めた重量を測定し、デカンテーション時に残留した液量を考慮してセシウムの脱離量を算出した。
(Example 2)
While adding 200 ml of 10% seawater to which 20 ppm of non-radioactive cesium was added to 5 g of the adsorbent separated into a beaker (UM sample bottle 450 ml asone), sealing the bottle, and rotating the beaker at about 200 rpm using a magnetic stirrer The mixture was stirred until no decrease in the concentration of cesium in the liquid was observed, and the adsorption step was performed. In the solid-liquid separation step, the supernatant was removed by decantation, and the adsorbent was recovered. In the next desorption step, 100 ml of pure water is first added to the adsorbent collected after the adsorption step, and after gently stirring for 10 seconds so that the added liquid uniformly contacts the adsorbent, the supernatant is decanted. Was recovered. After repeating this four times, 200 ml of 10% seawater was added, and the mixture was gently stirred for 10 seconds, and then the supernatant was collected by decantation. Desorption with 10% seawater was repeated 5 times. The cesium concentration in the collected supernatant was measured to confirm the cesium desorption behavior from the adsorbent. In this test, the weight including the container was measured before and after decantation, and the amount of cesium desorbed was calculated in consideration of the amount of liquid remaining during decantation.

<結果と考察>
実施例2(マグネチックスターラー撹拌方式による簡易試験)は、ゼオライト系吸着材2種、フェロシアン化物系吸着材1種を用いて実施した。
マグネチックスターラー撹拌方式による簡易試験の脱離工程においても、純水では、いずれの吸着材からもセシウムの脱離は見られず、10%海水で脱離が確認された。10%海水での脱離においては、5回のろ過では、ろ液中のセシウム濃度が検出限界以下には下がらなかったため、近似式によってろ液中セシウム濃度の低減を推測し、これを元に全脱離量の予測を行った。結果を表4に示す。
<Results and discussion>
Example 2 (a simple test using a magnetic stirrer stirring method) was carried out using two zeolite adsorbents and one ferrocyanide adsorbent.
Also in the desorption process of the simple test by the magnetic stirrer stirring method, desorption of cesium was not observed from any adsorbent in pure water, and desorption was confirmed in 10% seawater. In desorption with 10% seawater, the cesium concentration in the filtrate did not fall below the detection limit after 5 filtrations. Therefore, the reduction of the cesium concentration in the filtrate was estimated using an approximate expression. The total amount of desorption was predicted. The results are shown in Table 4.

Figure 2017056388
Figure 2017056388

ロータリーミキサーとマグネチックスターラーの撹拌を比較した結果、表4に示すように、マグネチックスターラーによる方法では吸着対象物質の脱離率が低くなったが、脱離率の傾向は実施例1と同様であった。   As a result of comparing the stirring of the rotary mixer and the magnetic stirrer, as shown in Table 4, the desorption rate of the substance to be adsorbed was low in the method using the magnetic stirrer, but the tendency of the desorption rate was the same as in Example 1. Met.

以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変形及び変更が可能である。また、脱離工程において、吸着対象物質を含まない液の代わりに吸着対象物質を任意の濃度含む液を用いれば、任意の濃度変動時における脱離挙動を確認することも可能である。たとえば200ppm溶液を用いて吸着工程を実施し、脱離工程で用いる液として20ppm、2ppm、0.2ppm溶液を用いれば、それぞれ1/10、1/100、1/1000の濃度変動があった場合の脱離挙動を確認することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various deformation | transformation and change are possible. Further, in the desorption step, if a liquid containing an adsorption target substance at an arbitrary concentration is used instead of the liquid not containing the adsorption target substance, it is possible to confirm the desorption behavior at an arbitrary concentration fluctuation. For example, when the adsorption process is performed using a 200 ppm solution, and the 20 ppm, 2 ppm, and 0.2 ppm solutions are used as the liquids used in the desorption process, the concentration fluctuations are 1/10, 1/100, and 1/1000, respectively. The desorption behavior of can be confirmed.

