JP2017049111A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2017049111A
JP2017049111A JP2015172378A JP2015172378A JP2017049111A JP 2017049111 A JP2017049111 A JP 2017049111A JP 2015172378 A JP2015172378 A JP 2015172378A JP 2015172378 A JP2015172378 A JP 2015172378A JP 2017049111 A JP2017049111 A JP 2017049111A
Authority
JP
Japan
Prior art keywords
light
wavelength
light incident
incident surface
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015172378A
Other languages
Japanese (ja)
Inventor
海老原 聡
Satoshi Ebihara
聡 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI Tec System Co Ltd
Original Assignee
AI Tec System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AI Tec System Co Ltd filed Critical AI Tec System Co Ltd
Priority to JP2015172378A priority Critical patent/JP2017049111A/en
Publication of JP2017049111A publication Critical patent/JP2017049111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lighting device with which it is possible to improve the uniformity of lighted positions by each color while maintaining the supply amount of light.SOLUTION: The lighting device comprises: a bar-shaped lens 40 which has a first light-entering surface 41, a second light-entering surface 42, and a light-outgoing surface 44, and is long in a prescribed direction in which a light entering from the first light-entering surface 41 is guided to the light-outgoing surface 44 and a light entering from the second light-entering surface 42 is guided to the light-outgoing surface 44; a plurality of first light sources 10 disposed so as to be in a row in the prescribed direction, each radiating light whose luminous power becomes maximum in a first wavelength toward the first light-entering surface 41; and a plurality of second light sources 20 disposed so as to be in a row in the prescribed direction, each radiating light whose luminous power becomes maximum in a second wavelength toward the second light-entering surface 42, both of the first and second light-entering surfaces being convex lens surfaces extending in the prescribed direction.SELECTED DRAWING: Figure 1

Description

本発明は、照明装置に関し、例えば各種検査や観察に用いる照明装置に関する。   The present invention relates to a lighting device, for example, a lighting device used for various inspections and observations.

この種の照明装置として、X方向に並設された複数のLEDと、各LEDからの光をX方向と直交するY方向に集光する棒状レンズとを備え、ライン状の照明位置を照明するものが知られている(例えば、特許文献1参照。)。   This type of illumination device includes a plurality of LEDs arranged in parallel in the X direction, and a rod-shaped lens that condenses light from each LED in the Y direction orthogonal to the X direction, and illuminates a linear illumination position. The thing is known (for example, refer patent document 1).

特許第4457100号公報Japanese Patent No. 4457100

近年では、照明装置によって前記ライン状の照明位置を様々な色で照明し、これにより、検査精度や検査効率をより向上する試みが行われている。例えば、検査対象物を検査部位に応じて様々な色で照明する試みが行われている。また、検査対象物に応じて照射する光の色を変更することにより、1つの検査工程で検査できる検査対象物の種類が増える。
この試みを行う際に、検査スピードや検査精度の向上のため、前記ライン状の照明位置を各色で照明する際の光量を出来るだけ増やすことと、前記ライン状の照明位置を各色で均一に照明することを要求される場合が多い。
In recent years, attempts have been made to further improve inspection accuracy and inspection efficiency by illuminating the line-shaped illumination position with various colors by an illumination device. For example, attempts have been made to illuminate the inspection object with various colors according to the inspection site. In addition, by changing the color of light to be irradiated according to the inspection object, the types of inspection objects that can be inspected in one inspection process increase.
When making this attempt, in order to improve inspection speed and inspection accuracy, increase the amount of light when illuminating the line-shaped illumination position with each color as much as possible, and uniformly illuminate the line-shaped illumination position with each color. It is often required to do.

本発明は、このような事情に鑑みてなされたものであって、供給光量を確保しながら各色による照明位置の均一性を向上することが可能な照明装置を提供することを目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the illuminating device which can improve the uniformity of the illumination position by each color, ensuring supply light quantity.

本発明の第1の態様に係る照明装置は、所定方向に延びる棒状レンズであって、各々前記所定方向に延びる第1の入光面、第2の入光面および出光面を有し、前記第1の入光面から入光する光を前記出光面に導くと共に前記第2の入光面から入光する光を前記出光面に導くダイクロイックミラーが内部に形成された棒状レンズと、前記所定方向に並ぶように配置され、前記第1の入光面に向けて第1の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第1光源と、前記所定方向に並ぶように配置され、前記第2の入光面に向けて前記第1の波長より30nm以上長い第2の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第2光源とを備え、前記第1および第2の入光面は2つ共に前記所定方向に延びる凸レンズ面又は2つ共に前記所定方向に延びる凹レンズ面であり、前記各入光面が凹レンズ面の場合、前記各光源はその光軸から40°の照射角度範囲の光が前記各入光面に照射されるように配置されている。   An illumination device according to a first aspect of the present invention is a rod-shaped lens extending in a predetermined direction, and includes a first light incident surface, a second light incident surface, and a light output surface, each extending in the predetermined direction. A rod-like lens having a dichroic mirror formed therein for guiding light incident from the first light incident surface to the light exit surface and guiding light incident from the second light incident surface to the light exit surface; and the predetermined lens A plurality of first light sources that are arranged in a direction and irradiate light that has a maximum light amount at a first wavelength and spreads toward the first light incident surface, and the predetermined direction. A plurality of light beams each radiating toward the second light incident surface, the light having the maximum light amount at a second wavelength longer than the first wavelength by 30 nm or more and traveling while spreading. A second light source, and the first and second light incident surfaces are both front When both convex lens surfaces extending in a predetermined direction or two concave lens surfaces extending in the predetermined direction and each light incident surface is a concave lens surface, each light source emits light in an irradiation angle range of 40 ° from its optical axis. It arrange | positions so that a light-incident surface may be irradiated.

上記第1の態様では、第1および第2の入光面は各々凸レンズ面又は凹レンズ面であり、凹レンズ面の場合は、各光源の光軸から40°の照射角度範囲の光が対応する入光面に入光するように配置されており、各光源とその対応する入光面(凹レンズ面)との距離は近い。このため、各光源からの拡がりながら進む光が各入光面によりX方向と直交する方向において各光源の光軸側に屈折し、その屈折した光が棒状レンズの出光面から出光する。このため、各光源からの拡がりながら進む光を照明位置に向かって効率良く導くことができる。   In the first aspect, each of the first and second light incident surfaces is a convex lens surface or a concave lens surface. In the case of a concave lens surface, light having an irradiation angle range of 40 ° from the optical axis of each light source corresponds. It arrange | positions so that it may inject into an optical surface, and the distance of each light source and its corresponding incident surface (concave lens surface) is near. For this reason, the light traveling while spreading from each light source is refracted to the optical axis side of each light source in the direction orthogonal to the X direction by each light incident surface, and the refracted light is emitted from the light exit surface of the rod-shaped lens. For this reason, the light which spreads from each light source can be efficiently guided toward the illumination position.

本発明の第2の態様に係る照明装置は、所定方向に延びる棒状レンズであって、各々前記所定方向に延びる第1の入光面と、第2の入光面と、出光面とを有し、前記第1の入光面から入光する光を前記出光面に導くと共に前記第2の入光面から入光する光を前記出光面に導くダイクロイックミラーが内部に形成された棒状レンズと、前記所定方向に並ぶように配置され、前記第1の入光面に向けて第1の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第1光源と、前記所定方向に並ぶように配置され、前記第2の入光面に向けて前記第1の波長より30nm以上長い第2の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第2光源とを備え、前記各入光面は平面であり、前記出光面は前記所定方向に延びる凸レンズ面である。   The illumination device according to the second aspect of the present invention is a rod-shaped lens extending in a predetermined direction, and has a first light incident surface, a second light incident surface, and a light output surface, each extending in the predetermined direction. And a rod-shaped lens having a dichroic mirror formed therein for guiding light incident from the first light incident surface to the light exit surface and guiding light incident from the second light incident surface to the light exit surface; A plurality of first light sources that are arranged so as to be aligned in the predetermined direction, and each irradiates light that has a maximum amount of light at a first wavelength and spreads toward the first light incident surface; Arranged so as to be aligned in the predetermined direction and irradiating each of the light that travels while spreading with the light having the maximum light quantity at the second wavelength that is 30 nm or more longer than the first wavelength toward the second light incident surface. A plurality of second light sources, each light incident surface is a flat surface, and the light exit surface A convex surface extending in the predetermined direction.

上記第2の態様では、第1および第2の入光面は各々平面であり、棒状レンズを構成する材質の屈折率は例えば1.4、1.5等であるから、各光源からの拡がりながら進む光が各入光面によりX方向と直交する方向において各光源の光軸側に屈折する。また、出光面は前記所定方向に延びる凸レンズ面であることから、出光面によってX方向と直交する方向において光が光軸側により屈折する。このため、各光源からの拡がりながら進む光を照明位置に向かって効率良く導くことができる。   In the second aspect, each of the first and second light incident surfaces is a flat surface, and the refractive index of the material constituting the rod-shaped lens is, for example, 1.4, 1.5, etc. The traveling light is refracted by the light incident surfaces toward the optical axis of each light source in the direction orthogonal to the X direction. Further, since the light exit surface is a convex lens surface extending in the predetermined direction, light is refracted on the optical axis side in a direction orthogonal to the X direction by the light exit surface. For this reason, the light which spreads from each light source can be efficiently guided toward the illumination position.

ここで、レンズはどのように精度良く製造しても、そのレンズ面には肉眼では確認できないような非常に小さな凹凸が有り、また、非常に小さなゆがみ等もある。これらは光源からの光を意図しない方向に屈折させる。このように一度意図しない方向に屈折した光は、次に通過するレンズでも方向修正することはできず、意図した所に到達しない光となる。また、光源からの光がレンズに入光する時、光の進行方向とレンズ面とのなす角度が90°に近い場合(入射角が0°に近い場合)、屈折率が1.4等であるレンズから空気に出光する時の屈折は小さいが、入射角(レンズ内の光の進行方向と前記レンズ面垂線とのなす角度)が20°等のように大きくなると、入射角と屈折角(レンズ外の光の進行方向と前記レンズ面垂線とのなす角度)との差が大きくなる(屈折が大きくなる)。このため、各光源と棒状レンズの各入光面との間に凸レンズや凹レンズを設け、当該凸レンズや凹レンズから出光した光が各入光面に入光するようにする場合、当該凸レンズや凹レンズの外周側では屈折が大きくなって、前述のように意図しない方向に屈折する場合が多い。上記のように意図しない方向に屈折する光は、通過するレンズ面の数を減らすことにより少なくすることができる。
上記第1および第2の態様では、各光源からの拡がって進む光を各光源の光軸側に屈折する役目を棒状レンズの各入光面や出光面が担っているので、棒状レンズの入光面の前に別途集光レンズを配置せずに、通過するレンズ面の数を減らすことが可能となる。
さらに、通過するレンズ面の数が多い場合、各光源について出光面から出光される光の位置を合わせるために、当該複数のレンズ面の位置をそれぞれ調整する必要がある。これに対し、通過するレンズ面の数を減らすことができるので、各光源からの光の位置と出光面から出光された光の位置とを容易に調整することができ、各色による照明位置の均一性を向上することが可能となる。
Here, no matter how accurately the lens is manufactured, the lens surface has very small irregularities that cannot be confirmed with the naked eye, and there are also very small distortions. These refract light from the light source in an unintended direction. Thus, the light refracted once in an unintended direction cannot be corrected even by the lens that passes next, and becomes light that does not reach the intended place. Also, when the light from the light source enters the lens, if the angle between the traveling direction of the light and the lens surface is close to 90 ° (when the incident angle is close to 0 °), the refractive index is 1.4 or the like. Although the refraction when emitting light from a lens to the air is small, when the incident angle (the angle formed by the light traveling direction in the lens and the lens surface normal) becomes large, such as 20 °, the incident angle and the refraction angle ( The difference between the traveling direction of light outside the lens and the angle formed by the normal to the lens surface increases (refraction increases). Therefore, when a convex lens or a concave lens is provided between each light source and each light incident surface of the rod-shaped lens so that light emitted from the convex lens or the concave lens enters the light incident surface, the convex lens or the concave lens In many cases, refraction is increased on the outer peripheral side and the light is refracted in an unintended direction as described above. Light that is refracted in an unintended direction as described above can be reduced by reducing the number of lens surfaces that pass.
In the first and second aspects, each light incident surface and light exit surface of the rod-shaped lens play a role of refracting the light traveling from each light source toward the optical axis side of each light source. It is possible to reduce the number of lens surfaces that pass through without separately providing a condenser lens in front of the light surface.
Further, when the number of lens surfaces passing therethrough is large, it is necessary to adjust the positions of the plurality of lens surfaces in order to align the positions of light emitted from the light exit surface for each light source. In contrast, since the number of lens surfaces that pass through can be reduced, the position of the light from each light source and the position of the light emitted from the light exit surface can be easily adjusted, and the illumination position of each color is uniform. It becomes possible to improve the property.

