JP2017052246A - Manufacturing method of thermoformed articles and material for thermoforming - Google Patents

Manufacturing method of thermoformed articles and material for thermoforming Download PDF

Info

Publication number
JP2017052246A
JP2017052246A JP2015179846A JP2015179846A JP2017052246A JP 2017052246 A JP2017052246 A JP 2017052246A JP 2015179846 A JP2015179846 A JP 2015179846A JP 2015179846 A JP2015179846 A JP 2015179846A JP 2017052246 A JP2017052246 A JP 2017052246A
Authority
JP
Japan
Prior art keywords
maximum load
thermoplastic resin
sheet material
base material
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015179846A
Other languages
Japanese (ja)
Other versions
JP6649016B2 (en
Inventor
石川 健
Takeshi Ishikawa
健 石川
正雄 冨岡
Masao Tomioka
正雄 冨岡
聖 喜多
Sei Kita
聖 喜多
大西 康史
Yasushi Onishi
康史 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Quadrant Plastic Composites Japan Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Quadrant Plastic Composites Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58320393&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017052246(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Rayon Co Ltd, Quadrant Plastic Composites Japan Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015179846A priority Critical patent/JP6649016B2/en
Publication of JP2017052246A publication Critical patent/JP2017052246A/en
Application granted granted Critical
Publication of JP6649016B2 publication Critical patent/JP6649016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of thermoformed articles, which can improve wall thickness ununiformity generated by drawing during thermoforming.SOLUTION: A manufacturing method of thermoformed articles includes a heating and softening step for softening a substrate by heating the substrate containing a thermoplastic resin and a sheet material to a temperature higher than a melting point or a glass transition temperature of the thermoplastic resin, and a molding step for size enlarging with a softened substrate and the sheet material laminated. The sheet material has, when subjected to a tensile test at a temperature during the size enlargement, a maximum load A in the direction most difficult to elongate of from 1 to 50 N, an elongation E at the maximum load A of from 50 to 200%, and a ratio Z (Z=A/B) of the maximum load A in the direction most difficult to elongate to the maximum load B in the direction orthogonal thereto of from 1.0 to 2.0.SELECTED DRAWING: None

Description

本発明は熱成形法により成形品を製造する方法および熱成形用材料に関する。   The present invention relates to a method for producing a molded article by a thermoforming method and a thermoforming material.

熱可塑性樹脂の成形品を製造する方法の一つとして、予めシート状に成形した熱可塑性樹脂(繊維状強化材を含む場合もある)を、加熱軟化させた状態で所望の形状に賦形する熱成形法が知られている。
特許文献1には、熱可塑性樹脂シートを加熱軟化させ、真空成形により引き延ばして箱型に成形する方法が記載されている。
特許文献2には、熱可塑性樹脂と繊維状強化材を含む複合材料シートを、圧縮成形により賦形する方法が記載されている。
As one method for producing a molded article of a thermoplastic resin, a thermoplastic resin (which may include a fibrous reinforcing material) previously formed into a sheet shape is shaped into a desired shape while being heat-softened. Thermoforming methods are known.
Patent Document 1 describes a method in which a thermoplastic resin sheet is softened by heating, stretched by vacuum forming, and formed into a box shape.
Patent Document 2 describes a method of shaping a composite material sheet containing a thermoplastic resin and a fibrous reinforcing material by compression molding.

特開平8−132518号公報JP-A-8-132518 特開平5−200850号公報Japanese Patent Laid-Open No. 5-200850

かかる熱成形法にあっては、加熱軟化した熱可塑性樹脂シートを賦形する工程においてシートが引き延ばされると、肉厚の不均一が生じるという問題がある。
例えば特許文献1の段落[0005]には箱型の底部のコーナー部分の肉厚が最も引き延ばされて薄くなり、耐水性が不足することが記載されている。かかる問題に対して、特許文献1では、シートを撓ませた状態で成形型内にずり込ませることによって賦形時の延び率を減少させる方法が提案されているが、この方法では、しわが生じやすいという新たな問題が生じる。
本発明は前記事情に鑑みてなされたもので、熱成形時の延伸によって生じる肉厚不均一を改善できる、熱成形品の製造方法および熱成形用材料を提供することを目的とする。
In such a thermoforming method, when the sheet is stretched in the step of shaping the heat-softened thermoplastic resin sheet, there is a problem that uneven thickness occurs.
For example, paragraph [0005] of Patent Document 1 describes that the thickness of the corner portion of the bottom of the box shape is stretched most thinly, and the water resistance is insufficient. With respect to such a problem, Patent Document 1 proposes a method of reducing the elongation rate at the time of shaping by dragging the sheet into a mold while the sheet is bent. A new problem arises that is likely to occur.
This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method and thermoforming material of a thermoforming product which can improve the thickness nonuniformity produced by extending | stretching at the time of thermoforming.

本発明は以下の[1]〜[4]である。
[1]熱可塑性樹脂を含む基材と下記シート材を、前記熱可塑性樹脂の融点またはガラス転移温度より高い温度に加熱し、前記基材を軟化させる加熱軟化工程と、軟化された前記基材と、前記シート材を積層した状態で賦形する成形工程を有する、熱成形品の製造方法。
シート材:前記賦形時の温度で下記の引張試験方法をおこなったとき、最も伸び難い方向における最大荷重Aが1〜50Nであり、該最大荷重Aにおける伸度Eが50〜200%であり、前記最も伸び難い方向における最大荷重Aの、それに直交する方向における最大荷重Bに対する比Z(Z=A/B)が1.0〜2.0であるシート材。
引張試験方法:シート材を幅25mm×長さ150mmの寸法に裁断した試験片の長さ方向の両端を、定速伸長型引張試験機に、つかみ間隔50mmでたるみが無いようにセットする。つかみ間隔50mmの位置を変位0mmの始点とし、引張速度100mm/分で試験片が切断するまで荷重を加えつつ、荷重(単位:N)および変位(単位:mm)を経時的に測定する。荷重の最大値を最大荷重とする。最大荷重が得られるときの変位の値e(単位:mm)から下式(1)により伸度E(単位:%)を求める。
E=e/50×100…(1)
The present invention includes the following [1] to [4].
[1] A heating and softening process in which a base material including a thermoplastic resin and the following sheet material are heated to a temperature higher than the melting point or glass transition temperature of the thermoplastic resin to soften the base material, and the softened base material And the manufacturing method of a thermoformed product which has a shaping | molding process shaped in the state which laminated | stacked the said sheet | seat material.
Sheet material: When the following tensile test method is performed at the temperature at the time of shaping, the maximum load A in the direction in which it is most difficult to stretch is 1 to 50 N, and the elongation E at the maximum load A is 50 to 200%. A sheet material in which the ratio Z (Z = A / B) of the maximum load A in the least stretchable direction to the maximum load B in a direction orthogonal thereto is 1.0 to 2.0.
Tensile test method: The lengthwise ends of a test piece obtained by cutting a sheet material into a dimension of 25 mm wide × 150 mm long are set in a constant speed extension type tensile tester so that there is no slack at a holding interval of 50 mm. A load (unit: N) and a displacement (unit: mm) are measured over time while a load is applied until the test piece is cut at a tensile speed of 100 mm / min with a position at a grip interval of 50 mm as a starting point of displacement 0 mm. The maximum load is the maximum load. The elongation E (unit:%) is obtained from the displacement value e (unit: mm) when the maximum load is obtained by the following equation (1).
E = e / 50 × 100 (1)

[2] 前記基材が、熱可塑性樹脂と繊維状強化材を含む複合材料からなる、[1]記載の熱成形品の製造方法。
[3] 前記シート材が、不織布である、[1]または[2]に記載の熱成形品の製造方法。
[2] The method for producing a thermoformed article according to [1], wherein the base material is made of a composite material including a thermoplastic resin and a fibrous reinforcing material.
[3] The method for producing a thermoformed product according to [1] or [2], wherein the sheet material is a nonwoven fabric.

