JP2017049242A - Pipeline member deterioration diagnosis method and device - Google Patents

Pipeline member deterioration diagnosis method and device Download PDF

Info

Publication number
JP2017049242A
JP2017049242A JP2016162710A JP2016162710A JP2017049242A JP 2017049242 A JP2017049242 A JP 2017049242A JP 2016162710 A JP2016162710 A JP 2016162710A JP 2016162710 A JP2016162710 A JP 2016162710A JP 2017049242 A JP2017049242 A JP 2017049242A
Authority
JP
Japan
Prior art keywords
color
piping member
physical property
difference
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016162710A
Other languages
Japanese (ja)
Other versions
JP6964399B2 (en
Inventor
知里 中薗
Chisato Nakazono
知里 中薗
満子 片山
Mitsuko Katayama
満子 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Yukizai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Yukizai Corp filed Critical Asahi Yukizai Corp
Publication of JP2017049242A publication Critical patent/JP2017049242A/en
Application granted granted Critical
Publication of JP6964399B2 publication Critical patent/JP6964399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable nondestructive deterioration diagnosis without requiring extraction, regarding a synthetic resin-based pipeline member.SOLUTION: A pipeline member deterioration diagnosis device 11 includes: a function storage unit 13 configured to preliminary store a function indicating correlation between a physical retention ratio to a reference value of a physical property to be evaluated of a synthetic resin-based pipeline member and difference of chrominance or brightness to a reference color of an outside surface of the synthetic resin-based pipeline member in a color space; and a physical retention ratio calculating unit 17 configured to obtain the difference of chrominance or brightness between the reference color of the outside surface of the pipeline member and a measured color of the outside of the pipeline member, and obtain the physical retention ratio of the pipeline member in measurement, based on the obtained difference of chrominance or brightness and the function stored in the function storage unit 13.SELECTED DRAWING: Figure 1

Description

本発明は、合成樹脂製配管部材の劣化を診断する配管部材劣化診断方法及び装置に関する。   The present invention relates to a piping member deterioration diagnosis method and apparatus for diagnosing deterioration of a synthetic resin piping member.

合成樹脂製配管部材は、耐腐食性や耐薬品性に優れることから、化学工場、上下水道、食品分野などで広く使用されている。しかしながら、合成樹脂製配管部材でも、配管部材の内部を流れる流体の浸透などによる劣化のみならず、屋外屋内を問わず紫外線や熱など外部環境の影響による劣化が生じることがある。特に、配管部材には、配管部材同士の接続による外部からの力やウォーターハンマー現象による衝撃など様々な力が作用するため、引張強さ、引張伸び率、衝撃強さなどの物性の低下でクラックが生じると、漏れなどのトラブルの原因となりやすい。このようなトラブルを防止するために、定期的に、劣化が認められる配管部材の交換などの保全が行われている。合成樹脂製配管部材は金属製配管部材のような腐食による厚さの変化などが生じにくく、合成樹脂製配管部材の劣化の診断は、使用中の配管部材の一部をサンプリングして試験片を作成し、作成した試験片を用いて、未使用品に対する使用品の引張強さ、引張伸び、衝撃強度、落錘衝撃強度(耐衝撃性)、扁平性などの保持率を測定する破壊試験により行われることが一般的であった。また、特許文献1に開示されているように、合成樹脂管の酸化誘導時間を測定することによって、合成樹脂管の残存寿命の評価を行う方法も提案されている。   Synthetic resin piping members are widely used in chemical factories, water and sewage systems, food fields, and the like because of their excellent corrosion resistance and chemical resistance. However, even a synthetic resin piping member may deteriorate not only due to permeation of fluid flowing inside the piping member, but also due to the influence of the external environment such as ultraviolet rays and heat regardless of the indoors. In particular, since various forces such as external force due to the connection between piping members and impact due to water hammer phenomenon act on piping members, cracks occur due to deterioration in physical properties such as tensile strength, tensile elongation, impact strength, etc. If this occurs, it can easily cause problems such as leakage. In order to prevent such troubles, maintenance such as replacement of piping members in which deterioration is recognized is regularly performed. Synthetic resin piping members are unlikely to change in thickness due to corrosion like metal piping members, and diagnosis of deterioration of synthetic resin piping members is performed by sampling a part of the piping member in use and Using destructive tests that measure the retention rate such as tensile strength, tensile elongation, impact strength, falling weight impact strength (impact resistance), flatness of used products against unused products using the prepared test pieces It was common to be done. Further, as disclosed in Patent Document 1, a method for evaluating the remaining life of a synthetic resin pipe by measuring the oxidation induction time of the synthetic resin pipe has also been proposed.

特開2002−257819号公報Japanese Patent Laid-Open No. 2002-257819

しかしながら、合成樹脂製の配管部材の劣化の診断に際し、配管部材のサンプリングを行うためには、設備を停止させる必要が生じるという問題がある。また、診断の結果、配管部材の交換の必要がなかったとしても、破壊試験を行うと、サンプリングした配管部材については、部分的に交換の必要が生じてしまう。   However, when diagnosing deterioration of the piping member made of synthetic resin, there is a problem that it is necessary to stop the facility in order to sample the piping member. Moreover, even if it is not necessary to replace the piping member as a result of the diagnosis, if the destructive test is performed, the sampled piping member needs to be partially replaced.

したがって、本発明の目的は、合成樹脂製の配管部材について、サンプリングを必要としない非破壊による劣化診断を可能とさせることにある。   Accordingly, an object of the present invention is to enable non-destructive deterioration diagnosis that does not require sampling for a piping member made of synthetic resin.

上記目的に鑑み、本発明は、第1の態様として、合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率と色空間における合成樹脂製の配管部材の外側表面の基準色に対する色差又は明度の差との相関関係を予め求める工程と、測色計を用いて、合成樹脂製の配管部材の外側表面に照射した光の反射光に基づいて前記配管部材の外側表面の色を測定する工程と、前記配管部材の外側表面の基準色と前記測色計によって測定された前記配管部材の外側表面の色との前記色空間における色差又は明度の差を求める工程と、予め求められた前記相関関係に基づいて、前記色差又は前記明度の差から測定時における前記配管部材の物性保持率を推測して、前記配管部材の劣化度を診断する工程とを含む配管部材劣化診断方法を提供する。   In view of the above object, the present invention provides, as a first aspect, a physical property retention ratio with respect to a reference value of physical properties to be evaluated of a synthetic resin piping member and a color difference with respect to a reference color of an outer surface of the synthetic resin piping member in a color space Alternatively, the color of the outer surface of the piping member is measured based on the reflected light of the light irradiated on the outer surface of the synthetic resin piping member, using a step of obtaining a correlation with the difference in brightness in advance and a colorimeter. A step of determining a color difference or brightness difference in the color space between a reference color of the outer surface of the piping member and a color of the outer surface of the piping member measured by the colorimeter, and Providing a piping member deterioration diagnosis method including a step of diagnosing the degree of deterioration of the piping member by estimating the physical property retention rate of the piping member at the time of measurement from the color difference or the difference in brightness based on the correlation. To do.

上記配管部材劣化診断方法では、合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率と、色空間における合成樹脂製の配管部材の外側表面の基準色に対する色差又は明度の差との相関関係を用いて、合成樹脂製の配管部材の外側表面の基準色と測色計によって測定した合成樹脂製の配管部材の外側表面の色との色空間における色差又は明度の差から合成樹脂製の配管部材の物性保持率を推測して、配管部材の劣化度を診断する。したがって、配管部材のサンプリングや破壊試験が不要となる。   In the piping member deterioration diagnosis method, the physical property retention rate with respect to the reference value of the evaluation target physical property of the synthetic resin piping member, and the color difference or brightness difference with respect to the reference color of the outer surface of the synthetic resin piping member in the color space. By using the correlation, the synthetic resin is obtained from the difference in color or brightness in the color space between the reference color of the outer surface of the piping member made of synthetic resin and the color of the outer surface of the piping member made of synthetic resin measured by a colorimeter. The deterioration of the piping member is diagnosed by estimating the physical property retention rate of the piping member. Therefore, sampling and destructive testing of piping members are not necessary.

上記配管部材劣化診断方法では、前記色空間がL*a*b*表色系の色空間であることが好ましい。   In the piping member deterioration diagnosis method, the color space is preferably a color space of L * a * b * color system.

例えば、前記評価対象物性は引張伸び率とすることができる。   For example, the physical property to be evaluated can be a tensile elongation rate.

前記配管部材は、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンから成る群から選択される合成樹脂材料によって形成された配管部材とすることが好ましい。   The piping member is preferably a piping member made of a synthetic resin material selected from the group consisting of polyvinyl chloride, polypropylene, polyethylene, and polyvinylidene fluoride.

前記測色計は、前記配管部材の外側表面での正反射光を含めた反射光を用いるSCI方式で色を測定してもよく、前記配管部材の外側表面での反射光から正反射光を除去するSCE方式で色を測定してもよい。   The colorimeter may measure the color by the SCI method using reflected light including regular reflected light on the outer surface of the piping member, and the specular light is reflected from the reflected light on the outer surface of the piping member. You may measure a color by the SCE system to remove.

さらに、本発明は、第2の態様として、合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率と色空間における合成樹脂製の配管部材の外側表面の基準色に対する色差又は明度の差との相関関係を表す関数を予め記憶する関数記憶部と、前記配管部材の外側表面の基準色と測定された前記配管部材の外側表面の色との前記色空間における色差又は明度の差を求め、求められた前記色差又は前記明度の差と前記関数記憶部に記憶される前記関数とに基づいて、測定時における前記配管部材の物性保持率を求める物性保持率演算部とを備える配管部材劣化診断装置を提供する。   In addition, as a second aspect, the present invention provides a physical property retention ratio with respect to a reference value of a physical property to be evaluated of a synthetic resin piping member and a color difference or brightness with respect to a reference color of an outer surface of the synthetic resin piping member in a color space. A function storage unit that stores a function representing a correlation with the difference in advance, and a color difference or brightness difference in the color space between the reference color of the outer surface of the piping member and the measured color of the outer surface of the piping member. A piping member comprising: a physical property retention rate calculating unit that determines a physical property retention rate of the piping member at the time of measurement based on the obtained color difference or brightness difference and the function stored in the function storage unit A deterioration diagnosis apparatus is provided.

上記配管部材劣化診断装置では、前記配管部材の外側表面の色は、照射した光の反射光に基づいて色を測定する測色計によって測定されることが好ましい。   In the piping member deterioration diagnostic apparatus, the color of the outer surface of the piping member is preferably measured by a colorimeter that measures the color based on the reflected light of the irradiated light.

また、上記配管部材劣化診断装置では、前記色空間がL*a*b*表色系の色空間であることが好ましい。   Moreover, in the said piping member deterioration diagnostic apparatus, it is preferable that the said color space is a color space of L * a * b * color system.

例えば、前記評価対象物性は引張伸び率とすることができる。   For example, the physical property to be evaluated can be a tensile elongation rate.

前記配管部材が、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンから成る群から選択される合成樹脂材料によって形成されている配管部材であることが好ましい。   The piping member is preferably a piping member made of a synthetic resin material selected from the group consisting of polyvinyl chloride, polypropylene, polyethylene, and polyvinylidene fluoride.

好ましい実施形態では、前物性保持率演算部が、求められた物性保持率に基づいて前記配管部材の劣化度を決定する。   In a preferred embodiment, the previous physical property retention rate calculation unit determines the degree of deterioration of the piping member based on the obtained physical property retention rate.

本発明によれば、合成樹脂製の配管部材の物性保持率と、合成樹脂製配管部材の基準色に対する色差又は明度の差との相関関係を用いて、配管部材の外側表面の基準色と測定時の配管部材の外側表面の色との色差又は明度の差から測定時における合成樹脂製配管部材の物性保持率を推測し、配管部材の劣化診断ができるため、配管部材のサンプリングや破壊試験が不要となる。   According to the present invention, the correlation between the physical property retention rate of the synthetic resin piping member and the color difference or brightness difference with respect to the reference color of the synthetic resin piping member is used to measure the reference color of the outer surface of the piping member. Since the physical property retention rate of the synthetic resin piping member at the time of measurement can be estimated from the color difference or brightness difference with the color of the outer surface of the piping member at the time, the deterioration of the piping member can be diagnosed. It becomes unnecessary.

