JP2017036170A - Production method of sintered body of boron carbide - Google Patents

Production method of sintered body of boron carbide Download PDF

Info

Publication number
JP2017036170A
JP2017036170A JP2015157272A JP2015157272A JP2017036170A JP 2017036170 A JP2017036170 A JP 2017036170A JP 2015157272 A JP2015157272 A JP 2015157272A JP 2015157272 A JP2015157272 A JP 2015157272A JP 2017036170 A JP2017036170 A JP 2017036170A
Authority
JP
Japan
Prior art keywords
sintering
boron carbide
sintered body
sintered
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015157272A
Other languages
Japanese (ja)
Other versions
JP6346593B2 (en
Inventor
前田 信
Makoto Maeda
信 前田
知樹 武田
Tomoki Takeda
知樹 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atect Corp
Original Assignee
Atect Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atect Corp filed Critical Atect Corp
Priority to JP2015157272A priority Critical patent/JP6346593B2/en
Publication of JP2017036170A publication Critical patent/JP2017036170A/en
Application granted granted Critical
Publication of JP6346593B2 publication Critical patent/JP6346593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered body of boron carbide excellent in discharge workability without damaging a physical property of the boron carbide, especially a density.SOLUTION: In a production method of a sintered body 1 of boron carbide, when forming the sintered body 1 of boron carbide by sintering a compact 4 formed by mixing particles 2 of boron carbide with a binder 3, under an atmosphere in which a conductive substance 5 is evaporated, sintering is performed after adjusting so that a condition for sintering the compact 4 satisfies a condition under which a sintered body enabling discharge machining can be obtained.SELECTED DRAWING: Figure 1

Description

本発明は、放電加工性に優れた炭化ホウ素の焼結体を製造することができる炭化ホウ素の焼結体の製造方法に関するものである。   The present invention relates to a method for manufacturing a sintered body of boron carbide capable of manufacturing a sintered body of boron carbide having excellent electric discharge processability.

炭化ホウ素(例えば、B4C)は、ダイヤモンド、立方晶窒化ホウ素(cBN)に次ぐ硬度を有する工業材料として知られ、炭化ホウ素を含む材料を焼結した焼結体は超硬材料などとしてさまざまな用途に用いられている。
上述した炭化ホウ素の焼結体は、高硬度であるが故に切削加工などの機械加工を行うことが困難であり、機械的加工における加工性があまり良くない。それゆえ、炭化ホウ素の焼結体のような材料に対しては、機械加工に代えて放電加工を用いて加工が検討されてきた。
Boron carbide (for example, B4C) is known as an industrial material with hardness next to diamond and cubic boron nitride (cBN). It is used for.
Since the above-mentioned sintered body of boron carbide has high hardness, it is difficult to perform machining such as cutting, and workability in mechanical processing is not so good. Therefore, for materials such as a sintered body of boron carbide, machining has been studied using electric discharge machining instead of machining.

なお、炭化ホウ素の焼結体は、アルミナなどの焼結体に比して多少の導電性があるものの、放電加工を満足に行える程の導電性は備えていない。それゆえ、放電加工に際しては、炭化ホウ素の焼結体の導電性をさらに良くする手段を講じる必要がある。
例えば、非特許文献1には、表面に導電性膜を付与して油中で加工を行えば、炭化ホウ素の焼結体のような材料に対しても十分に放電加工が可能なことが記載されている。
Although the sintered body of boron carbide has some conductivity as compared with a sintered body such as alumina, the sintered body does not have sufficient conductivity to perform electric discharge machining satisfactorily. Therefore, it is necessary to take measures to further improve the conductivity of the sintered body of boron carbide in electric discharge machining.
For example, Non-Patent Document 1 describes that if a conductive film is provided on the surface and processing is performed in oil, sufficient electrical discharge processing can be performed even for materials such as a sintered body of boron carbide. Has been.