[4] 熱可塑性樹脂を含み、前記熱可塑性樹脂の融点またはガラス転移温度より高い温度に加熱して賦形する方法に用いられる熱成形用材料であって、熱可塑性樹脂を含む基材と、該基材に積層されるシート材を備え、前記シート材について、前記賦形時の温度で上述の引張試験方法を行ったとき、最も伸び難い方向における最大荷重Aが1〜50Nであり、該最大荷重Aにおける伸度Eが50〜200%であり、前記最も伸び難い方向における最大荷重Aの、それに直交する方向における最大荷重Bに対する比Z(Z=A/B)が1.0〜2.0である、熱成形用材料。   [4] A thermoforming material that is used in a method of shaping by heating to a temperature higher than the melting point or glass transition temperature of the thermoplastic resin, including a thermoplastic resin, the base material including the thermoplastic resin; When the sheet material laminated with the base material is subjected to the above-described tensile test method at the temperature at the time of shaping, the maximum load A in the direction in which it is difficult to stretch is 1 to 50 N, The elongation E at the maximum load A is 50 to 200%, and the ratio Z (Z = A / B) of the maximum load A in the direction hardly stretched to the maximum load B in the direction orthogonal thereto is 1.0 to 2 0.0, a thermoforming material.

本発明によれば、熱成形時の延伸によって生じる肉厚不均一を改善できる。   According to the present invention, uneven thickness caused by stretching during thermoforming can be improved.

実施例で用いた基材の例を示す平面図である。It is a top view which shows the example of the base material used in the Example. 例2で用いたシート材について、製造方向(S−D方向)を引張方向とする引張試験の測定結果を示すグラフである。It is a graph which shows the measurement result of the tension test which makes a manufacturing direction (SD direction) a tension direction about the sheet material used in Example 2. FIG.

<熱成形用材料>
本発明の熱成形用材料は、熱可塑性樹脂を含む熱成形用材料を、前記熱可塑性樹脂の融点またはガラス転移温度より高い温度に加熱して賦形する熱成形法に用いられるものである。賦形するとは、加熱により軟化した熱成形用材料を所望の形状に変形させることを意味する。
本明細書において「賦形時の温度(以下、賦形温度ということもある。)」は賦形される際の熱可塑性樹脂の温度を意味し、熱可塑性樹脂の融点があれば該融点より高い温度であり、熱可塑性樹脂が融点を有さないときはガラス転移温度より高い温度になる。
賦形温度は、熱成形用材料中の熱可塑性樹脂の融点よりも10〜100℃高い温度範囲、又は前記熱可塑性樹脂が融点を有さないときはガラス転移温度よりも10〜100℃高い温度範囲内で設定されることが好ましい。該温度範囲であれば良好な賦形性が得られやすい。賦形温度が、前記熱可塑性樹脂の融点またはガラス転移温度より15〜80℃高い温度であることがより好ましい。
本発明の熱成形用材料は基材とシート材とを備える。熱成形用材料において、基材とシート材は一体化されていてもよく、別体である基材とシート材とを有するキットであってもよい。
<Thermoforming material>
The thermoforming material of the present invention is used in a thermoforming method in which a thermoforming material containing a thermoplastic resin is heated to a temperature higher than the melting point or glass transition temperature of the thermoplastic resin. The shaping means that the thermoforming material softened by heating is deformed into a desired shape.
In this specification, “temperature during shaping (hereinafter sometimes referred to as shaping temperature)” means the temperature of the thermoplastic resin at the time of shaping, and if there is a melting point of the thermoplastic resin, When the thermoplastic resin does not have a melting point, the temperature is higher than the glass transition temperature.
The forming temperature is a temperature range 10 to 100 ° C. higher than the melting point of the thermoplastic resin in the thermoforming material, or 10 to 100 ° C. higher than the glass transition temperature when the thermoplastic resin does not have a melting point. It is preferable to set within the range. If it is within this temperature range, good formability is easily obtained. The shaping temperature is more preferably 15 to 80 ° C. higher than the melting point or glass transition temperature of the thermoplastic resin.
The thermoforming material of the present invention includes a base material and a sheet material. In the thermoforming material, the base material and the sheet material may be integrated, or a kit having a base material and a sheet material which are separate bodies may be used.

<基材>
基材は熱可塑性樹脂を含む。基材は、熱可塑性樹脂と繊維状強化材を含む複合材料であってもよい。その他に公知の添加成分(例えば充填剤、酸化防止剤、熱安定剤、離型剤等)を含んでもよい。
基材の形状は、シート状(板状も含む)が好ましい。シート状基材の厚みは1.0mm以上3.0mm以下であることが好ましい。基材が厚いほど熱成形品の機械物性に優れるが、成形品の重量が増し、厚すぎると賦形時にシワが生じ易くなる。1.5mm以上2.5mm以下がより好ましい。
<Base material>
The substrate includes a thermoplastic resin. The base material may be a composite material including a thermoplastic resin and a fibrous reinforcing material. In addition, a known additive component (for example, a filler, an antioxidant, a heat stabilizer, a release agent, etc.) may be included.
The shape of the substrate is preferably a sheet shape (including a plate shape). The thickness of the sheet-like substrate is preferably 1.0 mm or more and 3.0 mm or less. The thicker the substrate, the better the mechanical properties of the thermoformed product, but the weight of the molded product increases, and if it is too thick, wrinkles are likely to occur during shaping. More preferably, it is 1.5 mm or more and 2.5 mm or less.

[熱可塑性樹脂]
本発明で用いる熱可塑性樹脂としては、特に限定されず、例えば、ポリカーボネート、ポリエステル、ポリアミド(PA)、液晶ポリマー、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリアリレート、ポリフェニレンエーテル、ポリフェニレンスルフィド(PPS)、ポリアセタール、ポリスルフォン、ポリイミド、ポリオレフィン、ポリスチレン、変性ポリスチレン、AS樹脂(アクリロニトリルとスチレンとのコポリマー)、ABS樹脂(アクリロニトリル、ブタジエン及びスチレンのコポリマー)、変性ABS樹脂、MBS樹脂(メチルメタクリレート、ブタジエン及びスチレンのコポリマー)、変性MBS樹脂、ポリメチルメタクリレート(PMMA)、変性ポリメチルメタクリレート等及びこれらのポリマーアロイ等が挙げられる。これらは1種を単独で用いてもよく、2種類以上を併用してもよい。上記の中でも、機械物性と軽量性の観点からポリオレフィンが好ましい。ポリオレフィンの中でも、ポリプロピレン系がより好ましく、酸変性ポリプロピレンがさらに好ましい。
[Thermoplastic resin]
The thermoplastic resin used in the present invention is not particularly limited. For example, polycarbonate, polyester, polyamide (PA), liquid crystal polymer, polyether sulfone, polyether ether ketone, polyarylate, polyphenylene ether, polyphenylene sulfide (PPS). , Polyacetal, polysulfone, polyimide, polyolefin, polystyrene, modified polystyrene, AS resin (copolymer of acrylonitrile and styrene), ABS resin (copolymer of acrylonitrile, butadiene and styrene), modified ABS resin, MBS resin (methyl methacrylate, butadiene and Copolymer of styrene), modified MBS resin, polymethyl methacrylate (PMMA), modified polymethyl methacrylate, and the like, and polymer alloys thereof. And the like. These may be used alone or in combination of two or more. Among the above, polyolefin is preferable from the viewpoint of mechanical properties and lightness. Among polyolefins, polypropylene is more preferable, and acid-modified polypropylene is more preferable.

