JP2017044431A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2017044431A
JP2017044431A JP2015168442A JP2015168442A JP2017044431A JP 2017044431 A JP2017044431 A JP 2017044431A JP 2015168442 A JP2015168442 A JP 2015168442A JP 2015168442 A JP2015168442 A JP 2015168442A JP 2017044431 A JP2017044431 A JP 2017044431A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchanger
heat pump
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015168442A
Other languages
Japanese (ja)
Inventor
聡 石▲崎▼
Satoshi Ishizaki
聡 石▲崎▼
北村 哲也
Tetsuya Kitamura
哲也 北村
智史 小沼
Tomohito Konuma
智史 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2015168442A priority Critical patent/JP2017044431A/en
Publication of JP2017044431A publication Critical patent/JP2017044431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of preventing a pressure loss from being increased when a diameter of each of the heat transfer pipes is made small and pipes with inner surface grooves are used as a heat exchanger, decreasing in reduction of a heat transfer performance as much as possible, and performing its less-expensive manufacturing.SOLUTION: This invention relates to a heat pump type water heater comprising a hot water storage unit and a heat pump unit. The heat pump unit includes: a compressor for compressing CO2 refrigerant and feeding refrigerant into a heat pump cycle; a water-refrigerant heat exchanger for heat exchanging between CO2 refrigerant of high temperature and high pressure discharged out of the compressor and water supplied from the hot water storage unit; a decompression device for decreasing pressure of high pressure CO2 refrigerant flowed out of the water-refrigerant heat exchanger; and an air heat exchanger for heat exchanging between the low pressure CO2 refrigerant flowed out of the decompression device and air. The air heat exchanger is a cross-fin tube heat exchanger constituted by fins and heat transfer pipes, and the heat transfer pipes have smooth inner surfaces.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプ式給湯機に関する。   The present invention relates to a heat pump type water heater.

ヒートポンプ式給湯機はお湯を沸き上げるためのヒートポンプユニットとそのお湯を貯湯するための貯湯ユニットで構成されている。ヒートポンプユニットは圧縮機、水−冷媒熱交換器、減圧装置、空気熱交換器で構成され、それらが環状に接続されている。沸き上げ運転時には空気熱交換器は蒸発器として動作する。   The heat pump type hot water heater is composed of a heat pump unit for boiling hot water and a hot water storage unit for storing the hot water. The heat pump unit includes a compressor, a water-refrigerant heat exchanger, a decompression device, and an air heat exchanger, which are connected in a ring shape. During the boiling operation, the air heat exchanger operates as an evaporator.

従来、この空気熱交換器にはクロスフィンチューブ型の熱交換器が用いられており、その構成は冷媒管とアルミフィンで構成されている。また、その冷媒管には冷媒の熱伝達率向上のため、特許文献1および特許文献2記載に示すように、内面に突起加工された内面溝付き管が用いられている。   Conventionally, a cross fin tube type heat exchanger has been used for this air heat exchanger, and its configuration is constituted by a refrigerant pipe and aluminum fins. Further, as shown in Patent Document 1 and Patent Document 2, an internally grooved tube whose inner surface is protruded is used for the refrigerant tube in order to improve the heat transfer coefficient of the refrigerant.