また、レンズはどのように透過率が良いものでも全ての波長帯域に亘って100%の透過率を有するものはなく、通常のレンズは少なくとも数%の光の減衰を生じる。また、500nm以下の短波長領域では光の減衰が大きくなる傾向があり、その減衰が10%を超える場合もある。
上記第1および第2の態様では、各光源からの拡がって進む光を光軸側に屈折する役目を棒状レンズの各入光面や出光面が担っているので、棒状レンズの入光面の前に別途集光レンズを配置せずに、光量の減衰を極力防止することが可能になり、照明位置に導かられる光量の増加を図る上で有利である。
In addition, no matter how good the lens is, no lens has 100% transmittance over the entire wavelength band, and a normal lens causes at least several percent light attenuation. In addition, the attenuation of light tends to increase in a short wavelength region of 500 nm or less, and the attenuation may exceed 10%.
In the first and second aspects, each light incident surface and light exit surface of the rod-shaped lens play a role of refracting light spreading from each light source toward the optical axis side. It is possible to prevent the attenuation of the amount of light as much as possible without arranging a separate condensing lens before, which is advantageous in increasing the amount of light guided to the illumination position.

本発明によれば、供給光量を確保しながら各色による照明位置の均一性を向上することが可能となる。   According to the present invention, it is possible to improve the uniformity of the illumination position for each color while ensuring the amount of light supplied.

本発明の一実施形態に係る照明装置の概略構成図である。It is a schematic block diagram of the illuminating device which concerns on one Embodiment of this invention. 前記照明装置の要部概斜視図である。It is a principal part schematic perspective view of the said illuminating device. LED基板および第1光源の平面図である。It is a top view of a LED board and a 1st light source. 前記照明装置と検査工程の概略構成図である。It is a schematic block diagram of the said illuminating device and an inspection process. 前記照明装置の調光回路および制御部の概略構成図である。It is a schematic block diagram of the light control circuit and control part of the said illuminating device. 前記照明装置の棒状レンズの特性をあらわすグラフである。It is a graph showing the characteristic of the rod-shaped lens of the said illuminating device. 前記照明装置の制御を示すタイムチャートである。It is a time chart which shows control of the said illuminating device. 前記照明装置の光量指示情報の組合せデータの例である。It is an example of the combination data of the light quantity instruction | indication information of the said illuminating device. 前記照明装置の処理タイミングデータの例である。It is an example of the process timing data of the said illuminating device. 前記実施形態の第1の変形例を示す光源の取付構造である。It is the attachment structure of the light source which shows the 1st modification of the said embodiment. 前記実施形態の第2の変形例を示す棒状レンズの左側面図および正面図である。It is the left view and front view of a rod-shaped lens which show the 2nd modification of the said embodiment. 前記実施形態の第3の変形例を示す棒状レンズの左側面図および正面図である。It is the left view and front view of a rod-shaped lens which show the 3rd modification of the said embodiment. 前記実施形態の第4の変形例を示す照明装置の要部概略構成図である。It is a principal part schematic block diagram of the illuminating device which shows the 4th modification of the said embodiment. 前記実施形態の第5の変形例を示す照明装置の要部概略構成図である。It is a principal part schematic block diagram of the illuminating device which shows the 5th modification of the said embodiment.

本発明の一実施形態に係る照明装置について図面を参照して以下に説明する。
この照明装置1は、図4に示すように、検査対象物をライン状に照明するものである。
この照明装置1は、図1〜図4に示すように、X方向に長手を有する装置本体1aと、装置本体1a内に各々ヒートシンク200、LED基板201等を介して取付けられた複数の第1光源10、複数の第2光源20、および複数の第3光源30と、装置本体1a内にX方向に延びるように取付けられた棒状レンズ40とを備える。各光源10,20,30は例えば青色、緑色および赤色LEDであり、所定の照射角度範囲に放射状に拡がりながら進む光を照射する。LED基板201は各光源10,20,30のそれぞれに複数ずつ設けられ、各光源10,20,30のそれぞれについて複数のLED基板201がX方向に並んでいる。各光源10,20,30は、他端から光が供給される光ファイバーの一端であっても良い。この場合でも、光ファイバーの一端は放射状に拡がりながら進む光を照射する。各光源10,20,30は拡がりながら進む光を照射するその他の光源であっても良い。各光源10,20,30は対応するLED基板201にX方向に並ぶように実装されている。各光源10,20,30は場合によっては対応するLED基板201に複数列に実装されていても良い。
An illumination device according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 4, the illuminating device 1 illuminates an inspection object in a line shape.
As shown in FIGS. 1 to 4, the lighting device 1 includes a device main body 1 a having a length in the X direction, and a plurality of first devices attached to the device main body 1 a via a heat sink 200, an LED substrate 201, and the like. A light source 10, a plurality of second light sources 20, and a plurality of third light sources 30 and a rod-like lens 40 attached to the apparatus main body 1a so as to extend in the X direction are provided. Each of the light sources 10, 20, and 30 is, for example, a blue, green, and red LED, and irradiates light that spreads radially within a predetermined irradiation angle range. A plurality of LED substrates 201 are provided for each of the light sources 10, 20, and 30, and a plurality of LED substrates 201 are arranged in the X direction for each of the light sources 10, 20, and 30. Each light source 10, 20, 30 may be one end of an optical fiber to which light is supplied from the other end. Even in this case, one end of the optical fiber irradiates light that spreads radially. Each of the light sources 10, 20, and 30 may be other light sources that emit light that travels while spreading. Each light source 10, 20, 30 is mounted on the corresponding LED substrate 201 so as to be arranged in the X direction. Each of the light sources 10, 20, and 30 may be mounted in a plurality of rows on the corresponding LED substrate 201 in some cases.

棒状レンズ40は、各々X方向に延びる第1の入光面41、第2の入光面42、第3の入光面43、および出光面44を有する。棒状レンズ40は、ガラスやプラスチック等の透光性を有する材料から成る4つのレンズを結合したものである。各レンズは、互いに直交する2つの平面と、X方向に延びる凸曲面とを有する。複数の第1光源10が第1の入光面41に光を照射し、複数の第2光源20が第2の入光面42に光を照射し、複数の第3光源30が第3の入光面43に光を照射するよう配置されている。棒状レンズ40は円柱形状を有し、このため、前記4つのレンズは、各々が円柱の中心線を通ると共に互いに直交する2つの平面で円柱を切断した形状を有する。   The rod-shaped lens 40 has a first light incident surface 41, a second light incident surface 42, a third light incident surface 43, and a light exit surface 44 that each extend in the X direction. The rod-like lens 40 is a combination of four lenses made of a light-transmitting material such as glass or plastic. Each lens has two planes orthogonal to each other and a convex curved surface extending in the X direction. The plurality of first light sources 10 irradiate the first light incident surface 41 with light, the plurality of second light sources 20 irradiate the second light incident surface 42 with light, and the plurality of third light sources 30 with the third light source 30. The light incident surface 43 is arranged to irradiate light. The rod-shaped lens 40 has a cylindrical shape. Therefore, each of the four lenses has a shape obtained by cutting the cylinder along two planes that pass through the center line of the cylinder and are orthogonal to each other.

棒状レンズ40は、第1の入光面41からの光を界面40aで反射し、第3の入光面43からの光を界面40bで反射し、第2の入光面42からの光を透過することにより、各入光面41,42,43からの光を出光面44から出光する。つまり、界面40aおよび界面40bがダイクロイックミラーとして機能し、これが棒状レンズ40内に形成されている。
本実施形態では、各入光面41,42,43は凸レンズ面であり、出光面44も凸レンズ面である。つまり、前記4つのレンズの凸曲面が各入光面41,42,43および出光面44である。
The rod-like lens 40 reflects light from the first light incident surface 41 at the interface 40a, reflects light from the third light incident surface 43 at the interface 40b, and reflects light from the second light incident surface 42. By transmitting the light, the light from each of the light incident surfaces 41, 42, 43 is emitted from the light emitting surface 44. That is, the interface 40 a and the interface 40 b function as a dichroic mirror and are formed in the rod-shaped lens 40.
In the present embodiment, each of the light incident surfaces 41, 42, and 43 is a convex lens surface, and the light exit surface 44 is also a convex lens surface. That is, the convex curved surfaces of the four lenses are the light incident surfaces 41, 42, 43 and the light exit surface 44.

図1および図6に示すように、第1光源10は455nm付近に光量のピークを有し、第2光源20は510nm〜545nm付近になだらかな光量のピークを有し、第3光源30は625nm付近に光量のピークを有する。   As shown in FIGS. 1 and 6, the first light source 10 has a light intensity peak near 455 nm, the second light source 20 has a gentle light intensity peak near 510 nm to 545 nm, and the third light source 30 has a wavelength of 625 nm. It has a light intensity peak in the vicinity.

棒状レンズ40は、その特性として、図6に示すように、第1の入光面41から出光面44への光の透過率である第1光路透過率と、第2の入光面42から出光面44への光の透過率である第2光路透過率と、第3の入光面43から出光面44への光の透過率である第3光路透過率とを有する。各光路透過率は光の波長により透過率が図6に示すように変化するものであり、第1光路透過率は第1の波長帯域(本実施形態では略415nm〜略485nm)でその透過率が85%以上であり、第2光路透過率は第2の波長帯域(本実施形態では略500nm〜略585nm)でその透過率が85%以上であり、第3光路透過率は第3の波長帯域(本実施形態では略610nm〜略685nm)でその透過率が85%以上である。   As shown in FIG. 6, the rod-shaped lens 40 has a first optical path transmittance that is a transmittance of light from the first light incident surface 41 to the light output surface 44, and a second light incident surface 42. The second light path transmittance, which is the light transmittance to the light exit surface 44, and the third light path transmittance, which is the light transmittance from the third light incident surface 43 to the light exit surface 44. Each optical path transmittance varies as shown in FIG. 6 according to the wavelength of light, and the first optical path transmittance is the transmittance in the first wavelength band (approximately 415 nm to approximately 485 nm in the present embodiment). Is 85% or more, the second optical path transmittance is 85% or more in the second wavelength band (approximately 500 nm to approximately 585 nm in the present embodiment), and the third optical path transmittance is the third wavelength. The transmittance is 85% or more in the band (approximately 610 nm to approximately 685 nm in the present embodiment).

また、第1の波長帯域の上限波長と第2の波長帯域の下限波長とは20nm以上離れており、第2の波長帯域の上下波長と第3の波長帯域の下限波長とは25nm以上離れている。
さらに、第1の波長帯域の上限波長と該上限波長に10nmを加えた波長との間で第1光路透過率が30%以上低下し、第1の波長帯域の上限波長と該上限波長に30nmを加えた波長との間で第1光路透過率が70%以上低下している。
一方、第2の波長帯域の下限波長と該下限波長から10nmを減じた波長との間で第2光路透過率が30%以上低下し、第2の波長帯域の下限波長と該下限波長から30nmを減じた波長との間で前記第2光路透過率が70%以上低下している。
Further, the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band are separated by 20 nm or more, and the upper and lower wavelengths of the second wavelength band and the lower limit wavelength of the third wavelength band are separated by 25 nm or more. Yes.
Further, the first optical path transmittance decreases by 30% or more between the upper limit wavelength of the first wavelength band and the wavelength obtained by adding 10 nm to the upper limit wavelength, and the upper limit wavelength of the first wavelength band and the upper limit wavelength are 30 nm. The first optical path transmittance is reduced by 70% or more with respect to the wavelength to which is added.
On the other hand, the second optical path transmittance decreases by 30% or more between the lower limit wavelength of the second wavelength band and the wavelength obtained by subtracting 10 nm from the lower limit wavelength, and the lower limit wavelength of the second wavelength band and 30 nm from the lower limit wavelength. The second optical path transmittance is reduced by 70% or more with respect to the wavelength reduced.