また、特許文献1、2には、炭化ホウ素の粉末に、二酸化チタン、炭素粉末を加えたものを、1850℃〜2150℃の温度で焼結することで、抵抗率が0.1Ω・cmの炭化ホウ素−二ホウ化チタン焼結体を得る技術が開示されている。これらの文献に記載された焼結体では、導電性を備えた二ホウ化チタンを炭化ホウ素の粒子間に存在させることで、放電加工を可能としている。   Patent Documents 1 and 2 disclose that the resistivity is 0.1 Ω · cm by sintering a powder obtained by adding titanium dioxide and carbon powder to boron carbide powder at a temperature of 1850 ° C. to 2150 ° C. A technique for obtaining a boron carbide-titanium diboride sintered body is disclosed. In the sintered bodies described in these documents, electrical discharge machining is possible by allowing conductive titanium diboride to exist between boron carbide particles.

武沢英樹、「総論 放電加工における最近の技術動向」、型技術、日刊工業新聞社発行、2009年10月号、p.18−21Hideki Takezawa, “General Remarks, Recent Technology Trends in Electrical Discharge Machining”, Die Technology, Published by Nikkan Kogyo Shimbun, October 2009, p.18-21

特開2009−143777号公報JP 2009-143777 A 特開2013−184868号公報JP 2013-184868 A

ところで、上述した非特許文献1のように、導電性物質を用いて炭化ホウ素の焼結体の表面を被覆する技術では、焼結体が薄い場合には問題はないが、厚みのある焼結体を放電加工する際には放電加工を行うことが困難になる場合がある。
また、特許文献1、2のように放電性物質を混合した上で焼結体を成形する技術では、炭化ホウ素に対して二ホウ化チタンを混合するため、焼結体の物性が本来炭化ホウ素が持つ値に対して劣化してしまう、言い換えれば二ホウ化チタンを混合せずに焼結した場合の物性値よりも二ホウ化チタンを混合して焼結した焼結体の物性値の方が悪くなってしまう可能性がある。
By the way, as in Non-Patent Document 1 described above, the technique of coating the surface of a sintered body of boron carbide using a conductive material is not problematic when the sintered body is thin, but thick sintering is performed. When electric discharge machining is performed on the body, it may be difficult to perform electric discharge machining.
Moreover, in the technique of forming a sintered body after mixing dischargeable substances as in Patent Documents 1 and 2, since titanium diboride is mixed with boron carbide, the physical properties of the sintered body are originally boron carbide. In other words, the physical property value of a sintered body in which titanium diboride is mixed and sintered is more than the physical property value in the case of sintering without mixing titanium diboride. May get worse.

本発明は、上述の問題に鑑みてなされたものであり、炭化ホウ素の物性、特に密度を可能な限り損なうことなく放電加工性に優れた炭化ホウ素の焼結体を得ることができる炭化ホウ素の焼結体の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and it is possible to obtain a boron carbide sintered body excellent in electric discharge workability without damaging the physical properties of boron carbide, particularly the density as much as possible. It aims at providing the manufacturing method of a sintered compact.

上記課題を解決するため、本発明の炭化ホウ素の焼結体の製造方法は以下の技術的手段を講じている。
即ち、本発明の炭化ホウ素の焼結体の製造方法は、炭化ホウ素とバインダとを混合し且つ成形した成形体を導電性物質が気化した雰囲気下で焼結して前記炭化ホウ素の焼結体を成形するに際しては、前記成形体を焼結する際の条件を、放電加工が可能な焼結体が得られるような条件として焼結を行うことを特徴とする。
In order to solve the above problems, the method for producing a sintered body of boron carbide according to the present invention employs the following technical means.
That is, the method for producing a sintered body of boron carbide according to the present invention comprises mixing a boron carbide and a binder and sintering the molded body in an atmosphere in which a conductive substance is vaporized, thereby sintering the boron carbide sintered body. When molding is performed, the sintering is performed under the condition that the molded body is sintered so that a sintered body capable of electric discharge machining is obtained.