本発明による配管部材劣化診断装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the piping member deterioration diagnostic apparatus by this invention. 物性の低下と合成樹脂材料の色の変化との相関性に関連するポリ塩化ビニル(PVC)のポリエン化の機構を説明するための説明図である。It is explanatory drawing for demonstrating the polyeneation mechanism of polyvinyl chloride (PVC) relevant to the correlation with the fall of a physical property, and the change of the color of a synthetic resin material. 物性の低下と合成樹脂材料の色の変化との相関性に関連するポリフッ化ビニリデン(PVDF)のポリエン化の機構を説明するための説明図である。It is explanatory drawing for demonstrating the mechanism of polyene-ization of polyvinylidene fluoride (PVDF) relevant to the correlation with the fall of a physical property, and the change of the color of a synthetic resin material. 物性の低下と合成樹脂材料の色の変化との相関性に関連する顔料や添加剤の粒子の離脱による微細孔(ポーラス)の生成を説明するための説明図である。It is explanatory drawing for demonstrating the production | generation of the micropore (porous) by the detachment | leave of the particle | grains of the pigment and additive relevant to the correlation with the fall of a physical property, and the color change of a synthetic resin material. 物性の低下と合成樹脂材料の色の変化との相関性に関連する合成樹脂製配管部材の表面の微小クラックの成長を説明するための説明図である。It is explanatory drawing for demonstrating the growth of the micro crack of the surface of the synthetic resin piping member relevant to the correlation with the fall of a physical property, and the change of the color of a synthetic resin material. 第一の例の配管部材について、SCI方式での色の測定による色差と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the color difference by the measurement of the color by a SCI system, and tensile elongation retention about the piping member of a 1st example. 第一の例の配管部材について、SCE方式での色の測定による色差と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the color difference by the measurement of the color by a SCE system, and the tensile elongation retention about the piping member of a 1st example. 第一の例の配管部材について、SCI方式での色の測定による明度の差と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the difference of the brightness by the measurement of the color by a SCI system, and tensile elongation retention about the piping member of a 1st example. 第一の例の配管部材について、SCE方式での色の測定による明度の差と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the difference of the brightness by the measurement of the color by a SCE system, and the tensile elongation retention about the piping member of a 1st example. 第一の例の配管部材について、SCI方式での色の測定による明度と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the brightness by the measurement of the color by a SCI system, and tensile elongation retention about the piping member of a 1st example. 第一の例の配管部材について、SCE方式での色の測定による明度と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the brightness by the measurement of the color by a SCE system, and tensile elongation retention about the piping member of a 1st example. 第二の例の配管部材について、SCI方式での色の測定による色差と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the color difference by the measurement of the color by a SCI system, and tensile elongation retention about the piping member of a 2nd example. 第二の例の配管部材について、SCE方式での色の測定による色差と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation of the color difference by the measurement of the color by a SCE system, and the tensile elongation retention about the piping member of a 2nd example. 第二の例の配管部材について、SCI方式での色の測定による明度の差と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the difference of the brightness by the color measurement by a SCI system, and tensile elongation retention about the piping member of a 2nd example. 第二の例の配管部材について、SCE方式での色の測定による明度の差と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the difference of the brightness by the measurement of the color by a SCE system, and the tensile elongation retention about the piping member of a 2nd example. 第二の例の配管部材について、SCI方式での色の測定による明度と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the brightness by the measurement of the color by a SCI system, and tensile elongation retention about the piping member of a 2nd example. 第二の例の配管部材について、SCE方式での色の測定による明度と引張伸び保持率との相関を示すグラフである。It is a graph which shows the correlation with the brightness by the measurement of the color by a SCE system, and tensile elongation retention about the piping member of a 2nd example. 図1に示されている配管部材劣化診断装置を用いて、色差に基づいて、合成樹脂製配管部材の劣化を診断する手順を示すフローチャートである。It is a flowchart which shows the procedure which diagnoses deterioration of a piping member made from a synthetic resin based on a color difference using the piping member deterioration diagnostic apparatus shown by FIG. 図1に示されている配管部材劣化診断装置を用いて、明度の差に基づいて、合成樹脂製配管部材の劣化を診断する手順を示すフローチャートである。It is a flowchart which shows the procedure which diagnoses deterioration of a piping member made from a synthetic resin based on the difference in brightness using the piping member degradation diagnostic apparatus shown by FIG.

以下、図面を参照して、本発明による配管部材劣化診断装置及び配管部材劣化診断方法の実施の形態を説明する。
最初に、図1を参照して、配管部材劣化診断装置11の全体構成を説明する。
Embodiments of a piping member deterioration diagnosis device and a piping member deterioration diagnosis method according to the present invention will be described below with reference to the drawings.
Initially, with reference to FIG. 1, the whole structure of the piping member deterioration diagnostic apparatus 11 is demonstrated.

配管部材劣化診断装置11は、関数記憶部13と、入力部15と、物性保持率演算部17と、表示部19とを備え、物性保持率演算部17が、入力部15を通じて入力された合成樹脂製の配管部材の外側表面の色に関する情報に基づいて、基準時における配管部材の評価対象物性に対する物性保持率を推測し、推測された物性保持率に基づいて合成樹脂製配管部材の劣化度を求めて、表示部19に表示する。配管部材は、配管を構成する部材であり、管、継手、バルブ、タンクなどを含む。   The piping member deterioration diagnosis device 11 includes a function storage unit 13, an input unit 15, a physical property retention rate calculation unit 17, and a display unit 19, and the physical property retention rate calculation unit 17 is input through the input unit 15. Based on the information on the color of the outer surface of the piping member made of resin, the physical property retention rate for the evaluation target physical property of the piping member at the reference time is estimated, and the deterioration degree of the synthetic resin piping member based on the estimated physical property retention rate Is displayed on the display unit 19. A piping member is a member which comprises piping, and contains a pipe, a joint, a valve, a tank, etc.

関数記憶部13は、RAM、ROM、フラッシュメモリ、ハードディスクなど、データを記憶することができる記憶装置によって構成することができる。関数記憶部13には、合成樹脂製の配管部材の外側表面の色に関する指標と合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率との相関関係を表す関数が記憶される。ここで、物性保持率とは、基準となる合成樹脂製の配管部材の評価対象物性の値(例えば、未使用状態の合成樹脂製の配管部材の評価物性の値や規格上の値)に対する測定対象の配管部材の評価対象物性の測定値の割合を意味する。本実施形態では、合成樹脂製の配管部材の外側表面の色に関する指標として、合成樹脂製の配管部材の外側表面の基準色(例えば、未使用状態の合成樹脂製の配管部材の色や当該配管部材の規格上の色)に対する色空間における色差が使用され、合成樹脂製配管部材の外側表面の基準色に対する色空間における色差と合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率との相関関係を表す関数が関数記憶部13に記憶される。しかしながら、合成樹脂製の配管部材の外側表面の色に関する指標として、他の指標を使用することも可能である。例えば、合成樹脂製の配管部材の外側表面の色に関する指標として、合成樹脂製の配管部材の外側表面の基準色に対する色空間における色差に代えて又は色差に加えて、合成樹脂製の配管部材の外側表面の基準色に対する色空間における明度の差を使用し、色空間における未使用状態の合成樹脂製の配管部材の外側表面の色の明度を基準とした明度の差と合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率との相関関係を表す関数を関数記憶部13に記憶してもよい。   The function storage unit 13 can be configured by a storage device that can store data, such as RAM, ROM, flash memory, and hard disk. The function storage unit 13 stores a function representing a correlation between an index related to the color of the outer surface of the synthetic resin piping member and a physical property retention ratio with respect to a reference value of the physical property to be evaluated of the synthetic resin piping member. Here, the physical property retention ratio is a measurement with respect to a value of a physical property to be evaluated of a synthetic resin pipe member as a reference (for example, an evaluation physical property value or a standard value of an unused synthetic resin pipe member). It means the ratio of the measured value of the physical property to be evaluated of the target piping member. In the present embodiment, as an index related to the color of the outer surface of the synthetic resin piping member, the reference color of the outer surface of the synthetic resin piping member (for example, the color of the unused synthetic resin piping member or the piping) Color difference in the color space with respect to the standard color of the member), the color retention in the color space with respect to the reference color of the outer surface of the synthetic resin piping member, and the physical property retention rate with respect to the reference value of the evaluation target physical property of the synthetic resin piping member Is stored in the function storage unit 13. However, it is possible to use other indicators as indicators relating to the color of the outer surface of the piping member made of synthetic resin. For example, instead of or in addition to the color difference in the color space with respect to the reference color of the outer surface of the synthetic resin piping member, as an index related to the color of the outer surface of the synthetic resin piping member, the synthetic resin piping member Using the difference in brightness in the color space with respect to the reference color of the outer surface, the difference in brightness based on the brightness of the color of the outer surface of the synthetic resin piping member in the color space and the piping member made of synthetic resin A function representing the correlation with the physical property retention rate with respect to the reference value of the physical property to be evaluated may be stored in the function storage unit 13.

なお、異なる種類の配管部材(使用材料や製造販売会社などが異なる配管部材)に対して配管部材劣化診断装置11を適用する場合、種類ごとに配管部材の基準色を設定してもよく、概ね同じ色の異なる種類の配管部材にまたがって共通の基準色を設定してもよい。また、評価対象物性の基準値についても、同様に、種類ごとに配管部材の評価対象物性の基準値を設定してもよく、概ね共通する材料から形成された異なる種類の配管部材にまたがって共通の評価対象物性の基準値を設定してもよい。   In addition, when applying the piping member deterioration diagnosis device 11 to different types of piping members (pipe members having different materials and manufacturing / selling companies), the reference color of the piping members may be set for each type. A common reference color may be set across different types of piping members of the same color. Similarly, the reference value of the physical property to be evaluated may similarly be set for each type of the physical property to be evaluated for the piping member, and is common to different types of piping members formed from a common material. The reference value of the physical property to be evaluated may be set.

評価対象物性としては、例えば、引張強さ(引張降伏強さ)、引張伸び率(引張破断伸び率、引張破壊伸び率)、耐衝撃性(シャルピー衝撃強度、落錘衝撃強度)、扁平性などが用いられ、関数記憶部13に記憶される関数は、これらの評価対象物性の何れか一つ又は複数についてそれぞれ記憶される。上述の評価対象物性は、JISなどの規格に定められた適宜の試験方法を共通して採用して測定すればよい。例えば、引張伸び率については、JIS K 6741:1999に定められる硬質ポリ塩化ビニル管に関する引張試験の規格に従って測定し、シャルピー衝撃強さについては、JIS K 7111−1:2012に定められる「プラスチック−シャルピー衝撃特性の求め方」に定められる試験方法に従って測定すればよい。   Physical properties to be evaluated include, for example, tensile strength (tensile yield strength), tensile elongation (tensile breaking elongation, tensile breaking elongation), impact resistance (Charpy impact strength, falling weight impact strength), flatness, etc. The function stored in the function storage unit 13 is stored for any one or a plurality of these evaluation target physical properties. The above-mentioned physical properties to be evaluated may be measured by commonly adopting an appropriate test method defined in a standard such as JIS. For example, the tensile elongation is measured in accordance with the standard of the tensile test for rigid polyvinyl chloride pipes defined in JIS K 6741: 1999, and the Charpy impact strength is measured by “plastics” defined in JIS K 7111-1: 2012. What is necessary is just to measure in accordance with the test method defined in “How to obtain Charpy impact characteristics”.

なお、関数記憶部13に記憶される関数は、様々な使用条件及び使用年数の複数のサンプルについて、合成樹脂製配管部材の外側表面の基準色に対する色空間における色差と合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率、又は、合成樹脂製配管部材の外側表面の基準色に対する色空間における明度の差と合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率の測定を行うことによって予め求められる。   In addition, the function memorize | stored in the function memory | storage part 13 is a color difference in the color space with respect to the reference | standard color of the outer surface of a synthetic resin piping member, and the synthetic resin piping member about the several use condition and several years of use years The physical property retention ratio with respect to the reference value of the evaluation target physical property, or the physical property retention ratio with respect to the reference value of the evaluation target physical property of the synthetic resin piping member and the difference in brightness in the color space with respect to the reference color of the outer surface of the synthetic resin piping member It is obtained in advance by performing measurement.

