JP2017048825A - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
JP2017048825A
JP2017048825A JP2015171059A JP2015171059A JP2017048825A JP 2017048825 A JP2017048825 A JP 2017048825A JP 2015171059 A JP2015171059 A JP 2015171059A JP 2015171059 A JP2015171059 A JP 2015171059A JP 2017048825 A JP2017048825 A JP 2017048825A
Authority
JP
Japan
Prior art keywords
valve
pilot
inner peripheral
notch
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015171059A
Other languages
Japanese (ja)
Inventor
幹郎 山下
Mikiro Yamashita
幹郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015171059A priority Critical patent/JP2017048825A/en
Publication of JP2017048825A publication Critical patent/JP2017048825A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shock absorber capable of obtaining attenuation force by a fixed orifice before a valve is opened and also opening an attenuation valve with smaller differential pressure.SOLUTION: There is provided a simple support structure such that a main valve 27 has an inner peripheral part 27B clamped not from both surface sides, but only from a non-sheet-part side on an inner peripheral side, and between the main valve 27 and an outer sheet part 39, a cut valve 101 is provided which has an inner peripheral part 103 clamped from both surface sides and also has a low-rigidity coupling part 105 formed between the outer peripheral part 102 and inner peripheral part 103. Consequently, attenuation force by a cut part 104 (fixed orifice) of the cut valve 101 is obtained before the main valve 27 is opened, and the main valve 27 can be opened with smaller differential pressure by the simple support structure.SELECTED DRAWING: Figure 3

Description

本発明は、ピストンロッドのストロークに対して減衰力を発生させる緩衝器に関する。   The present invention relates to a shock absorber that generates a damping force with respect to a stroke of a piston rod.

例えば、特許文献1には、環状のシール部材が固着されたリリーフバルブの内周側が両面側からクランプされておらず、リリーフバルブの内周側が支持溝により単純支持されたバルブ構造を備える緩衝器が開示されている。このバルブ構造では、開弁に対する撓み剛性による影響が小さく、開弁特性は、主にパイロット室の内圧及び弁ばねのばね力に依存するため、リリーフバルブの開弁圧力の設定の自由度が高く、所望の減衰力特性を得ることができる。   For example, Patent Document 1 discloses a shock absorber having a valve structure in which the inner peripheral side of a relief valve to which an annular seal member is fixed is not clamped from both sides, and the inner peripheral side of the relief valve is simply supported by a support groove. Is disclosed. In this valve structure, the influence of the bending rigidity on the valve opening is small, and the valve opening characteristic mainly depends on the internal pressure of the pilot chamber and the spring force of the valve spring, so the degree of freedom in setting the valve opening pressure of the relief valve is high. A desired damping force characteristic can be obtained.

特開2011−179546号公報JP 2011-179546 A

ところで、反シート部側の外周側に環状のシール部材が固着されたディスクバルブにより形成された減衰バルブは、内周側が両面側からクランプされている場合、外周側に切欠き(スリット)が形成されたディスクバルブにより形成された切欠きバルブをシート部側に重ねて設けることにより、固定オリフィスの流路面積を調整可能に構成することができる。一方、減衰バルブを両面側からクランプせずに単純支持構造とした場合、その構造上、切欠きバルブの内周側が両面側からクランプされるが、切欠きバルブの内周側をクランプした場合、バルブの撓み剛性が高くなる。その結果、減衰バルブが開弁される差圧が高くなり、低剛性化を狙う減衰バルブの単純支持構造による効果が損なわれる。
そこで、本発明は、開弁前には固定オリフィスによる減衰力が得られ、且つ減衰バルブをより小さい差圧で開弁させることが可能な緩衝器を提供することを目的とする。
By the way, when the inner peripheral side is clamped from both sides, the damping valve formed by the disc valve having the annular seal member fixed to the outer peripheral side on the side opposite to the seat portion is formed with a notch (slit) on the outer peripheral side. By providing the notch valve formed by the disc valve formed on the seat portion side, the flow area of the fixed orifice can be adjusted. On the other hand, if the damping valve has a simple support structure without clamping from both sides, due to its structure, the inner peripheral side of the notch valve is clamped from both sides, but when the inner peripheral side of the notch valve is clamped, The bending rigidity of the valve is increased. As a result, the differential pressure at which the damping valve is opened increases, and the effect of the simple support structure of the damping valve aimed at lowering the rigidity is impaired.
Accordingly, an object of the present invention is to provide a shock absorber that can obtain a damping force by a fixed orifice before the valve is opened and can open the damping valve with a smaller differential pressure.

上記課題を解決するために、本発明に係る緩衝器は、環状のシート部が形成されたバルブボディと、外周側が前記シート部に離着座して開閉する環状のディスクバルブにより形成される減衰バルブと、を備える緩衝器であって、前記減衰バルブは、内周側が両面側からクランプされておらず、内周側の片面側からのみ支持されており、前記減衰バルブと前記バルブボディの前記シート部との間には、外周側に切欠きを備えた環状のディスクバルブにより形成される切欠きバルブが設けられ、前記切欠きバルブは、内周側が両面側からクランプされ、外周側と内周側との間に低剛性部が設けられることを特徴とする。   In order to solve the above-described problems, a shock absorber according to the present invention is a damping valve formed by a valve body having an annular seat portion and an annular disc valve that opens and closes by being seated on the outer peripheral side of the seat portion. The damping valve has an inner peripheral side that is not clamped from both sides, and is supported only from one side of the inner peripheral side, and the damping valve and the seat of the valve body A notch valve formed by an annular disc valve having a notch on the outer peripheral side is provided between the outer peripheral side, the inner peripheral side is clamped from both sides, and the outer peripheral side and the inner peripheral A low-rigidity part is provided between the two sides.

本発明に係る緩衝器によれば、開弁前には固定オリフィスによる減衰力が得られ、且つ減衰バルブをより小さい差圧で開弁させることができる。   According to the shock absorber according to the present invention, the damping force by the fixed orifice can be obtained before the valve is opened, and the damping valve can be opened with a smaller differential pressure.

本実施形態における緩衝器の一軸平面による断面図である。It is sectional drawing by the uniaxial plane of the buffer in this embodiment. 図1における減衰力発生機構を拡大して示す図である。It is a figure which expands and shows the damping force generation mechanism in FIG. 図2における要部を拡大して示す図である。It is a figure which expands and shows the principal part in FIG. 本実施形態のバルブ構造で用いる切欠きバルブの平面図である。It is a top view of the notch valve used with the valve structure of this embodiment. 本実施形態の説明図であって、3パターンのバルブ構造における差圧と流量との関係(解析結果)を示し、曲線(A)は、本実施形態のバルブ構造における差圧と流量との関係を示し、曲線(B)は、既存の1段構造における差圧と流量との関係を示し、曲線(C)は、既存の2段構造における差圧と流量との関係を示す。It is explanatory drawing of this embodiment, Comprising: The relationship (analysis result) of the differential pressure | voltage and flow volume in the valve structure of 3 patterns is shown, A curve (A) is the relationship between the differential pressure | voltage and flow volume in the valve structure of this embodiment. Curve (B) shows the relationship between differential pressure and flow rate in the existing one-stage structure, and curve (C) shows the relationship between differential pressure and flow rate in the existing two-stage structure.

本発明の一実施形態を添付した図を参照して説明する。ここでは、本実施形態に係るバルブ構造を図1に示される減衰力調整式緩衝器1(以下「緩衝器1」と称する)の減衰力発生機構26に適用した場合を説明する。なお、以下の説明において、図1における上下方向をそのまま上下方向と称する。
図1に示されるように、緩衝器1は、シリンダ2の外側に外筒3を設けた複筒構造であり、シリンダ2と外筒3との間にリザーバ4が形成される。シリンダ2内には、ピストン5が摺動可能に嵌装され、該ピストン5によりシリンダ2内がシリンダ上室2Aとシリンダ下室2Bとの2室に分画される。ピストン5には、ピストンロッド6の一端がナット7により連結され、ピストンロッド6の他端側は、シリンダ上室2Aを通過し、さらにシリンダ2及び外筒3の上端部に装着されたロッドガイド8及びオイルシール9に挿通され、シリンダ2の外部へ延出する。
An embodiment of the present invention will be described with reference to the accompanying drawings. Here, the case where the valve structure according to the present embodiment is applied to the damping force generation mechanism 26 of the damping force adjustment type shock absorber 1 (hereinafter referred to as “buffer 1”) shown in FIG. 1 will be described. In the following description, the vertical direction in FIG. 1 is referred to as the vertical direction as it is.
As shown in FIG. 1, the shock absorber 1 has a double cylinder structure in which an outer cylinder 3 is provided outside a cylinder 2, and a reservoir 4 is formed between the cylinder 2 and the outer cylinder 3. A piston 5 is slidably fitted in the cylinder 2, and the piston 5 divides the inside of the cylinder 2 into two chambers, a cylinder upper chamber 2A and a cylinder lower chamber 2B. One end of a piston rod 6 is connected to the piston 5 by a nut 7, and the other end side of the piston rod 6 passes through the cylinder upper chamber 2 </ b> A, and is further attached to the upper ends of the cylinder 2 and the outer cylinder 3. 8 and the oil seal 9 are extended to the outside of the cylinder 2.

