JP2017045662A - 絶縁電線及び絶縁層形成用ワニス - Google Patents

絶縁電線及び絶縁層形成用ワニス Download PDF

Info

Publication number
JP2017045662A
JP2017045662A JP2015168338A JP2015168338A JP2017045662A JP 2017045662 A JP2017045662 A JP 2017045662A JP 2015168338 A JP2015168338 A JP 2015168338A JP 2015168338 A JP2015168338 A JP 2015168338A JP 2017045662 A JP2017045662 A JP 2017045662A
Authority
JP
Japan
Prior art keywords
inorganic particles
hollow inorganic
insulating layer
insulated wire
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015168338A
Other languages
English (en)
Inventor
槙弥 太田
Shinya Ota
槙弥 太田
修平 前田
Shuhei Maeda
修平 前田
齋藤 秀明
Hideaki Saito
秀明 齋藤
菅原 潤
Jun Sugawara
潤 菅原
雅晃 山内
Masaaki Yamauchi
雅晃 山内
田村 康
Yasushi Tamura
康 田村
吉田 健吾
Kengo Yoshida
健吾 吉田
雄大 古屋
Yudai Furuya
雄大 古屋
悠史 畑中
Yuji Hatanaka
悠史 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015168338A priority Critical patent/JP2017045662A/ja
Publication of JP2017045662A publication Critical patent/JP2017045662A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】誘電率を低下しつつ、絶縁層の強度及び耐溶剤性の低下を抑制できる絶縁電線を提供する。【解決手段】本発明の一態様に係る絶縁電線は、線状の導体と、この導体の外周面に積層される1又は複数の絶縁層とを備える絶縁電線であって、上記1又は複数の絶縁層の少なくとも1層が複数の中空無機粒子を含み、ASTM D3102−78に準拠してグリセロール法により測定される上記中空無機粒子の耐圧強度が10MPa以上である。上記中空無機粒子のシェルの平均厚さとしては、1.0μm以下が好ましい。また、上記中空無機粒子のシェルの材質がガラスであるとよい。また、上記中空無機粒子が球状であるとよい。また、上記中空無機粒子の平均粒子径としては、30μm以下が好ましい。また、上記中空無機粒子の中空率としては、50体積%以上95体積%以下が好ましい。【選択図】図1

