JP2017043817A - METHOD FOR PRODUCING Ti-CONTAINING MARAGING STEEL AND METHOD FOR PRODUCING THE PREFORM THEREOF - Google Patents

METHOD FOR PRODUCING Ti-CONTAINING MARAGING STEEL AND METHOD FOR PRODUCING THE PREFORM THEREOF Download PDF

Info

Publication number
JP2017043817A
JP2017043817A JP2015169021A JP2015169021A JP2017043817A JP 2017043817 A JP2017043817 A JP 2017043817A JP 2015169021 A JP2015169021 A JP 2015169021A JP 2015169021 A JP2015169021 A JP 2015169021A JP 2017043817 A JP2017043817 A JP 2017043817A
Authority
JP
Japan
Prior art keywords
vacuum
producing
steel
maraging steel
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015169021A
Other languages
Japanese (ja)
Other versions
JP6544638B2 (en
Inventor
大貴 藤好
Daiki Fujiyoshi
大貴 藤好
匡哉 小川
Masaya Ogawa
匡哉 小川
浩士 久田
Hiroshi Hisada
浩士 久田
松本 和也
Kazuya Matsumoto
和也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58210146&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017043817(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2015169021A priority Critical patent/JP6544638B2/en
Publication of JP2017043817A publication Critical patent/JP2017043817A/en
Application granted granted Critical
Publication of JP6544638B2 publication Critical patent/JP6544638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a Ti-containing maraging steel capable of attaining high fatigue strength by reducing the grain size of Tin, and a method for producing the preform of a Ti-containing maraging steel.SOLUTION: There is provided a method for producing a maraging steel at least containing Ti by a vacuum remelting method with a consumable electrode. While evacuating the inside of a vacuum melting furnace in which a leak up rate is regulated, as precipitation nuclei, oxide and/or nitride is precipitated, the precipitation nuclei are surrounded upon solidification, a consumable electrode is formed from the primary ingot in which TiN is precipitated, in a vacuum arc melting furnace in which a high vacuum is retained than that of the vacuum remelting furnace, and Nis exhausted, the consumable electrode is energized to obtain the secondary ingot, and, in a method for producing a preform, in a vacuum melting furnace, C is added to a molten steel, oxygen is subjected to vacuum carbon deoxidation, and, by the generated CO, Nis exhausted adjointly thereto, and then it is solidified.SELECTED DRAWING: None

Description

本発明は、Tiを含有するマルエージング鋼の製造方法及びTi含有マルエージング鋼のプリフォームの製造方法に関し、特に、析出するTiNの粒径を抑制することの可能なTi含有マルエージング鋼の製造方法及びそのプリフォームの製造方法に関する。   The present invention relates to a method for producing a maraging steel containing Ti and a method for producing a preform of Ti-containing maraging steel, and in particular, production of Ti-containing maraging steel capable of suppressing the grain size of precipitated TiN. The present invention relates to a method and a method for manufacturing the preform.

炭素量の少ないマルエージング鋼においては、Ni、Mo、Co、Tiなどの金属元素を添加し、マルテンサイト組織を与えた上で時効して2000MPa程度の非常に高い引張強度を得ている。このような高強度のマルエージング鋼は、航空・宇宙分野の構造材をはじめ、自動車の無段変速機用部品、高圧容器、工具材料及び金型などに広く利用されている。   In a maraging steel with a small amount of carbon, a metal element such as Ni, Mo, Co, or Ti is added to give a martensite structure and aged to obtain a very high tensile strength of about 2000 MPa. Such high-strength maraging steel is widely used in structural materials in the aerospace field, as well as parts for continuously variable transmissions of automobiles, high-pressure containers, tool materials, molds, and the like.

一方、マルエージング鋼の製造過程において、粗大な非金属介在物は疲労破壊の起点となり得るため、このような介在物を低減し得る消耗電極を用いた真空再溶解法が多く採用されている。特に、Tiを含有するマルエージング鋼では、角張った形状のTiN結晶粒が形成、成長されやすく、より疲労強度の低下に敏感であり、真空再溶解法におけるTiNの微細化方法が検討されている。   On the other hand, in the process of manufacturing maraging steel, coarse non-metallic inclusions can become the starting point of fatigue failure, and therefore, a vacuum remelting method using a consumable electrode that can reduce such inclusions is often employed. In particular, in maraging steel containing Ti, TiN crystal grains having an angular shape are easily formed and grown, are more sensitive to lowering fatigue strength, and a method of refining TiN in the vacuum remelting method has been studied. .

例えば、特許文献1では、真空再溶解法によるTi含有マルエージング鋼の製造方法において、消耗電極にMgを5〜250ppm含有させることを開示している。一次溶解において、溶鋼中に凝集性の弱いMgOを多数分散形成させて、これらが生成核となって窒化物や炭窒化物が微細化されて析出する。このようにして得られた消耗電極の二次溶解では、MgOを核とする窒化物や炭窒化物の熱分解が促進され、結果として得られるマルエージング鋼中のTiNの微細化がなされるとしている。   For example, Patent Document 1 discloses that a consumable electrode contains 5 to 250 ppm of Mg in a method for producing a Ti-containing maraging steel by a vacuum remelting method. In the primary melting, a large number of weakly cohesive MgO is dispersedly formed in the molten steel, and these become the formation nuclei, and nitrides and carbonitrides are refined and deposited. In the secondary melting of the consumable electrode thus obtained, the thermal decomposition of nitrides and carbonitrides with MgO as the nucleus is promoted, and as a result, TiN in the maraging steel obtained is refined. Yes.