色空間としては、色差を表すことができるものであれば、任意の表色系に基づく色空間を採用することが可能である。本実施形態では、色空間の2点間の距離と肉眼での色差間との一致性が高いことから、好ましい色空間として、L*a*b*(エルスター・エースター・ビースター)表色系に基づく色空間を採用している。L*a*b*表色系は、国際照明委員会(CIE)によって規格化された表色系(CIE S 014−4/E:2007)であり、明度をL*で、色相と彩度を表す色度をa*とb*で表している。L*a*b*表色系では、L*の数値が高いほど白く、低いほど黒くなる。また、+a*が赤方向、−a*が緑方向、+b*が黄色方向、−b*が青方向を示しており、数値の絶対値が大きくなるほど鮮やかな色に、ゼロに近くなるほどくすんだ色になる。L*a*b*表色系は日本工業規格では、JIS Z8781−4:2013に規定されている。L*a*b*表色系以外では、例えば、L*C*h表色系、JIS Z8781−5:2013に規定されているL*u*v*表色系(CIE S 014−5/E:2009)などを色空間として採用することが可能である。なお、L*C*h表色系では、明度をL*、彩度をC*、色相角をhで表している。   As the color space, a color space based on an arbitrary color system can be adopted as long as it can express a color difference. In the present embodiment, since the coincidence between the distance between two points in the color space and the color difference with the naked eye is high, the L * a * b * (Elster / Aster / Bearster) color specification is preferred as the preferred color space. A color space based on the system is adopted. The L * a * b * color system is a color system (CIE S 014-4 / E: 2007) standardized by the International Commission on Illumination (CIE), with lightness of L *, hue and saturation. The chromaticity representing is represented by a * and b *. In the L * a * b * color system, the higher the L * value, the whiter the color, and the lower the L * value, the blacker. Also, + a * indicates the red direction, -a * indicates the green direction, + b * indicates the yellow direction, and -b * indicates the blue direction. The larger the absolute value of the numerical value, the brighter the color, the closer to zero Become a color. The L * a * b * color system is defined in JIS Z8781-4: 2013 in the Japanese Industrial Standard. Other than the L * a * b * color system, for example, the L * C * h color system, the L * u * v * color system specified in JIS Z8781-5: 2013 (CIE S 014-5 / E: 2009) can be used as the color space. In the L * C * h color system, lightness is represented by L *, saturation is represented by C *, and hue angle is represented by h.

入力部15は、測色計21によって測定された色に関する情報を入力するために設けられており、測色計21によって測定された色に関するデータを手作業で入力するためのキーボードなどの入力装置によって構成されてもよく、測色計21によって測定されたデータをケーブル(図示せず)などを介して直接的に取り込むための接続インターフェースによって構成されてもよい。測色計21は、配管部材劣化診断装置11の一部として形成されていてもよく、別体の装置として形成されていてもよい。   The input unit 15 is provided for inputting information on the color measured by the colorimeter 21, and an input device such as a keyboard for manually inputting data on the color measured by the colorimeter 21. Or a connection interface for directly capturing data measured by the colorimeter 21 via a cable (not shown) or the like. The colorimeter 21 may be formed as a part of the piping member deterioration diagnosis device 11 or may be formed as a separate device.

なお、測色計21は、合成樹脂製の配管部材の外側表面に照射した光の反射光に基づいて、配管部材の外側表面の色を測定する。測色計21による色の測定は、SCI方式で行ってもよく、SCE方式で行ってもよいが、SCI方式とSCE方式とを切り換えられるようになっていることが好ましい。SCI方式では、配管部材の外側表面での正反射光を含めた反射光に基づいて色の測定が行われ、SCE方式では、配管部材の外側表面での反射光から正反射光を除去して色の測定が行われる。また、測色計21は、色空間(好ましくはL*a*b*表色系に基づく色空間)における座標値として、測定された色に関する情報を出力するように構成されている。   The colorimeter 21 measures the color of the outer surface of the piping member based on the reflected light of the light irradiated on the outer surface of the synthetic resin piping member. The color measurement by the colorimeter 21 may be performed by the SCI method or the SCE method, but it is preferable that the SCI method and the SCE method can be switched. In the SCI method, color measurement is performed based on reflected light including regular reflection light on the outer surface of the piping member. In the SCE method, specular reflection light is removed from the reflected light on the outer surface of the piping member. A color measurement is made. The colorimeter 21 is configured to output information about the measured color as coordinate values in a color space (preferably a color space based on the L * a * b * color system).

物性保持率演算部17は、中央演算装置(CPU)とROMやRAMなどの記憶装置とによって構成されることができ、記憶装置に記憶された演算プログラムに従い、関数記憶部13に記憶された、評価対象物性に関する物性保持率と色差との相関関係を表す関数及び評価対象物性に関する物性保持率と明度の差との相関関係を表す関数の一方又は両方を用いて、測色計21によって測定されて入力部15から入力された配管部材の色に関する情報から、評価対象物性に関する物性保持率を推測する。物性保持率演算部17は、配管部材の色に関する情報から、複数の評価対象物性について物性保持率を推測することもでき、この場合には、例えば、推測した複数の評価対象物性のうち物性保持率が最も低い値のものについて、予め定められた数値以下となったときに、劣化して更新時期が到来したと判断することができる。物性保持率演算部17は、さらに、推測された物性保持率に基づいて、配管部材の劣化度又は交換時期を決定することが好ましい。   The physical property retention ratio calculation unit 17 can be configured by a central processing unit (CPU) and a storage device such as a ROM or a RAM, and is stored in the function storage unit 13 in accordance with a calculation program stored in the storage device. Measured by the colorimeter 21 using one or both of a function representing the correlation between the physical property retention rate and the color difference regarding the physical property to be evaluated and a function representing the correlation between the physical property retention rate and the lightness difference regarding the physical property to be evaluated. From the information regarding the color of the piping member input from the input unit 15, the physical property retention rate regarding the physical property to be evaluated is estimated. The physical property retention ratio calculation unit 17 can also estimate the physical property retention ratio for a plurality of evaluation target physical properties from information on the color of the piping member. In this case, for example, the physical property retention among the estimated plurality of evaluation target physical properties When the value of the rate is the lowest, it can be determined that the update time has arrived due to deterioration when the rate falls below a predetermined numerical value. It is preferable that the physical property retention ratio calculating unit 17 further determines the deterioration degree or replacement time of the piping member based on the estimated physical property retention ratio.

色空間としてL*a*b*表色系が採用されており、関数記憶部13に色差と物性保持率との相関関係を表す関数が記憶されている場合、基準時における合成樹脂製配管部材の外側表面の色の色空間での座標がR(L,a,b)、測定された合成樹脂製配管部材の外側表面の色の色空間での座標がM(L,a,b)とすると、物性保持率演算部17は、まず、以下の式により色差ΔE*abを求める。
(ただし、ΔL=L−L、Δa=a−a、Δb=b−b
When the L * a * b * color system is adopted as the color space and a function representing the correlation between the color difference and the physical property retention rate is stored in the function storage unit 13, a synthetic resin piping member at the reference time The coordinate in the color space of the color of the outer surface of R is L (L 0 , a 0 , b 0 ), and the coordinate in the color space of the color of the outer surface of the measured synthetic resin pipe member is M (L 1 , a 1 , b 1 ), the physical property retention ratio calculation unit 17 first obtains the color difference ΔE * ab by the following equation.
(However, ΔL = L 1 −L 0 , Δa = a 1 −a 0 , Δb = b 1 −b 0 )

さらに、物性保持率演算部17は、関数記憶部13に記憶された関数を用いて、このようにして求めた色差ΔE*abに対応する物性保持率を求め、これを評価対象物性の物性保持率の推定値として、表示部19に表示する。また、物性保持率演算部17は、必要に応じて、推定された物性保持率に基づいて、合成樹脂製配管部材の劣化度又は交換時期を決定し、これを表示部19に表示してもよい。表示部19は、液晶画面やモニターによって構成することができる。   Further, the physical property retention rate calculating unit 17 obtains a physical property retention rate corresponding to the color difference ΔE * ab obtained in this manner using the function stored in the function storage unit 13, and obtains the physical property retention of the evaluation target physical property. It displays on the display part 19 as an estimated value of a rate. In addition, the physical property retention rate calculating unit 17 determines the deterioration degree or replacement time of the synthetic resin piping member based on the estimated physical property retention rate as necessary, and displays this on the display unit 19. Good. The display unit 19 can be configured by a liquid crystal screen or a monitor.

関数記憶部13に明度の差と物性保持率との相関関係を表す関数が記憶されている場合、物性保持率演算部17は、式ΔL*=L−Lにより明度の差ΔL*を求めた後、関数記憶部13に記憶された関数を用いて、求めた明度の差ΔLに対応する物性保持率を求め、これを評価対象物性の物性保持率の推定値として、表示部19に表示する。また、物性保持率演算部17は、必要に応じて、推定された物性保持率に基づいて、合成樹脂製配管部材の劣化度又は交換時期を決定し、これを表示部19に表示する。 When the function storage unit 13 stores a function representing the correlation between the lightness difference and the physical property retention rate, the physical property retention rate calculation unit 17 calculates the lightness difference ΔL * by the expression ΔL * = L 1 −L 0. After obtaining, using the function stored in the function storage unit 13, the physical property retention rate corresponding to the obtained brightness difference ΔL is obtained, and this is used as an estimated value of the physical property retention rate of the physical property to be evaluated on the display unit 19. indicate. In addition, the physical property retention ratio calculation unit 17 determines the deterioration degree or replacement time of the synthetic resin piping member based on the estimated physical property retention ratio as necessary, and displays this on the display unit 19.

次に、図2から図5を用いて、関数記憶部13に記憶される相関関係を表す関数について説明する。   Next, a function representing a correlation stored in the function storage unit 13 will be described with reference to FIGS.

合成樹脂は、耐腐食性や耐薬品性に優れており、配管部材材料として使用されるが、紫外線や熱による劣化や管表面の荒れや微小クラックの発生などによって、物性の低下を起こすことが知られている。本出願人は、合成樹脂によって形成される配管部材について、未使用状態時の色、製造販売会社、内部を流通させる流体の種類、使用場所(屋外か屋内か)、使用年数などに関わらず、合成樹脂製の配管部材の外側表面の色の変化と物性の低下の程度(物性保持率)との間に相関関係があることを見出した。樹脂製配管部材の色の変化が物性の低下に影響を与える原因としては以下が考えられる。   Synthetic resins are excellent in corrosion resistance and chemical resistance, and are used as piping member materials. However, physical properties may deteriorate due to deterioration due to ultraviolet rays or heat, rough pipe surfaces, or microcracks. Are known. Applicant, regarding piping members formed of synthetic resin, regardless of the color when not in use, the manufacturing and sales company, the type of fluid that circulates inside, the place of use (outdoor or indoor), the age of use, etc. It has been found that there is a correlation between the change in the color of the outer surface of the piping member made of synthetic resin and the degree of physical property deterioration (physical property retention). The following can be considered as the cause of the change in the color of the resin piping member affecting the deterioration of the physical properties.