なお、シリンダ2の下端部には、シリンダ下室2Bとリザーバ4とを分画するベースバルブ10が設けられる。ピストン5には、シリンダ上室2A、シリンダ下室2B間を連通する通路11、12が設けられる。通路12には、シリンダ下室2B側からシリンダ上室2A側への油液(作動流体)の流通のみを許容する逆止弁13が設けられる。また、通路11には、シリンダ上室2A側の油液の圧力が設定圧力に達したとき開弁し、この圧力をシリンダ下室2B側へリリーフするディスクバルブ14が設けられる。   A base valve 10 that separates the cylinder lower chamber 2 </ b> B and the reservoir 4 is provided at the lower end of the cylinder 2. The piston 5 is provided with passages 11 and 12 communicating between the cylinder upper chamber 2A and the cylinder lower chamber 2B. The passage 12 is provided with a check valve 13 that allows only fluid (working fluid) to flow from the cylinder lower chamber 2B side to the cylinder upper chamber 2A side. Further, the passage 11 is provided with a disk valve 14 that opens when the pressure of the oil liquid on the cylinder upper chamber 2A side reaches the set pressure and relieves the pressure to the cylinder lower chamber 2B side.

ベースバルブ10には、シリンダ下室2Bとリザーバ4とを連通する通路15、16が設けられる。通路15には、リザーバ4側からシリンダ下室2B側への油液の流通のみを許容する逆止弁17が設けられる。また、通路16には、シリンダ下室2B側の油液の圧力が所定圧力に達したときに開弁し、この圧力をリザーバ4側へリリーフするディスクバルブ18が設けられる。なお、作動流体として、シリンダ2内には油液が封入され、リザーバ4内には油液及びガスが封入される。   The base valve 10 is provided with passages 15 and 16 that communicate between the cylinder lower chamber 2 </ b> B and the reservoir 4. The passage 15 is provided with a check valve 17 that allows only fluid to flow from the reservoir 4 side to the cylinder lower chamber 2B side. The passage 16 is provided with a disk valve 18 that opens when the pressure of the oil on the cylinder lower chamber 2B side reaches a predetermined pressure and relieves the pressure to the reservoir 4 side. Note that as the working fluid, an oil liquid is sealed in the cylinder 2, and an oil liquid and a gas are sealed in the reservoir 4.

シリンダ2には、上下両端部にシール部材19を介してセパレータチューブ20が外嵌され、シリンダ2とセパレータチューブ20との間には、環状通路21が形成される。環状通路21は、シリンダ2の上端部近傍の側壁に設けられた通路22によりシリンダ上室2Aに連通される。セパレータチューブ20の下部には、側方(図1における右方向)に突出する円筒状の枝管23が形成される。外筒3の側壁には、枝管23に対して同心で枝管23よりも大径の開口24が設けられ、この開口24を囲むようにして円筒状のケース25が溶接等により結合される。そして、ケース25内には、減衰力発生機構26が収容される。   Separator tubes 20 are fitted on the cylinder 2 via seal members 19 at both upper and lower ends, and an annular passage 21 is formed between the cylinder 2 and the separator tube 20. The annular passage 21 is communicated with the cylinder upper chamber 2 </ b> A by a passage 22 provided in a side wall near the upper end portion of the cylinder 2. A cylindrical branch pipe 23 that protrudes laterally (to the right in FIG. 1) is formed at the lower portion of the separator tube 20. An opening 24 that is concentric with the branch pipe 23 and larger in diameter than the branch pipe 23 is provided on the side wall of the outer cylinder 3, and a cylindrical case 25 is joined by welding or the like so as to surround the opening 24. A damping force generation mechanism 26 is accommodated in the case 25.

(減衰力発生機構)
図2に示されるように、減衰力発生機構26は、パイロット型(背圧型)のメインバルブ27(減衰バルブ)、メインバルブ27の開弁圧力を制御するソレノイド駆動の圧力制御弁であるパイロットバルブ28、パイロットバルブ28の下流側に設けられてフェイル時に作動するフェイルセーフバルブ29、及びサブバルブ111が一体に組込まれたバルブブロック30、並びにパイロットバルブ28を作動させるソレノイドブロック31により構成される。そして、ケース25内に通路部材32を挿入し、バルブブロック30とソレノイドアセンブリ31とを結合して一体化させるとともにケース25内に挿入し、さらにケース25に螺着したナット34を締め付けることにより、バルブブロック30、ソレノイドアセンブリ31、及び通路部材32がケース25内に固定される。
(Damping force generation mechanism)
As shown in FIG. 2, the damping force generation mechanism 26 is a pilot type (back pressure type) main valve 27 (attenuation valve) and a pilot valve that is a solenoid-driven pressure control valve that controls the valve opening pressure of the main valve 27. 28, a fail-safe valve 29 that is provided downstream of the pilot valve 28 and operates at the time of failure, a valve block 30 in which the sub valve 111 is integrated, and a solenoid block 31 that operates the pilot valve 28. Then, the passage member 32 is inserted into the case 25, and the valve block 30 and the solenoid assembly 31 are combined and integrated, and inserted into the case 25, and further, the nut 34 screwed to the case 25 is tightened. The valve block 30, the solenoid assembly 31, and the passage member 32 are fixed in the case 25.

ケース25の一端部に形成された内フランジ部25Aの内面側には、径方向に沿って延びる複数個の切欠き25Cが形成され、この切欠き25Cと外筒3の開口24とによりリザーバ4とケース25内の室25Bとが連通される。通路部材32は、略円筒状の円筒部32Aの一端の外周にフランジ部32Bが形成され、円筒部32Aがケース25の内フランジ部25Aの開口25Eから突出して枝管23内に嵌合され、さらにフランジ部32Bがケース25の内フランジ部25Aに当接することで固定される。また、通路部材32は、シール材33により表面の一部が被覆され、枝管23及び後述するメインボディ35との接合部がシール材33によりシールされる。   A plurality of cutouts 25C extending in the radial direction are formed on the inner surface side of the inner flange portion 25A formed at one end of the case 25, and the reservoir 4 is formed by the cutouts 25C and the opening 24 of the outer cylinder 3. And the chamber 25B in the case 25 communicate with each other. The passage member 32 has a flange portion 32B formed on the outer periphery of one end of a substantially cylindrical cylindrical portion 32A. The cylindrical portion 32A projects from the opening 25E of the inner flange portion 25A of the case 25 and is fitted into the branch pipe 23. Further, the flange portion 32B is fixed by coming into contact with the inner flange portion 25A of the case 25. The passage member 32 is partially covered with a sealing material 33, and a joint portion between the branch pipe 23 and a main body 35 described later is sealed with the sealing material 33.

バルブブロック30は、メインボディ35(バルブボディ)、パイロットピン36、及びパイロットボディ37を有する。メインボディ35は、略環状に形成され、一端が通路部材32のフランジ部32Bに当接する。また、メインボディ35は、本体を軸線に沿う方向(図2における左右方向)へ貫通し、メインボディ35の周方向に沿って設けられた複数個の通路38を有する。各通路38は、メインボディ35の一端に形成された環状凹部90を介して通路部材32内の通路(軸孔)に連通される。メインボディ35の他端の外周側には、環状の外側シート部39(シート部)が突出し、メインボディ35の外側シート部39と通路38との間には、環状の内側シート部91が突出する。また、メインボディ35の内周側には、環状のクランプ部40が突出する。   The valve block 30 includes a main body 35 (valve body), a pilot pin 36, and a pilot body 37. The main body 35 is formed in a substantially annular shape, and one end abuts on the flange portion 32 </ b> B of the passage member 32. Further, the main body 35 has a plurality of passages 38 that pass through the main body in the direction along the axis (the left-right direction in FIG. 2) and are provided along the circumferential direction of the main body 35. Each passage 38 communicates with a passage (shaft hole) in the passage member 32 through an annular recess 90 formed at one end of the main body 35. An annular outer seat portion 39 (seat portion) projects from the outer peripheral side of the other end of the main body 35, and an annular inner seat portion 91 projects between the outer seat portion 39 and the passage 38 of the main body 35. To do. An annular clamp portion 40 projects from the inner peripheral side of the main body 35.