[繊維状強化材]
繊維状強化材は公知のものを使用できる。低含有率で高強度の物性が得られるという点で炭素繊維、ガラス繊維などの無機繊維、アラミド繊維、ナイロン繊維などの有機繊維が好ましく、特に軽量でかつ高剛性であるという点で炭素繊維が好ましい。
炭素繊維は特に限定されず、PAN系炭素繊維、PICH系炭素繊維などが挙げられる。好ましい炭素繊維としては、JIS R7601(1986)に準じて測定したストランド引張強度が1.0GPa以上9.0GPa以下、ストランド引張弾性率が150GPa以上1000GPa以下のものである。より好ましい炭素繊維としては、JIS R7601(1986)に準じて測定したストランド引張強度が1.5GPa以上9.0GPa以下、ストランド引張弾性率が200GPa以上1000GPa以下のものである。
[Fibrous reinforcement]
A well-known thing can be used for a fibrous reinforcement. Organic fibers such as carbon fibers and glass fibers, and organic fibers such as aramid fibers and nylon fibers are preferred in that high strength physical properties can be obtained at a low content, and carbon fibers are particularly lightweight and highly rigid. preferable.
The carbon fiber is not particularly limited, and examples thereof include PAN-based carbon fiber and PICH-based carbon fiber. Preferred carbon fibers are those having a strand tensile strength of 1.0 GPa or more and 9.0 GPa or less and a strand tensile modulus of 150 GPa or more and 1000 GPa or less measured according to JIS R7601 (1986). More preferable carbon fibers are those having a strand tensile strength of 1.5 GPa or more and 9.0 GPa or less and a strand tensile modulus of 200 GPa or more and 1000 GPa or less measured according to JIS R7601 (1986).

熱可塑性樹脂と繊維状強化材を含む複合材料は、繊維状強化材に熱可塑性樹脂を含浸させたプリプレグを含むことが好ましい。
繊維状強化材の形態としては、一方向に引き揃えられたものであってもよく、織物、ノンクリンプファブリック、もしくはチョップドされたものであっても良い。中でも、積層により強度および剛性の設計が可能である点から、一方向に引き揃えられたものが好ましい。
繊維状強化材の繊維長は6mm以上50mm以下が好ましい。繊維長が長いほど機械物性に優れる傾向にある。一方、繊維長が短いほど賦形性に優れる傾向にある。該繊維長が6mm以上であると良好な機械物性が得られやすい。また該繊維長が50mm以下であると良好な賦形性が得られやすい。機械物性と賦形性のバランスから繊維長は8mm以上25mm以下の範囲が特に好ましい。
The composite material including the thermoplastic resin and the fibrous reinforcing material preferably includes a prepreg obtained by impregnating the fibrous reinforcing material with the thermoplastic resin.
The form of the fibrous reinforcing material may be aligned in one direction, woven fabric, non-crimp fabric, or chopped. Among these, those that are aligned in one direction are preferable because the strength and rigidity can be designed by lamination.
The fiber length of the fibrous reinforcing material is preferably 6 mm or more and 50 mm or less. The longer the fiber length, the better the mechanical properties. On the other hand, the shorter the fiber length, the better the formability. When the fiber length is 6 mm or more, good mechanical properties are easily obtained. Further, when the fiber length is 50 mm or less, good formability is easily obtained. The fiber length is particularly preferably in the range of 8 mm or more and 25 mm or less from the balance of mechanical properties and formability.

複合材料は、前記プリプレグを2枚以上積層した積層材料であってもよい。所望の機械特性を設計しやすいという観点から前記プリプレグを4枚以上積層した積層材料が好ましく、8枚以上積層した積層基材がより好ましい。なお、製造コストや賦形性の観点からは、プリプレグの積層枚数の上限は192枚以下が好ましく、96枚以下がより好ましく、40枚以下がより好ましい。
該積層材料は、前記プリプレグ以外の成分を含有してもよい。例えばプリプレグ中の熱可塑性樹脂とは異なる熱可塑性樹脂の層をさらに含有してもよい。
複合材料に対する、繊維状強化材の体積含有率(Vf)は、5体積%以上50体積%以下であることが好ましい。該体積含有率(Vf)が高いほど機械物性に優れるが、高すぎると好ましい賦形性が得られない場合がある。機械物性と賦形性のバランスの点で、繊維状強化材の体積含有率(Vf)は10体積%以上40体積%以下の範囲が特に好ましい。
本明細書において、繊維状強化材の体積含有率(Vf)は、JIS K7075に準拠する測定方法で得られる値である。
The composite material may be a laminated material in which two or more of the prepregs are laminated. From the viewpoint that it is easy to design desired mechanical properties, a laminated material in which four or more prepregs are laminated is preferable, and a laminated base material in which eight or more prepregs are laminated is more preferable. In addition, from the viewpoint of manufacturing cost and formability, the upper limit of the number of laminated prepregs is preferably 192 or less, more preferably 96 or less, and more preferably 40 or less.
The laminated material may contain components other than the prepreg. For example, you may further contain the layer of the thermoplastic resin different from the thermoplastic resin in a prepreg.
The volume content (Vf) of the fibrous reinforcement relative to the composite material is preferably 5% by volume or more and 50% by volume or less. The higher the volume content (Vf), the better the mechanical properties. In view of the balance between mechanical properties and formability, the volume content (Vf) of the fibrous reinforcing material is particularly preferably in the range of 10% by volume to 40% by volume.
In the present specification, the volume content (Vf) of the fibrous reinforcing material is a value obtained by a measurement method based on JIS K7075.

プリプレグ以外に熱可塑性樹脂の層を設けた複合材料として、例えば、内層に0.05mm以上、好ましくは0.2mm以上にわたり、炭素繊維の体積含有率が10体積%以下、好ましくは5体積%以下である層を有することが好ましい。かかる炭素繊維の体積含有率が低い層を存在させると機械物性と賦形性の良好なバランスが得られやすい。
該炭素繊維の体積含有率が低い層の厚みは、厚すぎると基材である複合材料の厚みが増し、賦形時のシワ発生の原因になるおそれがあるため、2mm以下であることが好ましく、1.5mm以下がより好ましい。
As a composite material provided with a thermoplastic resin layer in addition to the prepreg, for example, the inner layer is 0.05 mm or more, preferably 0.2 mm or more, and the volume content of carbon fiber is 10% by volume or less, preferably 5% by volume or less. It is preferable to have a layer. When a layer having a low volume content of such carbon fibers is present, a good balance between mechanical properties and formability is easily obtained.
The thickness of the layer having a low volume content of the carbon fiber is preferably 2 mm or less because if the thickness is too thick, the thickness of the composite material as the base material may increase and wrinkles may occur during shaping. 1.5 mm or less is more preferable.

<プリプレグの製造方法>
熱可塑性樹脂と繊維状強化材からプリプレグを製造する方法は、公知の手法を用いることができる。例えば、溶融樹脂を押出機にて含浸させる方法、粉末樹脂を繊維層に分散し溶融させる方法、樹脂をフィルム化してラミネートする方法、樹脂を溶剤に溶かし溶液の状態で含浸させた後に溶剤を揮発させる方法、樹脂を繊維化して混合糸にする方法、熱可塑性樹脂のモノマーの状態で含浸させた後に重合させてポリマーにする方法などがある。樹脂をフィルム化してラミネートする方法はフィルム加工が必要であるが、品質の良いプリプレグが得られやすい点で好ましい。
また、プリプレグを製造する際、長尺の繊維状強化材を一方向に配向して熱可塑性樹脂を含浸させた後、繊維状強化材を切断するように、レーザーマーカー、カッティングプロッター又は抜型等を用いて切り込みを入れることにより、繊維長を調整することができる。
<Method for producing prepreg>
As a method for producing a prepreg from a thermoplastic resin and a fibrous reinforcing material, a known method can be used. For example, a method of impregnating a molten resin with an extruder, a method of dispersing and melting a powder resin in a fiber layer, a method of laminating a resin into a film, and a method of volatilizing a solvent after dissolving the resin in a solvent and impregnating it in a solution state There are a method of making a fiber, a method of making a resin into a mixed yarn, a method of impregnating it in the state of a thermoplastic resin monomer, and then polymerizing it into a polymer. The method of laminating the resin into a film requires film processing, but is preferable in that a high-quality prepreg is easily obtained.
In addition, when manufacturing a prepreg, a laser marker, a cutting plotter, or a cutting die is used so as to cut the fibrous reinforcement after the long fibrous reinforcement is oriented in one direction and impregnated with a thermoplastic resin. The fiber length can be adjusted by using the cut.