特開2011−252662号公報JP 2011-252662 A 特開2012−57849号公報JP 2012-57849 A

しかしながら、冷媒管を細径にして内面溝付き管を熱交換器として用いた場合、圧力損失が増大するため、熱交換性能の減少を招いてしまう。特にヒートポンプ式給湯機のように、空気熱交換器が蒸発器として役割をする場合、管内の冷媒が液冷媒から気体冷媒へと変化するため、圧力損失が増大する。圧力損失の増大を防ぐためには、多分岐化を行い、各分岐を流れる冷媒の流量を少なくしなければならないが、各分岐を流れる冷媒の流量を均一にする必要があり、均一な分配は困難である。   However, when the refrigerant tube is made thin and the internally grooved tube is used as a heat exchanger, the pressure loss increases, leading to a decrease in heat exchange performance. In particular, when the air heat exchanger functions as an evaporator like a heat pump type hot water heater, the refrigerant in the pipe changes from a liquid refrigerant to a gaseous refrigerant, so that the pressure loss increases. In order to prevent an increase in pressure loss, it is necessary to perform multi-branching and reduce the flow rate of refrigerant flowing through each branch. However, it is necessary to make the flow rate of refrigerant flowing through each branch uniform, and uniform distribution is difficult. It is.

また、内面に溝を加工するため、加工コストがかさんでしまう。また内面に溝が加工してあるため、圧縮機から吐き出された冷凍機油が溝に付着し、冷媒管としての性能低下や圧縮機内の冷凍機油が枯渇することによって圧縮機が破壊されてしまう懸念がある。   Further, since the grooves are processed on the inner surface, the processing cost is increased. In addition, because the groove is processed on the inner surface, the refrigeration oil discharged from the compressor adheres to the groove, and there is a concern that the compressor may be destroyed due to the performance deterioration as a refrigerant pipe or the exhaust of the refrigeration oil in the compressor. There is.

上記課題は、特許請求の範囲に記載した発明により解決される。   The above problems are solved by the invention described in the claims.

冷媒管が細径の場合には平滑管を使用することで、圧力損失を増大させずかつ、熱交換器の性能を大きく減少させることなく、安価に熱交換器を製造することができる。   When the refrigerant tube has a small diameter, the use of a smooth tube makes it possible to manufacture the heat exchanger at a low cost without increasing the pressure loss and greatly reducing the performance of the heat exchanger.

一実施例のヒートポンプ給湯機の概略図である。It is the schematic of the heat pump water heater of one Example. CO2冷媒の冷凍サイクルのモリエル線図である。It is a Mollier diagram of the refrigerating cycle of CO2 refrigerant. CO2冷媒を用いた場合の伝熱管径と熱伝達率および圧力損失の関係である。This is the relationship between the heat transfer tube diameter, the heat transfer coefficient, and the pressure loss when a CO2 refrigerant is used. R410A冷媒を用いた場合の伝熱管径と熱伝達率および圧力損失の関係である。This is the relationship between the heat transfer tube diameter, the heat transfer coefficient, and the pressure loss when the R410A refrigerant is used. 溝つき管を平滑管に置換した場合の熱伝達率の低下率である。This is the rate of decrease in heat transfer coefficient when a grooved tube is replaced with a smooth tube. 溝つき管を平滑管に置換した場合の圧力損失の低下率である。This is the rate of decrease in pressure loss when a grooved tube is replaced with a smooth tube. 空気熱交換器14の斜視図である。It is a perspective view of the air heat exchanger.

一実施例のヒートポンプ式給湯機の概要を図1に示す。ここに示すように、本実施例のヒートポンプ式給湯機は、お湯を沸き上げるヒートポンプユニット100と、沸き上げたお湯を貯湯する貯湯ユニット101で構成されており、貯湯ユニット101の貯湯タンク2に蓄えられたお湯は、ポンプなどの循環装置1を駆動することでヒートポンプユニット100に送り出される。なお、ここでは、貯湯タンクの上流に循環装置1を設けた例を示すが、下流側に循環装置1を設けても良い。   FIG. 1 shows an outline of a heat pump type water heater of one embodiment. As shown here, the heat pump type water heater of the present embodiment is composed of a heat pump unit 100 for boiling hot water and a hot water storage unit 101 for storing the heated hot water, and the hot water storage unit 101 stores the hot water in the hot water storage tank 2. The obtained hot water is sent to the heat pump unit 100 by driving the circulation device 1 such as a pump. Although an example in which the circulation device 1 is provided upstream of the hot water storage tank is shown here, the circulation device 1 may be provided on the downstream side.