(1)ポリエン化
例えば、耐食性や耐薬品性に優れている硬質ポリ塩化ビニル(PVC)は、熱や紫外線の影響により、いわゆるポリエン化を起こすことが分かっている。このようなポリ塩化ビニルのポリエン化は、紫外線や熱などによって、図2に示されているように、塩酸が脱離して、ポリエンと呼ばれる共役二重結合連鎖構造を生じることによって起こる。また、ポリフッ化ビニリデン(PVDF)でも、熱などによって、図3に示されているように、フッ化水素が離脱して、ポリエン(共役二重結合連鎖)構造を生じることが知られている。このように、ポリ塩化ビニル、ポリフッ化ビニリデンなどのハロゲン化ビニル系ポリマーでは、脱ハロゲン化水素反応によって、ポリエン化が生じる。さらに、鉛系安定剤(硫酸鉛)がポリ塩化ビニルに配合されている場合、安定剤が消費されて硫化鉛になると、ポリエンとキレートが形成されることが知られている。
(1) Polyeneization For example, it has been found that hard polyvinyl chloride (PVC) excellent in corrosion resistance and chemical resistance causes so-called polyeneization under the influence of heat and ultraviolet rays. Such polyeneization of polyvinyl chloride occurs as a result of elimination of hydrochloric acid by ultraviolet rays, heat, or the like, resulting in a conjugated double bond chain structure called polyene, as shown in FIG. In addition, it is known that polyvinylidene fluoride (PVDF) also generates polyene (conjugated double bond chain) structure by releasing hydrogen fluoride due to heat or the like as shown in FIG. Thus, in vinyl halide polymers such as polyvinyl chloride and polyvinylidene fluoride, polyeneization occurs due to the dehydrohalogenation reaction. Furthermore, it is known that when a lead-based stabilizer (lead sulfate) is blended in polyvinyl chloride, a polyene and a chelate are formed when the stabilizer is consumed to lead sulfide.

このようにして生じるポリエン構造の連鎖は、長いほど長波長の光を吸収することが一般的に知られており、ポリエンの連鎖が8個以下の場合には、紫外線が吸収されるが、ポリエンの連鎖が8個以上になると可視光を吸収するようになる性質を有する。詳細には、ポリエンの連鎖が8個になると、400nmの波長の光(青紫)を吸収して、赤と緑を反射するようになるので、黄色(青紫の補色)が強まって見えるようになり、さらに8〜12個のポリエンの連鎖が混在するようになると、400〜500nmの波長(紫〜緑)を吸収するために、黄色〜赤色が強まって見えるようになり、さらに長いポリエンの連鎖が混ざった状態になると、ほぼ全ての可視光波長が吸収されるようになり、黒色に見えるようになる。すなわち、ポリエン化の進行に伴って色が変化する。   It is generally known that the longer the chain of polyene structure produced in this way, the longer wavelength light is absorbed. When the number of polyene chains is 8 or less, ultraviolet rays are absorbed. When there are 8 or more chains, the visible light is absorbed. Specifically, when there are 8 polyene chains, it absorbs light of 400nm wavelength (blue purple) and reflects red and green, so yellow (complementary color of blue purple) appears to be strengthened. When 8 to 12 polyene chains are mixed, yellow to red colors appear to absorb from 400 to 500 nm wavelength (purple to green), and longer polyene chains are formed. When mixed, almost all visible light wavelengths are absorbed and appear black. That is, the color changes with the progress of polyeneization.

一方、ポリエン構造になることで、樹脂は、例えばポリ塩化ビニルの構造に比べると硬いが脆い性質を有するようになるので、ポリエン構造が生成されると、引張伸び保持率やシャルピー衝撃強さなどの物性が低下する。したがって、ポリエン構造の生成により配管部材の外側表面の変色が生じると、引張伸び保持率やシャルピー衝撃強さなどの物性が低下していると予測することができる。   On the other hand, since the resin becomes harder than the structure of polyvinyl chloride, for example, it becomes harder and more brittle, so when the polyene structure is generated, tensile elongation retention rate, Charpy impact strength, etc. The physical properties of the are reduced. Therefore, when discoloration of the outer surface of the piping member occurs due to the generation of the polyene structure, it can be predicted that physical properties such as tensile elongation retention rate and Charpy impact strength are lowered.

(2)酸化
また、ポリ塩化ビニルやポリプロピレン(PP)、ポリエチレン(PE)等の汎用樹脂は、熱や紫外線によって酸化することも一般的に知られている。樹脂製品表面は、酸化すると、荒れて光を散乱させることで白っぽく見えるようになる。この状態では、樹脂製品は、元の構造のときと比べて硬いが脆い性質を有するようになるとともに、表面に生じた凹凸によるノッチ効果によって破損しやすくなる。したがって、酸化により配管部材の外側表面の変色が生じると、引張伸び保持率やシャルピー衝撃強さなどの物性が低下していると予測することができる。
(2) Oxidation It is also generally known that general-purpose resins such as polyvinyl chloride, polypropylene (PP), and polyethylene (PE) are oxidized by heat or ultraviolet rays. When the surface of the resin product is oxidized, the surface of the resin product becomes rough and scatters light so that it looks whitish. In this state, the resin product has a hard but brittle property as compared with the original structure, and is easily damaged by the notch effect caused by the unevenness generated on the surface. Therefore, when discoloration of the outer surface of the piping member occurs due to oxidation, it can be predicted that physical properties such as tensile elongation retention rate and Charpy impact strength are reduced.

(3)着色剤や添加剤の脱離
図4(a)に示されているように、配管部材23に使用される合成樹脂材料中には、着色剤として用いられる顔料や添加剤が粒子25として存在している。これら着色剤や添加剤の粒子25が配管部材23の外側表面への紫外線や雨風などによって脱離すると、図4(b)に示されているように、微細孔(ポーラス)27が発生する。この結果、着色剤の離脱による色抜けが起こる。また、微細孔27の発生により、配管部材23の外側表面に微細な凹凸が形成され、光が散乱することにより、白っぽく見えるようになる。一方、配管部材23の外側表面に凹凸が形成されると、これがノッチとして機能し、引張力が作用したときに破断が生じやすくなる。よって、着色剤や添加剤の離脱により配管部材23の外側表面の変色が生じると、引張伸び率などの物性が低下していると予測することができる。
(3) Detachment of colorant and additive As shown in FIG. 4A, in the synthetic resin material used for the piping member 23, pigments and additives used as a colorant are particles 25. Exist as. When these colorant and additive particles 25 are desorbed by ultraviolet rays, rain winds, or the like on the outer surface of the piping member 23, fine pores (porous) 27 are generated as shown in FIG. As a result, color loss due to separation of the colorant occurs. Further, due to the generation of the fine holes 27, fine irregularities are formed on the outer surface of the piping member 23, and the light is scattered, so that it looks whitish. On the other hand, when unevenness is formed on the outer surface of the piping member 23, this functions as a notch, and breakage tends to occur when a tensile force is applied. Therefore, when discoloration of the outer surface of the piping member 23 occurs due to the detachment of the colorant or additive, it can be predicted that the physical properties such as the tensile elongation rate are reduced.

(4)微小クラックの成長
合成樹脂材料からの配管部材23の成形時には、表面に微小な凹凸が形成される。図5(a)に示されているように、この凹凸に水滴が入り込み、光が照射されると、レンズ効果で、その部分だけ劣化が進行し、図5(b)に示されているように、凹凸が深く成長して微小クラックが形成されることとなる。また、凹凸の成長により、上述の着色剤や添加剤の脱離も促進される。この結果、凹凸の成長で光が散乱して白っぽく見えるようなったり、着色剤の離脱により色抜けが生じたりする。一方、配管部材23の外側表面に微小クラックが形成されると、これがノッチとして機能し、引張力が作用したときに破断が生じやすくなる。よって、微小クラックの成長により配管部材23の外側表面の変色が生じると、引張伸び率などの物性が低下していると予測することができる。
(4) Growth of micro cracks When molding the piping member 23 from a synthetic resin material, micro unevenness is formed on the surface. As shown in FIG. 5 (a), when water droplets enter the irregularities and are irradiated with light, the lens effect causes deterioration of only that portion, as shown in FIG. 5 (b). In addition, the unevenness grows deep and micro cracks are formed. In addition, the growth of the unevenness promotes the detachment of the above-described colorant and additive. As a result, light is scattered due to the growth of the unevenness and looks whitish, or color loss occurs due to separation of the colorant. On the other hand, if a micro crack is formed on the outer surface of the piping member 23, this functions as a notch, and breakage is likely to occur when a tensile force is applied. Therefore, when the discoloration of the outer surface of the piping member 23 occurs due to the growth of the microcracks, it can be predicted that the physical properties such as the tensile elongation rate are reduced.

上記のような考察に基づいて、樹脂製の配管部材の第一の例としての約40サンプルのポリ塩化ビニル製の管について、基準色からの変化の程度と評価対象物性の低下の程度(物性保持率)との相関を調べたところ、図6から図9に示されているように、優れた相関があることが確認された。なお、図6から図9に示されている相関関係では、異なる製造会社から販売されている、ポリ塩化ビニル製の呼び径20mm、25mm、40mm、50mm、75mm、100mm、125mm、150mm、200mmの一般管と呼び径150mm、300mmの薄肉管について、使用された流体が空気、純水、一般排水、硫酸、硝酸、フッ酸、酸性塩素水、ポリ塩化アルミニウム、酸性排水、水酸化ナトリウム、次亜塩素酸ナトリウム、使用場所が屋外、屋内、使用年数が0(未使用)から30年の範囲のものをサンプルとした。   Based on the above considerations, the degree of change from the reference color and the degree of deterioration in physical properties to be evaluated (physical properties) of about 40 samples of polyvinyl chloride pipes as a first example of resin piping members When the correlation with the retention rate was examined, it was confirmed that there was an excellent correlation as shown in FIGS. In addition, in the correlation shown in FIGS. 6 to 9, the nominal diameters 20 mm, 25 mm, 40 mm, 50 mm, 75 mm, 100 mm, 125 mm, 150 mm, and 200 mm made of polyvinyl chloride, which are sold by different manufacturers, are used. For thin tubes with a nominal diameter of 150 mm and 300 mm, the fluid used is air, pure water, general wastewater, sulfuric acid, nitric acid, hydrofluoric acid, acidic chlorine water, polyaluminum chloride, acidic wastewater, sodium hydroxide, hypoxia Samples were sodium chlorate, used at outdoors, indoors, and used for 0 years (unused) to 30 years.

図6及び図7は、ポリ塩化ビニル製の管の外側表面の基準色に対する色差ΔE*abとポリ塩化ビニル製の管(パイプ)の引張伸び率(引張破壊伸び率、引張破断伸び率)の基準値に対する引張伸び保持率との相関関係を表すグラフであり、管の外側表面の色の変化の程度の指標としてL*a*b*表色系における色差ΔE*abが使用され、評価対象物性として引張伸び率が使用されている。ポリ塩化ビニル製の管の外側表面の基準色としては未使用状態の製品の色を用い、引張伸び率の基準値としては未使用状態の製品の引張伸び率の値を用いた。また、図6では、ポリ塩化ビニル製の管の外側表面の色が測色計12によってSCI方式で測定されており、図7では、ポリ塩化ビニル製の管の外側表面の色が測色計12によってSCE方式で測定されている。なお、引張伸び率(引張破壊伸び率、引張破断伸び率)は、JIS K 6741:1999に定められる引張試験方法を採用した。   6 and 7 show the difference in color difference ΔE * ab relative to the reference color of the outer surface of the polyvinyl chloride tube and the tensile elongation rate (tensile elongation at break, tensile elongation rate) of the tube (pipe) made of polyvinyl chloride. It is a graph showing the correlation with the tensile elongation retention rate with respect to the reference value, and the color difference ΔE * ab in the L * a * b * color system is used as an index of the degree of color change of the outer surface of the tube, and is the object of evaluation Tensile elongation is used as a physical property. The color of the unused product was used as the reference color of the outer surface of the polyvinyl chloride tube, and the value of the tensile elongation of the unused product was used as the reference value of the tensile elongation. In FIG. 6, the color of the outer surface of the polyvinyl chloride tube is measured by the SCI method by the colorimeter 12, and in FIG. 7, the color of the outer surface of the polyvinyl chloride tube is the colorimeter. 12 is measured by the SCE method. In addition, the tensile test method defined by JISK6741: 1999 was employ | adopted for the tensile elongation rate (tensile breaking elongation rate, tensile breaking elongation rate).