<シート材>
シート材は、加熱により軟化された基材を賦形する成形工程において、基材に積層して使用されるものである。成形工程においてシート材は基材に追従して賦形されるとともに、基材の表面と一体化される。
シート材は、シート状であり、基材の賦形時の温度(賦形温度)で下記の引張試験方法をおこなったとき、最も伸び難い方向における最大荷重Aが1〜50Nであり、該最大荷重Aにおける伸度Eが50〜200%であり、前記最も伸び難い方向における最大荷重Aの、それに直交する方向における最大荷重Bに対する比Z(Z=A/B)が1.0〜2.0であるものであればよい。
引張試験方法:シート材を幅25mm×長さ150mmの寸法に裁断した試験片の長さ方向の両端を、定速伸長型引張試験機に、つかみ間隔50mmでたるみが無いようにセットする。つかみ間隔50mmの位置を変位0mmの始点とし、引張速度100mm/分で試験片が切断するまで荷重を加えつつ、荷重(単位:N)および変位(単位:mm)を経時的に測定する。荷重の最大値を最大荷重とする。最大荷重が得られるときの変位の値e(単位:mm)から下式(1)により伸度E(単位:%)を求める。
E=e/50×100…(1)
<Sheet material>
The sheet material is used by being laminated on a base material in a molding step of shaping the base material softened by heating. In the molding process, the sheet material is shaped following the base material and integrated with the surface of the base material.
The sheet material is in the form of a sheet, and when the following tensile test method is performed at the temperature at which the base material is shaped (shaped temperature), the maximum load A in the direction in which it is hard to stretch is 1 to 50 N, and the maximum The elongation E at the load A is 50 to 200%, and the ratio Z (Z = A / B) of the maximum load A in the direction hardly stretched to the maximum load B in the direction orthogonal thereto is 1.0 to 2. Anything that is zero is acceptable.
Tensile test method: The lengthwise ends of a test piece obtained by cutting a sheet material into a dimension of 25 mm wide × 150 mm long are set in a constant speed extension type tensile tester so that there is no slack at a holding interval of 50 mm. A load (unit: N) and a displacement (unit: mm) are measured over time while a load is applied until the test piece is cut at a tensile speed of 100 mm / min with a position at a grip interval of 50 mm as a starting point of displacement 0 mm. The maximum load is the maximum load. The elongation E (unit:%) is obtained from the displacement value e (unit: mm) when the maximum load is obtained by the following equation (1).
E = e / 50 × 100 (1)

「最も伸び難い方向」とは、シート材のあらゆる方向を長さ方向とする試料片を作製し、それぞれの最大荷重を測定したとき、最大荷重が最も大きい試験片の長さ方向が最も伸び難い方向である。
「最も伸び難い方向における最大荷重Aの、それに直交する方向における最大荷重Bに対する比Z(Z=A/B)が1.0〜2.0である」とは、前記最も伸び難い方向を長さ方向とする試料片の最大荷重の値をAとし、それに直交する方向を長さ方向とする試料片の最大荷重の値をBとするとき、Bに対するAの比Z(Z=A/B)が1.0〜2.0の範囲内であることを意味する。
賦形温度に加熱されたシート材の、最も伸び難い方向における最大荷重Aおよび最大荷重Aにおける伸度Eが上記の範囲内であると、賦形時に軟化した基材が過度に引き延ばされるのを抑えることができる。また賦形温度に加熱されたシート材の上記最大荷重の比Zが上記の範囲内であると、該シート材の伸び難さ(または伸び易さ)の異方性が小さく、賦形時に軟化した基材が全方向に均等に延伸されやすくなる。これにより、基材の良好な賦形性を保ちつつ、熱成形時の延伸によって生じる肉厚不均一を改善することができる。
最大荷重Aは、熱成形時の延伸ムラを無くすためには適度な張力が必要であることからから、1〜50Nが好ましく、5〜40Nがより好ましい。
伸度Eは、熱成形時の厚みムラや穴あきなどの欠点を無くすためには、50〜200%が好ましく、60〜180%がより好ましい。
最大荷重の比Zは、熱成形時の延伸方向による延伸のムラを無くすためには、1.0〜2.0が好ましく、1.0〜1.8がより好ましく、1.0〜1.5がさらに好ましい。
“The least stretchable direction” means that specimens with the length direction in all directions of the sheet material are prepared, and when the maximum load is measured, the length direction of the test piece with the largest maximum load is the least stretchable. Direction.
“The ratio Z (Z = A / B) of the maximum load A in the direction that hardly stretches to the maximum load B in the direction perpendicular to the direction is 1.0 to 2.0” means that the direction that hardly stretches is long. When the value of the maximum load of the sample piece in the longitudinal direction is A and the value of the maximum load of the sample piece in which the direction orthogonal to the length direction is B is B, the ratio Z of A to B (Z = A / B ) Is in the range of 1.0 to 2.0.
When the maximum load A in the direction in which the sheet material heated to the forming temperature is hardest and the elongation E at the maximum load A are within the above ranges, the softened base material is excessively stretched during forming. Can be suppressed. Further, when the ratio Z of the maximum load of the sheet material heated to the forming temperature is within the above range, the anisotropy of the difficulty (or easiness of elongation) of the sheet material is small, and the sheet material is softened at the time of forming. It becomes easy to extend | stretch the base material which carried out uniformly in all directions. Thereby, the thickness nonuniformity which arises by extending | stretching at the time of thermoforming can be improved, maintaining the favorable shaping property of a base material.
The maximum load A is preferably 1 to 50 N and more preferably 5 to 40 N because moderate tension is necessary to eliminate stretching unevenness during thermoforming.
The elongation E is preferably 50 to 200% and more preferably 60 to 180% in order to eliminate defects such as thickness unevenness and perforation during thermoforming.
The maximum load ratio Z is preferably 1.0 to 2.0, more preferably 1.0 to 1.8, and more preferably 1.0 to 1. in order to eliminate unevenness in stretching in the stretching direction during thermoforming. 5 is more preferable.