さらに、第2の波長帯域の上限波長と該上限波長に10nmを加えた波長との間で第2光路透過率が30%以上低下し、第2の波長帯域の上限波長と該上限波長に30nmを加えた波長との間で第2光路透過率が70%以上低下している。
また、第3の波長帯域の下限波長と該下限波長から10nmを減じた波長との間で第3光路透過率が30%以上低下し、第3の波長帯域の下限波長と該下限波長から30nmを減じた波長との間で前記第3光路透過率が70%以上低下している。
なお、第3の波長帯域の下限波長と該下限波長から10nmを減じた波長との間で、第3光路透過率が50%程度まで下がった後もう一度55%程度まで上昇しているが、一度50%まで低下しているので、第3の波長帯域の下限波長と該下限波長から10nmを減じた波長との間で前記第3光路透過率は35%低下していると言える。このように、最も透過率が低下している部分と比較し、上記の30%以上、又は、70%以上であるか否かを判断する。
Further, the second optical path transmittance decreases by 30% or more between the upper limit wavelength of the second wavelength band and the wavelength obtained by adding 10 nm to the upper limit wavelength, and the upper limit wavelength of the second wavelength band and the upper limit wavelength are 30 nm. The second optical path transmittance is reduced by 70% or more with respect to the wavelength to which is added.
Further, the third optical path transmittance decreases by 30% or more between the lower limit wavelength of the third wavelength band and the wavelength obtained by subtracting 10 nm from the lower limit wavelength, and the lower limit wavelength of the third wavelength band and 30 nm from the lower limit wavelength. The third optical path transmittance is reduced by 70% or more with respect to the wavelength reduced.
The third optical path transmittance decreases to about 50% between the lower limit wavelength of the third wavelength band and the wavelength obtained by subtracting 10 nm from the lower limit wavelength, and then increases to about 55% again. Since it is reduced to 50%, it can be said that the third optical path transmittance is reduced by 35% between the lower limit wavelength of the third wavelength band and the wavelength obtained by subtracting 10 nm from the lower limit wavelength. In this way, it is determined whether or not it is 30% or more or 70% or more as compared with the portion where the transmittance is the lowest.

なお、棒状レンズ40の透過率は例えば周知の分光光度計を用いて確認することができる。分光光度計は、広帯域光(白色光等)の光源からフィルタ、プリズム、グレーティング(回折格子)等によって狭い波長帯域(数nm以下又は1nm以下の波長帯域)の光を短波長側又は長波長側から順次取り出し、取り出した光を試料(棒状レンズの入光面)に照射すると共に、各波長帯域の透過光を光半導体、光電子増倍管等の光学的なセンサで検出し、各波長帯域について透過前の光量と透過後の光量とを比較することにより、波長と透過率との関係を測定できる装置である。   The transmittance of the rod lens 40 can be confirmed using, for example, a known spectrophotometer. A spectrophotometer is used to transmit light in a narrow wavelength band (wavelength band of several nm or less or 1 nm or less) from a broadband light source (white light etc.) to a short wavelength side or a long wavelength side by a filter, prism, grating (diffraction grating), etc. Are sequentially extracted, and the sampled light (light entrance surface of the rod-shaped lens) is irradiated with the extracted light, and the transmitted light in each wavelength band is detected by an optical sensor such as a photo semiconductor or a photomultiplier tube. By comparing the amount of light before transmission with the amount of light after transmission, the apparatus can measure the relationship between wavelength and transmittance.

例えば、日立ハイテクサイエンス社製や日立ハイテクノロジーズ(登録商標)社製の分光光度計(UH4150、U−3900、U−3900H、U−4100等)を用いて上記の透過率を確認できる。
本実施形態の場合、棒状レンズ40は円柱形状なので、レーザー光のような細い平行光が各入光面41,42,43の周方向の中心から棒状レンズ40内に入光し、出光面44の周方向の中心から出光するように設定した上で、上記の透過率測定を行う。
For example, the transmittance can be confirmed using a spectrophotometer (UH4150, U-3900, U-3900H, U-4100, etc.) manufactured by Hitachi High-Tech Science Co., Ltd. or Hitachi High-Technologies (registered trademark).
In the case of this embodiment, since the rod-shaped lens 40 has a cylindrical shape, thin parallel light such as laser light enters the rod-shaped lens 40 from the center in the circumferential direction of each light incident surface 41, 42, 43, and the light exit surface 44. The light transmittance is measured after setting so that the light is emitted from the center in the circumferential direction.

一方、周知の分光放射照度計を用いて棒状レンズ40の透過率を確認することも可能である。この場合、棒状レンズ40の入光面に広帯域光(白色光等)を照射すると共に、出光面からの光について分光放射照度計を用いて波長と光量との関係を測定し、一方、棒状レンズ40を通さない前記広帯域光についても分光放射照度計を用いて波長と光量との関係を測定し、両者を比較することにより、波長と透過率との関係を測定することができる。   On the other hand, it is also possible to confirm the transmittance of the rod-shaped lens 40 using a known spectral irradiance meter. In this case, the light incident surface of the rod-shaped lens 40 is irradiated with broadband light (white light or the like), and the relationship between the wavelength and the amount of light is measured with respect to the light from the light-emitting surface using a spectral irradiance meter. For the broadband light that does not pass through 40, the relationship between the wavelength and the amount of light can be measured using a spectral irradiance meter, and the relationship between the two can be measured by comparing the two.

図4のように、各光源10,20,30の光量のピーク(455nm付近のピーク、510nm〜545nm付近のなだらかなピーク、625nm付近のピーク)は、それぞれ第1、第2および第3の波長帯域の中に入っている。
また、各光源10,20,30の光量のピークの両側(長波長側および短波長側)の光量が低下する傾斜領域は、それぞれ第1、第2および第3の波長帯域の外側まで延びている。特に、第2光源20の光量のスペクトルは、光量が95%以上となる部分をピークとすると、そのピークは略30nmの幅を有し、光量が90%以上となる部分をピークとすると、そのピークは略48nmの幅を有するなだらかなピークを有しているので、その傾斜領域は広範な範囲に亘って延びている。光量が95%以上となる部分が20nmを超える幅を有する場合や、光量が90%以上となる部分が25nmや30nmを超える幅を有する場合も、なだらかなピークを有するスペクトル特性であると言える。
As shown in FIG. 4, the light intensity peaks (peaks near 455 nm, gentle peaks near 510 nm to 545 nm, peaks near 625 nm) of the light sources 10, 20, and 30 are the first, second, and third wavelengths, respectively. It is in the band.
Further, the inclined regions where the light amount on both sides (long wavelength side and short wavelength side) of the light amount peak of each light source 10, 20, and 30 decreases extend outside the first, second, and third wavelength bands, respectively. Yes. In particular, the spectrum of the light amount of the second light source 20 has a peak at a portion where the light amount is 95% or more, and the peak has a width of about 30 nm, and a peak at a portion where the light amount is 90% or more. Since the peak has a gentle peak having a width of about 48 nm, the inclined region extends over a wide range. It can be said that the spectrum characteristic having a gentle peak is also obtained when the portion where the light amount is 95% or more has a width exceeding 20 nm, or when the portion where the light amount is 90% or more has a width exceeding 25 nm or 30 nm.

ここで、第1および第2の波長帯域の上限波長より長波長側や、第2および第3の波長帯域の下限波長より短波長側は、各光路透過率が急激に低下する。このため、棒状レンズ40の出光面44に到達する各波長帯域外の波長の光の量は、各光路透過率が急激に低下する分だけ低下する。   Here, the transmittance of each optical path rapidly decreases on the longer wavelength side from the upper limit wavelength of the first and second wavelength bands and on the shorter wavelength side than the lower limit wavelengths of the second and third wavelength bands. For this reason, the amount of light having a wavelength outside each wavelength band that reaches the light exit surface 44 of the rod-shaped lens 40 is reduced by the amount that the optical path transmittance is rapidly reduced.

一方、この照明装置1は、図1、図5、図7および図8に示すように、各光源10,20,30にそれぞれ対応するように設けられ、各光源10,20,30の光量を調整する調光回路12,22,32と、各調光回路12,22,32に制御信号を送信することにより各光源10,20,30の光量を制御する制御部60と、各調光回路12,22,32に電源からの電力を供給する電力供給線4とを有する。   On the other hand, the illuminating device 1 is provided so as to correspond to each of the light sources 10, 20, and 30, as shown in FIGS. Dimming circuits 12, 22, and 32 to be adjusted, a control unit 60 that controls the light amount of each light source 10, 20, and 30 by transmitting a control signal to each of the dimming circuits 12, 22, and 32, and each dimming circuit 12, 22, and 32, and a power supply line 4 that supplies power from the power source.

制御部60は、図5に示すように、複数種類の外部信号を受付ける外部信号入力部61aと、各光源10,20,30の光量指示情報の組合せを複数格納している格納部61bと、CPU等のプロセッサーである処理部61cとを備えた点灯制御部61と、点灯制御部61からの信号に基づき各調光回路12,22,32に調光信号を送信するB調光信号回路62、G調光信号回路63およびR調光信号回路64とを有する。   As shown in FIG. 5, the control unit 60 includes an external signal input unit 61 a that receives a plurality of types of external signals, a storage unit 61 b that stores a plurality of combinations of light amount instruction information of the light sources 10, 20, and 30. A lighting control unit 61 including a processing unit 61c that is a processor such as a CPU, and a B dimming signal circuit 62 that transmits a dimming signal to each of the dimming circuits 12, 22, and 32 based on a signal from the lighting control unit 61. , A G dimming signal circuit 63 and an R dimming signal circuit 64.

点灯制御部61は、外部信号入力部61a、格納部61bおよび処理部61cを有する一体のICやコンピュータであってもよく、前記3つを別体のICやコンピュータとして有する装置であっても良い。また、外部信号入力部61a、格納部61bおよび処理部61cのうち一部又は全部が装置本体1aや、装置本体1aに接続された制御ボックス3の外部に設けられていても良いし、全て装置本体1aや制御ボックス3の内部に設けられていても良い。点灯制御部61に入力部61dや表示部61eを設けることも可能である。さらに、点灯制御部61の外部信号入力部61a、格納部61bおよび処理部61cと各調光信号回路62,63,64とを一つの装置や基板内に設けることも可能であり、図1の3つの基板1g内に分割して配置することも可能である。図1の3つの基板1gを1つの基板とすることも可能であり、さらに多くの基板1gを設けることも可能である。   The lighting control unit 61 may be an integrated IC or computer having the external signal input unit 61a, the storage unit 61b, and the processing unit 61c, or may be a device having the three as separate ICs or computers. . In addition, some or all of the external signal input unit 61a, the storage unit 61b, and the processing unit 61c may be provided outside the apparatus main body 1a or the control box 3 connected to the apparatus main body 1a, or all the apparatuses It may be provided inside the main body 1a or the control box 3. It is also possible to provide an input unit 61d and a display unit 61e in the lighting control unit 61. Furthermore, the external signal input unit 61a, the storage unit 61b, the processing unit 61c, and the dimming signal circuits 62, 63, and 64 of the lighting control unit 61 can be provided in one apparatus or substrate. It is also possible to divide and arrange in three substrates 1g. The three substrates 1g in FIG. 1 can be used as one substrate, and more substrates 1g can be provided.

点灯制御部61の外部信号入力部61aには、トリガー信号、点灯許可/禁止信号、および初期リセット信号が入力される。本実施形態では、トリガー信号および初期リセット信号は検査工程に配置されたセンサ71からの信号である。センサ71は外部信号入力部61aに接続されている。例えばこの検査工程では、ベルトコンベア72上の検査対象物Wを照明装置1によって照明し、照明された位置でセンサやカメラ等のセンシング機器73を使って検査用の検知又は撮像が行われる。このベルトコンベア72にはドグと呼ばれるタイミング検知用部材74が複数取付けられ、各タイミング検知用部材74が光電センサ等のセンサ71によって検知される。   A trigger signal, a lighting permission / inhibition signal, and an initial reset signal are input to the external signal input unit 61 a of the lighting control unit 61. In the present embodiment, the trigger signal and the initial reset signal are signals from the sensor 71 arranged in the inspection process. The sensor 71 is connected to the external signal input unit 61a. For example, in this inspection process, the inspection object W on the belt conveyor 72 is illuminated by the illumination device 1, and detection or imaging for inspection is performed using a sensing device 73 such as a sensor or a camera at the illuminated position. A plurality of timing detection members 74 called dogs are attached to the belt conveyor 72, and each timing detection member 74 is detected by a sensor 71 such as a photoelectric sensor.