Description

本発明は、絶縁電線及び絶縁層形成用ワニスに関する。
適用電圧が高い電気機器、例えば高電圧で使用されるモーター等では、電気機器を構成する絶縁電線に高電圧が印加され、その絶縁被膜表面で部分放電(コロナ放電)が発生し易くなる。コロナ放電の発生により、局部的な温度上昇、オゾンの発生、イオンの発生等が引き起こされると、早期に絶縁破壊を生じ、絶縁電線ひいては電気機器の寿命が短くなる。このため、適用電圧が高い電気機器に使用される絶縁電線には、優れた絶縁性、機械的強度等に加えてコロナ放電開始電圧の向上も求められる。
コロナ放電開始電圧を上げる工夫としては、絶縁被膜の低誘電率化が有効である。絶縁被膜の低誘電率化を実現するために、塗膜構成樹脂と、この塗膜構成樹脂の焼付温度よりも低い温度で分解する熱分解性樹脂とを含む絶縁ワニスにより加熱硬化膜(絶縁被膜)を形成する絶縁電線が提案されている(特開2012−224714号公報参照)。この絶縁電線は、上記熱分解性樹脂が塗膜構成樹脂の焼付時に熱分解してその部分が気孔となることを利用して加熱硬化膜内に気孔が形成されており、この気孔の形成により絶縁被膜の低誘電率化を実現している。
特開2012−224714号公報
しかし、上記公報で提案の絶縁電線では、例えば絶縁被膜中に形成される気孔が局在化する場合や、これらの気孔の大きさにばらつきがある場合、絶縁被膜中において熱分解性樹脂由来の気孔同士が連通し易くなり、熱分解性樹脂の粒子径よりも大きい気孔が生じるおそれがある。このような連続気孔が生じると、絶縁皮膜の強度や耐溶剤性が低下するおそれがある。
本発明は以上のような事情に基づいてなされたものであり、誘電率を低下しつつ、絶縁層の強度及び耐溶剤性の低下を抑制できる絶縁電線及び絶縁層形成用ワニスを提供することを目的とする。
上記課題を解決するためになされた本発明の一態様に係る絶縁電線は、線状の導体と、この導体の外周面に積層される1又は複数の絶縁層とを備える絶縁電線であって、上記1又は複数の絶縁層の少なくとも1層が複数の中空無機粒子を含み、ASTM D3102−78に準拠してグリセロール法により測定される上記中空無機粒子の耐圧強度が10MPa以上である絶縁電線である。
別の本発明の一態様に係る絶縁層形成用ワニスは、絶縁電線を構成する1又は複数の絶縁層の少なくとも1層の形成に用いる絶縁層形成用ワニスであって、マトリックスを形成する樹脂組成物と、この樹脂組成物中に分散する中空無機粒子とを含有し、ASTM D3102−78に準拠してグリセロール法により測定される上記中空無機粒子の耐圧強度が10MPa以上である絶縁層形成用ワニスである。
本発明の絶縁電線及び絶縁層形成用ワニスは、誘電率を低下しつつ、絶縁層の強度及び耐溶剤性の低下を抑制できる。
本発明の実施形態に係る絶縁電線の模式的断面図である。 図1の絶縁電線に含まれる中空無機粒子の模式的端面図である。 本発明の他の実施形態に係る絶縁電線に含まれる中空無機粒子の模式的端面図である。 本発明の他の実施形態に係る絶縁電線に含まれる図3Aとは異なる中空無機粒子の模式的端面図である。
[本発明の実施形態の説明]
本発明の一態様に係る絶縁電線は、線状の導体と、この導体の外周面に積層される1又は複数の絶縁層とを備える絶縁電線であって、上記1又は複数の絶縁層の少なくとも1層が複数の中空無機粒子を含み、ASTM D3102−78に準拠してグリセロール法により測定される上記中空無機粒子の耐圧強度が10MPa以上である絶縁電線である。
当該絶縁電線は、複数の中空無機粒子を含む絶縁層を備えており、これらの中空無機粒子による気孔は無機材料で構成されるシェルで囲まれているので、各中空無機粒子内の中空部同士が連通し難い。このように、当該絶縁電線は、各中空無機粒子内の中空部同士が連通し難いので、中空無機粒子を増やしても粗大な気孔が生じ難い。従って、当該絶縁電線は、誘電率を低下しつつ、絶縁層の強度及び耐溶剤性の低下を抑制できる。また、当該絶縁電線は、ASTM D3102−78に準拠してグリセロール法により測定される中空無機粒子の耐圧強度が上記下限以上であることにより、絶縁層形成時のワニスの収縮による無機材料で構成されるシェルの割れが抑制され、絶縁性及び耐溶剤性低下の抑制効果が促進される。ここで、「気孔率」とは、中空無機粒子を含む絶縁層の体積に対する中空無機粒子による気孔の容積の百分率を意味する。
上記中空無機粒子のシェルの平均厚さとしては、1.0μm以下が好ましい。このように、中空無機粒子のシェルの平均厚さが上記上限以下であることにより、絶縁層の気孔率を高められる。
上記中空無機粒子のシェルの材質がガラスであるとよい。このように、ガラス製のシェルを有する中空無機粒子を用いることで、絶縁層の強度をさらに高められる。
上記中空無機粒子が球状であるとよい。このように、中空無機粒子が球状であることにより、絶縁層形成時のワニスの収縮によりシェル表面にかかる外力が分散し易くなり、その結果、シェルの割れが生じ難く、より粗大な気孔が生じ難い。ここで、「球状」とは、真球に限らず、例えば真球度が1.0以上1.3以下の球の形状を意味する。
上記中空無機粒子の平均粒子径としては、30μm以下が好ましい。このように、中空無機粒子の平均粒子径が上記上限以下であることにより、絶縁層表面の凹凸状形成が抑制される。ここで、平均粒子径とは、JIS−Z8825(2013)に規定されるメジアン径を意味する。
上記中空無機粒子の中空率としては、50体積%以上95体積%以下が好ましい。このように、中空無機粒子の中空率が上記範囲内であることにより、中空無機粒子の占める体積に対して効率よく気孔率を高めることができる。また、絶縁層における中空無機粒子が占める体積割合を小さくできるので、絶縁性低下の抑制効果が促進される。ここで、「中空率」とは、中空無機粒子全体の見かけの体積に対する中空部分の体積の百分率を意味する。