シート材の形態は、シート材の物性を調整しやすく、しわを生じ難い点で不織布が好ましい。例えば不織布を構成する繊維の種類、繊維の長さ、不織布の目付、不織布の厚み、製造方法等によって、最大荷重A、伸度E、および最大荷重の比Zの値を調整することができる。
不織布を構成する繊維の材質としては、熱可塑性樹脂、ガラス繊維、炭素繊維等が挙げられる。熱成形時の均一延伸性の点で熱可塑性樹脂が好ましい。シート材に用いる熱可塑性樹脂は、基材中の熱可塑性樹脂よりも熱変形し難いものが好ましい。具体的には基材中の熱可塑性樹脂よりも融点またはガラス転移温度が10℃以上高いものが好ましい。
なお不織布の場合、通常、製造方向(機械方向、たて方向ともいう)とこれに直交する方向(横方向ともいう)の、一方が最も伸び難い方向であり、他方が最も伸びやすい方向である。したがって製造方向における最大荷重と、製造方向に直交する方向(横方向)における最大荷重との比が1.0〜2.0の範囲内であればよい。
The form of the sheet material is preferably a non-woven fabric because it is easy to adjust the physical properties of the sheet material and hardly causes wrinkles. For example, the value of the maximum load A, the elongation E, and the maximum load ratio Z can be adjusted according to the type of fiber constituting the nonwoven fabric, the length of the fiber, the basis weight of the nonwoven fabric, the thickness of the nonwoven fabric, the production method, and the like.
Examples of the material of the fibers constituting the nonwoven fabric include thermoplastic resins, glass fibers, and carbon fibers. A thermoplastic resin is preferred from the viewpoint of uniform stretchability during thermoforming. The thermoplastic resin used for the sheet material is preferably one that is less susceptible to thermal deformation than the thermoplastic resin in the substrate. Specifically, those having a melting point or glass transition temperature higher by 10 ° C. or more than the thermoplastic resin in the substrate are preferred.
In the case of a non-woven fabric, one of the manufacturing direction (also referred to as machine direction and vertical direction) and the direction orthogonal to this (also referred to as horizontal direction) is usually the least stretched direction and the other is the most easily stretched direction. . Therefore, the ratio between the maximum load in the manufacturing direction and the maximum load in the direction orthogonal to the manufacturing direction (lateral direction) may be in the range of 1.0 to 2.0.

<熱成形品の製造方法>
[加熱軟化工程]
まず基材とシート材を、基材中の熱可塑性樹脂の融点またはガラス転移温度より高い温度に加熱して基材を軟化させる。このとき基材中の熱可塑性樹脂の温度が賦形温度になるように加熱する。
加熱方法としては、特に限定されないが、IRヒーター、IHヒーター、熱風循環式オーブン、スチーム式オーブン等が挙げられる。
加熱軟化工程において、基材とシート材とは積層されていてもよく、積層されていなくてもよい。次工程では基材とシート材とを積層することが必要であるため、本工程において予め両者を積層しておくことが、工程が煩雑にならない点で好ましい。
加熱軟化工程において、基材を変形させずに加圧してもよい。基材がプリプレグを積層した積層材料である場合、加熱加圧することで層間の接着性を向上させることができる。
または、基材およびシート材を一端加熱して基材中の熱可塑性樹脂を軟化させた後に冷却して該熱可塑性樹脂を固化させた後、再加熱して該熱可塑性樹脂を軟化させてもよい。
<Method for manufacturing thermoformed product>
[Heat softening process]
First, the base material and the sheet material are heated to a temperature higher than the melting point or glass transition temperature of the thermoplastic resin in the base material to soften the base material. At this time, it heats so that the temperature of the thermoplastic resin in a base material may become shaping temperature.
Although it does not specifically limit as a heating method, IR heater, IH heater, a hot-air circulation type oven, a steam type oven etc. are mentioned.
In the heat softening step, the base material and the sheet material may be laminated or may not be laminated. Since it is necessary to laminate the base material and the sheet material in the next step, it is preferable to laminate both in advance in this step because the steps are not complicated.
In the heat softening step, the substrate may be pressurized without being deformed. When the base material is a laminated material in which prepregs are laminated, adhesion between layers can be improved by heating and pressurizing.
Alternatively, the base material and the sheet material may be heated once to soften the thermoplastic resin in the base material and then cooled to solidify the thermoplastic resin, and then reheated to soften the thermoplastic resin. Good.

[成形工程]
次に、軟化された基材とシート材を積層した状態で賦形する。すなわち、基材とシート材とが積層された状態の熱成形用材料を賦形する。シート材は基材の片面上に積層してもよく、両面上に積層してもよい。基材の延伸による肉厚不均一を改善する効果が高い点では、両面上に積層することが好ましい。
賦形は熱成形法において公知の手法を用いて行うことができる。例えば、屈曲部および/または湾曲部を有する型(例えば金型、以下同様。)の外側に、基材とシート材が積層された熱成形用材料を押し付けて賦形する方法(押し付け法)、基材とシート材が積層された熱成形用材料を空気圧で型に密着させる方法(圧空法)、また基材とシート材が積層された熱成形用材料と型との隙間を減圧して賦形する方法(真空法)等を用いることができる。この場合、型の温度は20℃〜100℃が好ましい。型の温度が低すぎると、加熱軟化した基材の冷却が急速となり、充分な賦形時間が確保できない場合がある。一方、型の温度が高すぎると、脱型が困難となるおそれがある。
[Molding process]
Next, it shape | molds in the state which laminated | stacked the softened base material and sheet material. That is, the thermoforming material in a state where the base material and the sheet material are laminated is shaped. The sheet material may be laminated on one side of the substrate, or may be laminated on both sides. It is preferable to laminate on both sides in terms of a high effect of improving the uneven thickness due to stretching of the substrate.
The shaping can be performed using a known method in the thermoforming method. For example, a method (pressing method) in which a thermoforming material in which a base material and a sheet material are laminated is pressed on the outside of a mold having a bent part and / or a curved part (for example, a mold, the same applies hereinafter), A method in which the thermoforming material in which the base material and the sheet material are laminated is in close contact with the mold by air pressure (pressure method), and the gap between the thermoforming material in which the base material and the sheet material are laminated and the die is reduced. A shaping method (vacuum method) or the like can be used. In this case, the mold temperature is preferably 20 ° C to 100 ° C. If the mold temperature is too low, the heat-softened base material is rapidly cooled, and a sufficient shaping time may not be ensured. On the other hand, when the mold temperature is too high, it may be difficult to remove the mold.

賦形した熱成形品は、十分に冷却して固化させた後に型から取り外す(脱型)。具体的には、熱成形品の表面温度が、基材中の熱可塑性樹脂の融点よりも30℃以上低い温度、又は前記熱可塑性樹脂が融点を有さないときはガラス転移温度よりも15℃以上低い温度となった後に脱型することが好ましい。
脱型方法としては特に限定されず、必要に応じて、熱成形品の端部や不要部をトリミングした後に脱型してもよい。
The shaped thermoformed product is sufficiently cooled and solidified, and then removed from the mold (demolding). Specifically, the surface temperature of the thermoformed product is 30 ° C. lower than the melting point of the thermoplastic resin in the base material, or 15 ° C. than the glass transition temperature when the thermoplastic resin does not have a melting point. It is preferable to remove the mold after the temperature is lowered.
The demolding method is not particularly limited, and if necessary, the mold may be demolded after trimming the end portions and unnecessary portions of the thermoformed product.