図2に示されるように、パイロットピン36は、中間部に大径部36Aを有する段付の円筒状に形成され、一端部にオリフィス46が形成される。パイロットピン36は、一端部がメインボディ35に圧入され、図3に示されるように、大径部36Aとクランプ部40とにより、上流側から順に、ディスクバルブ115、サブバルブ111、ワッシャ94、切欠きバルブ101、ワッシャ95、第1リテーナ92、及び第2リテーナ93をクランプする。パイロットピン36の他端部が、パイロットボディ37の軸孔である通路50に圧入されることにより、パイロットピン36の他端部とパイロットボディ37の通路50との間に、軸線方向(図2における左右方向)に沿って延びる複数個の通路47が形成される。   As shown in FIG. 2, the pilot pin 36 is formed in a stepped cylindrical shape having a large-diameter portion 36 </ b> A at an intermediate portion, and an orifice 46 is formed at one end portion. One end of the pilot pin 36 is press-fitted into the main body 35, and as shown in FIG. 3, the disk valve 115, the sub valve 111, the washer 94, The notch valve 101, the washer 95, the first retainer 92, and the second retainer 93 are clamped. The other end portion of the pilot pin 36 is press-fitted into a passage 50 that is an axial hole of the pilot body 37, whereby the other end portion of the pilot pin 36 and the passage 50 of the pilot body 37 are in the axial direction (FIG. 2). A plurality of passages 47 extending in the horizontal direction) are formed.

パイロットボディ37は、中間部に底部37Aを有する略有底円筒状に形成され、底部37Aが可撓性ディスク48を介してパイロットピン36の大径部36Aに当接することにより固定される。パイロットボディ37の一端側の円筒部37Bの内周面には、メインバルブ27に固着されたシール部材45が摺動可能且つ液密的に嵌合し、これによりメインバルブ27の背部にパイロット室49が形成される。パイロット室49の内圧は、メインバルブ27に対して閉弁方向に作用する。サブバルブ111は、通路38側の圧力を受けて内側シート部91から離座することで開弁し、これにより、メインバルブ27は、通路38側の圧力を受けて外側シート部39から離座して開弁し、その結果、通路38が下流側のケース25内の室25Bに連通される。   The pilot body 37 is formed in a substantially bottomed cylindrical shape having a bottom portion 37 </ b> A at an intermediate portion, and the bottom portion 37 </ b> A is fixed by contacting the large diameter portion 36 </ b> A of the pilot pin 36 via the flexible disk 48. A seal member 45 fixed to the main valve 27 is slidably and fluid-tightly fitted to the inner peripheral surface of the cylindrical portion 37B on one end side of the pilot body 37, whereby the pilot chamber is placed on the back of the main valve 27. 49 is formed. The internal pressure of the pilot chamber 49 acts on the main valve 27 in the valve closing direction. The sub-valve 111 is opened by receiving the pressure on the passage 38 side and separating from the inner seat portion 91, whereby the main valve 27 is separated from the outer seat portion 39 receiving pressure on the passage 38 side. As a result, the passage 38 is communicated with the chamber 25B in the case 25 on the downstream side.

パイロットボディ37の底部37Aには、通路51が軸線に沿う方向へ貫通し、通路51の開口の周囲に突出した環状のシート部に可撓性ディスク48が着座し、パイロット室49の内圧により可撓性ディスク48が撓むことにより、パイロット室49に体積弾性が付与される。これにより、メインバルブ27の開弁動作時にパイロット室49の内圧が過度に上昇することにより、開弁動作が不安定になることを防止する。パイロットピン36に当接する可撓性ディスク48の内周縁部には、径方向(図2における上下方向)へ延びる細長い切欠52が形成され、切欠52及び通路47によりパイロット室49と通路50とが連通される。   The pilot body 37 has a bottom portion 37 </ b> A through which a passage 51 extends in a direction along the axis, and a flexible disk 48 is seated on an annular seat protruding around the opening of the passage 51. When the flexible disk 48 is bent, volume elasticity is imparted to the pilot chamber 49. This prevents the valve opening operation from becoming unstable due to an excessive increase in the internal pressure of the pilot chamber 49 during the valve opening operation of the main valve 27. An elongated notch 52 extending in the radial direction (vertical direction in FIG. 2) is formed in the inner peripheral edge of the flexible disk 48 that abuts the pilot pin 36, and the pilot chamber 49 and the passage 50 are formed by the notch 52 and the passage 47. Communicated.

パイロットボディ37の他端側の円筒部37C内には弁室54が形成される。パイロットボディ37の底部37Aには、通路50の開口の周縁部に突出する環状のシート部55が形成される。弁室54内には、シート部55に離着座して通路50を開閉するパイロットバルブ28を構成する弁体であるパイロット弁部材56が設けられる。パイロット弁部材56は、略円筒状に形成されるとともにシート部55に離着座する先端部が先細りのテーパ状に形成され、基端側外周部に大径のフランジ状のばね受部57が形成される。パイロット弁部材56の先端側の内周部には、小径のロッド受部58が形成される。パイロット弁部材56の後部の開口の内周縁部は、テーパ部56Aが形成されて拡開されている。   A valve chamber 54 is formed in the cylindrical portion 37 </ b> C on the other end side of the pilot body 37. An annular seat portion 55 is formed on the bottom portion 37 </ b> A of the pilot body 37 so as to protrude from the peripheral edge portion of the opening of the passage 50. A pilot valve member 56, which is a valve body constituting the pilot valve 28 that opens and closes the passage 50 by being seated on the seat portion 55, is provided in the valve chamber 54. The pilot valve member 56 is formed in a substantially cylindrical shape, and a distal end portion that is attached to and detached from the seat portion 55 is formed in a tapered shape, and a large-diameter flange-shaped spring receiving portion 57 is formed in a base end side outer peripheral portion. Is done. A small-diameter rod receiving portion 58 is formed on the inner peripheral portion on the distal end side of the pilot valve member 56. An inner peripheral edge portion of the opening at the rear portion of the pilot valve member 56 is expanded by forming a tapered portion 56A.

パイロット弁部材56は、付勢部材であるパイロットばね59、フェイルセーフばね60、及びフェイルセーフディスクバルブ61により、シート部55に対向して軸線に沿う方向へ移動可能に弾性的に保持される。パイロットボディ37の他端側の円筒部37Cは、内径が開口側に向かって段階的に大きくなり、内周部には2つの段部62、63が形成される。パイロットばね59の径方向外側端部は段部62に支持され、段部63には、フェイルセーフばね60、環状のリテーナ64、フェイルセーフディスクバルブ61、リテーナ65、スペーサ66、及び保持プレート67が重ねられ、円筒部37Cの端部に嵌合されたキャップ68により固定される。   The pilot valve member 56 is elastically held by a pilot spring 59, a fail-safe spring 60, and a fail-safe disc valve 61, which are urging members, so as to face the seat portion 55 and move in the direction along the axis. The cylindrical portion 37C on the other end side of the pilot body 37 has an inner diameter that increases stepwise toward the opening side, and two step portions 62 and 63 are formed on the inner peripheral portion. The radially outer end of the pilot spring 59 is supported by a step 62, and the step 63 has a fail safe spring 60, an annular retainer 64, a fail safe disc valve 61, a retainer 65, a spacer 66, and a holding plate 67. The cap 68 is overlapped and fixed to the end of the cylindrical portion 37C.