本発明の一態様に係る絶縁層形成用ワニスは、絶縁電線を構成する1又は複数の絶縁層の少なくとも1層の形成に用いる絶縁層形成用ワニスであって、マトリックスを形成する樹脂組成物と、この樹脂組成物中に分散する中空無機粒子とを含有し、ASTM D3102−78に準拠してグリセロール法により測定される上記中空無機粒子の耐圧強度が10MPa以上である絶縁層形成用ワニスである。
当該絶縁層形成用ワニスは、このように、マトリックスを形成する樹脂組成物中に分散する中空無機粒子を含有するので、これらの中空無機粒子による気孔を含む絶縁層を形成できる。当該絶縁層形成用ワニスは、絶縁層の気孔率が高くなるよう樹脂組成物に対する中空無機粒子の体積割合を増加させても、絶縁層内に形成される各気孔が無機材料で構成されるシェルで囲まれているので、各中空無機粒子内の中空部同士が連通し難く、その結果、絶縁層に粗大な気孔が生じ難い。従って、当該絶縁層形成用ワニスにより、絶縁電線の誘電率を低下しつつ、絶縁層の強度及び耐溶剤性の低下を抑制できる。また、当該絶縁層形成用ワニスは、ASTM D3102−78に準拠してグリセロール法により測定される耐圧強度が上記下限以上である中空無機粒子を含有することにより、絶縁層形成時のワニスの収縮による無機材料で構成されるシェルの割れが抑制され、絶縁性及び耐溶剤性低下の抑制効果が促進される。
[本発明の実施形態の詳細]
以下、図面を参照しつつ、本発明の実施形態に係る絶縁電線及び絶縁層形成用ワニスを説明する。
[絶縁電線]
図1の当該絶縁電線は、線状の導体1と、この導体1の外周面に積層される1層の絶縁層2とを備える。この絶縁層2は、複数の中空無機粒子3を含む。
<導体>
上記導体1は、例えば断面が円形状の丸線とされるが、断面が方形状の角線や、複数の素線を撚り合わせた撚り線であってもよい。
導体1の材質としては、導電率が高くかつ機械的強度が大きい金属が好ましい。このような金属としては、例えば銅、銅合金、アルミニウム、ニッケル、銀、軟鉄、鋼、ステンレス鋼等が挙げられる。導体1は、これらの金属を線状に形成した材料や、このような線状の材料にさらに別の金属を被覆した多層構造のもの、例えばニッケル被覆銅線、銀被覆銅線、銅被覆アルミニウム線、銅被覆鋼線等を用いることができる。
導体1の平均断面積の下限としては、0.01mmが好ましく、0.1mmがより好ましい。一方、導体1の平均断面積の上限としては、10mmが好ましく、5mmがより好ましい。導体1の平均断面積が上記下限に満たないと、導体1に対する絶縁層2の体積が大きくなり、当該絶縁電線を用いて形成されるコイル等の体積効率が低くなるおそれがある。逆に、導体1の平均断面積が上記上限を超えると、誘電率を十分に低下させるために絶縁層2を厚く形成しなければならず、当該絶縁電線が不必要に大径化するおそれがある。
<絶縁層>
上記絶縁層2は、図1に示すように複数の中空無機粒子3を含む。つまり、絶縁層2は、中空無機粒子3による複数の気孔を含む。
絶縁層2は、絶縁性を有する樹脂組成物、及びこの樹脂組成物中に散在する中空無機粒子3で形成される。この絶縁層2は、後述する絶縁層形成用ワニスの導体1外周面への塗布及び焼付により形成される。
(中空無機粒子)
上記中空無機粒子3は、図2に示すような中空のシェル4を有する。
シェル4は、無機材料で構成される。このような無機材料としては、例えば単結晶材料、セラミック、ガラスなどが挙げられる。これらの中でも、シェル4の材質としてはガラスが好ましい。シェル4の材質をガラスとすることで、当該絶縁電線の絶縁層2の強度を向上させ易い。
中空無機粒子3の形状は、特に限定されないが、例えば図2に示すような球状が好ましい。球状の中空無機粒子3を用いることにより、絶縁層2形成時のワニスの収縮によりシェル4表面にかかる外力が分散し易くなるので、シェル4の割れが生じ難い。その結果、中空無機粒子3による気孔が連通し難く、粗大な気孔が生じ難い。
球状の中空無機粒子3を用いる場合、この中空無機粒子3の平均粒子径の下限としては、0.5μmが好ましく、1μmがより好ましい。一方、中空無機粒子3の平均粒子径の上限としては、30μmが好ましく、25μmがより好ましい。中空無機粒子3の平均粒子径が上記下限に満たないと、中空率の上限が小さくなり中空率を所定以上に大きくできないため、絶縁層2に含まれる中空無機粒子3の体積割合が大きくなる。その結果、絶縁層2の絶縁性が低下するおそれがある。逆に、中空無機粒子3の平均粒子径が上記上限を超えると、絶縁層2の厚さに対して中空v粒子3が大きくなり過ぎるため、絶縁層2表面に凹凸状が形成され易くなるおそれがある。
無機材料で構成されるシェル4の平均厚さの下限としては、0.05μmが好ましく、0.1μmがより好ましい。一方、シェル4の平均厚さの上限としては、1.0μmが好ましく、0.8μmがより好ましい。シェル4の平均厚さが上記下限に満たないと、絶縁層2形成時のワニスの収縮によるシェル4の割れが生じ易くなり、中空無機粒子3による気孔の連通抑制効果が十分に得られないおそれがある。逆に、シェル4の平均厚さが上記上限を超えると、中空無機粒子3の体積に対して形成される気孔の体積が小さくなり過ぎるため、絶縁層2に含まれる中空無機粒子3の体積割合が大きくなる。その結果、絶縁層2の絶縁性が低下するおそれがある。
中空無機粒子3の耐圧強度の下限としては、ASTM D3102−78に準拠したグリセロール法による測定で、10MPaであり、20MPaが好ましく、30MPaがより好ましい。中空無機粒子3の耐圧強度が上記下限に満たないと、絶縁層2形成時のワニスの収縮によるシェル4の割れが生じ易くなり、中空無機粒子3による気孔の連通抑制効果が十分に得られないおそれがある。なお、中空無機粒子3の耐圧強度の上限としては、特に制限はないが、例えば250MPaが好ましい。中空無機粒子3の耐圧強度が上記上限を超えると、中空無機粒子3のコストが高くなり、当該絶縁電線の製品コストが増加するおそれがある。