こうして得られる熱成形品は、基材とシート材の積層物が所望の形状に賦形されており、基材の表面とシート材とは一体化している。さらにシート材の、基材側とは反対側の表面上に、意匠性もしくは機能性の観点から、必要に応じて、樹脂層、金属被覆層、ゴム層、またはこれらの複合層を一体的に積層してもよい。
後述の実施例に示されるように、加熱軟化された基材に特定の物性を有するシート材を積層した状態で賦形することにより、熱成形時の延伸によって生じる肉厚不均一を抑制することができる。
したがって本発明は、基材が多様に引き延ばされて、局部的に薄くなったり、窪みができる等の肉厚不均一を生じやすい形状に賦形する場合に特に好適である。例えば、屈曲部および/又は湾曲部を有する形状の熱成形品の製造に好適である。
In the thermoformed product thus obtained, the laminate of the base material and the sheet material is shaped into a desired shape, and the surface of the base material and the sheet material are integrated. Furthermore, from the viewpoint of design or functionality, a resin layer, a metal coating layer, a rubber layer, or a composite layer thereof is integrally formed on the surface of the sheet material on the side opposite to the substrate side, as necessary from the viewpoint of design or functionality. You may laminate.
As shown in the examples described later, by forming a sheet material having specific physical properties laminated on a heat-softened base material, it is possible to suppress uneven thickness caused by stretching during thermoforming. Can do.
Therefore, the present invention is particularly suitable when the substrate is variously stretched and shaped into a shape that is likely to cause uneven thickness such as locally thinning or forming a dent. For example, it is suitable for manufacturing a thermoformed product having a bent portion and / or a curved portion.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<製造例1:熱可塑性樹脂を含む基材の製造方法>
繊維状強化材として炭素繊維(三菱レイヨン製、製品名:パイロフィル(登録商標)TR−50S15L)を用いた。熱可塑性樹脂として酸変性ポリプロピレン樹脂(融点165℃)を用いた。
炭素繊維を繊維方向が一方向となるように平面状に引き揃えて目付が72.0g/mである強化繊維シートとした。この強化繊維シートを、酸変性ポリプロピレン樹脂製のフィルム(三菱化学社製、製品名:モディック(登録商標)P958、目付:36.4g/m)で挟み、加熱加圧して熱可塑性樹脂を強化繊維シートに含浸させ、繊維の体積含有率(Vf)が33%、厚さが、0.12mmのプリプレグを得た。
得られたプリプレグを、縦横600mmの正方形状に切り出し、図1に示すように、カッティングプロッタを用いて、繊維を切断する切り込みを入れた。図1において符号1は炭素繊維(繊維状強化材)、2は切り込みを示す。切り込み2は一定長さ、一定間隔とした。切り込み2の間隔D(繊維長)を10.0mm、切り込み2の長さLを28.3mm、平面視における切り込みと繊維のなす角度θを45°とした。
このようにして得られた切り込みが入ったプリプレグを6枚(下の6層)重ね、その上にポリプロピレンシート(日本ポリプロ社製、製品名:EA6A、厚さ0.5mm)を1枚重ね、さらに前記切り込みが入ったプリプレグを6枚(上の6層)重ねて、超音波溶着機でスポット溶接して熱可塑性樹脂を含む基材(複合材料)を作成した。下の6層は、その繊維方向が上から0°/45°/0°/45°/−45°/90°となる順で積層し、上の6層は、その繊維方向が上から90°/−45°/45°/0°/45°/0°となる順で、すなわち下の6層と対称になるように積層した。
得られた基材(複合材料)の厚さは1.94mm、炭素繊維の体積含有率(Vf)は33体積%であった。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
<Manufacture example 1: manufacturing method of base material containing thermoplastic resin>
Carbon fiber (manufactured by Mitsubishi Rayon, product name: Pyrofil (registered trademark) TR-50S15L) was used as the fibrous reinforcing material. An acid-modified polypropylene resin (melting point: 165 ° C.) was used as the thermoplastic resin.
The carbon fibers were aligned in a flat shape so that the fiber direction was one direction to obtain a reinforcing fiber sheet having a basis weight of 72.0 g / m 2 . This reinforcing fiber sheet is sandwiched between films made of acid-modified polypropylene resin (Mitsubishi Chemical Corporation, product name: Modic (registered trademark) P958, basis weight: 36.4 g / m 2 ), and heat-pressed to reinforce the thermoplastic resin. A fiber sheet was impregnated to obtain a prepreg having a fiber volume content (Vf) of 33% and a thickness of 0.12 mm.
The obtained prepreg was cut into a square shape with a length and width of 600 mm, and as shown in FIG. 1, a cutting plotter was used to make cuts for cutting the fibers. In FIG. 1, the code | symbol 1 shows carbon fiber (fibrous reinforcement), 2 shows a notch. The incisions 2 have a constant length and a constant interval. The interval D (fiber length) between the notches 2 was 10.0 mm, the length L of the notches 2 was 28.3 mm, and the angle θ between the notches and the fibers in plan view was 45 °.
6 prepregs (lower 6 layers) containing the cuts obtained in this way are stacked, and a polypropylene sheet (product name: EA6A, thickness 0.5 mm) is stacked on top of it, Furthermore, 6 sheets (upper 6 layers) of the prepregs with the cuts were stacked and spot welded with an ultrasonic welding machine to prepare a base material (composite material) containing a thermoplastic resin. The lower six layers are laminated in the order in which the fiber direction is 0 ° / 45 ° / 0 ° / 45 ° / −45 ° / 90 ° from the top, and the upper six layers have a fiber direction of 90 from the top. The layers were laminated in the order of ° / -45 ° / 45 ° / 0 ° / 45 ° / 0 °, that is, symmetrical to the lower six layers.
The thickness of the obtained base material (composite material) was 1.94 mm, and the volume content (Vf) of carbon fiber was 33% by volume.

<例1〜4:熱成形用材料の製造>
シート材として表1、2に示すPET不織布を用いて熱成形用材料を作製した。
表1には各例で用いたPET不織布の目付、および賦形温度200℃での上記引張試験方法の結果を示す。引張試験の結果は、最も伸び難い方向(S−D方向)および最も伸びやすい方向(W−D方向)のそれぞれにおける最大荷重(単位:N)および最大荷重が得られるときの変位の値e(単位:mm)をそれぞれ示す。最も伸び難い方向(S−D方向)は不織布の製造方向であり、最も伸びやすい方向(W−D方向)は該製造方向に直交する方向であった。引張試験は試験片4枚について行い、平均値を求めた。図2は例2のPET不織布(目付60g/m)の4枚の試験片について、製造方向(S−D方向)を引張方向として上記引張試験を行った際の荷重(単位:N)および変位(単位:mm)の測定結果である。
表2には、表1の引張試験の結果より求めた、最も伸び難い方向(S−D方向)における最大荷重A、最大荷重Aにおける伸度E、S−D方向における最大荷重AとW−D方向における最大荷重Bの比Z(Z=A/B)を示す。
<Examples 1-4: Production of thermoforming material>
Thermoforming materials were prepared using PET nonwoven fabrics shown in Tables 1 and 2 as sheet materials.
Table 1 shows the basis weight of the PET nonwoven fabric used in each example and the results of the above tensile test method at a shaping temperature of 200 ° C. As a result of the tensile test, the maximum load (unit: N) and the displacement value e (when the maximum load is obtained) in each of the least stretchable direction (SD direction) and the most stretchable direction (WD direction) are obtained. (Unit: mm). The direction (SD direction) that hardly stretched was the manufacturing direction of the nonwoven fabric, and the direction that most easily stretched (WD direction) was a direction orthogonal to the manufacturing direction. The tensile test was performed on four test pieces, and the average value was obtained. FIG. 2 shows the load (unit: N) when the tensile test was performed with the production direction (SD direction) as the tensile direction for four test pieces of the PET nonwoven fabric (weight per unit: 60 g / m 2 ) of Example 2. It is a measurement result of displacement (unit: mm).
Table 2 shows the maximum load A in the direction in which it is difficult to stretch (SD direction), the elongation E in the maximum load A, and the maximum loads A and W- in the SD direction obtained from the results of the tensile test in Table 1. A ratio Z (Z = A / B) of the maximum load B in the D direction is shown.

製造例1で得た基材の両面上それぞれに、表1、2に示す物性を有するPET不織布1枚を積層し、2段の熱板油圧プレスで加熱加圧して一体化して熱成形用材料を製造した。
加熱加圧条件は、210℃の温度、18ton(約180kN)のプレス力で90秒間加熱加圧し、次いで40℃の温度、18ton(約180kN)のプレス力で90秒間冷却加圧した。
A sheet of PET non-woven fabric having the physical properties shown in Tables 1 and 2 is laminated on both surfaces of the base material obtained in Production Example 1 and integrated by heating and pressing with a two-stage hot plate hydraulic press. Manufactured.
The heating and pressing conditions were heating and pressing for 90 seconds at a temperature of 210 ° C. and a pressing force of 18 ton (about 180 kN), and then cooling and pressing for 90 seconds at a pressing force of 40 ° C. and a pressing force of 18 ton (about 180 kN).