検査対象物Wはタイミング検知用部材74の位置に対応するようにベルトコンベア72上に載置される。そして、ベルトコンベア72が作動すると、センサ71によって複数のタイミング検知用部材74が順次検知され、その検知結果を外部信号入力部61aが受信する。本実施形態では、図4に示すように、検査対象物Wよりもベルトコンベア72の進行方向前側に2つのタイミング検知用部材74が取付けられ、検査対象物Wが配置された範囲に4つのタイミング検知用部材74が取付けられている。   The inspection object W is placed on the belt conveyor 72 so as to correspond to the position of the timing detection member 74. When the belt conveyor 72 is operated, a plurality of timing detection members 74 are sequentially detected by the sensor 71, and the external signal input unit 61a receives the detection results. In the present embodiment, as shown in FIG. 4, two timing detection members 74 are attached to the front side in the traveling direction of the belt conveyor 72 relative to the inspection object W, and four timings are within the range where the inspection object W is arranged. A detection member 74 is attached.

ベルトコンベア72の進行方向前側の2つのタイミング検知用部材74は互いに近接して取付けられており、このため、ベルトコンベアが作動するとセンサ71は所定の時間内に2つのタイミング検知用部材74を検知する。このように所定の時間内に生ずる2つの検出信号を本実施形態では初期リセット信号としている。他の信号を初期リセット信号としても良い。また、本実施形態では、外部信号入力部61aはベルトコンベア72上に検査対象物Wが正常に載置されていることを確認するカメラおよび画像処理部を有する検査対象物確認部に接続され、ベルトコンベア72に検査対象物Wが正常に載置されているか否かの信号を受付ける。具体的に、正常に載置されているとの信号を点灯許可信号として受付け、正常に載置されていないとの信号を点灯禁止信号として受付ける。外部信号入力部61aをベルトコンベア72の制御部に接続し、ベルトコンベア72が正常に作動しているとの情報を点灯許可信号として受付け、正常に作動していないとの情報を点灯禁止情報として受付けるよう構成することも可能である。   The two timing detection members 74 on the front side in the traveling direction of the belt conveyor 72 are attached close to each other. For this reason, when the belt conveyor is operated, the sensor 71 detects the two timing detection members 74 within a predetermined time. To do. In this embodiment, two detection signals generated within a predetermined time are used as initial reset signals. Another signal may be used as the initial reset signal. In this embodiment, the external signal input unit 61a is connected to an inspection object confirmation unit having a camera and an image processing unit for confirming that the inspection object W is normally placed on the belt conveyor 72, A signal indicating whether or not the inspection object W is normally placed on the belt conveyor 72 is received. Specifically, a signal indicating that the device is normally mounted is received as a lighting permission signal, and a signal indicating that the device is not normally mounted is received as a lighting prohibition signal. The external signal input unit 61a is connected to the control unit of the belt conveyor 72, and information indicating that the belt conveyor 72 is operating normally is received as a lighting permission signal, and information indicating that the belt conveyor 72 is not operating normally is used as lighting prohibition information. It can also be configured to accept.

格納部61bには、例えば図8のようなテーブルの形式やその他の形式により、各光源10,20,30の光量指示情報の組合せを複数格納している。図8では、コード番号000にR、G、B調光指示(第1光源、第2光源、第3光源)がそれぞれ0である光量指示情報の組合せが格納されている。つまり、3つの「0」がそれぞれ光量指示情報である。コード番号001には、R調光指示が4、G調光指示が4、B調光指示が2である光量指示情報の組合せが格納されている。   The storage unit 61b stores a plurality of combinations of light intensity instruction information of the light sources 10, 20, and 30 by using, for example, a table format as shown in FIG. 8 or other formats. In FIG. 8, the code number 000 stores a combination of light amount instruction information in which the R, G, and B dimming instructions (first light source, second light source, and third light source) are zero. That is, three “0” s are the light quantity instruction information. Code number 001 stores a combination of light intensity instruction information in which the R dimming instruction is 4, the G dimming instruction is 4, and the B dimming instruction is 2.

格納部61b又は点灯制御部61内のRAM等のメモリーには、図9に示すように、タイミング番号とコード番号とが対応している処理タイミングデータが格納されている。本実施形態では、表示部61eに映し出される情報を見ながら、検査員が入力部61dを操作して処理タイミングデータを設定することができるように構成されている。即ち、検査員は、タイミング番号の数の増減や、各タイミング番号に対応するコード番号を任意に変更することができる。   In a memory such as a RAM in the storage unit 61b or the lighting control unit 61, processing timing data in which a timing number and a code number correspond is stored as shown in FIG. In the present embodiment, the inspector can set the processing timing data by operating the input unit 61d while watching the information displayed on the display unit 61e. That is, the inspector can arbitrarily increase / decrease the number of timing numbers and change the code number corresponding to each timing number.

処理部61cは、格納部61b又は点灯制御部61内のメモリーに格納されたプログラムにより、処理タイミングデータに基づいて各調光信号回路62,63,64にそれぞれ信号を送るように作動し、各調光信号回路62,63,64は受付ける信号に応じた調光信号を各調光回路12,22,32に送る。
本実施形態の処理部61cの処理を図7を参照しながら説明する。先ず、ベルトコンベア72に検査対象物Wが正常に載置されていることを示す点灯許可信号を外部信号入力部61aを介して受付け(ステップS1)、初期リセット信号を外部信号入力部61aを介して受付けると(ステップS2)、図9のタイミング番号1の光量指示情報に応じた信号を各調光信号回路62,63,64に送る(ステップS3)。
The processing unit 61c operates to send a signal to each dimming signal circuit 62, 63, 64 based on the processing timing data by a program stored in the memory in the storage unit 61b or the lighting control unit 61. The dimming signal circuits 62, 63, 64 send dimming signals corresponding to the received signals to the dimming circuits 12, 22, 32.
Processing of the processing unit 61c of this embodiment will be described with reference to FIG. First, a lighting permission signal indicating that the inspection object W is normally placed on the belt conveyor 72 is received via the external signal input unit 61a (step S1), and an initial reset signal is received via the external signal input unit 61a. (Step S2), a signal corresponding to the light quantity instruction information of timing number 1 in FIG. 9 is sent to each dimming signal circuit 62, 63, 64 (step S3).

続いて、次にセンサ71からタイミング検知用部材74を検知した検知信号(トリガー信号T1)を外部信号入力部61aを介して受付けると(ステップS4)、点灯トリガー信号を各調光信号回路62,63,64に送ると共に(ステップS5)、タイミング番号2の光量指示情報に応じた信号を各調光信号回路62,63,64に送る(ステップS6)。これにより、各光源10,20,30がタイミング番号1の光量指示情報に応じた光量で所定時間だけ照射を行うように駆動される(図7のA1の状態になる)。ここで、ステップS5の前にステップS3で予め各調光信号回路62,63,64がタイミング番号1の光量指示情報に応じた信号を受付けているので、ステップS5で点灯指示信号を受けた各調光信号回路62,63,64は迅速且つ確実に各調光回路12,22,32の駆動を行うことができ、検査の高速化を行う上で有利である。   Subsequently, when a detection signal (trigger signal T1) detected from the sensor 71 from the sensor 71 is received via the external signal input unit 61a (step S4), a lighting trigger signal is sent to each dimming signal circuit 62, 63 and 64 (step S5), and a signal corresponding to the light quantity instruction information of timing number 2 is sent to each dimming signal circuit 62, 63 and 64 (step S6). Accordingly, each of the light sources 10, 20, and 30 is driven so as to irradiate with a light amount corresponding to the light amount instruction information of timing number 1 for a predetermined time (a state of A1 in FIG. 7). Here, since each dimming signal circuit 62, 63, 64 has received a signal corresponding to the light quantity instruction information of timing number 1 in advance in step S3 before step S5, each lighting instruction signal received in step S5. The dimming signal circuits 62, 63, 64 can drive the dimming circuits 12, 22, 32 quickly and reliably, which is advantageous for speeding up the inspection.

続いて、次にセンサ71からの検知信号(トリガー信号T2)を外部信号入力部61aを介して受付けると(ステップS7)、点灯トリガー信号を各調光信号回路62,63,64に送ると共に(ステップS8)、タイミング番号3の光量指示情報に応じた信号を各調光信号回路62,63,64に送る(ステップS9)。これにより、各光源10,20,30がタイミング番号2の光量指示情報に応じた光量で所定時間だけ照射を行うように駆動される(図7のA2の状態になる)。   Subsequently, when a detection signal (trigger signal T2) from the sensor 71 is received via the external signal input unit 61a (step S7), a lighting trigger signal is sent to each dimming signal circuit 62, 63, 64 ( In step S8), a signal corresponding to the light quantity instruction information of timing number 3 is sent to each dimming signal circuit 62, 63, 64 (step S9). Accordingly, each of the light sources 10, 20, and 30 is driven so as to irradiate with a light amount corresponding to the light amount instruction information of timing number 2 for a predetermined time (a state of A2 in FIG. 7).

続いて、次にセンサ71からの検知信号(トリガー信号T3)を外部信号入力部61aを介して受付けると(ステップS10)、点灯トリガー信号を各調光信号回路62,63,64に送ると共に(ステップS11)、タイミング番号4の光量指示情報に応じた信号を各調光信号回路62,63,64に送る(ステップS12)。これにより、各光源10,20,30がタイミング番号3の光量指示情報に応じた光量で所定時間だけ照射を行うように駆動される(図7のA3の状態になる)。   Subsequently, when a detection signal (trigger signal T3) from the sensor 71 is received via the external signal input unit 61a (step S10), a lighting trigger signal is sent to each dimming signal circuit 62, 63, 64 ( In step S11), a signal corresponding to the light quantity instruction information of timing number 4 is sent to each dimming signal circuit 62, 63, 64 (step S12). As a result, each of the light sources 10, 20, and 30 is driven so as to irradiate with a light amount corresponding to the light amount instruction information of timing number 3 for a predetermined time (a state of A3 in FIG. 7).

続いて、次にセンサ71からの検知信号(トリガー信号T4)を外部信号入力部61aを介して受付けると(ステップS13)、点灯トリガー信号を各調光信号回路62,63,64に送る(ステップS14)。これにより、各光源10,20,30がタイミング番号4の光量指示情報に応じた光量で所定時間だけ照射を行うように駆動される(図7のA4の状態になる)。   Subsequently, when a detection signal (trigger signal T4) from the sensor 71 is received via the external signal input unit 61a (step S13), a lighting trigger signal is sent to the dimming signal circuits 62, 63, and 64 (step S13). S14). As a result, each of the light sources 10, 20, and 30 is driven so as to irradiate with a light amount corresponding to the light amount instruction information of timing number 4 for a predetermined time (a state shown in A4 in FIG. 7).

続いて、再び初期リセット信号を外部信号入力部61aを介して受付けると(ステップS15)、ステップS3〜ステップS14を繰り返す(ステップS16)。なお、処理部61cは、ベルトコンベア72に検査対象物Wが正常に載置されていないことを示す点灯禁止信号を受付けると、それ以降にトリガー信号を受付けても、各調光信号回路62,63,64に点灯トリガー信号を送信しない。このため、検査対象物Wが正常に載置されていない状態での無用な点灯が防止される。   Subsequently, when the initial reset signal is received again via the external signal input unit 61a (step S15), steps S3 to S14 are repeated (step S16). In addition, if the process part 61c receives the lighting prohibition signal which shows that the test object W is not normally mounted on the belt conveyor 72, even if it receives a trigger signal after that, each dimming signal circuit 62, No lighting trigger signal is transmitted to 63, 64. For this reason, unnecessary lighting in a state where the inspection object W is not normally placed is prevented.

これにより、図4における検査対象物WのD1の位置は図7におけるA1の状態で照射され、D2の位置はA2の状態で照射され、D3の位置はA3の状態で照射され、D4の位置はA4の状態で照射される。このため、検査対象物WのD1、D2、D3およびD4の位置を異なる色の光で照明して検査することができる。
また、格納部61aに光量指示情報の組合せを複数格納できるので、検査工程において光の色や照射タイミングを設定する際に、その設定作業を容易に行うことができる。
Thereby, the position of D1 of the inspection object W in FIG. 4 is irradiated in the state of A1 in FIG. 7, the position of D2 is irradiated in the state of A2, the position of D3 is irradiated in the state of A3, and the position of D4 Is irradiated in the state of A4. For this reason, it can test | inspect by illuminating the position of D1, D2, D3, and D4 of the test target object W with the light of a different color.
In addition, since a plurality of combinations of the light quantity instruction information can be stored in the storage unit 61a, the setting work can be easily performed when setting the light color and the irradiation timing in the inspection process.