中空無機粒子3の中空率の下限としては、50体積%が好ましく、60体積%がより好ましい。一方、中空無機粒子3の中空率の上限としては、95体積%が好ましく、90体積%がより好ましい。中空無機粒子3の中空率が上記下限に満たないと、絶縁層2における中空無機粒子3が占める体積割合が大きくなり過ぎ、絶縁性低下を十分に抑制できないおそれがある。逆に、中空無機粒子3の中空率が上記上限を超えると、ワニス調製時の撹拌によるシェアや絶縁層2形成時のワニスの収縮によるシェル4の割れが生じ易くなり、中空無機粒子3による気孔の連通抑制効果が十分に得られないおそれがある。
中空無機粒子3の比誘電率の上限としては、2.5が好ましく、2.0がより好ましい。中空無機粒子3の比誘電率が上記上限を超えると、絶縁層2の低誘電率化に必要な中空無機粒子3の量が多くなり、当該絶縁電線の製品コストが増加するおそれがある。一方、中空無機粒子3の比誘電率の下限としては、特に制限はないが、例えば1.2が好ましい。中空無機粒子3の比誘電率が上記下限に満たないと、中空無機粒子3の耐圧強度の確保が困難となるおそれがある。なお、「中空無機粒子3の比誘電率」とは、シェル4を構成する材料の比誘電率、空気の比誘電率及び中空無機粒子3の中空率から算出される比誘電率である。
絶縁層2の平均厚さの下限としては、15μmが好ましく、20μmがより好ましい。一方、絶縁層2の平均厚さの上限としては、200μmが好ましく、150μmがより好ましい。絶縁層2の平均厚さが上記下限に満たないと、絶縁性が低下するおそれがあると共に、中空無機粒子3の存在により絶縁層2表面に凹凸形状が形成され易くなるおそれがある。逆に、絶縁層2の平均厚さが上記上限を超えると、当該絶縁電線を用いて形成されるコイル等の体積効率が低くなるおそれがある。
絶縁層2の気孔率の下限としては、5体積%が好ましく、8体積%がより好ましい。一方、絶縁層2の気孔率の上限としては、80体積%が好ましく、50体積%がより好ましい。絶縁層2の気孔率が上記下限に満たないと、絶縁層2の誘電率が十分に低下せず、コロナ放電開始電圧を十分に向上できないおそれがある。逆に、絶縁層2の気孔率が上記上限を超えると、絶縁層2の機械的強度を維持できないおそれがある。
当該絶縁電線は、このように、絶縁層2に含まれる気孔が中空無機粒子3により形成される。このような中空無機粒子3による気孔は無機材料で構成されるシェル4で囲まれているので、シェル4同士が当接しても中空無機粒子3内の中空部同士が連通し難いため、中空無機粒子3よりも大きい気孔が生じ難い。これにより、当該絶縁電線は、誘電率を低下しつつ、絶縁層の強度及び耐溶剤性の低下を抑制できる。
[絶縁層形成用ワニス]
当該絶縁層形成用ワニスは、上記絶縁電線の絶縁層2の形成に用いるワニスである。当該絶縁層形成用ワニスは、マトリックスを形成する樹脂組成物と、この樹脂組成物中に分散する中空無機粒子3とを含有する。
<樹脂組成物>
上記樹脂組成物は、主ポリマーと、希釈用溶剤、硬化剤等とを含む組成物である。上記主ポリマーとしては、特に限定されないが、熱硬化性樹脂を使用する場合、例えばポリビニールホルマール前駆体、熱硬化ポリウレタン前駆体、熱硬化アクリル樹脂前駆体、エポキシ樹脂前駆体、熱硬化ポリエステル前駆体、熱硬化ポリエステルイミド前駆体、熱硬化ポリエステルアミドイミド前駆体、熱硬化ポリアミドイミド前駆体、ポリイミド前駆体等が使用できる。また、主ポリマーとして熱可塑性樹脂を使用する場合、例えばポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン、ポリイミド等が使用できる。これらの中でも、絶縁層形成用ワニスを塗布し易くできると共に絶縁層2の強度及び耐熱性を向上させ易い点において、ポリイミド前駆体が好ましい。
希釈用溶剤としては、絶縁ワニスに従来より用いられている公知の有機溶剤を用いることができる。具体的には、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ−ブチロラクトンなどの極性有機溶媒をはじめ、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチルなどのエステル類、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル類、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素類、ジクロロメタン、クロロベンゼンなどのハロゲン化炭化水素類、クレゾール、クロルフェノールなどのフェノール類、ピリジンなどの第三級アミン類等が挙げられ、これらの有機溶媒はそれぞれ単独であるいは2種以上を混合して用いられる。
また、上記樹脂組成物に、硬化剤を含有させてもよい。硬化剤としては、チタン系硬化剤、イソシアネート系化合物、ブロックイソシアネート、尿素やメラミン化合物、アミノ樹脂、アセチレン誘導体、メチルテトラヒドロ無水フタル酸などの脂環式酸無水物、脂肪族酸無水物、芳香族酸無水物等が例示される。これらの硬化剤は、使用する樹脂組成物が含有する主ポリマーの種類に応じて、適宜選択される。例えば、ポリアミドイミド系の場合、硬化剤として、イミダゾール、トリエチルアミン等が好ましく用いられる。