Claims (2)

吸着材を用いる汚染水処理において、吸着材からの吸着対象物質の脱離率を迅速に評価する方法であって、
(a)吸着材と、吸着対象物質を含む液を撹拌し、吸着量が平衡状態になるまで吸着対象物質を吸着材に吸着させ、吸着量を求める吸着工程と、
(b)吸着対象物質を吸着させた吸着材を分離するろ過工程と、
(c)ろ過工程で分離した吸着材に、吸着対象物質を含まない液を加え撹拌した後、吸着材を固液分離する脱離工程と、
(d)脱離工程で分離した液中の吸着対象物質の量を測定し、吸着対象物質が吸着材から脱離した量を求める脱離量測定工程と、
(e)脱離量の吸着量に対する割合から、吸着対象物質の脱離率を求める工程と、
を含むことを特徴とする吸着材からの吸着対象物質の脱離率の迅速評価方法。
In a contaminated water treatment using an adsorbent, a method for quickly evaluating the desorption rate of a substance to be adsorbed from an adsorbent,
(A) an adsorbing step of stirring an adsorbent and a liquid containing the adsorption target substance, adsorbing the adsorption target substance on the adsorbent until the adsorption amount reaches an equilibrium state, and obtaining an adsorption amount;
(B) a filtration step for separating the adsorbent that adsorbs the adsorption target substance;
(C) a desorption step of separating the adsorbent into solid and liquid after stirring and adding a liquid not containing the substance to be adsorbed to the adsorbent separated in the filtration step;
(D) a desorption amount measuring step of measuring the amount of the adsorption target substance in the liquid separated in the desorption step and obtaining an amount of the adsorption target substance desorbed from the adsorbent;
(E) obtaining a desorption rate of the substance to be adsorbed from the ratio of the desorption amount to the adsorption amount;
A method for quickly evaluating the desorption rate of a substance to be adsorbed from an adsorbent, characterized by comprising:
脱離工程において、吸着対象物質を含まない液として、脱離の最大値を求めるために純水または海水を用いることを特徴とする請求項1記載の吸着材からの吸着対象物質の脱離率の迅速評価方法。   2. The desorption rate of a substance to be adsorbed from an adsorbent according to claim 1, wherein, in the desorption step, pure water or seawater is used as a liquid not containing the substance to be adsorbed in order to obtain a maximum value of desorption. Quick evaluation method.
JP2015181399A 2015-09-15 2015-09-15 Rapid evaluation method for desorption rate of adsorption target substances Active JP6566383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015181399A JP6566383B2 (en) 2015-09-15 2015-09-15 Rapid evaluation method for desorption rate of adsorption target substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181399A JP6566383B2 (en) 2015-09-15 2015-09-15 Rapid evaluation method for desorption rate of adsorption target substances

Publications (2)

Publication Number Publication Date
JP2017056388A true JP2017056388A (en) 2017-03-23
JP6566383B2 JP6566383B2 (en) 2019-08-28

Family

ID=58388805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181399A Active JP6566383B2 (en) 2015-09-15 2015-09-15 Rapid evaluation method for desorption rate of adsorption target substances

Country Status (1)