図6に示されているように、色差をx、引張伸び保持率をyとしたとき、SCI方式でのポリ塩化ビニル製の管の外側表面の色差と引張伸び保持率との相関係数R=0.9以上の近似関数が得られた。また、図7に示されているように、色差をx、引張伸び保持率をyとしたとき、SCE方式でのポリ塩化ビニル製の管の外側表面の色差と引張伸び保持率との相関係数R=0.8以上の近似関数が得られた。 As shown in FIG. 6, when the color difference is x and the tensile elongation retention rate is y, the correlation coefficient R between the color difference of the outer surface of the polyvinyl chloride tube and the tensile elongation retention rate in the SCI method. An approximate function of 2 = 0.9 or more was obtained. Further, as shown in FIG. 7, when the color difference is x and the tensile elongation retention is y, the correlation between the color difference of the outer surface of the polyvinyl chloride tube and the tensile elongation retention in the SCE method. An approximate function with a number R 2 = 0.8 or more was obtained.

例えば、合成樹脂製の管の表面状態に関係なく素材そのものの色から物性保持率を推測する場合には、図6に示されている相関関係から得られる近似関数を、合成樹脂製の管の表面状態も加味した目視に近い色から物性保持率を推測する場合には、図7に示されている相関関係から得られる近似関数を関数記憶部13に記憶すればよい。   For example, when estimating the physical property retention rate from the color of the material itself regardless of the surface state of the synthetic resin tube, the approximate function obtained from the correlation shown in FIG. When the physical property retention rate is estimated from a color that is close to the visual appearance in consideration of the surface state, an approximate function obtained from the correlation shown in FIG. 7 may be stored in the function storage unit 13.

図8及び図9は、ポリ塩化ビニル製の管の外側表面の基準色に対する明度の差ΔL*とポリ塩化ビニル製の管の引張伸び率の基準値に対する引張伸び保持率との相関関係を表すグラフであり、管の外側表面の色の変化の程度の指標としてL*a*b*表色系における明度の差ΔL*が使用され、評価対象物性として引張伸び率が使用されている。ポリ塩化ビニル製の管の外側表面の基準色としては未使用状態の製品の色を用い、引張伸び率の基準値としては未使用状態の製品の引張伸び率の値を用いた。また、図8では、ポリ塩化ビニル製の管の外側表面の色の明度が測色計12によってSCI方式で測定されており、図9では、ポリ塩化ビニル製の管の外側表面の色の明度が測色計12によってSCE方式で測定されている。   FIG. 8 and FIG. 9 show the correlation between the difference in lightness ΔL * with respect to the reference color of the outer surface of the polyvinyl chloride tube and the tensile elongation retention rate with respect to the reference value of the tensile elongation rate of the polyvinyl chloride tube. In this graph, the lightness difference ΔL * in the L * a * b * color system is used as an indicator of the degree of color change on the outer surface of the tube, and the tensile elongation is used as a physical property to be evaluated. The color of the unused product was used as the reference color of the outer surface of the polyvinyl chloride tube, and the value of the tensile elongation of the unused product was used as the reference value of the tensile elongation. In FIG. 8, the color brightness of the outer surface of the polyvinyl chloride tube is measured by the SCI method by the colorimeter 12, and in FIG. 9, the color brightness of the outer surface of the polyvinyl chloride tube. Is measured by the colorimeter 12 by the SCE method.

図8に示されているように、明度の差をx、引張伸び保持率をyとしたとき、SCI方式でのポリ塩化ビニル製の管の外側表面の色の明度の差と引張伸び保持率との相関係数R=0.8以上の近似関数が得られた。また、図9に示されているように、明度の差をx、引張伸び保持率をyとしたとき、SCE方式でのポリ塩化ビニル製の管の外側表面の色の明度の差と引張伸び保持率との相関係数R=0.8以上の近似関数が得られた。 As shown in FIG. 8, when the difference in lightness is x and the tensile elongation retention rate is y, the difference in lightness and the tensile elongation retention rate of the color of the outer surface of the polyvinyl chloride tube in the SCI method. An approximation function with a correlation coefficient R 2 = 0.8 or more was obtained. Further, as shown in FIG. 9, when the difference in lightness is x and the tensile elongation retention rate is y, the difference in lightness and the tensile elongation of the color of the outer surface of the polyvinyl chloride tube in the SCE method are used. An approximate function having a correlation coefficient R 2 = 0.8 or more with the retention rate was obtained.

この場合も色差の場合と同様に、例えば、合成樹脂製の管の表面状態に関係なく素材そのものの色から物性保持率を推測する場合には、図8に示されている相関関係から得られる近似関数を、合成樹脂製の管の表面状態も加味した目視に近い色から物性保持率を推測する場合には、図9に示されている相関関係から得られる近似関数を関数記憶部13に記憶すればよい。   In this case, as in the case of the color difference, for example, when the physical property retention rate is estimated from the color of the material itself regardless of the surface state of the tube made of synthetic resin, it is obtained from the correlation shown in FIG. In the case of estimating the physical property retention rate from the color near the visual appearance including the surface state of the tube made of synthetic resin, the approximate function obtained from the correlation shown in FIG. Just remember.

また、本出願人は、ポリ塩化ビニル製の管について、外側表面の色の明度L*と引張伸び率の基準値に対する引張伸び率(引張破壊伸び率、引張破断伸び率)との相関関係を検討したところ、図10及び図11に示されるように相関関係があることを見出した。図10及び図11に示されている相関関係は、図6から図9と同様に、異なる製造会社から販売されている、ポリ塩化ビニル製の呼び径20mm、25mm、40mm、50mm、75mm、100mm、125mm、150mm、200mmの一般管と呼び径150mm、300mmの薄肉管について、使用された流体が空気、純水、一般排水、硫酸、硝酸、フッ酸、酸性塩素水、ポリ塩化アルミニウム、酸性排水、水酸化ナトリウム、次亜塩素酸ナトリウム、使用場所が屋外、屋内、使用年数が0(未使用)から30年の範囲のものをサンプルとしたものである。また、引張伸び率の基準値としては同じ製品の未使用品の引張伸び率の値を用いた。図10では、ポリ塩化ビニル製の管の外側表面の色の明度が測色計12によってSCI方式で測定されており、図11では、ポリ塩化ビニル製の管の外画側表面の色の明度が測色計12によってSCE方式で測定されている。   In addition, for the pipe made of polyvinyl chloride, the present applicant has obtained a correlation between the lightness L * of the color of the outer surface and the tensile elongation (tensile elongation at break, tensile elongation at break) with respect to the reference value of tensile elongation. Upon examination, it was found that there is a correlation as shown in FIG. 10 and FIG. The correlation shown by FIG.10 and FIG.11 is the nominal diameter 20mm, 25mm, 40mm, 50mm, 75mm, 100mm made from a polyvinyl chloride sold from a different manufacture company similarly to FIGS. 6-9. , 125mm, 150mm, 200mm general pipes and thin pipes with nominal diameters of 150mm, 300mm, the fluid used is air, pure water, general drainage, sulfuric acid, nitric acid, hydrofluoric acid, acidic chlorine water, polyaluminum chloride, acidic drainage Samples were sodium hydroxide, sodium hypochlorite, used outdoors, indoors, and used for 0 years (unused) to 30 years. Moreover, the value of the tensile elongation rate of the unused product of the same product was used as the reference value of the tensile elongation rate. In FIG. 10, the lightness of the color of the outer surface of the polyvinyl chloride tube is measured by the colorimeter 12 by the SCI method. In FIG. 11, the lightness of the color of the outer surface of the polyvinyl chloride tube is measured. Is measured by the colorimeter 12 by the SCE method.

図10に示されているように、明度をx、引張伸び保持率をyとしたとき、SCI方式でのポリ塩化ビニル製の管の外側表面の色の明度と引張伸び保持率との相関係数R=0.8以上の近似関数が得られた。また、図11に示されているように、明度をx、引張伸び保持率をyとしたとき、SCE方式でのポリ塩化ビニル製の管の色の明度と引張伸び保持率との相関係数R=0.8以上の近似関数が得られた。したがって、このようにして求めた近似関数を関数記憶部13に記憶すれば、色の変化の程度ではなく、ポリ塩化ビニル製の管の明度の絶対値から測定時の引張伸び保持率を推測することも可能となる。 As shown in FIG. 10, when the lightness is x and the tensile elongation retention rate is y, the correlation between the color brightness of the outer surface of the polyvinyl chloride tube and the tensile elongation retention rate in the SCI method. An approximate function with a number R 2 = 0.8 or more was obtained. Further, as shown in FIG. 11, when the lightness is x and the tensile elongation retention is y, the correlation coefficient between the color brightness of the polyvinyl chloride tube and the tensile elongation retention in the SCE method. An approximate function of R 2 = 0.8 or more was obtained. Therefore, if the approximate function obtained in this way is stored in the function storage unit 13, the tensile elongation retention rate at the time of measurement is estimated from the absolute value of the lightness of the polyvinyl chloride tube, not the degree of color change. It is also possible.

同様に、樹脂製の配管部材の第二の例としてのポリプロピレン製のバルブでも、図12から図17に示されているように、基準色からの変化の程度と評価対象物性の低下の程度(物性保持率)との間に相関があることが確認された。なお、図12から図17に示されている相関関係では、紫外線照射機による促進試験で得られた異なる紫外線照射時間のポリプロピレン製のバルブをサンプルとした。   Similarly, in a polypropylene valve as a second example of the resin piping member, as shown in FIGS. 12 to 17, the degree of change from the reference color and the degree of deterioration of physical properties to be evaluated ( It was confirmed that there is a correlation with the physical property retention ratio). In the correlation shown in FIGS. 12 to 17, polypropylene valves having different ultraviolet irradiation times obtained by the accelerated test using the ultraviolet irradiation machine were used as samples.

図12及び図13は、ポリプロピレン製のバルブの外側表面の基準色に対する色差ΔE*abとポリプロピレン製のバルブの引張伸び率(引張破壊伸び率、引張破断伸び率)の基準値に対する引張伸び保持率との相関関係を表すグラフであり、バルブの外側表面の色の変化の程度の指標としてL*a*b*表色系における色差ΔE*abが使用され、評価対象物性として引張伸び率が使用されている。ポリプロピレン製のバルブの外側表面の基準色としては未使用状態の製品の色を用い、引張伸び率の基準値としては未使用状態の製品の引張伸び率の値を用いた。また、図12では、ポリプロピレン製のバルブの外側表面の色が測色計12によってSCI方式で測定されており、図13では、ポリプロピレン製のバルブの外側表面の色が測色計12によってSCE方式で測定されている。なお、引張伸び率(引張破壊伸び率、引張破断伸び率)は、JIS K 6741:1999に定められる引張試験方法を採用した。   FIG. 12 and FIG. 13 show the color difference ΔE * ab with respect to the reference color of the outer surface of the polypropylene valve and the tensile elongation retention ratio with respect to the reference value of the tensile elongation rate (tensile breaking elongation rate, tensile breaking elongation rate) of the polypropylene valve. The color difference ΔE * ab in the L * a * b * color system is used as an index of the degree of color change on the outer surface of the bulb, and the tensile elongation is used as the physical property to be evaluated. Has been. The color of the unused product was used as the reference color of the outer surface of the polypropylene valve, and the value of the tensile elongation of the unused product was used as the reference value of the tensile elongation. In FIG. 12, the color of the outer surface of the polypropylene valve is measured by the colorimeter 12 by the SCI method, and in FIG. 13, the color of the outer surface of the polypropylene valve is measured by the colorimeter 12 by the SCE method. It is measured by. In addition, the tensile test method defined by JISK6741: 1999 was employ | adopted for the tensile elongation rate (tensile breaking elongation rate, tensile breaking elongation rate).

図12に示されているように、色差をx、引張伸び保持率をyとしたとき、SCI方式でのポリプロピレン製のバルブの外側表面の色差と引張伸び保持率との間に良好な相関関係が得られた。また、図13に示されているように、色差をx、引張伸び保持率をyとしたとき、SCE方式でのポリプロピレン製のバルブの外側表面の色差と引張伸び保持率との間に良好な相関関係が得られた。   As shown in FIG. 12, when the color difference is x and the tensile elongation retention rate is y, there is a good correlation between the color difference of the outer surface of the polypropylene valve in the SCI method and the tensile elongation retention rate. was gotten. Further, as shown in FIG. 13, when the color difference is x and the tensile elongation retention rate is y, it is good between the color difference of the outer surface of the polypropylene valve in the SCE method and the tensile elongation retention rate. Correlation was obtained.