なお、上記チタン系硬化剤としては、テトラプロピルチタネート、テトライソプロピルチタネート、テトラメチルチタネート、テトラブチルチタネート、テトラヘキシルチタネート等が例示される。上記イソシアネート系化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンイソシアネート(MDI)、p−フェニレンジイソシアネート、ナフタレンジイソシアネートなどの芳香族ジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、2,2,4−トリメチルヘキサンジイソシアネート、リジンジイソシアネートなどの炭素数3〜12の脂肪族ジイソシアネート、1,4−シクロヘキサンジイソシアネート(CDI)、イソホロンジイソシアネート(IPDI)、4,4’−ジシクロヘキシルメタンジイソシアネート(水添MDI)、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル−4,4’−ジイソシアネート、1,3−ジイソシアナトメチルシクロヘキサン(水添XDI)、水添TDI、2,5−ビス(イソシアナートメチル)−ビシクロ[2,2,1]ヘプタン、2,6−ビス(イソシアナートメチル)−ビシクロ[2,2,1]ヘプタンなどの炭素数5〜18の脂環式イソシアネート、キシリレインジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香環を有する脂肪族ジイソシアネート、これらの変性物等が例示される。上記ブロックイソシアネートとしては、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、ジフェニルメタン−3,3’−ジイソシアネート、ジフェニルメタン−3,4’−ジイソシアネート、ジフェニルエーテル−4,4’−ジイソシアネート、ベンゾフェノン−4,4’−ジイソシアネート、ジフェニルスルホン−4,4’−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,6−ジイソシアネート、ナフチレン−1,5−ジイソシアネート、m−キシリレンジイソシアネート、p−キシリレンジイソシアネート等が例示される。上記メラミン化合物としては、メチル化メラミン、ブチル化メラミン、メチロール化メラミン、ブチロール化メラミン等が例示される。上記アセチレン誘導体としては、エチニルアニリン、エニチルフタル酸無水物等が例示される。
上記有機溶剤により希釈し、中空無機粒子3を分散させることにより調製した当該絶縁層形成用ワニスの樹脂固形分濃度の下限としては、15質量%が好ましく、20質量%がより好ましい。一方、当該絶縁層形成用ワニスの樹脂固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましい。当該絶縁層形成用ワニスの樹脂固形分濃度が上記下限に満たないと、1回のワニスの塗布で形成できる厚さが小さくなるため、所定の厚さの絶縁層2を形成するためのワニス塗布工程の繰り返し回数が多くなり、ワニス塗布工程の時間が長くなるおそれがある。逆に、当該絶縁層形成用ワニスの樹脂固形分濃度が上記上限を超えると、ワニスが増粘することにより、ワニスの保存安定性が悪化するおそれや、ワニス塗布時の付着性が悪化するおそれがある。
[絶縁電線の製造方法]
次に、上記絶縁電線の製造方法について説明する。この絶縁電線の製造方法は、上記絶縁層2を形成するための主ポリマーを溶剤で希釈した樹脂組成物に、中空無機粒子3を分散させることで絶縁層形成用ワニスを調製する工程(ワニス調製工程)、上記絶縁層形成用ワニスを上記導体1の外周面に塗布する工程(ワニス塗布工程)、及び上記絶縁層形成用ワニスを焼付ける工程(焼付工程)を備える。
<ワニス調製工程>
上記ワニス調製工程において、まず、絶縁層2を形成する主ポリマーを溶剤で希釈することにより、絶縁層2のマトリックスを形成する樹脂組成物を作成する。次に、この樹脂組成物に中空無機粒子3を分散させて絶縁層形成用ワニスを調製する。なお、樹脂組成物に中空無機粒子3を分散させるのではなく、主ポリマーを溶剤で希釈する際、同時に中空無機粒子3を混合することにより上記絶縁層形成用ワニスを調製してもよい。
<ワニス塗布工程>
上記ワニス塗布工程において、上記ワニス調製工程で調製した絶縁層形成用ワニスを導体1の外周面に塗布する。
<焼付工程>
次に、上記焼付工程において、絶縁層形成用ワニスが塗布された導体1を焼付炉に通して絶縁層形成用ワニスを焼付けることで、導体1表面に焼付層を形成する。
導体1表面に積層される複数の焼付層の合計厚さが所定の厚さとなるまで、上記ワニス塗布工程及び焼付工程を繰り返すことにより、複数の焼付層からなる絶縁層2が形成され、当該絶縁電線が得られる。この形成された絶縁層2に含まれる中空無機粒子3により、絶縁層2内に気孔が形成される。
なお、上記ワニス塗布工程及び焼付工程を繰り返す際に、少なくともいずれかのワニス塗布工程において、中空無機粒子3を含有する上記絶縁層形成用ワニスに代えて、中空無機粒子3を含有しない絶縁層形成用ワニスを塗布するようにしてもよい。つまり、中空無機粒子3を含有する上記絶縁層形成用ワニスの塗布及び焼付後に、中空無機粒子3を含有しない絶縁層形成用ワニスを塗布してもよいし、中空無機粒子3を含有しない絶縁層形成用ワニスの塗布及び焼付後に、中空無機粒子3を含有する上記絶縁層形成用ワニスを塗布してもよい。例えば1回の絶縁層形成用ワニスの塗布により形成される焼付層の平均厚さが中空無機粒子3の平均粒子径よりも小さいような場合、このように中空無機粒子3を含有しない絶縁層形成用ワニスを塗布することで、中空無機粒子3の形状に起因する絶縁層2表面への凹凸状の形成を抑制できる。
また、上述のように所定のワニス塗布工程以降のワニス塗布工程で中空無機粒子3を含有しない絶縁層形成用ワニスを塗布する場合、この中空無機粒子3を含有しない絶縁層形成用ワニスを塗布するワニス塗布工程において、ワニス塗布後に、塗布ダイスにより導体1のワニスの塗布量の調節及び塗布されたワニス面の平滑化を行わせてもよい。
上記塗布ダイスは開口部を有し、絶縁層形成用ワニスを塗布した導体1がこの開口部を通過することで余分なワニスが除去され、ワニスの塗布量が調整される。これにより、当該絶縁電線は、絶縁層2の厚さが均一になり易く、均一な電気絶縁性を得易くなる。
このように、当該絶縁層形成用ワニスを用いて作成した絶縁層2には、中空無機粒子3による気孔が含まれる。この気孔は無機材料で構成されるシェル4で囲まれているので、気孔同士が連通し難く、絶縁層2の気孔率が高くなるよう中空無機粒子3を増やしても粗大な気孔が生じ難い。このように、当該絶縁層形成用ワニスにより、絶縁性及び耐溶剤性の低下を抑制しつつ絶縁層2の気孔率を高めることができる。