Country Link
JP (1) JP6566383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239347A (en) * 2020-03-27 2020-06-05 暨南大学 Method for detecting desorption rate of organic matters in solid waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294329A (en) * 2003-03-27 2004-10-21 Hitachi Constr Mach Co Ltd Method and apparatus for analyzing amount of elution of heavy metals contained in soil, and sample for the same
JP2012218991A (en) * 2011-04-11 2012-11-12 National Institute For Materials Science Mesoporous silica supporting gold ion adsorbing compound, and gold ion sensor and gold recovery method using the mesoporous silica
JP2013010082A (en) * 2011-06-29 2013-01-17 National Institute For Materials Science Mesoporous silica carrying compound having iodine ion adsorptivity, and iodine ion collector and method for collecting iodine using the same
JP2014004518A (en) * 2012-06-22 2014-01-16 Univ Of Miyazaki Metal ion adsorbing material
JP2015004655A (en) * 2013-05-24 2015-01-08 アタカ大機株式会社 Method for highly concentrating radioactive cesium separated from drain water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294329A (en) * 2003-03-27 2004-10-21 Hitachi Constr Mach Co Ltd Method and apparatus for analyzing amount of elution of heavy metals contained in soil, and sample for the same
JP2012218991A (en) * 2011-04-11 2012-11-12 National Institute For Materials Science Mesoporous silica supporting gold ion adsorbing compound, and gold ion sensor and gold recovery method using the mesoporous silica
JP2013010082A (en) * 2011-06-29 2013-01-17 National Institute For Materials Science Mesoporous silica carrying compound having iodine ion adsorptivity, and iodine ion collector and method for collecting iodine using the same
JP2014004518A (en) * 2012-06-22 2014-01-16 Univ Of Miyazaki Metal ion adsorbing material
JP2015004655A (en) * 2013-05-24 2015-01-08 アタカ大機株式会社 Method for highly concentrating radioactive cesium separated from drain water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239347A (en) * 2020-03-27 2020-06-05 暨南大学 Method for detecting desorption rate of organic matters in solid waste

Also Published As

Publication number Publication date
JP6566383B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
de Koning et al. Reversibility of radiocaesium sorption on illite
JP6866256B2 (en) Method for preparing samples for analysis of residual pesticides
Hamed et al. Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent
Di Toro et al. Reversible and resistant components of PCB adsorption-desorption: Isotherms
WO2016151947A1 (en) Method for preparing sample for residual pesticide analysis
Bouby et al. Interaction of bentonite colloids with Cs, Eu, Th and U in presence of humic acid: a flow field-flow fractionation study
US9799418B2 (en) Method of treating radioactive liquid waste and radioactive liquid waste treatment apparatus
KR20210142650A (en) Activated carbon regeneration system and method
WO2018043465A1 (en) Method for preparing sample for analyzing residual agricultural chemical
CN111103215A (en) Method for evaluating desorption rate of heavy metals and metalloids in polluted or overproof soil
Abdel Raouf et al. Kinetics and thermodynamics of the sorption of uranium and thorium ions from nitric acid solutions onto a TBP-impregnated sorbent
JP6566383B2 (en) Rapid evaluation method for desorption rate of adsorption target substances
Lian et al. Selective extraction and concentration of mebendazole in seawater samples using molecularly imprinted polymer as sorbent
Lerner et al. A chemically modified silica-gel as an ion exchange resin for pre-concentration of actinides and lanthanides
Chiera et al. Removal of radioactive cesium from contaminated water by whey protein amyloids–carbon hybrid filters
US10493379B2 (en) Caged bags of porous materials
Dixit et al. Performance of the HSDM to predict competitive uptake of PFAS, NOM and inorganic anions by suspended ion exchange processes
JP6606438B2 (en) Quantitative analysis method for iodate and iodide ions
Mahan et al. SpinChem™: rapid element purification from biological and geological matrices via centrifugation for MC-ICP-MS isotope analyses–a case study with Zn
JP5685377B2 (en) Micro organism capture material, micro organism capture device, micro organism capture method, and micro organism capture material manufacturing method
CN109212056B (en) Gas chromatography-mass spectrometry combined method for determining three trace monohalogenated methylbenzoic acids in water source water
JP7119415B2 (en) Method for evaluating embrittlement resistance of adsorbent, and powder trap used for the method
Theis et al. Parameter estimation for trace element sorption on a new granular iron oxide
JP2008058207A (en) Cartridge, and pretreatment apparatus for cadmium analysis having cartridge
JP2005265413A (en) Filter device with filter automatic feed function for filtering analyzing test solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190721

R150 Certificate of patent or registration of utility model

Ref document number: 6566383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150