ソレノイドアセンブリ31は、ソレノイドケース71内に、コイル72、コイル72内に挿入されたコア73、74、コア73、74に案内されたプランジャ75、及びプランジャ75に連結された中空の作動ロッド76を組み込んで一体化したものである。これらは、ソレノイドケース71の後端部に加締められた環状のスペーサ77及びカップ状のカバー78により固定される。ソレノイドアクチュエータは、コイル72、コア73、74、プランジャ75、及び作動ロッド76により構成される。そして、プランジャ75は、リード線(図示省略)を介してコイル72に通電されると、電流に応じて軸線方向に沿う方向の推力を発生する。   The solenoid assembly 31 includes a coil 72, cores 73 and 74 inserted into the coil 72, a plunger 75 guided by the cores 73 and 74, and a hollow operating rod 76 connected to the plunger 75 in the solenoid case 71. Integrated and integrated. These are fixed by an annular spacer 77 and a cup-shaped cover 78 that are crimped to the rear end portion of the solenoid case 71. The solenoid actuator includes a coil 72, cores 73 and 74, a plunger 75, and an operating rod 76. When the coil 75 is energized through the lead wire (not shown), the plunger 75 generates a thrust in the direction along the axial direction in accordance with the current.

作動ロッド76の先端部は、外周縁部にテーパ部76Aを有する先細り形状に形成される。作動ロッド76の背室と通路50及び弁室54とは、中空の作動ロッド76内に形成された連通路76Bにより連通される。また、プランジャ75には、その両端側に形成された室を相互に連通させる連通路75Aが設けられ、これら連通路76B、75Aは、作動ロッド76及びプランジャ75に作用する流体力をバランスさせ、さらにこれらの移動に対して適度な減衰力を付与する。   The distal end portion of the operating rod 76 is formed in a tapered shape having a tapered portion 76A at the outer peripheral edge portion. The back chamber of the actuation rod 76 and the passage 50 and the valve chamber 54 are communicated with each other by a communication passage 76B formed in the hollow actuation rod 76. Further, the plunger 75 is provided with a communication passage 75A that allows the chambers formed at both ends thereof to communicate with each other. These communication passages 76B and 75A balance the fluid force acting on the operating rod 76 and the plunger 75, and Furthermore, an appropriate damping force is applied to these movements.

ソレノイドケース71は、一端側にケース25内に嵌合される円筒部71Aを有し、円筒部71A内には、パイロットボディ37に取り付けられたキャップ68の外周の突出部が嵌合される。円筒部71Aとケース25との間は、Oリング80によりシールされる。ソレノイドケース71は、円筒部71Aの内部に突出した作動ロッド76の先端部を、バルブブロック30に組み込まれたパイロット弁部材56に挿入し、さらにロッド受部58に当接させ、パイロットボディ37に取り付けられたキャップ68の外周の突出部を円筒部71A内に嵌合することによりバルブブロック30に連結される。そして、ソレノイドケース71は、その外周溝に装着された止輪81をナット34で拘束することによりケース25に固定される。   The solenoid case 71 has a cylindrical portion 71A fitted into the case 25 on one end side, and a protruding portion on the outer periphery of the cap 68 attached to the pilot body 37 is fitted into the cylindrical portion 71A. A space between the cylindrical portion 71A and the case 25 is sealed by an O-ring 80. The solenoid case 71 is inserted into the pilot valve member 56 incorporated in the valve block 30 at the tip end of the operating rod 76 protruding into the cylindrical portion 71A, and further brought into contact with the rod receiving portion 58 so that the pilot body 37 The protrusions on the outer periphery of the attached cap 68 are connected to the valve block 30 by fitting into the cylindrical portion 71A. The solenoid case 71 is fixed to the case 25 by restraining the retaining ring 81 attached to the outer peripheral groove with the nut 34.

また、バルブブロック30とソレノイドブロック31とが結合され、さらに作動ロッド76がパイロット弁部材56に挿入された状態において、コイル72への非通電時には、図2に示されるように、フェイルセーフばね60のばね力により、パイロット弁部材56は、作動ロッド76とともに後退してばね受部57がフェイルセーフディスクバルブ61に当接する。このとき、パイロットばね59は、パイロット弁部材56に対してばね力を作用させていない。コイル72への通電により、作動ロッド76は、パイロット弁部材56をシート部55の方へ推進させる。これにより、パイロット弁部材56をフェイルセーフばね60及びパイロットばね59のばね力に抗してシート部55に着座させ、開弁圧力を通電電流により制御する。   In addition, when the valve block 30 and the solenoid block 31 are coupled and the operating rod 76 is inserted into the pilot valve member 56, when the coil 72 is not energized, as shown in FIG. Due to this spring force, the pilot valve member 56 moves backward together with the actuating rod 76 and the spring receiving portion 57 comes into contact with the fail-safe disc valve 61. At this time, the pilot spring 59 does not apply a spring force to the pilot valve member 56. By energizing the coil 72, the operating rod 76 propels the pilot valve member 56 toward the seat portion 55. Accordingly, the pilot valve member 56 is seated on the seat portion 55 against the spring force of the fail-safe spring 60 and the pilot spring 59, and the valve opening pressure is controlled by the energization current.

(メインバルブ)
図3に示されるように、メインバルブ27(減衰バルブ)は、外周部27A(外周側)が外側シート部39(弁座)に離着座して開閉する環状のディスクバルブであり、内周部27B(内周側)が両面側(図3における左右両側)からクランプされておらず、パイロットピン36に装着された第1リテーナ92により、内周部27Bの反シート部側(図3における右側)からのみ支持されている。なお、第1リテーナ92とパイロットピン36の大径部36Aとの間には、第2リテーナ93が介装され、第1リテーナ92は、パイロットピン36の一端部がメインボディ35の軸孔35Aに嵌着されることにより、メインボディ35に対して軸線に沿う方向(図3における左右方向)に位置決めされる。また、メインバルブ27は、後述の切欠きバルブ101を介在して外側シート部39(シート部)に着座される。
(Main valve)
As shown in FIG. 3, the main valve 27 (attenuation valve) is an annular disk valve that opens and closes when the outer peripheral portion 27 </ b> A (outer peripheral side) is separated from and seated on the outer seat portion 39 (valve seat). 27B (inner circumference side) is not clamped from both sides (left and right sides in FIG. 3), and the first retainer 92 attached to the pilot pin 36 causes the inner seat portion 27B to be on the side opposite to the seat (right side in FIG. 3). ) Is only supported. A second retainer 93 is interposed between the first retainer 92 and the large diameter portion 36A of the pilot pin 36, and the first retainer 92 has one end of the pilot pin 36 at the shaft hole 35A of the main body 35. Is positioned in the direction along the axis (left and right direction in FIG. 3) with respect to the main body 35. Further, the main valve 27 is seated on the outer seat portion 39 (seat portion) via a notch valve 101 described later.

前述したように、メインバルブ27の反シート部側(パイロット室49側)には、ゴム等の弾性体により構成される環状のシール部材45が固着される。メインバルブ27は、シール部材45の外周部をパイロットボディ37の円筒部37Bの内周面に嵌合させることにより、センタリング、すなわち、メインボディ35に対して径方向に位置決めされる。メインバルブ27とメインボディ35(バルブボディ)の外側シート部39及び内側シート部91との間には、外周部102(外周側)に4個の切欠き104(スリット)が等配された環状のディスクバルブである切欠きバルブ101が設けられる。なお、メインバルブ27の外径は、環状のシール部材45の外径、及びパイロットボディ37の円筒部37Bの内径よりも大きく設定される。   As described above, the annular seal member 45 made of an elastic body such as rubber is fixed to the opposite side of the main valve 27 (the pilot chamber 49 side). The main valve 27 is positioned in the radial direction with respect to the centering, that is, the main body 35 by fitting the outer peripheral portion of the seal member 45 to the inner peripheral surface of the cylindrical portion 37 </ b> B of the pilot body 37. Between the main valve 27 and the outer seat portion 39 and the inner seat portion 91 of the main body 35 (valve body), an annular shape in which four notches 104 (slits) are equally arranged on the outer peripheral portion 102 (outer peripheral side). A notch valve 101 is provided as a disc valve. The outer diameter of the main valve 27 is set larger than the outer diameter of the annular seal member 45 and the inner diameter of the cylindrical portion 37B of the pilot body 37.