ヒートポンプユニット100は、CO2冷媒を臨界圧力以上の高温高圧に圧縮する圧縮機11と、圧縮機11からの高温冷媒と貯湯ユニット101からの低温水とで熱交換する熱交換器12と、熱交換器12で冷却された冷媒を減圧する減圧装置13と、減圧装置13で減圧された低温低圧の冷媒と空気とで熱交換する空気熱交換器14と、それらを環状に接続する冷媒管16で構成され、超臨界蒸気圧縮式のヒートポンプサイクルを形成する。   The heat pump unit 100 includes a compressor 11 that compresses CO2 refrigerant to a high temperature and high pressure that is equal to or higher than a critical pressure, a heat exchanger 12 that performs heat exchange between the high temperature refrigerant from the compressor 11 and low temperature water from the hot water storage unit 101, and heat exchange. A decompressor 13 for decompressing the refrigerant cooled by the cooler 12, an air heat exchanger 14 for exchanging heat between the low-temperature and low-pressure refrigerant decompressed by the decompressor 13 and air, and a refrigerant pipe 16 for connecting them in an annular shape. Constructed to form a supercritical vapor compression heat pump cycle.

図7を用いて、空気熱交換器14の一例を示す。ここに示すように、空気熱交換器14は、各々が板状である複数のフィン14aと、これら複数のフィン14aを貫通する複数の冷媒管16cで構成された蒸発器である。冷媒管16の上流側16aから入った低温の液冷媒は、フィン14aに接触する相対的に高温の空気と熱交換することで蒸発し気体冷媒になって冷媒管16の下流側16bから流出する。なお、図7では、複数のフィン14aを平面上に配置したが、フィン14aの配置はこれに限られず、ヒートポンプユニット100内での空気熱交換器14の配置に応じてフィン14aを自由に配置することができる。   An example of the air heat exchanger 14 is shown using FIG. As shown here, the air heat exchanger 14 is an evaporator composed of a plurality of fins 14a each having a plate shape and a plurality of refrigerant tubes 16c penetrating the plurality of fins 14a. The low-temperature liquid refrigerant that has entered from the upstream side 16a of the refrigerant pipe 16 evaporates by exchanging heat with relatively high-temperature air that contacts the fins 14a to become a gaseous refrigerant and flows out from the downstream side 16b of the refrigerant pipe 16. . In FIG. 7, the plurality of fins 14 a are arranged on a plane, but the arrangement of the fins 14 a is not limited to this, and the fins 14 a are freely arranged according to the arrangement of the air heat exchanger 14 in the heat pump unit 100. can do.

本実施例では、空気熱交換器14の冷媒管16c(以下では「伝熱管」とも称する)として従来から用いられてきた、内面に螺旋状の溝が彫られた「溝つき管」に代えて、内面に溝が彫られていない「平滑管」を用いる。以下では、「平滑管」を用いる理由を詳細に説明する。   In this embodiment, instead of the “grooved tube” that has been conventionally used as the refrigerant tube 16c (hereinafter also referred to as “heat transfer tube”) of the air heat exchanger 14, a spiral groove is carved on the inner surface. Use a “smooth tube” with no grooves on the inner surface. Hereinafter, the reason for using the “smooth tube” will be described in detail.