また、非特許文献1でも、消耗電極にMgを含有させる真空再溶解法によるTi含有マルエージング鋼の製造方法を開示するが、ここでは、MgOを生成核とした窒化物がMgOとの間で複合体を形成し、消耗電極の二次溶解でMgOが蒸発するに伴って複合体の一部を構成するMgOが解離し、これによって窒化物をより細かく分解し溶融させやすくし、TiNの微細化ができる。   Non-Patent Document 1 also discloses a method for producing a Ti-containing maraging steel by vacuum remelting in which Mg is contained in a consumable electrode. Here, a nitride having MgO as a production nucleus is between MgO and As MgO evaporates due to secondary dissolution of the consumable electrode, MgO constituting a part of the complex is dissociated, thereby making it easier to decompose and melt the nitride more finely. Can be made.

更に、特許文献2では、同様のマルエージング鋼の製造方法において、微量のZrを消耗電極に含有させることを開示している。詳細には、質量%で、C:≦0.015%、Ni:12.0〜20.0%、Mo:3.0〜6.0%、Co:5.0〜13.0%、Al:0.01〜0.3%、Ti:0.2〜2.0%、O:≦0.0020%、N:≦0.0020%を含んだ上で、Zr:0.001〜0.02%を含有する鋼の一次溶解において、溶鋼中のZrが微細なZr酸化物となって分散し、これを生成核としたTiNが微細化される。また、添加したZrはTiよりも優先してNと結びつくことで、TiNの生成を抑制する。結果として、二次溶解後のTiNの粒径を小さくできるのである。   Furthermore, Patent Document 2 discloses that a trace amount of Zr is contained in a consumable electrode in a similar maraging steel manufacturing method. Specifically, in mass%, C: ≦ 0.015%, Ni: 12.0-20.0%, Mo: 3.0-6.0%, Co: 5.0-13.0%, Al : 0.01-0.3%, Ti: 0.2-2.0%, O: ≦ 0.0020%, N: ≦ 0.0020%, Zr: 0.001-0. In the primary melting of the steel containing 02%, Zr in the molten steel is dispersed as fine Zr oxide, and TiN using this as a production nucleus is refined. In addition, the added Zr preferentially binds to N over Ti, thereby suppressing the formation of TiN. As a result, the particle size of TiN after secondary dissolution can be reduced.

特許第3682881号公報Japanese Patent No. 3682881 特開2015−61932号公報Japanese Patent Laying-Open No. 2015-61932

岸上一郎、他2名、「無段変速機(CVT)用金属ベルト用マルエージング鋼のTiN微細化」、日立金属技報、日立金属株式会社、2012年3月、Vol.28、P.46−49Ichiro Kishigami and two others, “TiN refinement of maraging steel for metal belts for continuously variable transmissions (CVT)”, Hitachi Metals, Hitachi Metals, Ltd., March 2012, Vol. 28, P.I. 46-49

ところで、自動車用の無段変速機のCVTベルトに使用されるベルト状のリング材では、CVTベルトの回転に伴って曲げ伸ばしが繰り返されるため、高い疲労強度が求められる。また、近年の自動車部品の小型化に伴って、より高い疲労強度が要求される傾向にある。そこで、このような部材に使用されるTi含有マルエージング鋼において、疲労強度に影響を与えるTiNの粒径をより小さくする製造方法が求められた。   By the way, since the belt-shaped ring material used for the CVT belt of the continuously variable transmission for automobiles is repeatedly bent and stretched as the CVT belt rotates, high fatigue strength is required. Further, with the recent miniaturization of automobile parts, higher fatigue strength tends to be required. In view of this, a Ti-containing maraging steel used for such a member has been required to have a manufacturing method that further reduces the particle size of TiN that affects fatigue strength.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、TiNの粒径を小さくして高い疲労強度を達成し得るTi含有マルエージング鋼の製造方法及びTi含有マルエージング鋼のプリフォームの製造方法を提供することにある。   The present invention has been made in view of the situation as described above, and its object is to produce a Ti-containing maraging steel that can achieve high fatigue strength by reducing the grain size of TiN and It is providing the manufacturing method of the preform of Ti containing maraging steel.

本発明者らは、Ti含有マルエージング鋼の真空再溶解法による製造過程において、例えば、消耗電極に微量のZrを添加しても、得られるTi含有マルエージング鋼中のTiNの粒径にばらつきがあることを見いだした。そこで、TiNの粒径をより小さくする製造条件を検討し、一次溶解で得られる消耗電極に含まれるTiNの大きさをその後の該消耗電極を用いた二次溶解において溶融させ得る程度に小さくすること、二次溶解においてTiNを再析出させてもこれを大きく成長させないこと、そのためにN量を制御することを検討した。特に、溶鋼中のN量を減じることでTiNが晶出を開始する温度を低下させることができ、TiNの生成量を減じるだけでなく、TiNの晶出の開始から凝固までの時間を短くして成長を抑制できるのである。   In the production process of the Ti-containing maraging steel by the vacuum remelting method, for example, even if a very small amount of Zr is added to the consumable electrode, the present inventors have variations in the particle size of TiN in the resulting Ti-containing maraging steel. Found that there is. Therefore, the manufacturing conditions for making the particle size of TiN smaller are studied, and the size of TiN contained in the consumable electrode obtained by the primary melting is made small enough to be melted in the subsequent secondary melting using the consumable electrode. In addition, even when TiN was reprecipitated in the secondary dissolution, it was considered that it would not grow greatly, and that the N content was controlled accordingly. In particular, by reducing the amount of N in the molten steel, the temperature at which TiN begins to crystallize can be lowered, not only reducing the amount of TiN produced, but also shortening the time from the start of TiN crystallization to solidification. Growth can be suppressed.