例えば、合成樹脂製のバルブの表面状態に関係なく素材そのものの色から物性保持率を推測する場合には、図12に示されている相関関係から得られる近似関数を、合成樹脂製のバルブの表面状態も加味した目視に近い色から物性保持率を推測する場合には、図13に示されている相関関係から得られる近似関数を関数記憶部13に記憶すればよい。   For example, when estimating the physical property retention rate from the color of the material itself regardless of the surface state of the synthetic resin valve, the approximate function obtained from the correlation shown in FIG. When the physical property retention rate is estimated from a color close to the visual appearance including the surface state, an approximate function obtained from the correlation shown in FIG. 13 may be stored in the function storage unit 13.

図14及び図15は、プリプロピレン製のバルブの外側表面の基準色に対する明度の差ΔL*とポリプロピレン製のバルブの引張伸び率の基準値に対する引張伸び保持率との相関関係を表すグラフであり、バルブの外側表面の色の変化の程度の指標としてL*a*b*表色系における明度の差ΔL*が使用され、評価対象物性として引張伸び率が使用されている。ポリプロピレン製のバルブの外側表面の基準色としては未使用状態の製品の色を用い、引張伸び率の基準値としては未使用状態の製品の引張伸び率の値を用いた。また、図14では、ポリプロピレン製のバルブの外側表面の色の明度が測色計12によってSCI方式で測定されており、図15では、ポリプロピレン製のバルブの外側表面の色の明度が測色計12によってSCE方式で測定されている。   FIG. 14 and FIG. 15 are graphs showing the correlation between the difference ΔL * in lightness with respect to the reference color of the outer surface of the polypropylene valve and the tensile elongation retention ratio with respect to the reference value of the tensile elongation of the polypropylene valve. The lightness difference ΔL * in the L * a * b * color system is used as an indicator of the degree of color change on the outer surface of the bulb, and the tensile elongation is used as a physical property to be evaluated. The color of the unused product was used as the reference color of the outer surface of the polypropylene valve, and the value of the tensile elongation of the unused product was used as the reference value of the tensile elongation. In FIG. 14, the color brightness of the outer surface of the polypropylene valve is measured by the SCI method by the colorimeter 12, and in FIG. 15, the color brightness of the outer surface of the polypropylene valve is measured by the colorimeter. 12 is measured by the SCE method.

図14に示されているように、明度の差をx、引張伸び保持率をyとしたとき、SCI方式でのポリプロピレン製のバルブの外側表面の色の明度の差と引張伸び保持率との間に良好な相関関係が得られた。また、図15に示されているように、明度の差をx、引張伸び保持率をyとしたとき、SCE方式でのポリプロピレン製のバルブの外側表面の色の明度の差と引張伸び保持率との間に良好な相関関係が得られた。   As shown in FIG. 14, when the difference in lightness is x and the tensile elongation retention rate is y, the difference in lightness of the color of the outer surface of the polypropylene valve in the SCI method and the tensile elongation retention rate are as follows. A good correlation was obtained between them. Further, as shown in FIG. 15, when the difference in lightness is x and the tensile elongation retention rate is y, the difference in lightness and the tensile elongation retention rate of the color of the outer surface of the polypropylene valve in the SCE method. A good correlation was obtained.

この場合も色差の場合と同様に、例えば、合成樹脂製のバルブの表面状態に関係なく素材そのものの色から物性保持率を推測する場合には、図14に示されている相関関係から得られる近似関数を、合成樹脂製のバルブの表面状態も加味した目視に近い色から物性保持率を推測する場合には、図15に示されている相関関係から得られる近似関数を関数記憶部13に記憶すればよい。   Also in this case, as in the case of the color difference, for example, when the physical property retention rate is estimated from the color of the material itself regardless of the surface state of the valve made of synthetic resin, it is obtained from the correlation shown in FIG. In the case of estimating the physical property retention rate from a color that is close to the visual appearance, including the surface state of the synthetic resin valve, the approximate function obtained from the correlation shown in FIG. Just remember.

図16及び図17は、ポリプロピレン製のバルブの外側表面の色の明度L*とポリプロピレン製のバルブの引張伸び率の基準値に対する引張伸び保持率との相関関係を表すグラフであり、バルブの外側表面の色の変化の指標に代えて色の明度が使用され、評価対象物性として引張伸び率が使用されている。ポリプロピレン製のバルブの引張伸び率の基準値としては未使用状態の製品の引張伸び率の値を用いた。また、図16では、ポリプロピレン製のバルブの外側表面の色の明度が測色計12によってSCI方式で測定されており、図17では、ポリプロピレン製のバルブの外側表面の明度が測色計12によってSCE方式で測定されている。   FIGS. 16 and 17 are graphs showing the correlation between the lightness L * of the color of the outer surface of the polypropylene valve and the tensile elongation retention ratio with respect to the reference value of the tensile elongation ratio of the polypropylene valve. Instead of the color change index of the surface, the color brightness is used, and the tensile elongation is used as a physical property to be evaluated. As a reference value for the tensile elongation of the polypropylene valve, the value of the tensile elongation of the unused product was used. In FIG. 16, the lightness of the color of the outer surface of the polypropylene valve is measured by the SCI method using the colorimeter 12, and in FIG. 17, the lightness of the outer surface of the polypropylene valve is measured by the colorimeter 12. It is measured by the SCE method.

図16に示されているように、明度をx、引張伸び保持率をyとしたとき、SCI方式でのポリプロピレン製のバルブの外側表面の色の明度と引張伸び保持率との間に良好な相関関係が得られた。また、図17に示されているように、明度をx、引張伸び保持率をyとしたとき、SCE方式でのポリプロピレン製のバルブの外側表面の色の明度と引張伸び保持率との間に良好な相関関係が得られた。したがって、管の場合と同様に、このようにして求めた相関関係から得られた近似関数を関数記憶部13に記憶すれば、色の変化の程度ではなく、ポリプロピレン製のバルブの明度の絶対値から測定時の引張伸び保持率などの物性保持率を推測することも可能となる。   As shown in FIG. 16, when the lightness is x and the tensile elongation retention is y, it is good between the lightness of the color of the outer surface of the polypropylene valve in the SCI method and the tensile elongation retention. Correlation was obtained. Further, as shown in FIG. 17, when the lightness is x and the tensile elongation retention rate is y, the color between the lightness of the outer surface of the polypropylene valve in the SCE method and the tensile elongation retention rate is between. Good correlation was obtained. Therefore, as in the case of the tube, if the approximate function obtained from the correlation obtained in this way is stored in the function storage unit 13, the absolute value of the lightness of the polypropylene valve, not the degree of color change. Therefore, it is possible to infer physical property retention such as tensile elongation retention during measurement.

なお、図6から図11の説明に関連して記載した上記近似関数は、一例であり、例えばサンプル数を増やした場合、特定の条件下の配管部材、例えば特定の合成樹脂材料によって形成された配管部材に限定した場合、引張伸び保持率以外を物性保持率とした場合などには、異なる近似関数が得られる可能性がある。その場合には、得られた近似関数を関数記憶部13に記憶して使用することができる。すなわち、ポリ塩化ビニルやポリプロピレン以外の樹脂材料から形成された管やバルブ以外の配管部材、引張伸び保持率以外の物性保持率でも、サンプル等から相関関係を表す近似関数を得られれば、物性保持率を推測することができる。   The approximate function described in connection with the description of FIGS. 6 to 11 is an example. For example, when the number of samples is increased, the approximate function is formed by a piping member under a specific condition, for example, a specific synthetic resin material. When it is limited to the piping member, there is a possibility that different approximate functions may be obtained when other than the tensile elongation retention rate is used as the physical property retention rate. In that case, the obtained approximate function can be stored in the function storage unit 13 and used. In other words, pipes made of resin materials other than polyvinyl chloride and polypropylene, pipe members other than valves, and physical property retention ratios other than tensile elongation retention ratios, as long as an approximate function representing a correlation can be obtained from a sample, etc. The rate can be guessed.

上述したように、評価対象物性の低下の原因と考えられるポリエン化が生じて、ポリエンの連鎖が8個になると、400nmの波長(青紫)の光を吸収して赤と緑の光を反射するようになる。その結果、黄色(青紫の補色)が強まって見えるようになり、L*a*b*表色系のb*軸がプラスになる方向に色が変化する。さらに、8〜12個のポリエンの連鎖が混在するようになると、400〜500nmの波長(紫〜緑)の光を吸収する。この結果、黄色〜赤色が強まって見えるようになり、b*軸の変化に加えてL*a*b*表色系のa*軸がプラスになる方向に色が変化する。さらに長いポリエン構造の連鎖が混在した状態になると、ほぼ全ての可視光波長が吸収されるようになって、黒色に見えるようになり、L*a*b*表色系のL*軸がゼロに近づく方向に色が変化する。その他のものは、白く見える方向に変化するので、L*軸が100に近づく方向に変化する。また、同様に評価対象物性の低下の原因と考えられる酸化が生じたり、着色剤や添加剤の脱離、微小クラックの成長の結果、配管部材の外側表面に凹凸が形成されて光が拡散されやすくなったり、着色剤が離脱したりすると、白っぽく見えるようになる。その結果、合成樹脂製配管部材の外側表面の色は、L*a*b*表色系においてL*軸が100に近づく方向に変化する。   As described above, when polyene formation, which is considered to be a cause of deterioration in physical properties to be evaluated, occurs, and when polyene chains become eight, light of 400 nm wavelength (blue-violet) is absorbed and red and green light are reflected. It becomes like this. As a result, yellow (complementary color of blue-violet) appears to be strengthened, and the color changes in a direction in which the b * axis of the L * a * b * color system becomes positive. Furthermore, when a chain of 8 to 12 polyenes is mixed, light having a wavelength of 400 to 500 nm (purple to green) is absorbed. As a result, yellow to red appear to be intensified, and the color changes in a direction in which the a * axis of the L * a * b * color system becomes positive in addition to the change of the b * axis. When a long chain of polyene structure is mixed, almost all visible light wavelengths are absorbed and appear black, and the L * axis of the L * a * b * color system is zero. The color changes in the direction approaching. Others change in a direction that looks white, so that the L * axis changes in a direction approaching 100. Similarly, oxidation, which is considered to be a cause of deterioration in physical properties of the object to be evaluated, is caused by the detachment of colorants and additives, and the growth of microcracks, resulting in the formation of irregularities on the outer surface of the piping member and the diffusion of light. If it becomes easier or the colorant is removed, it will appear whitish. As a result, the color of the outer surface of the synthetic resin piping member changes in a direction in which the L * axis approaches 100 in the L * a * b * color system.

このように、L*a*b*表色系を用いると、物性の変化に影響を与える色の変化を検出しやすくなることから、関数記憶部13に記憶される相関関係を表す関数の色に関する情報は、L*a*b*表色系で表現することが好ましい。   As described above, when the L * a * b * color system is used, it is easy to detect a color change that affects a change in physical properties. Therefore, the function color representing the correlation stored in the function storage unit 13 is used. It is preferable to express the information on the L * a * b * color system.

次に、図18を参照して、SCI方式で測定した、合成樹脂製配管部材の外側表面の基準色に対する色差ΔE*abと、合成樹脂製配管部材の引張伸び率の基準値に対する引張伸び保持率との相関関係を表す関数を関数記憶部13に記憶する場合を例にして、図1に示されている配管部材劣化診断装置11を用いた劣化診断の手順を説明する。なお、色空間として、L*a*b*表色系に基づく色空間を用いるものとする。   Next, referring to FIG. 18, the color difference ΔE * ab with respect to the reference color of the outer surface of the synthetic resin piping member and the tensile elongation retention with respect to the reference value of the tensile elongation rate of the synthetic resin piping member measured by the SCI method. A procedure for deterioration diagnosis using the piping member deterioration diagnosis apparatus 11 shown in FIG. 1 will be described by taking as an example a case where a function representing a correlation with a rate is stored in the function storage unit 13. Note that a color space based on the L * a * b * color system is used as the color space.