図2は、CO2冷媒を、飽和温度0℃の環境下で乾き度0から1.0まで蒸発させた場合のモリエル線図である。本実施例では、図2の破線に示すように、冷媒を蒸発させる際に、蒸発器入口圧力および出口圧力が一定の値となるように、加熱量Qおよび冷媒質量速度を調整した。また、伝熱管の内径(以下では「伝熱管径」と称する)としてφ3mm〜10mmの8種類、管種として「溝つき管」と「平滑管」の2種類に対して、冷媒を蒸発させる操作を行い、熱交換器の性能を示す指標である圧力損失および熱伝達率を明らかにし、図3に示した。また、比較のため、R410A冷媒を使用し同様の条件で検討した結果を図4に示した。   FIG. 2 is a Mollier diagram in the case where CO2 refrigerant is evaporated from a dryness of 0 to 1.0 in an environment of a saturation temperature of 0 ° C. In the present embodiment, as shown by the broken line in FIG. 2, when the refrigerant is evaporated, the heating amount Q and the refrigerant mass velocity are adjusted so that the evaporator inlet pressure and the outlet pressure become constant values. Further, the refrigerant is evaporated with respect to eight types of φ3 mm to 10 mm as the inner diameter of the heat transfer tube (hereinafter referred to as “heat transfer tube diameter”) and two types of tube types, “grooved tube” and “smooth tube”. The operation was performed and the pressure loss and the heat transfer coefficient, which are indicators showing the performance of the heat exchanger, were clarified and shown in FIG. For comparison, FIG. 4 shows the results of investigation using the R410A refrigerant under the same conditions.

図3に示すように、CO2冷媒を用いると、熱伝達率(実線)は、管径が大きいときには「平滑管」と「溝つき管」の差は小さいが、伝熱管径が小さくなるにつれ、その差が大きくなり、特にφ5mmよりも小さい場合に両者の差が急激に大きくなる。つまり、φ5mmよりも小さい管径の場合には「溝つき管」の溝に起因する熱伝達率の向上が顕著ということである。しかしその反面、φ5mmよりも小さい場合には「溝つき管」の溝に起因する圧力損失も急増している。   As shown in FIG. 3, when CO2 refrigerant is used, the heat transfer coefficient (solid line) shows a small difference between the “smooth tube” and the “grooved tube” when the tube diameter is large, but as the heat transfer tube diameter becomes smaller. , The difference becomes large, especially when it is smaller than φ5 mm, the difference between the two becomes large rapidly. That is, when the tube diameter is smaller than φ5 mm, the improvement in the heat transfer coefficient due to the groove of the “grooved tube” is remarkable. However, on the other hand, when the diameter is smaller than 5 mm, the pressure loss due to the groove of the “grooved tube” is also increasing rapidly.

次に、図4にR410A冷媒におけるにおける溝つき管を使用した場合と平滑管を使用した場合の管径を変化させたときの熱伝達率と圧力損失の関係を示す。CO2の場合と同様に熱伝達率について、管径が大きいときには平滑管と溝つき管の差は小さいが、伝熱管径が小さくなるにつれ、その差が大きくなり、特にφ5mmを超えたあたりから急激に大きくなっている。つまり、φ5mmよりも小さい管径の場合には溝つき管の効果が顕著に出るということである。しかしその反面、圧力損失も急増している。   Next, FIG. 4 shows the relationship between the heat transfer coefficient and the pressure loss when the tube diameter is changed when the grooved tube in the R410A refrigerant is used and when the smooth tube is used. As in the case of CO2, with respect to the heat transfer coefficient, the difference between the smooth tube and the grooved tube is small when the tube diameter is large, but the difference increases as the heat transfer tube diameter decreases, especially from around φ5 mm. It is growing rapidly. That is, in the case of a pipe diameter smaller than 5 mm, the effect of the grooved pipe is remarkable. On the other hand, pressure loss is also increasing rapidly.

ここで、CO2冷媒とR410A冷媒の各々における、「溝つき管」から「平滑管」に変更した場合の、熱伝達率と圧力損失の低下率を、図5、図6に示す。   Here, FIGS. 5 and 6 show the heat transfer coefficient and the rate of decrease in pressure loss when the “grooved tube” is changed to the “smooth tube” in each of the CO 2 refrigerant and the R410A refrigerant.

図6に示すように、CO2冷媒、R410A冷媒ともに伝熱管を細径にしていくにつれて、圧力損失の低下率が大きくなっており、その低下の割合はほぼ同等である。   As shown in FIG. 6, the rate of decrease in pressure loss increases as the diameter of the heat transfer tube becomes smaller for both the CO2 refrigerant and the R410A refrigerant, and the rate of the decrease is almost the same.