[その他の実施形態]
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
上記実施形態においては、1層の絶縁層が導体の外周面に積層される絶縁電線について説明したが、複数の絶縁層が導体の外周面に積層される絶縁電線としてもよい。つまり、図1の導体1と気孔を含む絶縁層2との間に1又は複数の絶縁層が積層されてもよいし、図1の気孔を含む絶縁層2の外周面に1又は複数の絶縁層が積層されてもよいし、図1の気孔を含む絶縁層2の外周面及び内周面の両方に1又は複数の絶縁層が積層されてもよい。このように複数の絶縁層が積層される絶縁電線において、少なくとも1の絶縁層に中空無機粒子による気孔が含まれればよい。つまり、2以上の絶縁層に中空無機粒子による気孔が含まれてもよい。2以上の絶縁層に中空無機粒子による気孔が含まれる場合、これらのそれぞれの絶縁層が低誘電率化に寄与する。このように複数の絶縁層のうち少なくとも1層に複数の中空無機粒子が含まれる絶縁電線も、本発明の意図する範囲内である。また、このように導体の外周面に複数の絶縁層を積層することにより、絶縁電線の機械的強度を向上できる。なお、これらの複数の絶縁層を形成する樹脂組成物として同種のものを用いてもよく、互いに異なるものを用いてもよい。
また、上記実施形態では、中空無機粒子として球状のものを用いることとしたが、中空無機粒子のワニスへの混合時や焼付時のワニスの収縮によりシェルが割れ難いものであれば、球状以外の形状のものを用いてもよい。つまり、絶縁層内に気孔を形成させる中空無機粒子として、例えば図3Aのような直方体形状のシェル14で構成される中空無機粒子13や、図3Bのような複数の細孔を内部に有するシェル24で構成される中空無機粒子23を用いてもよい。具体的には、図3Aのような直方体形状の中空無機粒子13として、例えば平均粒子径が80nm以上130nm以下程度、無機材料で構成されるシェル14の平均厚さが5nm以上15nm以下程度であり、約100MPaの耐圧強度を有するような粒子を用いることができる。また、図3Bのような複数の細孔を内部に有する中空無機粒子23として、例えば二次元ヘキサゴナル構造で形成される複数の細孔を有し、平均粒子径が2.4μm程度、1つの細孔を囲む六角形状周壁の対面する面間の距離が4nm程度であり、約100MPaの耐圧強度を有するような粒子を用いることができる。
球状以外の形状を有する場合の中空無機粒子の平均粒子径の下限としては、特に制限はないが、例えば50nmが好ましく、60nmがより好ましい。一方、球状以外の中空無機粒子の平均粒子径の上限としては、30μmが好ましく、25μmがより好ましい。球状以外の中空無機粒子の平均粒子径が上記下限に満たないと、中空率の上限が小さくなり中空率を所定以上に大きくできないため、絶縁層に含まれる中空無機粒子の体積割合が大きくなる。その結果、絶縁層の絶縁性が低下するおそれがある。逆に、球状以外の中空無機粒子の平均粒子径が上記上限を超えると、絶縁層の厚さに対して中空無機粒子が大きくなり過ぎるため、絶縁層表面に凹凸状が形成され易くなるおそれがある。なお、球状以外の中空無機粒子の「粒子径」とは、中空無機粒子の見かけの体積と同体積の真球の相当径を意味する。
また、上記実施形態では、気孔を形成するための中空無機粒子として、図2のように表面が滑らかな形状の中空無機粒子4を用いることとしたが、例えば図3Bの中空無機粒子23のように、表面に凹凸形状を有する粒子を用いてもよい。
また、上記実施形態では、上記ワニス塗布工程及び焼付工程を繰り返し行う構成について説明したが、1回の塗布工程及び焼付工程により絶縁層を形成する構成としてもよい。例えば粘度の高い絶縁層形成用ワニスを用いることなどにより、1回の塗布及び焼付で絶縁層の厚さを有する焼付層が形成できる場合、このように塗布工程及び焼付工程を繰り返すことなく絶縁層を形成できる。この場合、絶縁層は1層の焼付層で形成される。
また、例えば当該絶縁電線において、導体と絶縁層との間にプライマー処理層等のさらなる層が設けられてもよい。プライマー処理層は、層間の密着性を高めるために設けられる層であり、例えば公知の樹脂組成物により形成することができる。
導体と絶縁層との間にプライマー処理層を設ける場合、このプライマー処理層を形成する樹脂組成物は、例えばポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエステル及びフェノキシ樹脂の中の一種又は複数種の樹脂を含むとよい。また、プライマー処理層を形成する樹脂組成物は、密着向上剤等の添加剤を含んでもよい。このような樹脂組成物によって導体と絶縁層との間にプライマー処理層を形成することで、導体と絶縁層との間の密着性を向上することが可能であり、その結果、当該絶縁電線の可撓性や耐摩耗性、耐傷性、耐加工性などの特性を効果的に高めることができる。
また、プライマー処理層を形成する樹脂組成物は、上記樹脂と共に他の樹脂、例えばエポキシ樹脂、フェノキシ樹脂、メラミン樹脂等を含んでもよい。また、プライマー処理層を形成する樹脂組成物に含まれる各樹脂として、市販の液状組成物(絶縁ワニス)を使用してもよい。
プライマー処理層の平均厚さの下限としては、1μmが好ましく、2μmがより好ましい。一方、プライマー処理層の平均厚さの上限としては、20μmが好ましく、10μmがより好ましい。プライマー処理層の平均厚さが上記下限に満たないと、導体との十分な密着性を発揮できないおそれがある。逆に、プライマー処理層の平均厚さが上記上限を超えると、当該絶縁電線が不必要に大径化するおそれがある。
本発明に係る絶縁電線及び絶縁層形成用ワニスにより、誘電率を低下しつつ、絶縁層の強度及び耐溶剤性の低下を抑制できる。従って、このような絶縁層を有する絶縁電線は、コイルやモーター等を形成するために好適に利用することができる。
1 導体
2 絶縁層
3、13、23 中空無機粒子
4、14、24 シェル