そこで、本発明によるTi含有マルエージング鋼の製造方法は、消耗電極による真空再溶解法によって少なくともTiを含むマルエージング鋼を製造する方法であって、リークアップレートを調整した真空溶解炉の内部を真空引きしつつ析出核として溶鋼中に酸化物及び/又は窒化物を析出させ凝固時に前記析出核を包囲してTiNを析出させた一次鋼塊から前記消耗電極を形成し、前記真空溶解炉よりも高い真空度に維持してNを排出させた真空アーク溶解炉内において前記消耗電極に通電し二次鋼塊を得ることを特徴とする。 Therefore, the Ti-containing maraging steel manufacturing method according to the present invention is a method of manufacturing maraging steel containing at least Ti by a vacuum remelting method using a consumable electrode, and the inside of the vacuum melting furnace with the adjusted leak-up rate. From the vacuum melting furnace, the consumable electrode is formed from a primary steel ingot that precipitates oxide and / or nitride as precipitation nuclei in the molten steel while vacuuming and surrounds the precipitation nuclei during solidification to precipitate TiN. In the vacuum arc melting furnace in which N 2 is discharged while maintaining a high degree of vacuum, the consumable electrode is energized to obtain a secondary steel ingot.

かかる発明によれば、一次溶解において、析出核として酸化物及び/又は窒化物を溶鋼中に析出させこれを析出核にTiNを分散析出させ、一次鋼塊中での粒径を小さくできる。また、二次溶解において、粒径の小さいTiNは溶融し易く、一次溶解よりもN量をより減じた環境下で二次溶解することで、TiNの生成量を減じ且つこれを成長させ得る時間を短くできる。その結果、マルエージング鋼中のTiNの粒径を小さくして高い疲労強度を達成し得るのである。   According to this invention, in primary melting, oxides and / or nitrides are precipitated in molten steel as precipitation nuclei, and TiN is dispersed and precipitated in the precipitation nuclei, whereby the particle size in the primary steel ingot can be reduced. Further, in secondary melting, TiN having a small particle size is easy to melt, and time for reducing the amount of TiN generated and allowing it to grow by secondary melting in an environment where the amount of N is reduced more than primary melting. Can be shortened. As a result, high fatigue strength can be achieved by reducing the grain size of TiN in the maraging steel.

上記した発明において、Mg及び/又はZrを添加して前記酸化物及び/又は窒化物を与えることを特徴としてもよい。かかる発明によれば、溶鋼中に析出核としてMgOやZrOなどを分散して析出させ得て、結果としてマルエージング鋼中のTiNの粒径を小さくして高い疲労強度を達成し得る。 In the above-described invention, Mg and / or Zr may be added to give the oxide and / or nitride. According to this invention, MgO, ZrO 2 or the like can be dispersed and precipitated as precipitation nuclei in the molten steel, and as a result, the particle size of TiN in the maraging steel can be reduced to achieve high fatigue strength.

上記した発明において、前記真空溶解炉において前記溶鋼中にCを添加して酸素を真空炭素脱酸し生成するCOによってNを随伴排出させることを特徴としてもよい。かかる発明によれば、一次溶解において溶鋼中にC及び酸素を含ませることによって溶鋼中のN量を減じるように調整することができ、結果としてマルエージング鋼中のTiNの粒径を小さくして高い疲労強度を達成し得る。 In the above-described invention, C 2 may be added to the molten steel in the vacuum melting furnace, and oxygen may be vacuum-deoxygenated to cause N 2 to be accompanied and discharged. According to this invention, it is possible to adjust the amount of N in the molten steel by reducing the amount of N in the molten steel by including C and oxygen in the molten steel in the primary melting. As a result, the particle size of TiN in the maraging steel is reduced. High fatigue strength can be achieved.

上記した発明において、誘導攪拌しNの随伴排出を促進させることを特徴としてもよい。かかる発明によれば、一次溶解において溶鋼中のN量を減じるように調整することができ、結果としてマルエージング鋼中のTiNの粒径を小さくして高い疲労強度を達成し得る。 In the above-described invention, induction stirring may be performed to promote accompanying discharge of N 2 . According to this invention, it can adjust so that the amount of N in molten steel may be reduced in primary melting, As a result, the particle size of TiN in maraging steel can be made small and high fatigue strength can be achieved.

上記した発明において、前記真空溶解炉のるつぼは出鋼後に減圧雰囲気及び/又は窒素ガスを除く不活性ガス雰囲気で温度を降下させることを特徴としてもよい。かかる発明によれば、るつぼの付着物中のN量を減じて一次溶解における溶鋼中のN量の調整を確実にして、結果としてマルエージング鋼中のTiNの粒径を小さくして高い疲労強度を達成し得る。   In the above-described invention, the crucible of the vacuum melting furnace may be characterized in that the temperature is lowered in a reduced-pressure atmosphere and / or an inert gas atmosphere excluding nitrogen gas after steeling. According to this invention, the amount of N in the crucible deposit is reduced to ensure the adjustment of the amount of N in the molten steel in the primary melting, and as a result, the particle size of TiN in the maraging steel is reduced, resulting in high fatigue strength. Can be achieved.

また、本発明によるTi含有マルエージング鋼用プリフォームの製造方法は、少なくともTiを含むマルエージング鋼用プリフォームの製造方法であって、真空溶解炉において溶鋼中にCを添加して酸素を真空炭素脱酸し生成するCOによってNを随伴排出させてから凝固させることを特徴とする。 Further, the method for producing a Ti-containing maraging steel preform according to the present invention is a method for producing a preform for maraging steel containing at least Ti, and in a vacuum melting furnace, C is added to the molten steel and oxygen is vacuumed. It is characterized by coagulating after N 2 is exhausted with CO generated by carbon deoxidation.

かかる発明によれば、例えば、真空再溶解法における消耗電極のようなプリフォームとして、溶鋼中にC及びOを与えることで溶鋼中のN量を減じ得て、これを用いて得られるTi含有マルエージング鋼中のTiNの粒径を小さくして高い疲労強度を与え得るのである。   According to such an invention, for example, as a preform such as a consumable electrode in the vacuum remelting method, the amount of N in the molten steel can be reduced by adding C and O to the molten steel, and Ti content obtained by using this can be reduced. High fatigue strength can be provided by reducing the grain size of TiN in the maraging steel.

上記した発明において、誘導攪拌しNの随伴排出を促進させることを特徴としてもよい。かかる発明によれば、溶鋼中のN量を減じるように調整することができる。 In the above-described invention, induction stirring may be performed to promote accompanying discharge of N 2 . According to this invention, it can adjust so that the amount of N in molten steel may be reduced.