(切欠きバルブ)
切欠きバルブ101は、内周部103(内周側)がパイロットピン36に装着されたワッシャ94、95により両面側(図3における左右両側)からクランプされ、外周部102と内周部103との間には、低剛性の連結部105(低剛性部)が形成される。図4に示されるように、連結部105は、外周部102と内周部103との間の一部を切り抜くことで形成された一対の連結片106、107を有する。一対の連結片106、107は、各々が略S形に形成されるとともに切欠きバルブ101の中心線に関して対称に形成される。換言すると、外周部102と内周部103との間には、切欠きバルブ101の中心線に関して対称に形成された一対の切抜き部108、109が設けられる。このように、切抜き部108、109が切欠きバルブ101の中心線に関して対称に形成されるので、動作する際に周方向で偏りがない。
(Notch valve)
The notch valve 101 is clamped from both sides (both left and right in FIG. 3) by washers 94 and 95 having an inner peripheral portion 103 (inner peripheral side) attached to the pilot pin 36, and the outer peripheral portion 102 and the inner peripheral portion 103. In between, a low-rigidity connecting portion 105 (low-rigidity portion) is formed. As shown in FIG. 4, the connecting portion 105 has a pair of connecting pieces 106 and 107 formed by cutting out a part between the outer peripheral portion 102 and the inner peripheral portion 103. Each of the pair of connecting pieces 106 and 107 is formed in a substantially S shape and symmetrically with respect to the center line of the notch valve 101. In other words, a pair of cutout portions 108 and 109 formed symmetrically with respect to the center line of the cutout valve 101 are provided between the outer peripheral portion 102 and the inner peripheral portion 103. Thus, since the cutout portions 108 and 109 are formed symmetrically with respect to the center line of the cutout valve 101, there is no bias in the circumferential direction during operation.

各連結片106、107は、外周部102に接続される外側端部106A、107Aと、内周部103に接続される内側端106B、107Bと、外側端部106A、107Aと内側端106B、107Bとの間に設けられて周方向に延びるばね部106C、107Cと、を有する。図3に示されるように、切欠きバルブ101の外径は、メインバルブ27の外径よりも小さく、且つ外周部102の外側周縁のシート部側(図3における左側)の面がメインボディ35の外側シート部39に当接(着座)するように設定される。そして、各連結片106、107のばね部106C、107Cのばね力により切欠きバルブ101の外周部102をメインバルブ27のシート部側(図3における左側)の面に密着させることで、メインバルブ27と外側シート部39との間には、各切欠き104による固定オリフィスが構成される。   Each of the connecting pieces 106 and 107 includes outer end portions 106A and 107A connected to the outer peripheral portion 102, inner end portions 106B and 107B connected to the inner peripheral portion 103, outer end portions 106A and 107A, and inner end portions 106B and 107B. Spring portions 106C and 107C extending in the circumferential direction. As shown in FIG. 3, the outer diameter of the notch valve 101 is smaller than the outer diameter of the main valve 27, and the surface of the outer peripheral edge of the outer peripheral portion 102 on the seat portion side (left side in FIG. 3) is the main body 35. Is set so as to abut (seat) the outer sheet portion 39. The outer peripheral portion 102 of the notch valve 101 is brought into close contact with the seat portion side (left side in FIG. 3) of the main valve 27 by the spring force of the spring portions 106C and 107C of the connecting pieces 106 and 107. A fixed orifice formed by each notch 104 is formed between the outer sheet portion 27 and the outer sheet portion 39.

(サブバルブ)
図3に示されるように、サブバルブ111は、外周部112(外周側)が内側シート部91に離着座して開閉する環状のディスクバルブであり、メインバルブ27の上流側(図3における左側)にメインバルブ27に対して直列に設けられる。また、サブバルブ111は、軸孔がパイロットピン36に嵌合されることにより径方向に位置決めされ、内周部113(内周側)がワッシャ94とクランプ部40とにより両面側(図3における左右両側)からクランプされる。サブバルブ111とメインボディ35(バルブボディ)の内側シート部91との間には、外周部(外周側)に複数個の切欠き114(スリット)が等配された環状のディスクバルブ115が設けられる。ディスクバルブ115は、サブバルブ111と同一の外径に形成され、サブバルブ111と重ねられて内周部(内周側)がワッシャ95とクランプ40とにより両面側からクランプされる。これにより、サブバルブ111と内側シート部91との間には、各切欠き114による固定オリフィスが構成される。なお、サブバルブ111及びディスクバルブ115は、メインバルブ27に対して外径が小さく形成される。
(Sub valve)
As shown in FIG. 3, the sub-valve 111 is an annular disk valve whose outer peripheral portion 112 (outer peripheral side) sits on and closes the inner seat portion 91 and opens and closes, and is upstream of the main valve 27 (left side in FIG. 3). Are provided in series with the main valve 27. The sub-valve 111 is positioned in the radial direction by fitting the shaft hole to the pilot pin 36, and the inner peripheral portion 113 (inner peripheral side) is formed on both sides by the washer 94 and the clamp portion 40 (left and right in FIG. 3). Clamped from both sides). Between the sub-valve 111 and the inner seat portion 91 of the main body 35 (valve body), an annular disc valve 115 in which a plurality of notches 114 (slits) are equally arranged on the outer peripheral portion (outer peripheral side) is provided. . The disc valve 115 is formed to have the same outer diameter as the sub-valve 111, overlaps with the sub-valve 111, and the inner peripheral portion (inner peripheral side) is clamped from both sides by the washer 95 and the clamp 40. Thereby, a fixed orifice by each notch 114 is formed between the sub-valve 111 and the inner seat portion 91. The sub-valve 111 and the disc valve 115 are formed with a smaller outer diameter than the main valve 27.

次に、前述した緩衝器1の作用を説明する。
緩衝器1は、車両のサスペンション装置のばね上、ばね下間に装着され、通常の作動状態では、車載コントローラにより、コイル72に通電してパイロット弁部材56をパイロットボディ37のシート部55に着座させ、パイロットバルブ28による圧力制御を実行する。
Next, the operation of the shock absorber 1 will be described.
The shock absorber 1 is mounted between the sprung and unsprung parts of the suspension device of the vehicle. In a normal operating state, the coil 72 is energized by the in-vehicle controller to seat the pilot valve member 56 on the seat portion 55 of the pilot body 37. And pressure control by the pilot valve 28 is executed.

ピストンロッド6の伸び行程時には、シリンダ2内のピストン5の移動によりピストン5の逆止弁13が閉弁し、ディスクバルブ14の開弁前にはシリンダ上室2A側の油液(作動流体)が加圧される。加圧された油液は、流路22及び環状通路21を通り、セパレータチューブ20の枝管23から減衰力発生機構26の通路部材32へ流入する。このとき、ピストン5が移動した分の油液は、リザーバ4からベースバルブ10の逆止弁17を開弁させてシリンダ下室2Bへ流入する。なお、シリンダ上室2Aの圧力がピストン5のディスクバルブ14の開弁圧力に達するとディスクバルブ14が開弁し、シリンダ上室2Aの圧力をシリンダ下室2Bへリリーフすることでシリンダ上室2Aの過度の圧力の上昇を防止する。   During the extension stroke of the piston rod 6, the check valve 13 of the piston 5 is closed by the movement of the piston 5 in the cylinder 2, and before the disk valve 14 is opened, the oil liquid (working fluid) on the cylinder upper chamber 2 </ b> A side is opened. Is pressurized. The pressurized oil liquid flows through the flow path 22 and the annular passage 21 from the branch pipe 23 of the separator tube 20 to the passage member 32 of the damping force generation mechanism 26. At this time, the oil liquid corresponding to the movement of the piston 5 opens the check valve 17 of the base valve 10 from the reservoir 4 and flows into the cylinder lower chamber 2B. When the pressure in the cylinder upper chamber 2A reaches the valve opening pressure of the disk valve 14 of the piston 5, the disk valve 14 is opened, and the pressure in the cylinder upper chamber 2A is relieved to the cylinder lower chamber 2B, whereby the cylinder upper chamber 2A. Prevent excessive pressure rise.