Claims (7)

  1. 線状の導体と、この導体の外周面に積層される1又は複数の絶縁層とを備える絶縁電線であって、
    上記1又は複数の絶縁層の少なくとも1層が複数の中空無機粒子を含み、
    ASTM D3102−78に準拠してグリセロール法により測定される上記中空無機粒子の耐圧強度が10MPa以上である絶縁電線。
  2. 上記中空無機粒子のシェルの平均厚さが1.0μm以下である請求項1に記載の絶縁電線。
  3. 上記中空無機粒子のシェルの材質がガラスである請求項1又は請求項2に記載の絶縁電線。
  4. 上記中空無機粒子が球状である請求項1、請求項2又は請求項3に記載の絶縁電線。
  5. 上記中空無機粒子の平均粒子径が30μm以下である請求項4に記載の絶縁電線。
  6. 上記中空無機粒子の中空率が50体積%以上95体積%以下である請求項4又は請求項5に記載の絶縁電線。
  7. 絶縁電線を構成する1又は複数の絶縁層の少なくとも1層の形成に用いる絶縁層形成用ワニスであって、
    マトリックスを形成する樹脂組成物と、
    この樹脂組成物中に分散する中空無機粒子と
    を含有し、
    ASTM D3102−78に準拠してグリセロール法により測定される上記中空無機粒子の耐圧強度が10MPa以上である絶縁層形成用ワニス。
JP2015168338A 2015-08-27 2015-08-27 絶縁電線及び絶縁層形成用ワニス Pending JP2017045662A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015168338A JP2017045662A (ja) 2015-08-27 2015-08-27 絶縁電線及び絶縁層形成用ワニス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015168338A JP2017045662A (ja) 2015-08-27 2015-08-27 絶縁電線及び絶縁層形成用ワニス