その反面、図5に示すように、CO2冷媒、R410A冷媒ともに伝熱管を細径にしていくにつれて、熱伝達率の低下率は大きくなるが、その低下割合が大きくが異なる。例えば、CO2冷媒を用いる場合、管径φ5mmでは、「溝つき管」から「平滑管」に変更したことによる熱伝達率低下率は20%ほどであるが、R410A冷媒を用いる場合には、38%も低下する。   On the other hand, as shown in FIG. 5, as the heat transfer tubes are made smaller in diameter for both the CO2 refrigerant and the R410A refrigerant, the rate of decrease in heat transfer coefficient increases, but the rate of decrease differs greatly. For example, when CO2 refrigerant is used, the rate of decrease in heat transfer coefficient due to the change from "grooved pipe" to "smooth pipe" is about 20% at a pipe diameter of 5 mm, but when using R410A refrigerant, 38 %.

つまり、R410冷媒を用いる場合には「溝つき管」を「平滑管」に帰る場合の熱伝達率の低下が大きいのに対し、CO2冷媒を用いる場合、溝つき管から平滑管にしたことによる小さいため、「溝つき管」から「平滑管」への置き換えによるコストダウンの利益を得つつ、性能の劣化を抑制することができる。   That is, when the R410 refrigerant is used, the decrease in the heat transfer coefficient when the “grooved tube” is returned to the “smooth tube” is large, whereas when the CO2 refrigerant is used, the grooved tube is changed to the smooth tube. Since it is small, it is possible to suppress the deterioration of the performance while obtaining the benefit of cost reduction by replacing the “grooved tube” with the “smooth tube”.

なお、以上の実施例では、管径が一様の伝熱管を例に説明を行ったが、平均管径が上述した関係にあれば、同様の作用が得られるため、伝熱管の平均管径を上述した値とした構成としても良い。   In the above embodiment, the heat transfer tube having a uniform tube diameter has been described as an example. However, if the average tube diameter is in the above-described relationship, the same effect can be obtained. May be configured as described above.

1:循環装置、2:貯湯タンク、11:圧縮機、12:熱交換器、13:減圧装置、14:空気熱交換器、16:冷媒管、100:ヒートポンプユニット、101:貯湯ユニット 1: Circulating device, 2: Hot water storage tank, 11: Compressor, 12: Heat exchanger, 13: Pressure reducing device, 14: Air heat exchanger, 16: Refrigerant pipe, 100: Heat pump unit, 101: Hot water storage unit

Claims (2)

貯湯ユニットと、
ヒートポンプユニットからなるヒートポンプ式給湯機であって、
前記ヒートポンプユニットは、
CO2冷媒を圧縮してヒートポンプサイクル内に冷媒を送りだす圧縮機と、
前記圧縮機から吐出された高温高圧のCO2冷媒と貯湯ユニットから供給される水とを熱交換させる水−冷媒熱交換器と、
前記水−冷媒熱交換器から流出した高圧のCO2冷媒を減圧する減圧装置と、
前記減圧装置から流出した低圧のCO2冷媒と空気とを熱交換させる空気熱交換器を備え、
前記空気熱交換器は、フィンと伝熱管で構成されたクロスフィンチューブ熱交換器であり、前記伝熱管は内面が平滑であることを特徴とするヒートポンプ式給湯機。
A hot water storage unit,
A heat pump type water heater comprising a heat pump unit,
The heat pump unit is
A compressor that compresses the CO2 refrigerant and sends the refrigerant into the heat pump cycle;
A water-refrigerant heat exchanger for exchanging heat between the high-temperature and high-pressure CO2 refrigerant discharged from the compressor and the water supplied from the hot water storage unit;
A decompression device for decompressing the high-pressure CO 2 refrigerant flowing out of the water-refrigerant heat exchanger;
An air heat exchanger for exchanging heat between the low-pressure CO 2 refrigerant flowing out of the decompression device and the air;
The air heat exchanger is a cross fin tube heat exchanger composed of fins and heat transfer tubes, and the heat transfer tube has a smooth inner surface, and is a heat pump type water heater.
請求項1のヒートポンプ式給湯機において、
前記伝熱管の平均内径が5mm以下であることを特徴とした熱交換器。
In the heat pump type water heater of claim 1,
The heat exchanger according to claim 1, wherein an average inner diameter of the heat transfer tube is 5 mm or less.
JP2015168442A 2015-08-28 2015-08-28 Heat pump type water heater Pending JP2017044431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015168442A JP2017044431A (en) 2015-08-28 2015-08-28 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015168442A JP2017044431A (en) 2015-08-28 2015-08-28 Heat pump type water heater