本実施形態では、第1、第2および第3の入光面41,42,43は各々凸レンズ面である。このため、各光源10,20,30からの拡がりながら進む光が各入光面41,42,43によりX方向と直交する方向において各光源10,20,30の光軸側に屈折し、その屈折した光が棒状レンズ40の出光面44から出光する。このため、各光源からの拡がりながら進む光を所定の幅を有するライン状の照明位置に向かって効率良く導くことができる。なお、照明位置の幅が棒状レンズ40の直径よりも大きいこともあるが、この場合でも照明位置はライン状であると言える。
なお、本実施形態では第1、第2および第3の入光面41,42,43と、第1、第2および第3の光源10,20,30を設けたが、第1、第2および第3の入光面41,42,43のうち2つだけ設け、その2つに対応するように光源10,20,30のうち2つを設けることも可能である。この場合でも前述と同様の作用効果を奏する。
In the present embodiment, the first, second, and third light incident surfaces 41, 42, and 43 are each convex lens surfaces. For this reason, the light traveling while spreading from each light source 10, 20, 30 is refracted by the light incident surfaces 41, 42, 43 to the optical axis side of each light source 10, 20, 30 in the direction orthogonal to the X direction. The refracted light is emitted from the light exit surface 44 of the rod-shaped lens 40. For this reason, the light which spreads from each light source can be efficiently guided toward the linear illumination position having a predetermined width. Although the width of the illumination position may be larger than the diameter of the rod-shaped lens 40, it can be said that the illumination position is linear in this case.
In this embodiment, the first, second, and third light incident surfaces 41, 42, and 43 and the first, second, and third light sources 10, 20, and 30 are provided. It is also possible to provide only two of the third light incident surfaces 41, 42, and 43 and provide two of the light sources 10, 20, and 30 so as to correspond to the two. Even in this case, the same effects as described above can be obtained.

また、本実施形態では、第1の波長帯域の上限波長と第2の波長帯域の下限波長とは20nm以上離れている。また、第1の波長帯域の上限波長よりも第2の波長帯域側と、第2の波長帯域の下限波長よりも第1の波長帯域側のそれぞれで、第1および第2光路透過率が急激に低下する。このため、第1および第2の光源10,20の光量のスペクトルの傾斜領域が第1の波長帯域の上限波長と第2の波長帯域の下限波長との間に存在する状態で、第1および第2の光源10,20を片方又は両方点灯しても、第1の波長帯域の上限波長と第2の波長帯域の下限波長との間の中間位置に生ずる意図しない光量増の影響を低減することができる。   In the present embodiment, the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band are separated by 20 nm or more. In addition, the first and second optical path transmittances are abrupt on the second wavelength band side from the upper limit wavelength of the first wavelength band and on the first wavelength band side from the lower limit wavelength of the second wavelength band, respectively. To drop. For this reason, the first and second light sources 10 and 20 in the state where the slope region of the light quantity spectrum exists between the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band. Even if one or both of the second light sources 10 and 20 are turned on, the influence of an unintended increase in the amount of light that occurs at an intermediate position between the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band is reduced. be able to.

例えば、本実施形態のように第2光源20の光量スペクトルがなだらかなピークを有し、第2の波長帯域の下限波長が第1の波長帯域の上限波長よりも短波長側に存在する場合や、第2の波長帯域の下限波長よりも短波長側で第2光路透過率が急激に低下しない場合は、第2光源20だけを点灯しても青色又は青色に近い多くの光が棒状レンズ40の出光面44から出ることになる。又は、第1光源10と第2光源20の両方を点灯させた際に青色と緑色の中間位置の波長を有する光の量をコントロールすることが難しい、またはコントロールできない。これらの状況を本実施形態の構成は改善できる。   For example, as in the present embodiment, the light amount spectrum of the second light source 20 has a gentle peak, and the lower limit wavelength of the second wavelength band exists on the shorter wavelength side than the upper limit wavelength of the first wavelength band. When the second optical path transmittance does not rapidly decrease on the shorter wavelength side than the lower limit wavelength of the second wavelength band, even if only the second light source 20 is turned on, a large amount of blue or near-blue light is emitted from the rod-shaped lens 40. The light exiting surface 44 exits. Or, when both the first light source 10 and the second light source 20 are turned on, it is difficult or cannot be controlled to control the amount of light having a wavelength at an intermediate position between blue and green. The configuration of the present embodiment can improve these situations.

また、本実施形態では、第2の波長帯域の上限波長と第3の波長帯域の下限波長とは25nm以上離れている。また、第2の波長帯域の上限波長よりも第3の波長帯域側と、第3の波長帯域の下限波長よりも第2の波長帯域側のそれぞれで、第2および第3光路透過率が急激に低下する。このため、第2および第3の光源20,30の光量のスペクトルの傾斜領域が第2の波長帯域の上限波長と第3の波長帯域の下限波長との間に存在する状態で、第2および第3の光源20,30を片方又は両方点灯しても、第1の波長帯域の上限波長と第2の波長帯域の下限波長との間の中間位置に生ずる意図しない光量増を効果的に低減することができる。   In the present embodiment, the upper limit wavelength of the second wavelength band and the lower limit wavelength of the third wavelength band are separated by 25 nm or more. In addition, the second and third optical path transmittances sharply respectively on the third wavelength band side from the upper limit wavelength of the second wavelength band and on the second wavelength band side from the lower limit wavelength of the third wavelength band. To drop. For this reason, the second and third light sources 20 and 30 in the state where the slope region of the light amount spectrum exists between the upper limit wavelength of the second wavelength band and the lower limit wavelength of the third wavelength band. Even if one or both of the third light sources 20 and 30 are turned on, an unintentional increase in the amount of light that occurs at an intermediate position between the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band is effectively reduced. can do.

なお、第1の波長帯域の上限波長と第2の波長帯域の下限波長とが3nm以上等、確実に離れており、第2の波長帯域の上限波長と第3の波長帯域の下限波長とが3nm以上等、確実に離れていれば、上記と同様の作用効果を奏することが可能である。
また、本実施形態では、透過率が85%以上の範囲を第1、第2および第3波長帯域としたが、棒状レンズ40の透過特性が優れている場合、透過率が90%以上の範囲を第1、第2および第3波長帯域とすることも可能である。この場合でも、第1の波長帯域の上限波長と第2の波長帯域の下限波長とが3nm以上等、確実に離れており、第2の波長帯域の上限波長と第3の波長帯域の下限波長とが3nm以上等、確実に離れていれば、上記と同様の作用効果を奏し得る。
一方、棒状レンズ40の透過特性が劣っている場合、透過率が75%以上の範囲を第1、第2および第3波長帯域とすることも可能である。この場合でも、第1の波長帯域の上限波長と第2の波長帯域の下限波長とが3nm以上等、確実に離れており、第2の波長帯域の上限波長と第3の波長帯域の下限波長とが3nm以上等、確実に離れていれば、上記と同様の作用効果を奏し得る。
さらに言えば、第1の波長帯域の上限波長よりも第2の波長帯域の下限波長の方が長波長であり、第2の波長帯域の上限波長よりも第3の波長帯域の下限波長の方が長波長であり、前記の光路透過率の急激な低下があれば、上記と同様の作用効果を達成する可能性がある。
一方、第1の波長帯域の上限波長と第2の波長帯域の下限波長とが40nm以下の範囲にあり、第2の波長帯域の上限波長と第3の波長帯域の下限波長とが40nm以下の範囲にあれば、互いにピーク波長が近い光の一方又は両方を照射する制御を行い、これにより例えば光の色に敏感な検査対象物の検査を効果的に行うことも可能になる。
In addition, the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band are reliably separated such as 3 nm or more, and the upper limit wavelength of the second wavelength band and the lower limit wavelength of the third wavelength band are If it is reliably separated such as 3 nm or more, it is possible to achieve the same effect as described above.
Further, in the present embodiment, the range in which the transmittance is 85% or more is set as the first, second, and third wavelength bands. However, when the transmission characteristics of the rod-shaped lens 40 are excellent, the transmittance is in the range of 90% or more. Can be the first, second and third wavelength bands. Even in this case, the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band are reliably separated such as 3 nm or more, and the upper limit wavelength of the second wavelength band and the lower limit wavelength of the third wavelength band. If they are reliably separated, such as 3 nm or more, the same effects as described above can be obtained.
On the other hand, when the transmission characteristics of the rod lens 40 are inferior, it is possible to set the first, second, and third wavelength bands in a range where the transmittance is 75% or more. Even in this case, the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band are reliably separated such as 3 nm or more, and the upper limit wavelength of the second wavelength band and the lower limit wavelength of the third wavelength band. If they are reliably separated, such as 3 nm or more, the same effects as described above can be obtained.
Furthermore, the lower limit wavelength of the second wavelength band is longer than the upper limit wavelength of the first wavelength band, and the lower limit wavelength of the third wavelength band is longer than the upper limit wavelength of the second wavelength band. Is a long wavelength and there is a possibility that the same effect as described above may be achieved if there is a rapid decrease in the optical path transmittance.
On the other hand, the upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band are in the range of 40 nm or less, and the upper limit wavelength of the second wavelength band and the lower limit wavelength of the third wavelength band are 40 nm or less. If it is within the range, control is performed to irradiate one or both of lights having peak wavelengths close to each other, and for example, it is possible to effectively inspect an inspection object sensitive to the color of light.

また、本実施形態では、第1、第2および第3の波長帯域の上限波長又は下限波長から10nmの範囲で第1、第2又は第3の光路透過率が30%以上低下する条件(条件1)や、第1、第2および第3の波長帯域の上限波長又は下限波長から30nmの範囲で第1、第2又は第3の光路透過率が70%以上低下する条件(条件2)を示した。これに対し、(条件1)のみを満たしている場合や、(条件2)のみを満たしている場合でも、使用するLED11,21,31の光量スペクトルの特性にもよるが、上記と同様の作用効果を達成することが可能である。
一方、第1、第2および第3の波長帯域の上限波長又は下限波長から10nmの範囲で第1、第2又は第3の光路透過率が20%以上低下する場合でも、上記と同様の作用効果を達成することが可能である。
Further, in the present embodiment, a condition (condition) in which the first, second, or third optical path transmittance is reduced by 30% or more in the range of 10 nm from the upper limit wavelength or the lower limit wavelength of the first, second, and third wavelength bands. 1) or a condition (condition 2) under which the first, second, or third optical path transmittance is reduced by 70% or more in the range from the upper limit wavelength or the lower limit wavelength of the first, second, and third wavelength bands to 30 nm. Indicated. On the other hand, even when only (Condition 1) is satisfied, or when only (Condition 2) is satisfied, the same effect as described above, depending on the characteristics of the light amount spectrum of the LEDs 11, 21, 31 used. It is possible to achieve an effect.
On the other hand, even when the first, second, or third optical path transmittance is reduced by 20% or more in the range from the upper limit wavelength or the lower limit wavelength of the first, second, and third wavelength bands to 10 nm, the same effect as above It is possible to achieve an effect.

なお、第1の波長帯域の上限波長よりも第2の波長帯域の下限波長の方が短波長であり、第2の波長帯域の上限波長よりも第3の波長帯域の下限波長の方が短波長であり、前記の光路透過率の急激な低下が無い場合でも、各光源10,20,30からの拡がりながら進む光が各入光面41,42,43によりX方向と直交する方向において各光源10,20,30の光軸側に屈折するので、各光源10,20,30からの拡がりながら進む光を所定の幅を有するライン状の照明位置に向かって効率良く導くことができる。   The lower limit wavelength of the second wavelength band is shorter than the upper limit wavelength of the first wavelength band, and the lower limit wavelength of the third wavelength band is shorter than the upper limit wavelength of the second wavelength band. Even when there is no sudden decrease in the optical path transmittance, the light traveling from each of the light sources 10, 20, 30 spreads in the direction orthogonal to the X direction by the respective light incident surfaces 41, 42, 43. Since the light is refracted to the optical axis side of the light sources 10, 20, and 30, the light traveling from each of the light sources 10, 20, and 30 can be efficiently guided toward the linear illumination position having a predetermined width.