なお、好ましくは、炭化ホウ素とバインダとを混合し且つ成形した成形体を導電性物質が気化した雰囲気下で焼結して前記炭化ホウ素の焼結体を成形するに際しては、前記成形体を焼結する際の条件を、焼結後に最高密度が出る条件から未焼結側にシフトした条件としつつ焼結を行うことで、前記焼結体に放電加工が可能となる特性を発現させるとよい。
なお、好ましくは、前記成形体を焼結する際の条件である焼結温度が、焼結後に最高密度が出る焼結温度をT℃とした場合に、(T−50)℃〜(T−20)℃とされているとよい。
Preferably, when forming the sintered body of boron carbide by sintering the molded body in which boron carbide and a binder are mixed and molded in an atmosphere in which a conductive substance is vaporized, the molded body is sintered. It is better to develop the characteristics that enable electric discharge machining to the sintered body by performing sintering while setting the conditions when the sintering is performed to the conditions in which the highest density after sintering is shifted to the unsintered condition. .
Preferably, the sintering temperature, which is a condition for sintering the molded body, is (T 0 -50) ° C. to (T 0 ° C.) when the sintering temperature at which the maximum density is obtained after sintering is T 0 ° C. T 0 -20) may have been a ° C..

なお、好ましくは、前記成形体を焼結する際の条件である焼結温度が、前記炭化ホウ素の融点をT℃とした場合に、(T×0.760)℃〜(T×0.771)℃とされているとよい。
なお、好ましくは、前記成形体を焼結する際の条件である焼結時間が、焼結後に最高密度が出る焼結時間をt(hr)とした場合に、(t−3)〜(t−1)とされているとよい。
Preferably, the sintering temperature, which is a condition for sintering the molded body, is (T 1 × 0.760) ° C. to (T 1 ×) when the melting point of the boron carbide is T 1 ° C. 0.771) C.
Preferably, the sintering time, which is a condition for sintering the molded body, is (t 0 -3) to (t 0 -3) when the sintering time at which the maximum density is obtained after sintering is t 0 (hr). It may be (t 0 −1).

本発明にかかる炭化ホウ素の焼結体の製造方法によれば、炭化ホウ素の物性、特に密度を可能な限り損なうことなく放電加工性に優れた炭化ホウ素の焼結体を得ることができる。   According to the method for producing a sintered body of boron carbide according to the present invention, it is possible to obtain a sintered body of boron carbide having excellent electric discharge workability without impairing the physical properties of boron carbide, particularly the density as much as possible.

本実施形態にかかる炭化ホウ素の焼結体の製造方法について、焼結体を製造する手順を模式的に示した図である。It is the figure which showed typically the procedure which manufactures a sintered compact about the manufacturing method of the sintered compact of the boron carbide concerning this embodiment.

以下、本発明にかかる炭化ホウ素の焼結体1の製造方法の実施形態を、図面に基づき説明する。
図1は、本実施形態の焼結体1の製造方法を模式的に示したものである。
図1に示すように、本実施形態の焼結体1の製造方法は、炭化ホウ素の粒子2とバインダ3とを混合すると共に成形する「成形工程」と、成形された成形体4を導電性物質5が気化した雰囲気下で焼結して炭化ホウ素の焼結体1を成形する「焼結工程」と、を備えている。
Hereinafter, an embodiment of a method for producing a sintered body 1 of boron carbide according to the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a method for producing the sintered body 1 of the present embodiment.
As shown in FIG. 1, the manufacturing method of the sintered body 1 of the present embodiment includes a “molding step” in which boron carbide particles 2 and a binder 3 are mixed and molded, and the molded body 4 is made conductive. A “sintering step” in which a sintered body 1 of boron carbide is formed by sintering in an atmosphere in which the substance 5 is vaporized.

次に、本実施形態の焼結体1の製造方法を構成する「成形工程」及び「焼結工程」について説明する。
成形工程の方法としては、例えば粉末射出成形を用いることができるが、他にも金型成形、冷間静水圧成形(CIP)、押し出し成形、鋳込み成形、シート成形、インクジェットプリンタによる成形も用いることができる。ここでは、粉末射出成形を適用する場合の実施形態について説明する。
Next, the “forming step” and the “sintering step” constituting the method for manufacturing the sintered body 1 of the present embodiment will be described.
As a method of the molding process, for example, powder injection molding can be used, but in addition, mold molding, cold isostatic pressing (CIP), extrusion molding, casting molding, sheet molding, and molding by an ink jet printer can also be used. Can do. Here, an embodiment in the case of applying powder injection molding will be described.