本発明による製造方法のフロー図である。It is a flowchart of the manufacturing method by this invention. 本発明の製造方法における対象合金の成分組成を示す図である。It is a figure which shows the component composition of the object alloy in the manufacturing method of this invention. Nの含有量とTiNの晶出温度の関係を示す図である。It is a figure which shows the relationship between content of N, and the crystallization temperature of TiN. 実施例及び比較例の製造条件等を示す図である。It is a figure which shows the manufacturing conditions of an Example and a comparative example.

まず、本発明による1つの実施例であるTi含有マルエージング鋼の製造方法について、図1に沿って図2を参照しつつ詳細に説明する。   First, the manufacturing method of Ti containing maraging steel which is one Example by this invention is demonstrated in detail, referring FIG. 2 along FIG.

まず所定の成分組成を有する合金の一次溶解を行う(S1)。ここでは、図2の目標値範囲内にある成分組成のTi含有マルエージング鋼を対象とする。   First, primary melting of an alloy having a predetermined component composition is performed (S1). Here, a Ti-containing maraging steel having a component composition within the target value range of FIG. 2 is targeted.

本実施例による製造方法において得ようとするTi含有マルエージング鋼は、質量%で、C:≦0.015%、Ni:12.0〜20.0%、Mo:3.0〜6.0%、Co:5.0〜13.0%、Al:0.01〜0.3%、Ti:0.2〜2.0%、O:≦0.0020%、及び、N:≦0.0020%、を含み、残部Fe及び不可避的不純物からなる。また、任意添加元素としてB:0.0010〜0.010%、Mg:≦0.003%、Ca:≦0.003%、のいずれか1つ以上を含み得る。なお、不可避的不純物として、Zr:0.001〜0.02%が含有される。Zrについては、後述するようにTiNの析出核としてZrOを一次溶解の溶鋼中に生成させるために添加しているが、Ti含有マルエージング鋼としては不可避に含有される不純物である。 The Ti-containing maraging steel to be obtained in the production method according to this example is in mass%, C: ≦ 0.015%, Ni: 12.0 to 20.0%, Mo: 3.0 to 6.0. %, Co: 5.0-13.0%, Al: 0.01-0.3%, Ti: 0.2-2.0%, O: ≦ 0.0020%, and N: ≦ 0.0. 0020%, with the balance being Fe and inevitable impurities. Moreover, any one or more of B: 0.0010-0.010%, Mg: <= 0.003%, Ca: <= 0.003% may be included as arbitrary addition elements. In addition, Zr: 0.001-0.02% is contained as an unavoidable impurity. Zr is added to form ZrO 2 in the primary molten molten steel as TiN precipitation nuclei, as will be described later, but it is an unavoidable impurity for Ti-containing maraging steel.

一次溶解に用いる真空溶解炉は、例えば誘導加熱により溶解を行う真空誘導炉(VIF)である。真空溶解炉は、必要に応じて例えばグリスアップなどして、予めリークアップレート(圧力上昇率)を調整し、一次溶解中、特に後述する精錬中に大気から炉内にリークする酸素及び窒素の量を調整しておく。リークアップレートは、例えば、0.05torr/min以下(目標値)とする。なお、リークアップレートは、真空ラインから真空引きして真空度を平衡状態にした上で、真空ラインのバルブを閉じてから2〜5分経過するまでのリーク量(真空度変化量)を真空計にて測定し、1分あたりのリーク量に換算して得ることができる。   The vacuum melting furnace used for primary melting is, for example, a vacuum induction furnace (VIF) that performs melting by induction heating. The vacuum melting furnace adjusts the leak-up rate (pressure increase rate) in advance by, for example, grease-up as necessary, so that oxygen and nitrogen leaking from the atmosphere into the furnace during primary melting, particularly during refining described later. Adjust the amount. The leak up rate is, for example, 0.05 torr / min or less (target value). In addition, the leak up rate is evacuated from the vacuum line to bring the degree of vacuum to an equilibrium state, and then the amount of leak (vacuum change amount) from when the vacuum line valve is closed until 2 to 5 minutes have passed It can be obtained by measuring with a meter and converting to a leak amount per minute.

一次溶解(S1)において、所定の成分組成の合金の溶解(S1−1)を行う。溶解に用いる材料(原料)には、同鋼種の製造において端材として製品に使用されなかったいわゆるリターン材を用いることもできる。なお、Zr、Al、Tiなど、一部の組成成分の添加は後述する精錬中の追装によって行ってもよい。ここで、後述する真空炭素脱酸において十分な量のCOガスを排出できるよう、あえて酸素量を多くするようなリターン材を用いるとともに、これに併せて溶鋼中にCを添加させるべく、炭素も材料に用いることが好ましい。例えば、二次溶解及び時効処理後の製品の含有酸素量として20ppm以下とすべきところ、精錬前、すなわち、原料全体に含まれる酸素量としては、50〜500ppmとすることができ、好ましくは200〜300ppmである。後述する実施例においては、原料全体に含まれる酸素量を260ppmとした。   In the primary melting (S1), melting of an alloy having a predetermined component composition (S1-1) is performed. As a material (raw material) used for melting, a so-called return material that has not been used for a product as an end material in the production of the same steel type can be used. In addition, you may perform addition of one part composition component, such as Zr, Al, Ti, by the additional equipment in the refining mentioned later. Here, in order to discharge a sufficient amount of CO gas in the vacuum carbon deoxidation described later, a return material that increases the amount of oxygen is used, and in addition to this, carbon is added to add C to the molten steel. It is preferable to use it as a material. For example, the oxygen content of the product after the secondary dissolution and aging treatment should be 20 ppm or less, but before refining, that is, the oxygen content contained in the entire raw material can be 50 to 500 ppm, preferably 200 ~ 300 ppm. In the examples described later, the amount of oxygen contained in the entire raw material was 260 ppm.