一方、ピストンロッド6の縮み行程時には、シリンダ2内のピストン5の移動によりピストン5の逆止弁13が開弁し、ベースバルブ10の通路15の逆止弁17が閉弁する。そして、ディスクバルブ18の開弁前には、ピストン下室2Bの油液がシリンダ上室2Aへ流入し、ピストンロッド6がシリンダ2内に侵入した体積分の油液が、シリンダ上室2Aから前述した伸び行程時と同一経路でリザーバ4へ流通する。なお、シリンダ下室2B内の圧力がベースバルブ10のディスクバルブ18の開弁圧力に達すると、ディスクバルブ18が開弁し、シリンダ下室2Bの圧力をリザーバ4へリリーフすることでシリンダ下室2Bの過度の圧力の上昇を防止する。   On the other hand, during the contraction stroke of the piston rod 6, the check valve 13 of the piston 5 is opened by the movement of the piston 5 in the cylinder 2, and the check valve 17 of the passage 15 of the base valve 10 is closed. Before the disc valve 18 is opened, the oil in the piston lower chamber 2B flows into the cylinder upper chamber 2A, and the volume of oil that the piston rod 6 has entered into the cylinder 2 flows from the cylinder upper chamber 2A. It circulates to the reservoir 4 through the same route as that during the extension stroke described above. When the pressure in the cylinder lower chamber 2B reaches the valve opening pressure of the disk valve 18 of the base valve 10, the disk valve 18 is opened, and the pressure in the cylinder lower chamber 2B is relieved to the reservoir 4 so that the cylinder lower chamber Prevent excessive pressure rise of 2B.

通路部材32から減衰力発生機構26へ流入した油液は、メインバルブ27(減衰バルブ)の開弁前(ピストン速度の低速域)の状態では、パイロットピン36のオリフィス46、パイロットボディ37の通路50を通り、パイロットバルブ28のパイロット弁部材56を押し開き弁室54内へ流入する。そして、弁室54から、フェイルセーフディスクバルブ61の開口、保持プレート67の開口、キャップ68の切欠き、及びケース25内の室25Bを経由してリザーバ4へ流れる。   The oil that has flowed into the damping force generation mechanism 26 from the passage member 32 is in a state before the main valve 27 (attenuation valve) is opened (in the low speed region of the piston speed), and the orifice 46 of the pilot pin 36 and the passage of the pilot body 37. 50, the pilot valve member 56 of the pilot valve 28 is pushed and flows into the valve chamber 54. Then, it flows from the valve chamber 54 to the reservoir 4 via the opening of the fail-safe disc valve 61, the opening of the holding plate 67, the notch of the cap 68, and the chamber 25B in the case 25.

そして、ピストン速度が上昇し、通路部材32から流入した油液の圧力がメインバルブ27の開弁圧力に到達し、次いでサブバルブ111の開弁圧力に達すると、油液は、環状凹部90及び通路38を通り、メインバルブ27並びにサブバルブ111を開弁させてケース25内の室25Bを通過してリザーバ4へ流れる。なお、ピストン速度の極低速域では、通路部材32から流入した油液は、環状凹部90、通路38、ディスクバルブ115の切欠き114、切欠きバルブ101の切欠き104、及びケース25内の室25Bを通過してリザーバ4へ流れる。   Then, when the piston speed increases and the pressure of the oil liquid flowing in from the passage member 32 reaches the valve opening pressure of the main valve 27 and then reaches the valve opening pressure of the sub valve 111, the oil liquid flows into the annular recess 90 and the passage. 38, the main valve 27 and the sub valve 111 are opened, flow through the chamber 25 </ b> B in the case 25, and flow to the reservoir 4. In the extremely low speed range of the piston speed, the oil liquid flowing in from the passage member 32 flows into the annular recess 90, the passage 38, the notch 114 of the disc valve 115, the notch 104 of the notch valve 101, and the chamber in the case 25. It flows to the reservoir 4 through 25B.

これにより、ピストンロッド6の伸び行程及び縮み行程の両行程時において、減衰力発生機構26は、メインバルブ27の開弁前(ピストン速度低速域)には、オリフィス46及びパイロットバルブ28のパイロット弁部材56の開弁圧力により減衰力を発生し、メインバルブ27の開弁後(ピストン速度中速域)には、その開度に応じて減衰力を発生する。さらに、サブバルブ111の開弁後(ピストン速度高速域)には、その開度に応じて減衰力を発生する。そして、コイル72への通電電流によりパイロットバルブ28の開弁圧力を調整することにより、ピストン速度にかかわらず、減衰力を直接制御することができる。このとき、パイロットバルブ28の開弁圧力により、上流側の通路50に連通するパイロット室49の内圧が変化する。ここで、パイロット室49の内圧は、メインバルブ27の閉弁方向に作用することから、パイロットバルブ28の開弁圧力を制御することにより、メインバルブ27の開弁圧力を同時に調整することが可能であり、減衰力特性の調整を広範囲に行うことができる。   Thus, during both the expansion stroke and the contraction stroke of the piston rod 6, the damping force generation mechanism 26 has the pilot valve of the orifice 46 and the pilot valve 28 before the main valve 27 is opened (piston speed low speed region). A damping force is generated by the valve opening pressure of the member 56, and after the main valve 27 is opened (in the middle speed range of the piston speed), a damping force is generated according to the opening degree. Furthermore, after the sub valve 111 is opened (piston speed high speed region), a damping force is generated according to the opening degree. The damping force can be directly controlled regardless of the piston speed by adjusting the valve opening pressure of the pilot valve 28 by the energization current to the coil 72. At this time, the internal pressure of the pilot chamber 49 communicating with the upstream passage 50 changes due to the valve opening pressure of the pilot valve 28. Here, since the internal pressure of the pilot chamber 49 acts in the valve closing direction of the main valve 27, the valve opening pressure of the main valve 27 can be adjusted simultaneously by controlling the valve opening pressure of the pilot valve 28. Therefore, the damping force characteristic can be adjusted over a wide range.

また、コイル72への通電電流を小さくしてプランジャ75の推力を小さくすると、パイロットバルブ28の開弁圧力が低下してソフト側の減衰力が発生し、その反対に通電電流を大きくしてプランジャ75の推力を大きくすると、パイロットバルブ28の開弁圧力が上昇してハード側の減衰力が発生する。これにより、使用頻度の高いソフト側の減衰力を低電流で発生させることができ、消費電力を低減することができる。   Further, when the energizing current to the coil 72 is reduced to reduce the thrust of the plunger 75, the valve opening pressure of the pilot valve 28 is reduced to generate a damping force on the soft side, and conversely, the energizing current is increased to increase the plunger. When the thrust of 75 is increased, the valve opening pressure of the pilot valve 28 increases and a hard-side damping force is generated. Thereby, the soft-side damping force with high use frequency can be generated at a low current, and the power consumption can be reduced.

また、コイル72の断線、車載コントローラの故障等のフェイル発生時にプランジャ75の推力が失われた場合には、フェイルセーフばね60のばね力によりパイロット弁部材56を後退させて通路50を開き、パイロット弁部材56のばね受部57をフェイセーフルディスクバルブ61に当接させ、弁室54と、ケース25内の室25Bとの間の流路を閉じる。この状態では、弁室54内における通路50からケース25内の室25への油液の流れがフェイルセーフバルブ29により制御されるため、フェイルセーフディスクバルブ61の開弁圧力の設定により所望の減衰力を得ることができ、さらにパイロット室49の内圧、すなわち、メインバルブ27の開弁圧力を調整することができる。その結果、フェイル時においても適切な減衰力を得ることができる。   Further, when the thrust of the plunger 75 is lost when a failure such as the disconnection of the coil 72 or the failure of the vehicle-mounted controller is lost, the pilot valve member 56 is moved backward by the spring force of the fail-safe spring 60 to open the passage 50. The spring receiving portion 57 of the valve member 56 is brought into contact with the face-safe disc valve 61, and the flow path between the valve chamber 54 and the chamber 25B in the case 25 is closed. In this state, since the flow of the oil liquid from the passage 50 in the valve chamber 54 to the chamber 25 in the case 25 is controlled by the fail safe valve 29, a desired attenuation is set by setting the valve opening pressure of the fail safe disk valve 61. In addition, the internal pressure of the pilot chamber 49, that is, the valve opening pressure of the main valve 27 can be adjusted. As a result, an appropriate damping force can be obtained even during a failure.