なお、第3光源30を設けずに、第1光源10および第2光源20だけを使った照明装置1とすることも可能である。又は、第1光源10を設けずに、第2光源20および第3光源30だけを使った照明装置1とすることも可能であり、この場合は図6の第2の波長帯域と第2光路透過率がそれぞれ第1の波長帯域と第1光路透過率になり、第3の波長帯域と第3光路透過率がそれぞれ第2の波長帯域と第21光路透過率になる。さらに、第1、第2、および第3の光源10,20,30の何れか又は全部を紫外光や赤外光を出す光源とすることも可能である。   Note that the lighting device 1 using only the first light source 10 and the second light source 20 may be provided without providing the third light source 30. Or it is also possible to set it as the illuminating device 1 which uses only the 2nd light source 20 and the 3rd light source 30, without providing the 1st light source 10, In this case, it is possible to use the second wavelength band and the second optical path in FIG. The transmittance becomes the first wavelength band and the first optical path transmittance, respectively, and the third wavelength band and the third optical path transmittance become the second wavelength band and the twenty-first optical path transmittance, respectively. Furthermore, any or all of the first, second, and third light sources 10, 20, and 30 can be used as light sources that emit ultraviolet light or infrared light.

なお、本実施形態において、各光源10,20,30と各入光面41,42,43との間や、出光面44と照明位置との間に、光を主にX方向に拡散する拡散レンズや、光をX方向およびX方向と直交する方向に拡散する拡散レンズを配置することも可能である。この場合、照明位置の光の均一性をより向上することが可能である。   In the present embodiment, diffusion that mainly diffuses light in the X direction between the light sources 10, 20, and 30 and the light incident surfaces 41, 42, and 43 and between the light exit surface 44 and the illumination position. It is also possible to arrange a lens or a diffusing lens that diffuses light in the X direction and a direction orthogonal to the X direction. In this case, it is possible to further improve the uniformity of light at the illumination position.

また、本実施形態では、各光源10,20,30からの光が棒状レンズ40の各入光面41,42,43に直接入光する構成なので、出光面44における各光源10,20,30からの光の光軸をX方向と直交する方向に互いに合わせ易い。この構成も照明位置の光の均一性を向上させる上で有利である。   In the present embodiment, since the light from each light source 10, 20, 30 is directly incident on each light incident surface 41, 42, 43 of the rod-shaped lens 40, each light source 10, 20, 30 on the light exit surface 44. Are easily aligned with each other in a direction orthogonal to the X direction. This configuration is also advantageous in improving the uniformity of light at the illumination position.

上記実施形態において、図10に示すように、各光源10,20,30の取付位置を対応する入光面41,42,43に対し各光源10,20,30の光軸と直交する方向であってX方向にも直交する方向に調整可能に構成することも可能である。例えば、光源10について説明する。この取付位置を調整するための構造は、装置本体1aに固定されたヒートシンク200と、ヒートシンク200に複数のねじ201aによって固定されたLED基板201とを備え、LED基板201に複数の第1光源10が実装されている。本実施形態では、LED基板201においてねじ201aが挿通する孔の内径は、LED基板201のヒートシンク200への取付位置を調整できるように、ねじ201aのねじ部外径より例えば0.8mm程度大きい。ヒートシンク200は単なるベースであっても良い。また、図中でヒートシンク200の厚さはそれほど大きくないが、要求される放熱機能に合わせてヒートシンク200の厚さや構造を変更することは可能である。ヒートシンク200にはベアリング202が固定され、ベアリング202により調整ボルト203がその軸方向に移動しないように、且つ、回転可能に支持されている。図10において紙面左右方向が光軸と直交し且つX方向と直交する方向である。LED基板201における第1光源10の実装面と反対の面には円柱を略半分にした断面形状を有する溝201bが形成され、その溝201bには雌ねじが形成されている。一方、ヒートシンク200にも溝201bに対応した位置に円柱を略半分にした断面形状を有する溝200aが設けられている。調整ボルト203は溝200a内に配置されると共に、溝201bの雌ねじに螺合している。基板201がヒートシンク200に軽く押付けられるように各ねじ201aを調整した状態で、調整ボルト203を回転させると、基板201および第1光源10のX方向の位置が調整される。調整が完了したら、各ねじ201aを締めて基板201をヒートシンク200に固定する。   In the above embodiment, as shown in FIG. 10, the mounting position of each light source 10, 20, 30 is in a direction perpendicular to the optical axis of each light source 10, 20, 30 with respect to the corresponding light incident surface 41, 42, 43. In addition, it is possible to make the adjustment possible in a direction orthogonal to the X direction. For example, the light source 10 will be described. The structure for adjusting the mounting position includes a heat sink 200 fixed to the apparatus main body 1a and an LED substrate 201 fixed to the heat sink 200 with a plurality of screws 201a. The LED substrate 201 includes a plurality of first light sources 10. Has been implemented. In the present embodiment, the inner diameter of the hole through which the screw 201a is inserted in the LED substrate 201 is, for example, about 0.8 mm larger than the outer diameter of the screw portion of the screw 201a so that the attachment position of the LED substrate 201 to the heat sink 200 can be adjusted. The heat sink 200 may be a simple base. In addition, although the thickness of the heat sink 200 is not so large in the drawing, it is possible to change the thickness and structure of the heat sink 200 according to the required heat dissipation function. A bearing 202 is fixed to the heat sink 200, and the adjustment bolt 203 is supported by the bearing 202 so as not to move in the axial direction and rotatably. In FIG. 10, the left-right direction on the paper is a direction orthogonal to the optical axis and orthogonal to the X direction. On the surface of the LED substrate 201 opposite to the mounting surface of the first light source 10, a groove 201b having a cross-sectional shape that is substantially halved of a cylinder is formed, and a female screw is formed in the groove 201b. On the other hand, the heat sink 200 is also provided with a groove 200a having a cross-sectional shape in which a cylinder is substantially halved at a position corresponding to the groove 201b. The adjustment bolt 203 is disposed in the groove 200a and is screwed into the female screw of the groove 201b. When the adjustment bolt 203 is rotated in a state where the screws 201a are adjusted so that the substrate 201 is lightly pressed against the heat sink 200, the positions of the substrate 201 and the first light source 10 in the X direction are adjusted. When the adjustment is completed, the screws 201 a are tightened to fix the substrate 201 to the heat sink 200.

図10において紙面に垂直な方向であるX方向に延びるX方向調整ボルトを設けることも可能である。この場合、X方向調整ボルトも調整ボルト203と同様にヒートシンク200に固定されたベアリングにX方向に移動しないように、且つ、回転可能に支持される。また、X方向調整ボルトも基板201に形成された溝の雌ねじに螺合している。このため、X方向にも基板201および第1光源10の位置を調整できる。   In FIG. 10, it is also possible to provide an X direction adjusting bolt extending in the X direction which is a direction perpendicular to the paper surface. In this case, the X-direction adjusting bolt is also rotatably supported by the bearing fixed to the heat sink 200 so as not to move in the X direction, like the adjusting bolt 203. Further, the X direction adjusting bolt is also screwed into the female screw of the groove formed in the substrate 201. For this reason, the positions of the substrate 201 and the first light source 10 can be adjusted also in the X direction.

さらに、基板201の位置を各光源10,20,30の光軸方向に調整可能に構成することもできる。例えば、ヒートシンク200は装置本体1aには固定されず、装置本体1aに固定されたフレームに複数のねじによって固定される。この場合、前記複数のねじを緩めるとともに、ヒートシンク200のフレームに対する位置を調整することにより、基板201の位置を各光源10,20,30の光軸方向に調整することができる。   Furthermore, the position of the board | substrate 201 can also be comprised so that adjustment to the optical axis direction of each light source 10,20,30 is possible. For example, the heat sink 200 is not fixed to the apparatus main body 1a, but is fixed to a frame fixed to the apparatus main body 1a with a plurality of screws. In this case, by loosening the plurality of screws and adjusting the position of the heat sink 200 with respect to the frame, the position of the substrate 201 can be adjusted in the optical axis direction of each of the light sources 10, 20, and 30.

ここで、棒状レンズ40と各光源10,20,30との間には凸レンズ、凹レンズ等のレンズが設けられていない。このため、光源10,20,30の取付位置を対応する入光面41,42,43に対し光源10,20,30の光軸と直交する方向に調整可能に構成すると、各光源10,20,30について出光面から出光される光の位置をX方向と直交する方向に合わせることができる。これは、供給光量を確保しながら、ライン状の照明位置の光の量のばらつきを低減する上で極めて有利である。   Here, no lens such as a convex lens or a concave lens is provided between the rod-shaped lens 40 and each of the light sources 10, 20, 30. Therefore, when the mounting positions of the light sources 10, 20, and 30 can be adjusted in the direction perpendicular to the optical axis of the light sources 10, 20, and 30 with respect to the corresponding light incident surfaces 41, 42, and 43, the light sources 10, 20 are arranged. , 30 can be adjusted to the direction orthogonal to the X direction. This is extremely advantageous in reducing variation in the amount of light at the line-shaped illumination position while ensuring the amount of light supplied.

また、光源10,20,30の取付位置を対応する入光面41,42,43に対し光源10,20,30の光軸方向に調整可能に構成すると、各光源10,20,30について、出光面44において光を出す範囲、出光される光の進む方向等を調整することができる。これは、供給光量を確保しながら、ライン状の照明位置の光の量のばらつきを低減する上で極めて有利である。   Further, when the mounting positions of the light sources 10, 20, and 30 are configured to be adjustable in the optical axis direction of the light sources 10, 20, and 30 with respect to the corresponding light incident surfaces 41, 42, and 43, It is possible to adjust the range in which light is emitted on the light exit surface 44, the traveling direction of the emitted light, and the like. This is extremely advantageous in reducing variation in the amount of light at the line-shaped illumination position while ensuring the amount of light supplied.

また、出光面44が凸レンズ面であることから、棒状レンズ40と各光源10,20,30との間に凸レンズ、凹レンズ等のレンズが設けられていなくても、出光面44からの光を平行光または光軸に向かって集光する光とすることもできる。
尚、各入光面41,42,43の形状や、出光面44から出た光をどの方向に進ませるかに応じて、出光面44をX方向に延びる凹レンズ面や平面とすることも可能である。
In addition, since the light exit surface 44 is a convex lens surface, the light from the light exit surface 44 is parallel even if a lens such as a convex lens or a concave lens is not provided between the rod-shaped lens 40 and each of the light sources 10, 20, 30. It can also be set as light or the light condensed toward an optical axis.
The light exit surface 44 can be a concave lens surface or a flat surface extending in the X direction depending on the shape of each of the light incident surfaces 41, 42, 43 and in which direction the light emitted from the light exit surface 44 is advanced. It is.

本実施形態において、X方向に延びる軸まわりの回転方向を位置決めするための位置決め穴又は位置決め突起を棒状レンズ40に設けることも可能である。例えば、図11に示すように、棒状レンズ40の端において4つのレンズの内側端が接触又は近接する位置にX方向に延びる長穴形状の位置決め穴40cを設けることができる。
この場合、装置本体1aには当該位置決め穴又は位置決め突起に係合する係合部が設けられ、例えば、位置決め穴40cに係合する突起が前記係合部として設けられる。
棒状レンズ40の回転方向の位置は、各入光面41,42,43と各光源10,20,30との位置決めや、出光面44からの光の進む方向の設定に重要である。上記のように構成すると、棒状レンズ40を回転方向に容易且つ確実に位置決めできるので、各入光面41,42,43と各光源10,20,30との位置決めや、出光面44からの光の進む方向の設定精度を向上する上で有利である。
In the present embodiment, it is also possible to provide the rod-shaped lens 40 with a positioning hole or positioning projection for positioning the rotational direction around the axis extending in the X direction. For example, as shown in FIG. 11, a long hole-shaped positioning hole 40c extending in the X direction can be provided at a position where the inner ends of the four lenses contact or approach each other at the end of the rod-shaped lens 40.
In this case, the apparatus main body 1a is provided with an engaging portion that engages with the positioning hole or the positioning protrusion, and for example, a protrusion that engages with the positioning hole 40c is provided as the engaging portion.
The position of the rod lens 40 in the rotational direction is important for positioning the light incident surfaces 41, 42, 43 and the light sources 10, 20, 30 and for setting the direction in which the light from the light exit surface 44 travels. If comprised as mentioned above, since the rod-shaped lens 40 can be positioned easily and reliably in the rotation direction, positioning of each light incident surface 41, 42, 43 and each light source 10, 20, 30 and light from the light exit surface 44 are possible. This is advantageous in improving the setting accuracy of the direction of travel.