最初に、複数の合成樹脂製の配管部材のサンプルについて、測色計21を用いて、外側表面の色をSCI方式で測定し、L*a*b*表色系の色空間における合成樹脂製の配管部材の外側表面の基準色に対する色差ΔE*abを求めると共に、引張伸び率を測定し、合成樹脂製配管部材の引張伸び率の基準値に対する引張伸び保持率を求めて、相関関係を表す近似関数を求め、関数記憶部13に記憶する(ステップS1)。このとき、劣化診断の対象の配管部材の材料が特に限定されない場合には、診断対象となり得る全ての種類の材料の配管部材を含むサンプルについて、色と引張伸び率を測定して、色差と引張伸び保持率との相関関係を表す近似関数を求める。劣化診断の対象を例えばポリ塩化ビニル製又はポリプロピレン製の配管部材に限定する場合には、ポリ塩化ビニル製又はポリプロピレン製の配管部材のサンプルのみについて、色と引張伸び率を測定して色差と引張伸び保持率との相関関係を表す近似関数を求めてもよい。また、例えば図6又は図12に示されているような近似関数が予め判明している場合には、それを用いてもよい。   First, for a plurality of synthetic resin piping member samples, the color of the outer surface is measured by the SCI method using the colorimeter 21, and the synthetic resin in the color space of the L * a * b * color system is used. The color difference ΔE * ab with respect to the reference color of the outer surface of the piping member is measured, the tensile elongation is measured, the tensile elongation retention with respect to the reference value of the tensile elongation of the synthetic resin piping member is obtained, and the correlation is expressed. An approximate function is obtained and stored in the function storage unit 13 (step S1). At this time, when the material of the piping member subject to deterioration diagnosis is not particularly limited, the color difference and tensile elongation are measured for samples including piping members of all types of materials that can be diagnosed. An approximate function representing a correlation with the elongation retention is obtained. When the target of deterioration diagnosis is limited to piping members made of, for example, polyvinyl chloride or polypropylene, color and tensile elongation are measured only for samples of piping members made of polyvinyl chloride or polypropylene. You may obtain | require the approximate function showing the correlation with the elongation retention. For example, when an approximate function as shown in FIG. 6 or FIG. 12 is known in advance, it may be used.

なお、評価対象物性として引張伸び率以外のものを使用する場合には、引張伸び率に代えて又はこれに加えて、当該評価対象物性について各サンプルの測定を行って近似関数を求めればよい。また、劣化診断に用いる測色計21による色の測定をSCE方式で行う場合には、測色計21による各サンプルの色の測定をSCI方式に代えてSCE方式で行えばよい。   In addition, when using things other than tensile elongation as an evaluation target physical property, instead of or in addition to the tensile elongation, each sample may be measured for the evaluation target physical property to obtain an approximate function. Further, when color measurement by the colorimeter 21 used for deterioration diagnosis is performed by the SCE method, the color measurement of each sample by the colorimeter 21 may be performed by the SCE method instead of the SCI method.

次に、測色計21でSCI方式で劣化診断の対象の配管部材の外側表面の色を測定し(ステップS2)、物性保持率演算部17によって、配管部材の外側表面の基準色(例えば未使用状態の配管部材の色など)と測定した配管部材の外側表面の色とからL*a*b*表色系の色空間における色差を求める(ステップS3)。関数記憶部13に記憶されている近似関数がSCE方式による測定に基づいて求められている場合には、ここで、測色計21を用いて、SCI方式に代えて、SCE方式で配管部材の外側表面の色の測定を行えばよい。   Next, the colorimeter 21 measures the color of the outer surface of the piping member subject to deterioration diagnosis by the SCI method (step S2), and the physical property retention ratio calculation unit 17 uses the reference color (for example, unexposed) of the outer surface of the piping member. The color difference in the color space of the L * a * b * color system is obtained from the color of the piping member in use and the like and the measured color of the outer surface of the piping member (step S3). When the approximate function stored in the function storage unit 13 is obtained based on the measurement by the SCE method, the colorimeter 21 is used here to replace the SCI method and replace the piping member by the SCE method. The color of the outer surface may be measured.

さらに、物性保持率演算部17は、関数記憶部13に記憶された近似関数と、求められた配管部材の外側表面の色差とに基づいて、引張伸び保持率を推測する(ステップS4)。評価対象物性として引張伸び率以外のものを使用する場合には、引張伸び率に代えて又はこれに加えて、対応する評価対象物性について関数記憶部13に記憶された近似関数を用いて、同様に、当該評価対象物性の物性保持率を推測すればよい。   Further, the physical property retention rate calculating unit 17 estimates the tensile elongation retention rate based on the approximate function stored in the function storage unit 13 and the obtained color difference of the outer surface of the piping member (step S4). When using other than the tensile elongation as the physical property to be evaluated, instead of or in addition to the tensile elongation, using the approximate function stored in the function storage unit 13 for the corresponding physical property to be evaluated, the same In addition, the physical property retention ratio of the physical property to be evaluated may be estimated.

物性保持率演算部17は、推測された引張伸び保持率に基づいて、配管部材の劣化度を決定し(ステップS5)、表示部19に表示する(ステップS6)。劣化度は、例えば、劣化の進行度合いを段階分けして、各段階と引張伸び保持率の範囲とを対応付けた対応表に基づいて、判断される。物性保持率演算部17は、劣化の進行度合いにさらに交換が必要となるまでの予測期間をさらに対応付けた上記の対応表を用いて、交換時期を予測し、これを表示部19に表示してもよい。また、物性保持率演算部17は、複数の評価対象物性の物性保持率に基づいて、配管部材の劣化度を決定することも可能である。この場合、例えば、推測した複数の評価対象物性のうち物性保持率が最も低い値のものについての劣化度を採用して、表示部19に表示したり、最も低い値の物性保持率の評価対象物性に基づいて、交換時期を予測するようにしたりすることができる。   The physical property retention ratio calculation unit 17 determines the deterioration degree of the piping member based on the estimated tensile elongation retention ratio (step S5) and displays it on the display unit 19 (step S6). The degree of deterioration is determined, for example, based on a correspondence table in which the degree of progress of deterioration is divided into stages and each stage is associated with a range of tensile elongation retention. The physical property retention ratio calculation unit 17 predicts the replacement time using the above correspondence table in which the prediction period until the replacement is further required according to the progress degree of deterioration, and displays this on the display unit 19. May be. Further, the physical property retention ratio calculating unit 17 can determine the degree of deterioration of the piping member based on the physical property retention ratios of the plurality of evaluation target physical properties. In this case, for example, the deterioration degree of the value with the lowest physical property retention rate among the estimated physical properties to be evaluated is adopted and displayed on the display unit 19 or the evaluation target of the physical property retention rate with the lowest value Based on the physical properties, the replacement time can be predicted.

合成樹脂製配管部材の外側表面の基準色に対する色空間における明度の差ΔL*と、合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率との相関関係を表す関数を用いる場合も、図19に示されているように、ステップS1において、合成樹脂製の配管部材の外側表面の基準色に対する色差ΔE*abと合成樹脂製の配管部材の引張伸び率の基準値に対する引張伸び保持率との相関関係を表す近似関数に代えて、合成樹脂製の配管部材の外側表面の基準色に対する色空間における明度の差ΔL*と合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率との相関関係を表す近似関数を関数記憶部13に記憶し(ステップS11)、ステップS3において、色差に代えて、配管部材の基準色と測色計21によって測定した合成樹脂製の配管部材の外側表面の色との明度の差を求め(ステップS13)、ステップS4において、色差に代えて、基準色に対する明度の差を使用して、関数記憶部13に記憶された相関関係を表す関数と求めた明度の差とに基づいて物性保持率を推測すれば(ステップS14)、他の点は、同様であるので、ここでは詳しい説明を省略する。   In some cases, a function representing the correlation between the lightness difference ΔL * in the color space with respect to the reference color of the outer surface of the synthetic resin piping member and the physical property retention ratio with respect to the reference value of the evaluation target physical property of the synthetic resin piping member As shown in FIG. 19, in step S1, the color difference ΔE * ab with respect to the reference color of the outer surface of the synthetic resin piping member and the tensile elongation retention with respect to the reference value of the tensile elongation rate of the synthetic resin piping member. Instead of an approximate function representing the correlation with the rate, the difference in lightness ΔL * in the color space with respect to the reference color of the outer surface of the synthetic resin piping member and the physical property relative to the reference value of the physical property to be evaluated of the synthetic resin piping member An approximate function representing the correlation with the retention rate is stored in the function storage unit 13 (step S11). In step S3, the reference color of the piping member and the colorimeter 21 are used instead of the color difference. A difference in brightness from the color of the outer surface of the piping member made of synthetic resin is obtained (step S13). In step S4, instead of the color difference, the difference in brightness with respect to the reference color is used and stored in the function storage unit 13. If the physical property retention rate is estimated based on the correlation function and the calculated brightness difference (step S14), the other points are the same, and detailed description thereof is omitted here.

このように、配管部材劣化診断装置11では、特定の原因に基づいた劣化の進行を劣化度に対応する色見本との対比で判断するのではなく、様々な原因に基づいて劣化の進行と共に色が変化することに着目し、色差によって特定の原因に限定されない様々な原因による「総合的」な劣化の進行を判断することができる。また、配管部材劣化診断装置11は、測色計21によって配管部材の外側表面の色の測定を行うことができれば、配管部材の評価対象物性を推測でき、劣化度を判断できるので、配管部材のサンプリングや破壊試験が不要になる。   In this way, the piping member deterioration diagnosis device 11 does not judge the progress of deterioration based on a specific cause in comparison with the color sample corresponding to the degree of deterioration, but instead determines the color along with the progress of deterioration based on various causes. It is possible to determine the progress of “total” deterioration due to various causes that are not limited to a specific cause due to the color difference. In addition, if the color measuring device 21 can measure the color of the outer surface of the piping member, the piping member deterioration diagnosis device 11 can estimate the physical property of the piping member and determine the degree of deterioration. Sampling and destructive testing are unnecessary.

以上、図示されている実施形態を参照して、本発明による配管部材劣化診断方法及び装置を説明したが、本発明は、図示されている実施形態に限定されるものではない。例えば、上記実施形態の説明では、合成樹脂材製の配管部材としてポリ塩化ビニル製の管やポリプロピレン製のバルブを、物性保持率として引張伸び保持率を例にしているが、他の種類の合成樹脂製の配管部材や他の種類の物性保持率、例えば引張強さ(引張降伏強さ)、耐衝撃性(シャルピー衝撃強度、落錘衝撃強度)、扁平性などの場合でも、同様に、配管部材の色差と物性保持率との相関関係に基づいて、物性保持率を推定して、劣化の診断を行うことが可能である。さらに、管以外にも、継手、バルブ、タンクなどにも適用可能である。また、関数記憶部13に、配管部材の物性保持率と配管部材の外側表面の色の基準色に対する色差との相関関係を表す関数と配管部材の物性保持率と配管部材の外側表面の色の基準色に対する明度の差との相関関係を表す関数とを記憶しておき、測定された配管部材の外側表面の色から求めた配管部材の外側表面の基準色に対する色差と明度の差の両方を用いて、それぞれ物性保持率を推測し、推測した両方の物性保持率から総合的に配管部材の劣化度を決定するようにすることも可能である。   The piping member deterioration diagnosis method and apparatus according to the present invention have been described above with reference to the illustrated embodiment. However, the present invention is not limited to the illustrated embodiment. For example, in the description of the above embodiment, a pipe made of polyvinyl chloride or a valve made of polypropylene is used as a piping member made of a synthetic resin material, and a tensile elongation holding rate is taken as an example of a physical property holding rate. Similarly, in the case of resin piping members and other types of physical property retention rates, such as tensile strength (tensile yield strength), impact resistance (Charpy impact strength, falling weight impact strength), flatness, etc. Based on the correlation between the color difference of the member and the physical property retention rate, it is possible to estimate the physical property retention rate and diagnose deterioration. Furthermore, it can be applied to joints, valves, tanks, etc. in addition to pipes. Further, the function storage unit 13 stores a function representing the correlation between the physical property retention rate of the piping member and the color difference with respect to the reference color of the color of the outer surface of the piping member, the physical property retention rate of the piping member, and the color of the outer surface of the piping member. A function representing the correlation with the difference in lightness with respect to the reference color is stored, and both the color difference with respect to the reference color on the outer surface of the piping member and the difference in lightness obtained from the measured color of the outer surface of the piping member are stored. It is also possible to estimate the physical property retention rate and to determine the deterioration degree of the piping member comprehensively from both estimated physical property retention rates.