また、溶解に先立って、真空溶解炉内部の到達真空度を制御し、溶解中において炉内のNガスを排気して、溶鋼中のN量を低減させる。例えば、溶解前の到達真空度は0.05torr以下(目標値)とする。 Prior to melting, the ultimate vacuum inside the vacuum melting furnace is controlled, and N 2 gas in the furnace is exhausted during melting to reduce the amount of N in the molten steel. For example, the ultimate vacuum before melting is 0.05 torr or less (target value).

さらに精錬を行う(S1−2)。精錬においては、特に、上記したように原料に多く含有される酸素を真空炭素脱酸(VCD)によって溶鋼中からCOガスとして排出させる。これにより溶鋼中の酸素及び炭素の量を調整するが、特に、COガスに随伴させてNガスを排出させ、溶鋼中のN量を低減させるのである。すなわち、より多くのCOガスを排出させることでN量をより低減できる。 Further refining is performed (S1-2). In refining, in particular, as described above, oxygen contained in a large amount of raw material is discharged from molten steel as CO gas by vacuum carbon deoxidation (VCD). This adjusts the amounts of oxygen and carbon in the molten steel. In particular, the N 2 gas is discharged in association with the CO gas to reduce the amount of N in the molten steel. That is, the amount of N can be further reduced by discharging more CO gas.

また、真空炭素脱酸に伴い、攪拌を行って、溶鋼中のNの随伴排出を促進させることが好ましい。攪拌は、例えば三相電磁誘導攪拌による。詳細には、るつぼの周囲の下段、中段、上段のそれぞれに三相に分けてコイルを配置し、下段、中段、上段の順に磁界を形成させてこれを低周波で繰り返し、るつぼ内の溶鋼を外周に沿って下から上へ移動させるように攪拌させるのである。攪拌は長く行うことでN量をより低減でき、所定のN量以下となるまで継続させる。真空溶解炉の規模や溶鋼の量、真空度などにもよるが、例えば90分以上の攪拌が好ましい。   Further, it is preferable to promote the accompanying discharge of N in the molten steel by performing stirring with vacuum carbon deoxidation. Stirring is, for example, by three-phase electromagnetic induction stirring. Specifically, coils are arranged in three phases on the lower, middle, and upper stages around the crucible, and a magnetic field is formed in the order of the lower, middle, and upper stages, and this is repeated at a low frequency, and the molten steel in the crucible is It is agitated so as to move from the bottom to the top along the outer periphery. Stirring can be continued for a long time until the amount of N can be reduced and reduced to a predetermined amount of N or less. Depending on the scale of the vacuum melting furnace, the amount of molten steel, the degree of vacuum, etc., for example, stirring for 90 minutes or more is preferable.

また、精錬においては、上記したようにZr、Al、Tiなどを追装するが、N量を増加させないことが好ましく、例えば、TiについてはN量の低いスポンジTiを用いることが好ましい。また、後述する鋳造においてTiNを析出させる析出核となる酸化物及び/又は窒化物を生成させるための元素を必要に応じて添加する。ここでは、Zrであるが、例えばリターン材に予め含有されていて添加を必要としない場合もある。Zrの含有により、溶鋼中にZrOを析出核として析出させることができる。また、例えば、Mgの添加によってMgOを析出核として析出させてもよい。なお、ZrOやMgOであれば、凝集性は低く溶鋼中に細かく分散する。なお、精錬においては、溶鋼中のN量を低減させるが、具体的には8ppm以下が好ましく、より好ましくは5ppm以下とする。 In refining, Zr, Al, Ti and the like are added as described above, but it is preferable not to increase the amount of N. For example, for Ti, it is preferable to use sponge Ti having a low N amount. In addition, an element for generating oxides and / or nitrides as precipitation nuclei for depositing TiN in casting described later is added as necessary. Here, although it is Zr, for example, it may be contained in advance in the return material and may not require addition. By containing Zr, ZrO 2 can be precipitated as precipitation nuclei in the molten steel. Further, for example, MgO may be precipitated as precipitation nuclei by adding Mg. If ZrO 2 or MgO is used, the cohesiveness is low and finely dispersed in the molten steel. In refining, the amount of N in the molten steel is reduced, but specifically 8 ppm or less is preferable, and more preferably 5 ppm or less.

次いで、鋳造を行う(S1−3)。精錬された溶鋼は、鋳型に鋳込まれて凝固する。かかる凝固に際し、溶鋼中においてTiNは所定の温度から析出(晶出)を開始し、上記した析出核を包囲するように析出して、完全に凝固することによってその成長速度を急激に低下させる。上記したように、例えばZrOは細かく分散するので、これを析出核とするTiNも分散し、その粒子径を小さくする。特に、図3を参照すると、溶鋼中のN量の少ない場合にTiNの析出(晶出)を開始する温度は低く、そのため上記したように精錬においてN量を少なくしておくことで、TiNの析出の開始から凝固までの時間を短くできる。その結果、TiNを成長させ得る時間を短くして、成長を抑制できるのである。TiNの粒子径は、後述する二次溶解の溶鋼中において溶融し得る程度に小さいことが好ましい。 Next, casting is performed (S1-3). The refined molten steel is cast into a mold and solidified. Upon solidification, TiN starts to precipitate (crystallize) from a predetermined temperature in the molten steel, precipitates so as to surround the above-described precipitation nuclei, and solidifies completely, thereby rapidly reducing the growth rate. As described above, for example, ZrO 2 is finely dispersed. Therefore, TiN having this as a precipitation nucleus is also dispersed to reduce the particle diameter. In particular, referring to FIG. 3, when the amount of N in the molten steel is small, the temperature at which TiN starts to precipitate (crystallization) is low. Therefore, by reducing the amount of N in refining as described above, The time from the start of precipitation to solidification can be shortened. As a result, the time during which TiN can be grown can be shortened to suppress the growth. The particle diameter of TiN is preferably small enough to be melted in the molten secondary melt described later.