なお、図12に示すように、棒状レンズ40を構成する4つのレンズのうち2つのレンズを他の2つのレンズよりもZ方向に突出させることも可能である。この突出は前記位置決め突起として機能し、装置本体1aに当該突起に係合する係合部を設けると、上記の位置決め穴40cおよびそれに係合する係合部と同様の作用効果を奏する。   As shown in FIG. 12, it is possible to project two lenses out of the four lenses constituting the rod-shaped lens 40 in the Z direction from the other two lenses. This protrusion functions as the positioning protrusion. When the engaging portion engaging with the protrusion is provided in the apparatus main body 1a, the same effect as the positioning hole 40c and the engaging portion engaged therewith is obtained.

上記実施形態において、図13に示すように、棒状レンズ40の各入光面41,42,43を平面とすることも可能である。この場合、棒状レンズ40を構成する材質の屈折率は例えば1.3、1.4、1.5、1.6等であるから、各光源10,20,30からの拡がりながら進む光が各入光面41,42,43により各光源10,20,30の光軸側に屈折する。また、出光面44はX方向に延びる凸レンズ面であることから、出光面44によって光が光軸側により屈折する。このため、各光源10,20,30からの拡がりながら進む光をライン状の照明位置に向かって効率良く導くことができる。   In the above embodiment, as shown in FIG. 13, each light incident surface 41, 42, 43 of the rod-shaped lens 40 can be a flat surface. In this case, the refractive index of the material constituting the rod-shaped lens 40 is, for example, 1.3, 1.4, 1.5, 1.6, etc., so that the light traveling while spreading from each of the light sources 10, 20, 30 is each The light incident surfaces 41, 42, 43 refract the light sources 10, 20, 30 toward the optical axis. Since the light exit surface 44 is a convex lens surface extending in the X direction, the light exit surface 44 refracts light toward the optical axis. For this reason, the light which spreads from each light source 10,20,30 can be efficiently guide | induced toward a linear illumination position.

ここで、光源からの光がレンズに入光する時、光の進行方向とレンズ面とのなす角度が90°に近い場合(入射角が0°に近い場合)、屈折率が1.3以上であるレンズに入光する際の屈折は小さいが、入射角(レンズ外の光の進行方向と前記レンズ面垂線とのなす角度)が20°等のように大きくなると、入射角と屈折角(レンズ内の光の進行方向と前記レンズ面垂線とのなす角度)との差が大きくなり(屈折が大きくなり)、その差は入射角が大きくなる程顕著になる。
各入光面41,42,43を平面にすると、各入光面41,42,43を凸面にする場合と比較し、各入光面41,42,43において各光源10,20,30の光軸から離れた位置における入射角が小さくなる。このため、各入光面41,42,43において各光源10,20,30の光軸から離れた位置における光の進行方向をコントロールし易く、これは供給光量を確保する上で有利である。
Here, when the light from the light source enters the lens, when the angle between the light traveling direction and the lens surface is close to 90 ° (when the incident angle is close to 0 °), the refractive index is 1.3 or more. Although the refraction upon entering the lens is small, the incidence angle and the refraction angle (when the incident angle (the angle formed between the traveling direction of light outside the lens and the lens surface perpendicular)) becomes large, such as 20 °. The difference between the light traveling direction in the lens and the angle formed by the lens surface normal increases (the refraction increases), and the difference becomes more prominent as the incident angle increases.
If each light incident surface 41,42,43 is made into a plane, compared with the case where each light incident surface 41,42,43 is made into a convex surface, in each light incident surface 41,42,43, each light source 10,20,30 of The incident angle at a position away from the optical axis is reduced. For this reason, it is easy to control the traveling direction of light at positions away from the optical axes of the light sources 10, 20, and 30 on the respective light incident surfaces 41, 42, and 43, which is advantageous in securing the amount of light supplied.

また、上記実施形態において、図14に示すように、棒状レンズ40の各入光面41,42,43を凹面とすることも可能である。この場合、各光源10,20,30は、その光軸から40°の照射角度範囲の光、またはそれ以上の照射角度範囲の光が各入光面41,42,43に照射されるように配置される。
このように、各光源10,20,30とその対応する入光面(凹レンズ面)との距離は近いので、各光源10,20,30からの拡がりながら進む光が各入光面41,42,43によりX方向と直交する方向において各光源10,20,30の光軸側に屈折し、その屈折した光が棒状レンズ40の出光面44から出光する。この場合、出光面44を凹面とすることも可能である。
Moreover, in the said embodiment, as shown in FIG. 14, it is also possible to make each light-incidence surface 41,42,43 of the rod-shaped lens 40 into a concave surface. In this case, each of the light sources 10, 20, and 30 is configured so that the light incident surfaces 41, 42, and 43 are irradiated with light in an irradiation angle range of 40 ° from the optical axis or light in an irradiation angle range of more than that. Be placed.
In this way, since the distance between each light source 10, 20, 30 and its corresponding light incident surface (concave lens surface) is short, the light that travels from each light source 10, 20, 30 spreads to each light incident surface 41, 42. , 43 is refracted toward the optical axis of each light source 10, 20, 30 in a direction orthogonal to the X direction, and the refracted light is emitted from the light exit surface 44 of the rod lens 40. In this case, the light exit surface 44 can be a concave surface.

また、上記実施形態において、各第2光源20のX方向配置位置を各第1光源10のX方向配置位置に対しずらし、各第3光源30のX方向配置位置を各第1および第2光源10,20のX方向配置位置に対しずらすことも可能である。この場合、全ての光源10,20,30から光を照射した際に、照明位置に全ての光源10,20,30の光が混ざった光(白色光等)が照射され、X方向における光量のむらが低減する。
一方、各第1光源10のX方向配置位置が各第2および第3光源20,30のX方向配置位置と一致している場合でも、全ての光源10,20,30から光を照射すると、照明位置に全ての光源10,20,30の光が混ざった光(白色光等)を照射することができる。つまり、検査対象物を検査する光の色に制約が無く、強い光が求められる場合、照明位置を全ての光源10,20,30の色が混ざった強い光で照明することができる。
Moreover, in the said embodiment, the X direction arrangement position of each 2nd light source 20 is shifted with respect to the X direction arrangement position of each 1st light source 10, and the X direction arrangement position of each 3rd light source 30 is each 1st and 2nd light source. It is also possible to deviate from 10 and 20 positions in the X direction. In this case, when light is emitted from all the light sources 10, 20, and 30, light (white light or the like) mixed with light from all the light sources 10, 20, and 30 is irradiated to the illumination position, and unevenness in the amount of light in the X direction. Is reduced.
On the other hand, even when the X-direction arrangement positions of the first light sources 10 coincide with the X-direction arrangement positions of the second and third light sources 20, 30, when light is emitted from all the light sources 10, 20, 30, Light (white light or the like) in which light from all the light sources 10, 20, and 30 is mixed can be irradiated to the illumination position. That is, when there is no restriction on the color of light for inspecting the inspection object and strong light is required, the illumination position can be illuminated with strong light in which the colors of all the light sources 10, 20, and 30 are mixed.

上記実施形態では、X方向に延びる直前状の棒状レンズ40と、それぞれX方向に並設された複数の第1光源10、第2光源20、および第3光源30を有する照明装置を示した。
これに対し、棒状レンズ40を周方向に延設して環状にすると共に、複数の第1光源10、第2光源20、および第3光源30を環状に延びる棒状レンズ40の延設方向に並ぶように配置することも可能である。この場合であっても、棒状レンズ40は所定方向に延び、複数の第1光源10、第2光源20、および第3光源30は当該所定方向に並んでいると言える。
In the said embodiment, the illuminating device which has the rod-shaped lens 40 of the last-like shape extended in a X direction, and the some 1st light source 10, the 2nd light source 20, and the 3rd light source 30 which were each arranged in parallel by the X direction was shown.
On the other hand, the rod-shaped lens 40 is extended in the circumferential direction to form an annular shape, and the plurality of first light sources 10, the second light source 20, and the third light source 30 are arranged in the extending direction of the rod-shaped lens 40 extending in an annular shape. It is also possible to arrange them as follows. Even in this case, it can be said that the rod-shaped lens 40 extends in a predetermined direction, and the plurality of first light sources 10, the second light source 20, and the third light source 30 are arranged in the predetermined direction.

なお、このように環状に形成した照明装置の照明位置は環形状になる場合もあり、円形状になる場合もある。
また、上記照明装置により顕微鏡等による試料観察位置を照明することも可能である。
Note that the illumination position of the annular illumination device formed in this manner may be an annular shape or a circular shape.
It is also possible to illuminate the sample observation position by a microscope or the like with the illumination device.

上記各実施形態において、各光源10,20,30として紫外線又は赤外線を照射するLEDを用いることも可能である。この場合でも、各光源10,20,30の光量が最大となる波長が互いに30nm以上異なっていれば、上記と同様の作用効果を奏する。
また、上記各実施形態において、界面40aと界面40bが直交するダイクロイックミラーではなく、その他の形状のダイクロイックミラーを用いることも可能であり、この場合でも上記と同様の作用効果を奏し得る。
また、各実施形態において、制御ボックス3に設けられた第1ボリュームつまみ1d、第2ボリュームつまみ1eおよび第3ボリュームつまみ1fにより、第1、第2および第3光源10,20,30の光量をそれぞれ手動で調整することも可能である。
In each of the above-described embodiments, it is also possible to use LEDs that emit ultraviolet rays or infrared rays as the light sources 10, 20, 30. Even in this case, if the wavelengths at which the light amounts of the light sources 10, 20, and 30 are maximized differ from each other by 30 nm or more, the same effects as described above can be obtained.
In each of the above-described embodiments, it is possible to use a dichroic mirror having another shape instead of the dichroic mirror in which the interface 40a and the interface 40b are orthogonal to each other.
In each embodiment, the first, second, and third light sources 10, 20, and 30 are controlled by the first volume knob 1d, the second volume knob 1e, and the third volume knob 1f provided in the control box 3. It is also possible to adjust each manually.

1…照明装置、3…制御ボックス、4…電力供給線、10…第1光源、20…第2光源、30…第3光源、40…棒状レンズ、40a…界面、40b…界面、41…第1の入光面、42…第2の入光面、43…第3の入光面、44…出光面、60…制御部、61…点灯制御部、61a…外部信号入力部、61b…格納部、61c…処理部、62…B調光信号回路、63…G調光信号回路、64…R調光信号回路   DESCRIPTION OF SYMBOLS 1 ... Illuminating device, 3 ... Control box, 4 ... Power supply line, 10 ... 1st light source, 20 ... 2nd light source, 30 ... 3rd light source, 40 ... Rod-shaped lens, 40a ... Interface, 40b ... Interface, 41 ... 1st DESCRIPTION OF SYMBOLS 1 light incident surface, 42 ... 2nd light incident surface, 43 ... 3rd light incident surface, 44 ... Light exit surface, 60 ... Control part, 61 ... Lighting control part, 61a ... External signal input part, 61b ... Storage , 61c ... processing unit, 62 ... B dimming signal circuit, 63 ... G dimming signal circuit, 64 ... R dimming signal circuit

Claims (9)