<成形性(肉厚均一性)の評価>
成形性の評価として、賦形温度200℃で熱成形する際の肉厚均一性を以下の方法で評価した。
各例で得られた熱成形用材料の、表面に最も近いプリプレグの繊維配向方向を長さ方向、それと直角方向を幅方向とし、長さ90mm、幅40mmの長方形状に切り出したものを評価サンプルとした。
この評価サンプルを250℃に設定したIRヒーター内に配置し、表面温度が200℃になるまで加熱軟化して取り出し、直ちに延伸した。延伸は評価サンプルを引張試験用の治具にセットし、つかみ間隔が延伸前の70mmから140mmになるまで、100mm/minの速度で長さ方向に延伸した(延伸倍率2.0)。
延伸後の評価サンプルを目視で観察し、肉厚が均一である場合を良好(〇)、肉厚が不均一な部分が存在する場合を不良(×)と評価した。結果を表2に示す。
<Evaluation of moldability (thickness uniformity)>
As evaluation of moldability, the thickness uniformity at the time of thermoforming at a forming temperature of 200 ° C. was evaluated by the following method.
Evaluation sample of thermoforming material obtained in each example, cut into a rectangular shape with a length of 90 mm and a width of 40 mm, with the fiber orientation direction of the prepreg closest to the surface as the length direction and the direction perpendicular thereto as the width direction It was.
This evaluation sample was placed in an IR heater set to 250 ° C., heated and softened until the surface temperature reached 200 ° C., and immediately stretched. For the stretching, the evaluation sample was set in a jig for a tensile test, and stretched in the length direction at a speed of 100 mm / min until the grip interval was changed from 70 mm before stretching to 140 mm (stretching ratio: 2.0).
The evaluation sample after stretching was visually observed, and the case where the thickness was uniform was evaluated as good (◯), and the case where a portion with non-uniform thickness was present was evaluated as poor (x). The results are shown in Table 2.

Figure 2017052246
Figure 2017052246

Figure 2017052246
Figure 2017052246

表2の結果に示されるように、例1〜3の熱成形用材料は、シート材の賦形時の温度における最大荷重A、伸度Eおよび2方向の最大荷重の比Zが本発明の範囲内であり、賦形温度に加熱された状態で延伸されても肉厚不均一が生じなかった。
これに対して例4の熱成形用材料は、シート材の賦形時の温度における最大荷重Aおよび2方向の最大荷重の比Zが本発明の範囲を超えており、賦形温度に加熱された状態で延伸されると肉厚の不均一が生じた。
As shown in the results of Table 2, the thermoforming materials of Examples 1 to 3 have the maximum load A, the elongation E, and the ratio Z of the maximum loads in two directions at the temperature at the time of forming the sheet material. Within the range, even when the film was stretched while being heated to the shaping temperature, the thickness was not uneven.
On the other hand, the thermoforming material of Example 4 has the maximum load A at the temperature at the time of forming the sheet material and the ratio Z of the maximum load in two directions exceeds the range of the present invention, and is heated to the forming temperature. When the film was stretched in a stretched state, the thickness was uneven.

[実施例1〜3]
例1〜3で製造した熱成形用材料をそれぞれ用い、押し付け法により短下肢装具を製造した。短下肢装具とは、足関節の動きを制御する目的で下腿部に装着する装具であり、屈曲部および湾曲部を有する形状の樹脂成形品である。
例1〜3で製造した熱成形用材料を適宜の大きさに切り出し、200℃雰囲気下の循環式熱風炉内で15分間加熱した後、表面に最も近いプリプレグの繊維配向方向が短下肢形状型の長手方向になるように、型の脹脛および踵側から押し付けて成形し、冷却後、型から外し、短下肢装具を得た。
[Examples 1 to 3]
Using each of the thermoforming materials produced in Examples 1 to 3, a short leg brace was produced by a pressing method. The short leg brace is a brace attached to the lower leg for the purpose of controlling the movement of the ankle joint, and is a resin molded product having a bent part and a curved part.
The thermoforming material produced in Examples 1 to 3 was cut into an appropriate size, heated in a circulating hot air oven at 200 ° C. for 15 minutes, and then the fiber orientation direction of the prepreg closest to the surface was a short leg shape mold The mold was pressed from the calf and heel side of the mold so as to be in the longitudinal direction of the mold, and after cooling, it was removed from the mold to obtain a short leg brace.

1 繊維
2 切り込み
D 切り込みの間隔(繊維長)
L 切り込みの長さ
θ 切り込みと繊維のなす角度
1 fiber 2 notch D notch interval (fiber length)
L Length of cut θ Angle formed by cut and fiber

Claims (4)