ここで、図5に、3つのパターンのバルブ構造における差圧と油液の流量(以下「流量」と称する)との関係を示す。図5において、曲線(A)は、本実施形態のバルブ構造、すなわち、メインバルブ27(減衰バルブ)とバルブボディ35の外側シート部39(シート部)との間に切欠きバルブ101が設けられ、且つ切欠きバルブ101の内周部103(内周側)が両面側からクランプされ、さらにメインバルブ27の上流側にサブバルブ111が直列に設けられ、且つメインバルブ27の内周部27B(内周側)が両面側からクランプされておらず、第1リテーナ92により内周部27Bの反シート部側(片面側)からのみ支持されたバルブ構造における差圧と流量との関係を示し、曲線(B)は、サブバルブ111を持たず、メインバルブ27の内周部27B(内周側)が両面側からクランプされた既存のバルブ構造(以下「1段構造」と称する)における差圧と流量との関係を示し、曲線(C)は、メインバルブ27の上流側にサブバルブ111が直列に設けられ、且つメインバルブ27の内周部27B(内周側)が両面側からクランプされた既存のバルブ構造(以下「2段構造」と称する)における差圧と流量との関係を示す。
また、図5における曲線(A)において、A1でパイロットバルブ28が開弁し、A2でメインバルブ27が開弁し、A3でサブバルブ111が開弁する。一方、図5における曲線(B)において、B1でパイロットバルブ28が開弁し、B2でメインバルブ27が開弁する。さらに、図5における曲線(C)において、C1でパイロットバルブ28が開弁し、C2でメインバルブ27が開弁し、C3でサブバルブ111が開弁する。
Here, FIG. 5 shows the relationship between the differential pressure and the flow rate of the oil liquid (hereinafter referred to as “flow rate”) in the three-pattern valve structure. In FIG. 5, a curve (A) shows a valve structure of the present embodiment, that is, a notch valve 101 is provided between the main valve 27 (attenuation valve) and the outer seat portion 39 (seat portion) of the valve body 35. In addition, the inner peripheral portion 103 (inner peripheral side) of the notch valve 101 is clamped from both sides, and the sub-valve 111 is provided in series upstream of the main valve 27, and the inner peripheral portion 27B (inner (Circumferential side) is not clamped from both sides, and shows the relationship between the differential pressure and flow rate in the valve structure supported by the first retainer 92 only from the side opposite to the seat part (one side) of the inner peripheral part 27B. (B) is an existing valve structure (hereinafter referred to as “one-stage structure”) in which the inner peripheral portion 27B (inner peripheral side) of the main valve 27 is clamped from both sides without having the sub valve 111. The curve (C) shows the relationship between the differential pressure and the flow rate, and the curve (C) shows that the sub-valve 111 is provided in series on the upstream side of the main valve 27 and that the inner peripheral portion 27B (inner peripheral side) of the main valve 27 is from both sides. The relationship between the differential pressure | voltage and flow volume in the existing valve structure (henceforth "two-stage structure") clamped is shown.
In the curve (A) in FIG. 5, the pilot valve 28 is opened at A1, the main valve 27 is opened at A2, and the sub-valve 111 is opened at A3. On the other hand, in the curve (B) in FIG. 5, the pilot valve 28 is opened at B1, and the main valve 27 is opened at B2. Further, in the curve (C) in FIG. 5, the pilot valve 28 is opened at C1, the main valve 27 is opened at C2, and the sub-valve 111 is opened at C3.

図5から理解できるように、本実施形態のバルブ構造は、特に、ソフト側の減衰力特性における開弁初期段階において、1段構造及び2段構造に対してより小さい差圧により予め定められた流量(例えば、3.5L/min)を得ることができる。換言すると、本実施形態のバルブ構造は、ソフト側の減衰力特性における開弁初期段階において同一のバルブリフト量を得るために要する差圧が相対的に小さい。また、本実施形態のバルブ構造では、サブバルブ111及びメインバルブ27の2段階によるリフト動作が円滑であることから、ソフト側の減衰力特性の開弁初期段階における差圧の立ち上がりからの流量の増加が緩やかである。   As can be understood from FIG. 5, the valve structure of the present embodiment is predetermined by a smaller differential pressure with respect to the first-stage structure and the second-stage structure, particularly in the initial stage of valve opening in the damping force characteristic on the soft side. A flow rate (eg, 3.5 L / min) can be obtained. In other words, in the valve structure of the present embodiment, the differential pressure required to obtain the same valve lift amount in the initial stage of valve opening in the soft-side damping force characteristic is relatively small. Further, in the valve structure of the present embodiment, since the lift operation in two stages of the sub valve 111 and the main valve 27 is smooth, the flow rate increases from the rise of the differential pressure in the initial stage of valve opening of the soft-side damping force characteristics. Is moderate.

このように、本実施形態のバルブ構造によれば、ピストン速度の低速域においてより安定した減衰力を発生させることができる。また、本実施形態のバルブ構造は、メインバルブ27(減衰バルブ)の内周側をクランプしない片持ちの単純支持構造としたことにより、既存のバルブ構造(1段構造及び2段構造)に対して剛性を低く設定することができる。その結果、ソフト側の減衰力特性におけるピストン速度の低速域の減衰力を既存のバルブ構造に対してより低く設定することが可能であり、ソフト側の減衰力特性における車両の乗り心地向上に寄与することができる。   Thus, according to the valve structure of the present embodiment, a more stable damping force can be generated in the low speed region of the piston speed. In addition, the valve structure of the present embodiment is a cantilever simple support structure that does not clamp the inner peripheral side of the main valve 27 (attenuation valve), so that the existing valve structure (one-stage structure and two-stage structure) The rigidity can be set low. As a result, the damping force in the low speed region of the piston speed in the soft-side damping force characteristic can be set lower than that of the existing valve structure, which contributes to improving the vehicle ride comfort in the soft-side damping force characteristic. can do.

また、本実施形態のバルブ構造では、上流側(1段目)のサブバルブ111を小径のクランプ支持、下流側(2段目)のメインバルブ27を大径の単純支持構造としたので、メインバルブ27とサブバルブ111との剛性差を大きく設定することにより、2つのバルブ27、111間の連成振動により減衰力が不安定になることを防止することができる。さらに、本実施形態のバルブ構造では、メインバルブ27(減衰バルブ)を単純支持構造としたことによるメインバルブ27の剛性低下に伴い、リフト量が増加してメインバルブ27のリフト割れが発生し易くなるが、メインバルブ27の外径をシート部材45の外径(摺動径)よりも大きく設定したことにより、メインバルブ27のリフト量が一定量に達すると、メインバルブ27がパイロットボディ37の円筒部37Bの開口端に当接するので、メインバルブ27の過度のリフトを抑止し、メインバルブ27のリフト割れを防止することができる。   In the valve structure of the present embodiment, the upstream side (first stage) sub-valve 111 has a small-diameter clamp support and the downstream side (second stage) main valve 27 has a large-diameter simple support structure. By setting the difference in rigidity between the valve 27 and the sub valve 111 large, it is possible to prevent the damping force from becoming unstable due to the coupled vibration between the two valves 27 and 111. Furthermore, in the valve structure of the present embodiment, the lift amount increases and the lift crack of the main valve 27 is likely to occur as the rigidity of the main valve 27 decreases due to the simple support structure of the main valve 27 (attenuation valve). However, by setting the outer diameter of the main valve 27 to be larger than the outer diameter (sliding diameter) of the seat member 45, when the lift amount of the main valve 27 reaches a certain amount, the main valve 27 is moved to the pilot body 37. Since it contacts the open end of the cylindrical portion 37B, excessive lift of the main valve 27 can be suppressed and cracking of the main valve 27 can be prevented.

また、内周側が両面側からクランプされて環状のシール部材45が固着されたメインバルブ27(減衰バルブ)においては、従来、ソフト側の減衰力特性を低く抑えるため、セット荷重(プリロード)が0近傍に設定され、減衰力がばらつく要因になっていたが、本実施形態のバルブ構造では、内周部27B(内周側)を単純支持構造とし、且つメインバルブ27のシート部39側に内周部103(内周側)が両面側からクランプされた低剛性の切欠きバルブ101を重ねて設けたことにより、セット荷重をより大きく設定することが可能であり、且つ剛性が十分に低いことからセット荷重に対する減衰力特性の感度も低いため、減衰力の管理が容易であり、ばらつきの低減、セット荷重不足による減衰力の立ち遅れ等の既存のバルブ構造における不具合を防ぐことができる。   Further, in the main valve 27 (damping valve) in which the inner peripheral side is clamped from both sides and the annular seal member 45 is fixed, conventionally, the set load (preload) is zero in order to keep the damping force characteristic on the soft side low. However, in the valve structure of the present embodiment, the inner peripheral portion 27B (inner peripheral side) has a simple support structure, and the main valve 27 has an inner side on the seat portion 39 side. The set load can be set larger and the rigidity is sufficiently low by providing the low rigidity notched valve 101 with the peripheral portion 103 (inner peripheral side) clamped from both sides. Since the sensitivity of the damping force characteristics to the set load is low, the damping force can be easily managed, and the existing valve structure such as reduction of variation and delay of the damping force due to insufficient set load can be used. It is possible to prevent the kick problem.