Publications (1)

Publication Number Publication Date
JP2017045662A true JP2017045662A (ja) 2017-03-02

Family

ID=58211627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168338A Pending JP2017045662A (ja) 2015-08-27 2015-08-27 絶縁電線及び絶縁層形成用ワニス

Country Status (1)

Country Link
JP (1) JP2017045662A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212199A (ja) * 2016-05-24 2017-11-30 住友電気工業株式会社 絶縁電線、絶縁層形成用樹脂組成物及び絶縁電線の製造方法
CN109791829A (zh) * 2018-05-22 2019-05-21 深圳顺络电子股份有限公司 一体成型电感元件及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212199A (ja) * 2016-05-24 2017-11-30 住友電気工業株式会社 絶縁電線、絶縁層形成用樹脂組成物及び絶縁電線の製造方法
CN109791829A (zh) * 2018-05-22 2019-05-21 深圳顺络电子股份有限公司 一体成型电感元件及其制造方法

Similar Documents

Publication Publication Date Title
JP6306220B2 (ja) 絶縁電線及び絶縁層形成用ワニス
JP2012224714A (ja) 低誘電率用絶縁ワニス及びこれを用いた絶縁電線
US10991477B2 (en) Insulated electrical cable
JP7016860B2 (ja) 絶縁電線
JP7076429B2 (ja) 絶縁電線
JP2016091865A (ja) 絶縁電線
CN108431905B (zh) 绝缘电线
JP2016044288A (ja) ポリイミド樹脂前駆体絶縁塗料及びそれを用いた絶縁電線
JP2017045662A (ja) 絶縁電線及び絶縁層形成用ワニス
WO2018037636A1 (ja) 絶縁電線及び絶縁電線の製造方法
JP7214625B2 (ja) 絶縁電線
WO2018186259A1 (ja) 絶縁電線
JP6912253B2 (ja) 絶縁電線の製造方法
JP2018045795A (ja) 絶縁電線及び絶縁電線の製造方法
JP2016044287A (ja) ポリエステルイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP7165288B1 (ja) 絶縁電線及びその製造方法
WO2023026591A1 (ja) 絶縁電線