熱可塑性樹脂を含む基材と下記シート材を、前記熱可塑性樹脂の融点またはガラス転移温度より高い温度に加熱し、前記基材を軟化させる加熱軟化工程と、
軟化された前記基材と、前記シート材を積層した状態で賦形する成形工程を有する、熱成形品の製造方法。
シート材:前記賦形時の温度で下記の引張試験方法をおこなったとき、最も伸び難い方向における最大荷重Aが1〜50Nであり、該最大荷重Aにおける伸度Eが50〜200%であり、前記最も伸び難い方向における最大荷重Aの、それに直交する方向における最大荷重Bに対する比Z(Z=A/B)が1.0〜2.0であるシート材。
引張試験方法:シート材を幅25mm×長さ150mmの寸法に裁断した試験片の長さ方向の両端を、定速伸長型引張試験機に、つかみ間隔50mmでたるみが無いようにセットする。つかみ間隔50mmの位置を変位0mmの始点とし、引張速度100mm/分で試験片が切断するまで荷重を加えつつ、荷重(単位:N)および変位(単位:mm)を経時的に測定する。荷重の最大値を最大荷重とする。最大荷重が得られるときの変位の値e(単位:mm)から下式(1)により伸度E(単位:%)を求める。
E=e/50×100…(1)
A heating and softening step of heating the base material containing the thermoplastic resin and the following sheet material to a temperature higher than the melting point or glass transition temperature of the thermoplastic resin, and softening the base material;
A method for producing a thermoformed product, comprising a forming step of shaping the softened base material and the sheet material in a laminated state.
Sheet material: When the following tensile test method is performed at the temperature at the time of shaping, the maximum load A in the direction in which it is most difficult to stretch is 1 to 50 N, and the elongation E at the maximum load A is 50 to 200%. A sheet material in which the ratio Z (Z = A / B) of the maximum load A in the least stretchable direction to the maximum load B in a direction orthogonal thereto is 1.0 to 2.0.
Tensile test method: The lengthwise ends of a test piece obtained by cutting a sheet material into a dimension of 25 mm wide × 150 mm long are set in a constant speed extension type tensile tester so that there is no slack at a holding interval of 50 mm. A load (unit: N) and a displacement (unit: mm) are measured over time while a load is applied until the test piece is cut at a tensile speed of 100 mm / min with a position at a grip interval of 50 mm as a starting point of displacement 0 mm. The maximum load is the maximum load. The elongation E (unit:%) is obtained from the displacement value e (unit: mm) when the maximum load is obtained by the following equation (1).
E = e / 50 × 100 (1)
前記基材が、熱可塑性樹脂と繊維状強化材を含む複合材料からなる、請求項1記載の熱成形品の製造方法。   The method for producing a thermoformed article according to claim 1, wherein the substrate is made of a composite material including a thermoplastic resin and a fibrous reinforcing material. 前記シート材が、不織布である、請求項1または2に記載の熱成形品の製造方法。   The manufacturing method of the thermoformed product of Claim 1 or 2 whose said sheet | seat material is a nonwoven fabric. 熱可塑性樹脂を含み、前記熱可塑性樹脂の融点またはガラス転移温度より高い温度に加熱して賦形する方法に用いられる熱成形用材料であって、
熱可塑性樹脂を含む基材と、該基材に積層されるシート材を備え、
前記シート材について、前記賦形時の温度で下記の引張試験方法を行ったとき、最も伸び難い方向における最大荷重Aが1〜50Nであり、該最大荷重Aにおける伸度Eが50〜200%であり、前記最も伸び難い方向における最大荷重Aの、それに直交する方向における最大荷重Bに対する比Z(Z=A/B)が1.0〜2.0である、熱成形用材料。
引張試験方法:シート材を幅25mm×長さ150mmの寸法に裁断した試験片の長さ方向の両端を、定速伸長型引張試験機に、つかみ間隔50mmでたるみが無いようにセットする。つかみ間隔50mmの位置を変位0mmの始点とし、引張速度100mm/分で試験片が切断するまで荷重を加えつつ、荷重(単位:N)および変位(単位:mm)を経時的に測定する。荷重の最大値を最大荷重とする。最大荷重が得られるときの変位の値e(単位:mm)から下式(1)により伸度E(単位:%)を求める。
E=e/50×100…(1)
A material for thermoforming, which includes a thermoplastic resin and is used in a method of shaping by heating to a temperature higher than the melting point or glass transition temperature of the thermoplastic resin,
A base material containing a thermoplastic resin, and a sheet material laminated on the base material,
When the following tensile test method is performed on the sheet material at the temperature at the time of shaping, the maximum load A in the direction in which it is most difficult to stretch is 1 to 50 N, and the elongation E at the maximum load A is 50 to 200%. The material for thermoforming, wherein the ratio Z (Z = A / B) of the maximum load A in the least stretchable direction to the maximum load B in the direction orthogonal thereto is 1.0 to 2.0.
Tensile test method: The lengthwise ends of a test piece obtained by cutting a sheet material into a dimension of 25 mm wide × 150 mm long are set in a constant speed extension type tensile tester so that there is no slack at a holding interval of 50 mm. A load (unit: N) and a displacement (unit: mm) are measured over time while a load is applied until the test piece is cut at a tensile speed of 100 mm / min with a position at a grip interval of 50 mm as a starting point of displacement 0 mm. The maximum load is the maximum load. The elongation E (unit:%) is obtained from the displacement value e (unit: mm) when the maximum load is obtained by the following equation (1).
E = e / 50 × 100 (1)
JP2015179846A 2015-09-11 2015-09-11 Thermoformed article manufacturing method and thermoforming material Active JP6649016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015179846A JP6649016B2 (en) 2015-09-11 2015-09-11 Thermoformed article manufacturing method and thermoforming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015179846A JP6649016B2 (en) 2015-09-11 2015-09-11 Thermoformed article manufacturing method and thermoforming material

Publications (2)

Publication Number Publication Date
JP2017052246A true JP2017052246A (en) 2017-03-16
JP6649016B2 JP6649016B2 (en) 2020-02-19

Family

ID=58320393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179846A Active JP6649016B2 (en) 2015-09-11 2015-09-11 Thermoformed article manufacturing method and thermoforming material

Country Status (1)

Country Link
JP (1) JP6649016B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144567A (en) * 2016-02-15 2017-08-24 東レ株式会社 Thermoplastic resin molded body
JP2021155513A (en) * 2020-03-26 2021-10-07 東レ株式会社 Prepreg laminate, fiber reinforced composite material, and method for producing fiber reinforced composite material
CN115176052A (en) * 2020-02-25 2022-10-11 富士胶片株式会社 Nonwoven fabric and method for producing nonwoven fabric

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079632A (en) * 1993-04-26 1995-01-13 Sekisui Chem Co Ltd Molded composite and production thereof
JPH0732465A (en) * 1993-07-21 1995-02-03 Nippon Steel Corp Overhung or deep-drawn molded item made of fiber-reinforced thermoplastic resin and manufacture thereof
JP2000136478A (en) * 1998-10-27 2000-05-16 Unitika Ltd Nonwoven fabric for molding having biodegradability, its production and article having vessel shape using the same nonwoven fabric
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
JP2011104947A (en) * 2009-11-20 2011-06-02 Kaneka Corp Foamed laminated sheet for automotive interior materials, and automotive interior material
WO2013073425A1 (en) * 2011-11-14 2013-05-23 東レ株式会社 Nonwoven fabric for press molding, method for producing same, and method for producing molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079632A (en) * 1993-04-26 1995-01-13 Sekisui Chem Co Ltd Molded composite and production thereof
JPH0732465A (en) * 1993-07-21 1995-02-03 Nippon Steel Corp Overhung or deep-drawn molded item made of fiber-reinforced thermoplastic resin and manufacture thereof
JP2000136478A (en) * 1998-10-27 2000-05-16 Unitika Ltd Nonwoven fabric for molding having biodegradability, its production and article having vessel shape using the same nonwoven fabric
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
JP2011104947A (en) * 2009-11-20 2011-06-02 Kaneka Corp Foamed laminated sheet for automotive interior materials, and automotive interior material
WO2013073425A1 (en) * 2011-11-14 2013-05-23 東レ株式会社 Nonwoven fabric for press molding, method for producing same, and method for producing molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144567A (en) * 2016-02-15 2017-08-24 東レ株式会社 Thermoplastic resin molded body
CN115176052A (en) * 2020-02-25 2022-10-11 富士胶片株式会社 Nonwoven fabric and method for producing nonwoven fabric
JP2021155513A (en) * 2020-03-26 2021-10-07 東レ株式会社 Prepreg laminate, fiber reinforced composite material, and method for producing fiber reinforced composite material
JP7363630B2 (en) 2020-03-26 2023-10-18 東レ株式会社 Prepreg laminate, fiber reinforced composite material and method for producing fiber reinforced composite material

Also Published As

Publication number Publication date
JP6649016B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
KR101898420B1 (en) Fabrication method of fiber reinforced composite material
TWI520844B (en) Method for fabricating preform and fiber-reinforced resin molded article
US10604633B2 (en) Thermoplastic prepreg and laminate
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
JP5459005B2 (en) Press molding method and molded body thereof
JP6048730B2 (en) Preform manufacturing method
JP2013208725A (en) Carbon fiber-reinforced thermoplastic resin laminated body and method of producing the same
JP5952510B2 (en) Method for producing molded body having opening
TWI793144B (en) Prepreg laminate and method for producing fiber-reinforced plastic using prepreg laminate
JP2011084038A (en) Method for manufacturing fiber-reinforced composite material
US20210316479A1 (en) Method for manufacturing preform, method for manufacturing composite material molded article, and mold
JP6649016B2 (en) Thermoformed article manufacturing method and thermoforming material
CN111886119A (en) Method for producing fiber-reinforced resin
KR101684821B1 (en) Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method
JPWO2019189384A1 (en) Molded article manufacturing method
JP6369178B2 (en) Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform
US20220040935A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP2017164970A (en) Fiber-reinforced composite and method for producing the same
JP2013010255A (en) Thermoplastic resin composite material
JP2016179647A (en) Method for producing fiber-reinforced plastic
JP2014087963A (en) Method for producing molded part
JP2016172322A (en) Method for producing fiber-reinforced thermoplastic resin-molded article
JP6808946B2 (en) Manufacturing method of fiber reinforced composite molded product
JP2022516512A (en) Mechanical molding of composite materials
JP2004323755A (en) Prepreg and fiber-reinforced composite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6649016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250