Publications (1)

Publication Number Publication Date
JP2017044431A true JP2017044431A (en) 2017-03-02

Family

ID=58209586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168442A Pending JP2017044431A (en) 2015-08-28 2015-08-28 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP2017044431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164240A1 (en) 2017-03-08 2018-09-13 大日本住友製薬株式会社 Method for producing retinal pigment epithelial cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122996A1 (en) * 2006-04-21 2007-11-01 Panasonic Corporation Heat transmission fin and fin-tube heat exchanger
JP2010085029A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Air conditioner
JP2014224637A (en) * 2013-05-16 2014-12-04 日立アプライアンス株式会社 CO2 heat pump water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122996A1 (en) * 2006-04-21 2007-11-01 Panasonic Corporation Heat transmission fin and fin-tube heat exchanger
JP2010085029A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Air conditioner
JP2014224637A (en) * 2013-05-16 2014-12-04 日立アプライアンス株式会社 CO2 heat pump water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164240A1 (en) 2017-03-08 2018-09-13 大日本住友製薬株式会社 Method for producing retinal pigment epithelial cells

Similar Documents

Publication Publication Date Title
Baek et al. Performance characteristics of a two-stage CO2 heat pump water heater adopting a sub-cooler vapor injection cycle at various operating conditions
US9970693B2 (en) Refrigeration cycle apparatus
EP2952832A1 (en) Heat pump system with integrated economizer
JP2012193908A (en) Dual refrigerating cycle device
US10101091B2 (en) Heat exchanger and refrigeration cycle apparatus using the same heat exchanger
WO2014185525A1 (en) Energy conversion system
JP2005214550A (en) Air conditioner
US10508835B2 (en) Refrigeration cycle apparatus
JP2011247482A (en) Refrigeration device and cooling and heating device
JP2017044431A (en) Heat pump type water heater
KR20150066953A (en) A heat pump system
JP2013134024A (en) Refrigeration cycle device
JP6302761B2 (en) Heat exchanger and heat pump heating device
JP2012057849A (en) Heat transfer tube, heat exchanger, and refrigerating cycle device
WO2017149642A1 (en) Refrigeration cycle device
JP2012073008A (en) Refrigeration cycle device
JP2016095039A (en) Refrigeration cycle device
EP3929503A3 (en) Heat exchanger with refrigerant storage volume
EP3128260A1 (en) Refrigeration device
JP2013002657A (en) Supercooler and its heat conduction acceleration member, and method of manufacturing heat conduction acceleration member
US9970691B2 (en) Equipment including a heat pump for heating an external fluid with a large temperature differential
JP6888616B2 (en) Heat exchanger, refrigeration system and heat exchange method
KR20170000028U (en) cascade heat pump with improvement on heat exchange efficiency
Dang et al. An Experimental On Heat Transfer Characteristics Of The Cascade Heat Exchanger In Refrigeration System Using R32/CO2
KR20180054664A (en) An air conditioner having a liquid-to-air heat exchanger

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190528