11 配管部材劣化診断装置
13 関数記憶部
15 入力部
17 物性保持率演算部
19 表示部
21 測色計
DESCRIPTION OF SYMBOLS 11 Piping member deterioration diagnostic apparatus 13 Function memory | storage part 15 Input part 17 Physical property retention calculation part 19 Display part 21 Colorimeter

Claims (12)

合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率と色空間における合成樹脂製の配管部材の外側表面の基準色に対する色差又は明度の差との相関関係を予め求める工程と、
測色計を用いて、合成樹脂製の配管部材の外側表面に照射した光の反射光に基づいて前記配管部材の外側表面の色を測定する工程と、
前記配管部材の外側表面の基準色と前記測色計によって測定された前記配管部材の外側表面の色との前記色空間における色差又は明度の差を求める工程と、
予め求められた前記相関関係に基づいて、前記色差又は前記明度の差から測定時における前記配管部材の物性保持率を推測して、前記配管部材の劣化度を診断する工程と、
を含むことを特徴とする配管部材劣化診断方法。
A step of obtaining in advance a correlation between a physical property retention ratio with respect to a reference value of a physical property to be evaluated of a synthetic resin piping member and a difference in color or brightness with respect to a reference color of an outer surface of the synthetic resin piping member in a color space;
A step of measuring the color of the outer surface of the piping member based on the reflected light of the light irradiated on the outer surface of the synthetic resin piping member using a colorimeter;
Obtaining a color difference or brightness difference in the color space between the reference color of the outer surface of the piping member and the color of the outer surface of the piping member measured by the colorimeter;
Based on the correlation obtained in advance, estimating the physical property retention rate of the piping member at the time of measurement from the color difference or the difference in brightness, and diagnosing the deterioration degree of the piping member;
The piping member deterioration diagnostic method characterized by including.
前記色空間がL*a*b*表色系の色空間である、請求項1に記載の配管部材劣化診断方法。   The piping member deterioration diagnosis method according to claim 1, wherein the color space is a color space of L * a * b * color system. 前記評価対象物性が引張伸び率である、請求項1又は請求項2に記載の配管部材劣化診断方法。   The piping member deterioration diagnosis method according to claim 1, wherein the physical property to be evaluated is a tensile elongation rate. 前記配管部材が、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンから成る群から選択される材料によって形成された配管部材である、請求項1から請求項3の何れか一項に記載の配管部材劣化診断方法。   The piping member according to any one of claims 1 to 3, wherein the piping member is a piping member formed of a material selected from the group consisting of polyvinyl chloride, polypropylene, polyethylene, and polyvinylidene fluoride. Degradation diagnosis method. 前記測色計は、前記配管部材の外側表面での正反射光を含めた反射光を用いるSCI方式で色を測定する、請求項1から請求項4の何れか一項に記載の配管部材劣化診断方法。   5. The piping member deterioration according to claim 1, wherein the colorimeter measures a color by an SCI method using reflected light including regular reflected light on an outer surface of the piping member. Diagnosis method. 前記測色計は、前記配管部材の外側表面での反射光から正反射光を除去するSCE方式で色を測定する、請求項1から請求項4の何れか一項に記載の配管部材劣化診断方法。   The pipe member deterioration diagnosis according to any one of claims 1 to 4, wherein the colorimeter measures a color by an SCE method that removes specularly reflected light from reflected light on an outer surface of the pipe member. Method. 合成樹脂製の配管部材の評価対象物性の基準値に対する物性保持率と色空間における合成樹脂製の配管部材の外側表面の基準色に対する色差又は明度の差との相関関係を表す関数を予め記憶する関数記憶部と、
前記配管部材の外側表面の基準色と測定された前記配管部材の外側表面の色との前記色空間における色差又は明度の差を求め、求められた前記色差又は前記明度の差と前記関数記憶部に記憶される前記関数とに基づいて、測定時における前記配管部材の物性保持率を求める物性保持率演算部と、
を備えることを特徴とする配管部材劣化診断装置。
Stores in advance a function representing the correlation between the physical property retention ratio with respect to the reference value of the physical property to be evaluated of the synthetic resin piping member and the color difference or brightness difference with respect to the reference color of the outer surface of the synthetic resin piping member in the color space. A function storage unit;
The color difference or brightness difference in the color space between the reference color of the outer surface of the piping member and the measured color of the outer surface of the piping member is obtained, and the obtained color difference or brightness difference and the function storage unit Based on the function stored in the physical property retention rate calculating unit for obtaining the physical property retention rate of the piping member at the time of measurement,
A piping member deterioration diagnosis device comprising:
前記配管部材の外側表面の色は、照射した光の反射光に基づいて色を測定する測色計によって測定される、請求項7に記載の配管部材劣化診断装置。   The piping member deterioration diagnosis apparatus according to claim 7, wherein the color of the outer surface of the piping member is measured by a colorimeter that measures the color based on reflected light of the irradiated light. 前記色空間がL*a*b*表色系の色空間である、請求項7又は請求項8に記載の配管部材劣化診断装置。   The piping member deterioration diagnosis device according to claim 7 or 8, wherein the color space is a color space of L * a * b * color system. 前記評価対象物性が引張伸び率である、請求項7から請求項9の何れか一項に記載の配管部材劣化診断装置。   The piping member deterioration diagnosis apparatus according to any one of claims 7 to 9, wherein the physical property to be evaluated is a tensile elongation rate. 前記配管部材が、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、ポリフッ化ビニリデンから成る群から選択される材料によって形成されている配管部材である、請求項7から請求項10の何れか一項に記載の配管部材劣化診断装置。   The piping according to any one of claims 7 to 10, wherein the piping member is a piping member formed of a material selected from the group consisting of polyvinyl chloride, polypropylene, polyethylene, and polyvinylidene fluoride. Member deterioration diagnosis device. 前記物性保持率演算部が、求められた物性保持率に基づいて前記配管部材の劣化度を決定する、請求項7から請求項11の何れか一項に記載の配管部材劣化診断装置。   The piping member deterioration diagnosis apparatus according to any one of claims 7 to 11, wherein the physical property retention ratio calculation unit determines a deterioration degree of the piping member based on the obtained physical property retention ratio.
JP2016162710A 2015-09-02 2016-08-23 Piping member deterioration diagnosis method and equipment Active JP6964399B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015173335 2015-09-02
JP2015173335 2015-09-02

Publications (2)

Publication Number Publication Date
JP2017049242A true JP2017049242A (en) 2017-03-09
JP6964399B2 JP6964399B2 (en) 2021-11-10

Family

ID=58280237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162710A Active JP6964399B2 (en) 2015-09-02 2016-08-23 Piping member deterioration diagnosis method and equipment

Country Status (1)

Country Link
JP (1) JP6964399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070716A (en) * 2021-11-15 2023-05-23 한국전력공사 Degradation diagnostic apparatus of xlpe insulation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159242A (en) * 1984-08-31 1986-03-26 Toshiba Corp Method for diagnosing deterioration of insulating material
JPH07165881A (en) * 1993-12-16 1995-06-27 Toshiba Corp Resin composition and nondestructive testing method for it
US5614683A (en) * 1995-12-13 1997-03-25 Kranbuehl; David E. Method and apparatus for monitoring nylon 11 made from polyamide plastic made from aminoundecanoic acid
JP2002257819A (en) * 2001-03-06 2002-09-11 Nkk Corp Method for diagnosing degradation of resin tube
JP2007285930A (en) * 2006-04-18 2007-11-01 Fuji Electric Systems Co Ltd Deterioration diagnosis method and device of polymer material
JP2009040940A (en) * 2007-08-10 2009-02-26 Sekisui Chem Co Ltd Piping material for building
JP2010085117A (en) * 2008-09-29 2010-04-15 Sumitomo Bakelite Co Ltd Method for diagnosing resin-molded product
JP2014062876A (en) * 2012-09-24 2014-04-10 Hitachi-Ge Nuclear Energy Ltd Hose degradation diagnostic method and hose degradation diagnostic device
JP2014145620A (en) * 2013-01-28 2014-08-14 Umg Abs Ltd Scratch property evaluation method for resin molding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159242A (en) * 1984-08-31 1986-03-26 Toshiba Corp Method for diagnosing deterioration of insulating material
JPH0619323B2 (en) * 1984-08-31 1994-03-16 株式会社東芝 Insulation deterioration diagnosis method
JPH07165881A (en) * 1993-12-16 1995-06-27 Toshiba Corp Resin composition and nondestructive testing method for it
US5614683A (en) * 1995-12-13 1997-03-25 Kranbuehl; David E. Method and apparatus for monitoring nylon 11 made from polyamide plastic made from aminoundecanoic acid
JP2002257819A (en) * 2001-03-06 2002-09-11 Nkk Corp Method for diagnosing degradation of resin tube
JP2007285930A (en) * 2006-04-18 2007-11-01 Fuji Electric Systems Co Ltd Deterioration diagnosis method and device of polymer material
JP2009040940A (en) * 2007-08-10 2009-02-26 Sekisui Chem Co Ltd Piping material for building
JP2010085117A (en) * 2008-09-29 2010-04-15 Sumitomo Bakelite Co Ltd Method for diagnosing resin-molded product
JP2014062876A (en) * 2012-09-24 2014-04-10 Hitachi-Ge Nuclear Energy Ltd Hose degradation diagnostic method and hose degradation diagnostic device
JP2014145620A (en) * 2013-01-28 2014-08-14 Umg Abs Ltd Scratch property evaluation method for resin molding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
隠塚 裕之: "高分子材料の劣化と評価", ZAIRYO−TO−KANKYO, vol. 第43巻、第6号, JPN6021038452, 1994, pages 340 - 346, ISSN: 0004612545 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230070716A (en) * 2021-11-15 2023-05-23 한국전력공사 Degradation diagnostic apparatus of xlpe insulation
KR102655984B1 (en) * 2021-11-15 2024-04-11 한국전력공사 Degradation diagnostic apparatus of xlpe insulation

Also Published As

Publication number Publication date
JP6964399B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6478868B2 (en) System and method for detecting crack growth
US9897586B2 (en) Multi point method and apparatus for monitoring the aging and changes in corresponding tensile performance properties of a polymer
JP5840342B2 (en) Insulation degradation diagnosis method for insulation materials
KR101702841B1 (en) Method for monitoring defect in polaroid films
TWI468670B (en) Apparatus and methods for setting up optical inspection parameters
JP6964399B2 (en) Piping member deterioration diagnosis method and equipment
WO2020179108A1 (en) Corrosion diagnosis system
CN102297805A (en) Nondestructive test method of wire rope
CN104101614B (en) A kind of detection method and device
JP5017678B2 (en) Signal inspection method and signal inspection module
WO2022202198A1 (en) Evaluation method and evaluation device for surface roughening of metal surface
KR101538548B1 (en) Controling method of very small fraction of nonconforming
KR102236888B1 (en) Mobile robot for leak detection inside sewage and sewage pipes and leak detection using the method
CN115166034A (en) Method for detecting wood structure defects by utilizing multipath stress waves
JP5872643B2 (en) Insulation degradation diagnosis method for insulation materials
JP2022000614A (en) Remaining life determination method and inspection method for polymer material
JP2006194782A (en) Defect evaluation method for structure
CN107066671A (en) A kind of steel oil tank bottom Corrosion protection grade method
Anderson Advanced assessment of pipeline integrity using ILI data.
KR20210100348A (en) Method for risk measuring of gas pipeline and system thereof
JPH1038692A (en) Method for inspecting crack in structure
JP6259749B2 (en) AC corrosion risk measurement and evaluation method for buried metal bodies
CN115950892B (en) Automatic spraying detection device for identifying microcracks on outer surface of stainless steel pipe based on image
KR20240000156A (en) System and method for quantitative assessment of againg deterioration of nuclear reactor buildings
RU2014109580A (en) METHOD FOR DETERMINING PIPELINE PERFORMANCE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R150 Certificate of patent or registration of utility model

Ref document number: 6964399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150