また、外周部102と内周部103とを低剛性の2つの連結片106、107により連結して切欠きバルブ101を構成し、連結片106、107のばね力により切欠きバルブ101の外周部102をメインバルブ27(減衰バルブ)に密着させたので、メインバルブ27と切欠きバルブ101との間からの油液のリークを防止することが可能であり、安定した減衰力を得ることができる。さらに、切欠き104が形成された切欠きバルブ101の外周部102(外周側)をメインバルブ27の外周部27A(外周側)に重ねて密着させたことにより、切欠き104による固定オリフィスが形成され、メインバルブ27の開弁前にはオリフィス特性の減衰力を得ることができる。加えて、切欠きバルブ101の切欠き104の大きさを変えることにより、固定オリフィスの流路面積を調整することができる。   Further, the outer peripheral portion 102 and the inner peripheral portion 103 are connected by two low-rigidity connecting pieces 106 and 107 to constitute the notched valve 101, and the outer peripheral portion of the notched valve 101 is formed by the spring force of the connecting pieces 106 and 107. Since 102 is brought into close contact with the main valve 27 (attenuation valve), it is possible to prevent leakage of oil from between the main valve 27 and the notch valve 101, and a stable damping force can be obtained. . Further, the outer peripheral portion 102 (outer peripheral side) of the notch valve 101 in which the notch 104 is formed is overlapped and brought into close contact with the outer peripheral portion 27A (outer peripheral side) of the main valve 27, thereby forming a fixed orifice by the notch 104. In addition, before the main valve 27 is opened, a damping force having an orifice characteristic can be obtained. In addition, the flow area of the fixed orifice can be adjusted by changing the size of the notch 104 of the notch valve 101.

なお、前述した本実施形態では、内周側が両面側からクランプされ、外周側と内周側との間に低剛性部が形成された切欠きバルブ101を、内周側が単純支持された減衰力発生機構26のメインバルブ27(減衰バルブ)の反シート部側に配置した場合を説明したが、発明を限定する意図はない。例えば、本実施形態に係る切欠きバルブ101を、前述した特許文献1のリリーフバルブ(減衰バルブ)の反シート部側に配置するように構成することができる。   In the above-described embodiment, the notch valve 101 in which the inner peripheral side is clamped from both sides and the low rigidity portion is formed between the outer peripheral side and the inner peripheral side is used as the damping force in which the inner peripheral side is simply supported. Although the case where the main mechanism 27 (attenuation valve) of the generating mechanism 26 is disposed on the side opposite the seat portion has been described, there is no intention to limit the invention. For example, the notch valve 101 according to the present embodiment can be configured to be disposed on the side opposite to the seat portion of the relief valve (attenuation valve) of Patent Document 1 described above.

1 緩衝器、27 メインバルブ(減衰バルブ)、35 メインボディ(バルブボディ)、39 外側シート部(シート部)、101 切欠きバルブ、104 切欠き、105 連結部(低剛性部) 1 shock absorber, 27 main valve (damping valve), 35 main body (valve body), 39 outer seat part (seat part), 101 notch valve, 104 notch, 105 connecting part (low rigidity part)

Claims (3)

環状のシート部が形成されたバルブボディと、
外周側が前記シート部に離着座して開閉する環状のディスクバルブにより形成される減衰バルブと、を備える緩衝器であって、
前記減衰バルブは、内周側が両面側からクランプされておらず、内周側の片面側からのみ支持されており、
前記減衰バルブと前記バルブボディの前記シート部との間には、外周側に切欠きを備えた環状のディスクバルブにより形成される切欠きバルブが設けられ、
前記切欠きバルブは、内周側が両面側からクランプされ、外周側と内周側との間に低剛性部が設けられることを特徴とする緩衝器。
A valve body in which an annular seat portion is formed;
A shock absorber provided with a damping valve formed by an annular disk valve that opens and closes by being seated on and off the seat portion,
The damping valve is not clamped from both sides on the inner circumference side, and is supported only from one side of the inner circumference side,
Between the damping valve and the seat portion of the valve body, a notch valve formed by an annular disc valve having a notch on the outer peripheral side is provided,
The notch valve is characterized in that the inner peripheral side is clamped from both sides, and a low-rigidity portion is provided between the outer peripheral side and the inner peripheral side.
前記低剛性部は、外周側と内周側との間に一部を切り抜いて形成した連結部であることを特徴とする請求項1に記載の緩衝器。   The shock absorber according to claim 1, wherein the low-rigidity part is a connecting part formed by cutting out a part between an outer peripheral side and an inner peripheral side. 前記連結部は、前記切欠きバルブの中心に関して対称に形成されることを特徴とする請求項2に記載の緩衝器。   The shock absorber according to claim 2, wherein the connecting portion is formed symmetrically with respect to a center of the notch valve.
JP2015171059A 2015-08-31 2015-08-31 Shock absorber Pending JP2017048825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171059A JP2017048825A (en) 2015-08-31 2015-08-31 Shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171059A JP2017048825A (en) 2015-08-31 2015-08-31 Shock absorber

Publications (1)

Publication Number Publication Date
JP2017048825A true JP2017048825A (en) 2017-03-09

Family

ID=58279957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171059A Pending JP2017048825A (en) 2015-08-31 2015-08-31 Shock absorber

Country Status (1)

Country Link
JP (1) JP2017048825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200891A (en) * 2019-06-11 2020-12-17 日立オートモティブシステムズ株式会社 Shock absorber
JP2021156377A (en) * 2020-03-27 2021-10-07 日立Astemo株式会社 Shock absorber
US11466747B2 (en) 2018-06-13 2022-10-11 Hitachi Astemo, Ltd. Damping force generating mechanism and pressure shock absorber
KR20240006637A (en) 2021-09-08 2024-01-15 히다치 아스테모 가부시키가이샤 buffer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466747B2 (en) 2018-06-13 2022-10-11 Hitachi Astemo, Ltd. Damping force generating mechanism and pressure shock absorber
US11761509B2 (en) 2018-06-13 2023-09-19 Hitachi Astemo, Ltd. Damping force generating mechanism and pressure shock absorber
JP2020200891A (en) * 2019-06-11 2020-12-17 日立オートモティブシステムズ株式会社 Shock absorber
JP7412095B2 (en) 2019-06-11 2024-01-12 日立Astemo株式会社 buffer
JP2021156377A (en) * 2020-03-27 2021-10-07 日立Astemo株式会社 Shock absorber
JP7253514B2 (en) 2020-03-27 2023-04-06 日立Astemo株式会社 buffer
KR20240006637A (en) 2021-09-08 2024-01-15 히다치 아스테모 가부시키가이샤 buffer

Similar Documents

Publication Publication Date Title
JP6465983B2 (en) Shock absorber
JP5387841B2 (en) Damping force adjustable shock absorber
JP5648790B2 (en) Shock absorber
JP5843842B2 (en) Damping force adjustable shock absorber
JP5784741B2 (en) Shock absorber
JP6108912B2 (en) Shock absorber
JP2011132995A (en) Shock absorber
JP6440861B2 (en) Shock absorber and method of assembling the shock absorber
JP2015034618A (en) Buffer
JP2016050613A (en) Damper
JP2017048825A (en) Shock absorber
JP2016050612A (en) Damper
KR100367683B1 (en) Damping force control type hydraulic shock absorber
JPWO2017145983A1 (en) Damping force adjustable shock absorber
JP5678348B2 (en) Damping force adjustable shock absorber
KR102627961B1 (en) Damping force adjustable shock absorber
WO2020022177A1 (en) Shock absorber
JP6086723B2 (en) Shock absorber
JP7129385B2 (en) damping force adjustable shock absorber
JP2014199092A (en) Damper
JP7129565B2 (en) damping force adjustable shock absorber
JP2016070421A (en) Damper
JP2015197106A (en) Damping force adjustable shock absorber
JP2023173189A (en) Shock absorber
JP2015068479A (en) Damping-force regulation damper