鋳造によって得た一次鋼塊はガウジングや機械加工などにより切断や皮剥き等を行って電極として必要とされる形状に形成されて消耗電極とされる。なお、消耗電極に溶接を行った場合は、後述する二次溶解においてN量を低減させるため、溶接線上の余材を十分に除去しておくことが好ましい。このようにしてTi含有マルエージング鋼用のプリフォームとして消耗電極を得ることができる。   The primary steel ingot obtained by casting is cut or peeled off by gouging or machining, etc., so that it is formed into a shape required as an electrode and used as a consumable electrode. When welding is performed on the consumable electrode, it is preferable to sufficiently remove the surplus material on the weld line in order to reduce the amount of N in secondary melting described later. Thus, a consumable electrode can be obtained as a preform for Ti-containing maraging steel.

なお、一次溶解に用いたるつぼは、出鋼した後、大気に開放される前に、減圧雰囲気及び/又は窒素ガスを除く不活性ガス雰囲気に保持され、温度を低下させることが好ましい。例えば、出鋼後に炉内にArガスをパージして50torr程度の減圧雰囲気とした上で1時間以上保持して温度を低下させた後にタンクオープンし、るつぼを大気に曝すのである。るつぼを高温のまま大気に曝すと、内側に付着した金属中のN量が多くなるため、これを抑制して、次回の溶解において付着物からのNのピックアップを減じるのである。   The crucible used for the primary melting is preferably kept in a reduced pressure atmosphere and / or an inert gas atmosphere excluding nitrogen gas and reduced in temperature before being released to the atmosphere after steel is produced. For example, the Ar gas is purged into the furnace after steeling to create a reduced-pressure atmosphere of about 50 torr, held for 1 hour or more to lower the temperature, then the tank is opened, and the crucible is exposed to the atmosphere. If the crucible is exposed to the atmosphere at high temperature, the amount of N in the metal adhering to the inside increases, so this is suppressed and the pickup of N from the deposit is reduced in the next melting.

次に、得られた消耗電極の二次溶解を行う(S2)。二次溶解では、真空アーク溶解炉(VAR)を用いて消耗電極を再溶解させて鋼塊を得る。真空アーク溶解炉は、一次溶解で用いた真空溶解炉より高い真空度を得られて、リークアップレートも低い溶解炉である。例えば、リークアップレートは、12×10−3torr/min以下(目標値)とし、溶解前の到達真空度は3.75×10−3torr以下(目標値)とする。これにより、溶鋼中のN量をより低減させる。なお、N量をさらに低減させるよう、鋳型の表面の付着物を除去し、さらに真空系に付着した蒸発物も除去するよう清掃を行っておくことが好ましい。なお、リークアップレートは、真空ラインから真空引きして真空度を平衡状態にした上で、真空ラインのバルブを閉じてから1〜2分経過するまでのリーク量(真空度変化量)を真空計にて測定し、1分あたりのリーク量に換算して得ることができる。 Next, the obtained consumable electrode is secondarily dissolved (S2). In secondary melting, a consumable electrode is remelted using a vacuum arc melting furnace (VAR) to obtain a steel ingot. The vacuum arc melting furnace is a melting furnace that can obtain a higher degree of vacuum than the vacuum melting furnace used in the primary melting and has a low leak-up rate. For example, the leak-up rate is 12 × 10 −3 torr / min or less (target value), and the ultimate vacuum before melting is 3.75 × 10 −3 torr or less (target value). Thereby, the amount of N in the molten steel is further reduced. In order to further reduce the amount of N, it is preferable to perform cleaning so as to remove the deposits on the surface of the mold and further remove the deposits attached to the vacuum system. Note that the leak up rate is that the vacuum level is reduced by evacuating from the vacuum line and bringing the vacuum degree to an equilibrium state, and then the amount of leak (vacuum degree change amount) from when the vacuum line valve is closed until one or two minutes have elapsed. It can be obtained by measuring with a meter and converting to a leak amount per minute.

消耗電極中のTiNの析出物は、上記したようにその粒子径を小さくしており、二次溶解の溶鋼中に溶融し得る。また、溶鋼の凝固に際し、一次溶解と同様にTiNは所定の温度から析出(晶出)を開始する。この際、上記したZrOや完全には溶融せず残存したTiNを析出核として析出し成長する。特に、上記したように(図3参照)、溶鋼中のN量の少ない場合にTiNの析出を開始する温度は低く、TiNを成長させ得る時間を短くできて、成長を抑制できる。これらによって、TiNの粒径を小さくできる。典型的には、TiNの粒径を7μm以下に制御することができる。 The precipitate of TiN in the consumable electrode has a small particle diameter as described above, and can be melted in the molten secondary steel. Further, during solidification of molten steel, TiN starts to precipitate (crystallization) from a predetermined temperature as in the case of primary melting. At this time, the above-described ZrO 2 or TiN that is not completely melted and remains is precipitated and grown as a precipitation nucleus. In particular, as described above (see FIG. 3), when the amount of N in the molten steel is small, the temperature at which TiN starts to precipitate is low, the time during which TiN can be grown can be shortened, and growth can be suppressed. By these, the particle size of TiN can be reduced. Typically, the particle size of TiN can be controlled to 7 μm or less.

以上のようにして得た鋼塊について、適宜、熱間加工や機械加工などの加工(S3)を行い、固溶化熱処理及び時効処理などの熱処理(S4)を行うことでTi含有マルエージング鋼を製造できる。例えば、二次溶解後の鋼塊を鍛造し、熱間圧延を行い、焼鈍した後にさらに冷間圧延を行ってから、900℃での固溶化熱処理、480℃×3hrの時効処理を行って製品とするのである。なお、その他については公知の方法と同様である。   The steel ingot obtained as described above is appropriately subjected to processing (S3) such as hot working or machining, and heat treatment (S4) such as a solution heat treatment and an aging treatment to obtain a Ti-containing maraging steel. Can be manufactured. For example, a steel ingot after secondary melting is forged, hot-rolled, annealed, and then further cold-rolled, followed by a solution heat treatment at 900 ° C. and an aging treatment of 480 ° C. × 3 hr. It is. Others are the same as known methods.