所定方向に延びる棒状レンズであって、各々前記所定方向に延びる第1の入光面と、第2の入光面と、出光面とを有し、前記第1の入光面から入光する光を前記出光面に導くと共に前記第2の入光面から入光する光を前記出光面に導くダイクロイックミラーが内部に形成された棒状レンズと、
前記所定方向に並ぶように配置され、前記第1の入光面に向けて第1の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第1光源と、
前記所定方向に並ぶように配置され、前記第2の入光面に向けて前記第1の波長より30nm以上長い第2の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第2光源とを備え、
前記第1および第2の入光面は2つ共に前記所定方向に延びる凸レンズ面又は2つ共に前記所定方向に延びる凹レンズ面であり、
前記各入光面が凹レンズ面の場合、前記各光源はその光軸から40°の照射角度範囲の光が前記各入光面に照射されるように配置されている照明装置。
A rod-shaped lens extending in a predetermined direction, which has a first light incident surface, a second light incident surface, and a light exit surface, each extending in the predetermined direction, and enters light from the first light incident surface. A rod-like lens having a dichroic mirror formed therein for guiding light to the light exit surface and guiding light incident from the second light entrance surface to the light exit surface;
A plurality of first light sources that are arranged so as to be aligned in the predetermined direction, each irradiating light that has a maximum amount of light at a first wavelength and spreads toward the first light incident surface;
Arranged so as to be aligned in the predetermined direction and irradiating each of the light that travels while spreading with the light having the maximum light quantity at the second wavelength that is 30 nm or more longer than the first wavelength toward the second light incident surface. A plurality of second light sources,
The first and second light incident surfaces are both convex lens surfaces extending in the predetermined direction or two concave lens surfaces extending in the predetermined direction;
When each of the light incident surfaces is a concave lens surface, each of the light sources is arranged so that light in an irradiation angle range of 40 ° from the optical axis is irradiated onto the light incident surfaces.
前記棒状レンズが前記所定方向に延びる第3の入光面を有すると共に、前記ダイクロイックミラーは前記第3の入光面から入光する光も前記出光面に導くものであり、
この照明装置は、前記所定方向に並ぶように配置され、前記第3の入光面に向けて前記第2の波長より30nm以上長い第3の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第3光源をさらに備え、
前記第1、第2および第3の入光面は3つ共に前記所定方向に延びる凸レンズ面又は3つ共に前記所定方向に延びる凹レンズ面であり、
前記第3の入光面が凹レンズ面の場合、前記第3光源はその光軸から40°の照射角度範囲の光が前記第3の入光面に照射されるように配置されている請求項1に記載の照明装置。
The rod-shaped lens has a third light incident surface extending in the predetermined direction, and the dichroic mirror guides light incident from the third light incident surface to the light exit surface,
The illuminating device is arranged so as to be aligned in the predetermined direction, and spreads toward the third light incident surface with the light amount maximizing at a third wavelength that is 30 nm or more longer than the second wavelength. A plurality of third light sources each irradiating the traveling light;
The first, second and third light incident surfaces are all convex lens surfaces extending in the predetermined direction or three concave lens surfaces extending in the predetermined direction.
When the third light incident surface is a concave lens surface, the third light source is disposed so that light in an irradiation angle range of 40 ° from the optical axis is irradiated to the third light incident surface. The lighting device according to 1.
所定方向に延びる棒状レンズであって、各々前記所定方向に延びる第1の入光面と、第2の入光面と、出光面とを有し、前記第1の入光面から入光する光を前記出光面に導くと共に前記第2の入光面から入光する光を前記出光面に導くダイクロイックミラーが内部に形成された棒状レンズと、
前記所定方向に並ぶように配置され、前記第1の入光面に向けて第1の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第1光源と、
前記所定方向に並ぶように配置され、前記第2の入光面に向けて前記第1の波長より30nm以上長い第2の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第2光源とを備え、
前記各入光面は平面であり、前記出光面は前記所定方向に延びる凸レンズ面である照明装置。
A rod-shaped lens extending in a predetermined direction, which has a first light incident surface, a second light incident surface, and a light exit surface, each extending in the predetermined direction, and enters light from the first light incident surface. A rod-like lens having a dichroic mirror formed therein for guiding light to the light exit surface and guiding light incident from the second light entrance surface to the light exit surface;
A plurality of first light sources that are arranged so as to be aligned in the predetermined direction, each irradiating light that has a maximum amount of light at a first wavelength and spreads toward the first light incident surface;
Arranged so as to be aligned in the predetermined direction and irradiating each of the light that travels while spreading with the light having the maximum light quantity at the second wavelength that is 30 nm or more longer than the first wavelength toward the second light incident surface. A plurality of second light sources,
Each of the light incident surfaces is a flat surface, and the light output surface is a convex lens surface extending in the predetermined direction.
前記棒状レンズが前記所定方向に延びる平面である第3の入光面を有すると共に、前記ダイクロイックミラーは前記第3の入光面から入光する光も出光面に導くものであり、
この照明装置は、前記並設方向に並ぶように配置され、前記第3の入光面に向けて前記第2の波長より30nm以上長い第3の波長で光量が最大となる光であって拡がりながら進む光を各々照射する複数の第3光源をさらに備えている請求項3に記載の照明装置。
The rod-shaped lens has a third light incident surface which is a plane extending in the predetermined direction, and the dichroic mirror guides light incident from the third light incident surface to the light exit surface,
The illumination device is arranged so as to be aligned in the juxtaposed direction, and spreads toward the third light incident surface with light having a maximum light quantity at a third wavelength that is 30 nm or more longer than the second wavelength. The illuminating device according to claim 3, further comprising a plurality of third light sources that respectively irradiate the traveling light.
前記各光源の取付位置を前記対応する入光面に対し前記各光源の光軸と直交する方向に調整する取付位置調整手段をさらに有する請求項1〜4の何れかに記載の照明装置。   The illuminating device according to claim 1, further comprising an attachment position adjusting unit that adjusts the attachment position of each light source in a direction perpendicular to the optical axis of each light source with respect to the corresponding light incident surface. 前記出光面は凸レンズ面又は凹レンズ面である請求項1又は2に記載の照明装置。   The illumination device according to claim 1, wherein the light exit surface is a convex lens surface or a concave lens surface. 前記棒状レンズは照明装置本体に取付けられており、
前記棒状レンズの所定の位置には、前記X方向に延びる軸まわりの回転方向を位置決めする位置決め穴又は位置決め突起が形成され、
前記照明装置本体には前記位置決め穴又は前記位置決め突起に係合する係合部が形成されている請求項1〜6の何れかに記載の照明装置。
The rod-shaped lens is attached to the lighting device body,
In a predetermined position of the rod-shaped lens, a positioning hole or a positioning projection for positioning the rotational direction around the axis extending in the X direction is formed,
The illumination device according to any one of claims 1 to 6, wherein an engagement portion that engages with the positioning hole or the positioning protrusion is formed in the illumination device main body.
前記棒状レンズは、前記第1の波長を含む第1の波長帯域において前記第1の入光面から前記出光面への第1光路透過率が85%以上であると共に、前記第2の波長を含む第2の波長帯域において前記第2の入光面から前記出光面への第2光路透過率が85%以上であり、
前記第1の波長帯域の上限波長と前記第2の波長帯域の下限波長とは1nm以上離れており、
前記第1の波長帯域の上限波長と該上限波長より10nm長い波長との間で前記第1光路透過率が25%以上低下し、および/又は、前記上限波長と該上限波長より30nm長い波長との間で前記第1光路透過率が70%以上低下し、
前記第2の波長帯域の下限波長と該下限波長より10nm短い波長との間で前記第2光路透過率が25%以上低下し、および/又は、前記下限波長と該下限波長より30nm短い波長との間で前記第2光路透過率が70%以上低下する請求項1〜7の何れかに記載の照明装置。
The rod-shaped lens has a first optical path transmittance from the first light incident surface to the light exit surface of 85% or more in the first wavelength band including the first wavelength, and the second wavelength. A second optical path transmittance from the second light incident surface to the light exit surface in the second wavelength band including is 85% or more,
The upper limit wavelength of the first wavelength band and the lower limit wavelength of the second wavelength band are separated by 1 nm or more,
The first optical path transmittance decreases by 25% or more between the upper limit wavelength of the first wavelength band and a wavelength longer by 10 nm than the upper limit wavelength, and / or the upper limit wavelength and a wavelength longer by 30 nm than the upper limit wavelength Between the first optical path transmittance is reduced by 70% or more,
The second optical path transmittance is reduced by 25% or more between the lower limit wavelength of the second wavelength band and a wavelength shorter than the lower limit wavelength by 10 nm, and / or the lower limit wavelength and a wavelength shorter than the lower limit wavelength by 30 nm. The illumination device according to any one of claims 1 to 7, wherein the second optical path transmittance is reduced by 70% or more during the period.
前記棒状レンズは、前記第3の波長を含む第3の波長帯域において前記第3の入光面から前記出光面への第3光路透過率が85%以上であり、
前記第2の波長帯域の上限波長と前記第3の波長帯域の下限波長とは1nm以上離れており、
前記第2の波長帯域の上限波長と該上限波長より10nm長い波長との間で前記第2光路透過率が25%以上低下し、および/又は、前記第2の波長帯域の前記上限波長と該上限波長より30nm長い波長との間で前記第2光路透過率が70%以上低下し、
前記第3の波長帯域の下限波長と該下限波長より10nm短い波長との間で前記第3光路透過率が25%以上低下し、および/又は、前記第3の波長帯域の下限波長と該下限波長より30nm短い波長との間で前記第3光路透過率が70%以上低下する請求項8に記載の照明装置。
The rod-shaped lens has a third optical path transmittance of 85% or more from the third light incident surface to the light exit surface in a third wavelength band including the third wavelength.
The upper limit wavelength of the second wavelength band and the lower limit wavelength of the third wavelength band are separated by 1 nm or more,
The second optical path transmittance decreases by 25% or more between the upper limit wavelength of the second wavelength band and a wavelength longer by 10 nm than the upper limit wavelength, and / or the upper limit wavelength of the second wavelength band and the upper limit wavelength The second optical path transmittance decreases by 70% or more between the wavelength 30 nm longer than the upper limit wavelength,
The third optical path transmittance decreases by 25% or more between the lower limit wavelength of the third wavelength band and a wavelength shorter by 10 nm than the lower limit wavelength, and / or the lower limit wavelength of the third wavelength band and the lower limit. The lighting device according to claim 8, wherein the third optical path transmittance decreases by 70% or more between a wavelength shorter by 30 nm than a wavelength.
JP2015172378A 2015-09-01 2015-09-01 Lighting device Pending JP2017049111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015172378A JP2017049111A (en) 2015-09-01 2015-09-01 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015172378A JP2017049111A (en) 2015-09-01 2015-09-01 Lighting device

Publications (1)

Publication Number Publication Date
JP2017049111A true JP2017049111A (en) 2017-03-09

Family

ID=58280176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015172378A Pending JP2017049111A (en) 2015-09-01 2015-09-01 Lighting device

Country Status (1)

Country Link
JP (1) JP2017049111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469838A (en) * 2017-09-07 2019-03-15 株式会社艾泰克*** Light irradiation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109469838A (en) * 2017-09-07 2019-03-15 株式会社艾泰克*** Light irradiation device
JP2019050082A (en) * 2017-09-07 2019-03-28 株式会社アイテックシステム Light irradiation device
JP7085083B2 (en) 2017-09-07 2022-06-16 株式会社アイテックシステム Light irradiation device
CN109469838B (en) * 2017-09-07 2023-11-14 株式会社艾泰克*** Light irradiation device

Similar Documents

Publication Publication Date Title
TWI325953B (en) A high-speed optical sensing device abling to sense luminous intensity and chromaticity and an optical measuring system with the high-speed optical sensing device
US6768123B2 (en) Apparatus for examining documents
US20060226336A1 (en) Apparatus and method for collecting and detecting light emitted by a lighting apparatus
TWI390146B (en) Illumination system, light-sensing plate and display device
JP2008002836A (en) Line type lighting system
KR20190138868A (en) Inspection system and inspection method
CA2615706A1 (en) Apparatus and method for collecting and detecting light emitted by a lighting apparatus
JP2021081441A5 (en)
EP1494017A1 (en) Device and method for wafer inspection
US20080062424A1 (en) Compact Ringlight
US9877368B2 (en) Optical analyzer
US10352870B2 (en) LED light source probe card technology for testing CMOS image scan devices
JP2018190572A (en) Luminaire, and attachment for luminaire, and appearance inspection device
JP2017049111A (en) Lighting device
US20030031342A1 (en) Apparatus for examining documents of value
KR101319639B1 (en) Illuminance measuring module and multi channel detector using thereof
JP2017049110A (en) Light source device
JP2017003360A (en) Light source device
KR101926050B1 (en) Inspection apparatus using ultraviolet ray
TWI740416B (en) Light source device and instant uniformity monitoring system for a light source device
TWI608222B (en) Optical measuring apparatus
JP2014175708A5 (en)
WO2018096637A1 (en) Light source device
JP7046511B2 (en) Coaxial epi-illumination device
JP7206736B2 (en) Measuring device and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200128