次に、上記した製造方法によって製造したTi含有マルエージング鋼において、TiNの粒径の測定を行ったのでその結果について説明する。   Next, in the Ti containing maraging steel manufactured with the above-mentioned manufacturing method, the particle size of TiN was measured, and the result will be described.

図2を再び参照すると、上記した製造方法によって、各実施例及び比較例に示す成分組成(一次溶解の精錬後のレードル値)の合金によってTi含有マルエージング鋼の製造を行った。製造に用いた真空溶解炉(一次溶解)及び真空アーク溶解炉(二次溶解)のそれぞれのリークアップレート(LUR)を各実施例及び比較例の製造前に測定し、図4に示した。また、各実施例及び比較例のそれぞれの炉の溶解前の真空到達度も測定して記録し、同様に図4に示した。なお、図2を再度併せて参照すると、実施例2及び3は一次溶解において同一チャージである。つまり、図4に示すように、一次溶解の成分組成のレードル値、LUR、到達真空度は同一であり、二次溶解のLUR、到達真空度が異なっている。実施例4及び5においても同様である。   Referring again to FIG. 2, Ti-containing maraging steel was manufactured by the above-described manufacturing method using an alloy having a component composition (a ladle value after refining of primary melting) shown in each example and comparative example. The respective leak-up rates (LUR) of the vacuum melting furnace (primary melting) and the vacuum arc melting furnace (secondary melting) used for the production were measured before the production of the respective examples and comparative examples, and are shown in FIG. Further, the degree of vacuum before melting in each of the examples and comparative examples was also measured and recorded, and similarly shown in FIG. Referring back to FIG. 2 again, Examples 2 and 3 have the same charge in the primary dissolution. That is, as shown in FIG. 4, the ladle value, LUR, and ultimate vacuum of the primary melting component composition are the same, and the secondary melting LUR and ultimate vacuum are different. The same applies to Examples 4 and 5.

図4に示すように、各実施例及び比較例の一次溶解において、LUR及び真空到達度は上記した目標値を満たしている。また、実施例1〜7は二次溶解において、LUR及び真空到達度の目標値を満たし、結果としてTiNの粒径を目標値である7.0μm以下とできた。しかし、比較例1及び2においては、二次溶解のLURが目標値より高く、その結果、TiNの粒径が目標値である7.0μmを越えてしまった。二次溶解において、N量を十分低減できず、TiNの成長を抑制できなかったと考えられる。   As shown in FIG. 4, in the primary melting of each of the examples and comparative examples, the LUR and the degree of vacuum reach the target values described above. Further, in Examples 1 to 7, in the secondary melting, the target values of LUR and vacuum reachability were satisfied, and as a result, the particle size of TiN could be set to the target value of 7.0 μm or less. However, in Comparative Examples 1 and 2, the LUR for secondary dissolution was higher than the target value, and as a result, the particle size of TiN exceeded the target value of 7.0 μm. In secondary melting, it is considered that the amount of N could not be sufficiently reduced and the growth of TiN could not be suppressed.

すなわち、上記したように、酸素量及び窒素量を調整するようリークアップレート及び到達真空度を制御して一次溶解を行うことで、TiNの析出核となる酸化物及び/又は窒化物を析出させて、これを包囲するようTiNを析出させ得て、二次溶解において溶融し得る程度の小さいTiNを生成できる。また、より低いリークアップレート及びより高い真空度に制御して二次溶解を行うことで、溶鋼中のN量を低減できて、TiNの粒径を小さくできる。特に、一次溶解、二次溶解のいずれにおいても、N量を低減することで、TiNの析出を開始する温度を低下させ得て、TiNの成長を抑制してTiNの粒径をより小さくできる。   That is, as described above, by performing primary dissolution by controlling the leak-up rate and the ultimate vacuum so as to adjust the amount of oxygen and nitrogen, oxides and / or nitrides that form TiN precipitation nuclei are precipitated. Thus, TiN can be precipitated so as to surround it, and TiN that can be melted in the secondary melting can be generated. Further, by performing secondary melting while controlling at a lower leak-up rate and a higher degree of vacuum, the amount of N in the molten steel can be reduced, and the particle size of TiN can be reduced. In particular, in both the primary dissolution and the secondary dissolution, by reducing the amount of N, the temperature at which TiN precipitation starts can be lowered, and the TiN growth can be suppressed and the particle size of TiN can be made smaller.

ここまで本発明による代表的実施例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるであろう。   The exemplary embodiments according to the present invention have been described so far, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments without departing from the scope of the appended claims.

Claims (7)

消耗電極による真空再溶解法によって少なくともTiを含むマルエージング鋼を製造する方法であって、
リークアップレートを調整した真空溶解炉の内部を真空引きしつつ析出核として溶鋼中に酸化物及び/又は窒化物を析出させ凝固時に前記析出核を包囲してTiNを析出させた一次鋼塊から前記消耗電極を形成し、前記真空溶解炉よりも高い真空度に維持してNを排出させた真空アーク溶解炉内において前記消耗電極に通電し二次鋼塊を得ることを特徴とするTi含有マルエージング鋼の製造方法。
A method of producing maraging steel containing at least Ti by a vacuum remelting method using a consumable electrode,
From the primary steel ingot in which the inside of the vacuum melting furnace with the adjusted leak-up rate is evacuated while depositing oxide and / or nitride in the molten steel as precipitation nuclei and surrounding the precipitation nuclei during solidification to precipitate TiN The consumable electrode is formed, and the consumable electrode is energized to obtain a secondary steel ingot in a vacuum arc melting furnace in which N 2 is discharged while maintaining a higher degree of vacuum than the vacuum melting furnace. Method for producing contained maraging steel.
Mg及び/又はZrを添加して前記酸化物及び/又は窒化物を与えることを特徴とする請求項1記載のTi含有マルエージング鋼の製造方法。   The method for producing a Ti-containing maraging steel according to claim 1, wherein Mg and / or Zr is added to give the oxide and / or nitride. 前記真空溶解炉において前記溶鋼中にCを添加して酸素を真空炭素脱酸し生成するCOによってNを随伴排出させることを特徴とする請求項1又は2に記載のTi含有マルエージング鋼の製造方法。 3. The Ti-containing maraging steel according to claim 1, wherein C 2 is added to the molten steel in the vacuum melting furnace and oxygen is vacuum carbon deoxidized to cause N 2 to be accompanied and discharged by CO. Production method. 誘導攪拌しNの随伴排出を促進させることを特徴とする請求項3記載のTi含有マルエージング鋼の製造方法。 Method for producing a Ti-containing maraging steel according to claim 3, characterized in that to promote the associated discharge induction stirring N 2. 前記真空溶解炉のるつぼは出鋼後に減圧雰囲気及び/又は窒素ガスを除く不活性ガス雰囲気で温度を降下させることを特徴とする請求項1乃至4のうちの1つに記載のTi含有マルエージング鋼の製造方法。   The Ti-containing maraging according to any one of claims 1 to 4, wherein the temperature of the crucible of the vacuum melting furnace is lowered in a reduced pressure atmosphere and / or an inert gas atmosphere excluding nitrogen gas after steeling. Steel manufacturing method. 少なくともTiを含むマルエージング鋼用プリフォームの製造方法であって、
真空溶解炉において溶鋼中にCを添加して酸素を真空炭素脱酸し生成するCOによってNを随伴排出させてから凝固させることを特徴とするTi含有マルエージング鋼用プリフォームの製造方法。
A method for producing a preform for maraging steel containing at least Ti,
A method for producing a preform for Ti-containing maraging steel, characterized in that C is added to molten steel in a vacuum melting furnace and oxygen is vacuum carbon deoxidized to cause N 2 to be discharged together with CO, followed by solidification.
誘導攪拌しNの随伴排出を促進させることを特徴とする請求項6記載のTi含有マルエージング鋼用プリフォームの製造方法。 The method for producing a Ti-containing maraging steel preform according to claim 6, wherein the accompanying agitation is performed to promote accompanying discharge of N 2 .
JP2015169021A 2015-08-28 2015-08-28 Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof Active JP6544638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015169021A JP6544638B2 (en) 2015-08-28 2015-08-28 Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015169021A JP6544638B2 (en) 2015-08-28 2015-08-28 Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof

Publications (2)

Publication Number Publication Date
JP2017043817A true JP2017043817A (en) 2017-03-02
JP6544638B2 JP6544638B2 (en) 2019-07-17

Family

ID=58210146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015169021A Active JP6544638B2 (en) 2015-08-28 2015-08-28 Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof

Country Status (1)

Country Link
JP (1) JP6544638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447377B2 (en) 2020-03-24 2024-03-12 株式会社プロテリアル Manufacturing method of Ti-free maraging steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035798A1 (en) * 2003-10-08 2005-04-21 Hitachi Metals, Ltd. Method for producing steel ingot
JP2006200026A (en) * 2005-01-24 2006-08-03 Hitachi Metals Ltd Method for producing maraging steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035798A1 (en) * 2003-10-08 2005-04-21 Hitachi Metals, Ltd. Method for producing steel ingot
JP2006200026A (en) * 2005-01-24 2006-08-03 Hitachi Metals Ltd Method for producing maraging steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447377B2 (en) 2020-03-24 2024-03-12 株式会社プロテリアル Manufacturing method of Ti-free maraging steel

Also Published As

Publication number Publication date
JP6544638B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
CN110408803B (en) Purification smelting method for nickel-based high-temperature alloy master alloy
US11124861B2 (en) Processes for producing low nitrogen essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
CN112899438A (en) Method for duplex smelting of high-nitrogen steel by pressurized ladle refining and pressurized electroslag remelting
CN111020245B (en) Preparation method of nickel-copper corrosion-resistant alloy
KR20160052664A (en) Tantalum sputtering target
US10494698B1 (en) Methods for making zirconium based alloys and bulk metallic glasses
CN103643158A (en) Low-cost CrMnTi series gear steel and production method thereof
EP3190196B1 (en) Method for deoxidizing ti-al alloy
JP2024522278A (en) VIM furnace smelting method for ultra-high N content high temperature alloy
JP5379583B2 (en) Manufacturing method of ultra high purity alloy ingot
JP6544638B2 (en) Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof
CN111763869A (en) Tungsten-cobalt-nickel alloy and preparation method and application thereof
US11441211B2 (en) Method for producing alloy steel
JP6347405B2 (en) Method for producing maraging steel
JP5814500B2 (en) Method for producing stainless steel ingot having carbon [C] of 10 ppm or less in ingot
KR20210037114A (en) Ingot manufacturing method using electro slag remelting process and manufacturing method of mold steel for high clean die casting using the same
TWI564398B (en) Nickel-based alloy and method of producing thereof
RU2557438C1 (en) Chrome-based heat resisting alloy and method of smelting of chrome-based alloy
JP3573344B2 (en) Manufacturing method of highly clean maraging steel
KR101441302B1 (en) Stainless steel and method of manufacturing the same
JPS6056056A (en) Process-hardenable austenite manganese steel and manufacture
JP2017106105A (en) Method for producing sulfur-added steel
TWI680185B (en) Method of producing stainless steel
RU2620405C1 (en) Chromating alloy and method of alloy melting
CN118007010A (en) Smelting method for reducing nitrogen and oxygen content in high-temperature alloy and high-temperature alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190606

R150 Certificate of patent or registration of utility model

Ref document number: 6544638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157