粉末射出成形とは、炭化ホウ素の粒子2と、バインダ3とを混合し、得られた混合物を金型6内に射出成形して、所定の形状の成形体4を成形するものである。
この成形工程に用いられる炭化ホウ素の粒子2は、平均粒径D50(メジアン径)が0.1μm〜10μm、好ましくは0.1μm〜1.0μmとされている。また、この炭化ホウ素の粒子2には、熱炭素還元反応を用いて合成したものを用いることができる。つまり、熱炭素還元反応を用いて、ホウ素源(ホウ酸(HBO)や酸化ホウ素(B))と炭素源(活性炭や石油コークスなど)を直接混合し、高温加熱を行えば、本実施形態の製造方法に用いることができるような炭化ホウ素の粒子2を得ることが可能となる。なお、炭化ホウ素の粒子2には、熱炭素還元反応以外の方法で合成された粒子を用いても良い。
In the powder injection molding, boron carbide particles 2 and a binder 3 are mixed, and the resultant mixture is injection-molded into a mold 6 to form a molded body 4 having a predetermined shape.
The boron carbide particles 2 used in this molding step have an average particle diameter D 50 (median diameter) of 0.1 μm to 10 μm, preferably 0.1 μm to 1.0 μm. The boron carbide particles 2 may be synthesized using a thermal carbon reduction reaction. That is, using a hot carbon reduction reaction, a boron source (boric acid (H 3 BO 3 ) or boron oxide (B 2 O 3 )) and a carbon source (such as activated carbon or petroleum coke) are directly mixed and heated at a high temperature. For example, boron carbide particles 2 that can be used in the manufacturing method of the present embodiment can be obtained. The boron carbide particles 2 may be particles synthesized by a method other than the thermal carbon reduction reaction.

バインダ3は、炭化ホウ素の粒子2同士を結着することにより、成形体4における炭化ホウ素の粒子2の保形性を向上させるものである。具体的には、バインダ3には、アクリル樹脂、ポリスチレン、またはポリプロピレンなどの母材樹脂に、ワックスなどを混合した混合物が用いられる。
このバインダ3の母材樹脂には、上述したアクリル樹脂を10vol%〜40vol%、ポリスチレン樹脂を0vol%〜25vol%、ポリプロピレン樹脂を0vol%〜10vol%を用いるのが好ましい。
The binder 3 improves the shape retention of the boron carbide particles 2 in the molded body 4 by binding the boron carbide particles 2 together. Specifically, the binder 3 is a mixture in which a base material resin such as acrylic resin, polystyrene, or polypropylene is mixed with wax or the like.
As the base resin of the binder 3, it is preferable to use 10 vol% to 40 vol% of the acrylic resin described above, 0 vol% to 25 vol% of the polystyrene resin, and 0 vol% to 10 vol% of the polypropylene resin.

また、ワックスとしては、脂肪酸エステル、脂肪酸アミド、フタル酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックス、及びポリグリコール系化合物から選ばれる少なくとも1種以上を用いることができる。   As the wax, fatty acid ester, fatty acid amide, phthalic acid ester, paraffin wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride modified wax, and polyglycol type At least one selected from compounds can be used.

さらに、これらのワックスに加えて、炭化ホウ素の粒子2と母材樹脂との親和性(結着性)を高めるなどの目的で、ポリエチレン、アモルファスポリオレフィン、エチレン酢酸ビニル共重合体、ポリビニルブチラール樹脂、グリシジルメタクリレート樹脂などを結着補助剤として加えることもできる。
上述した炭化ホウ素の粒子2及びバインダ3を混合する混合比率は、炭化ホウ素の粒子2が40vol%〜70vol%、バインダ3が30vol%〜60vol%とするのが良い。この混合比率で炭化ホウ素の粒子2とバインダ3とを混合すれば、圧粉工程での形状保持が容易となり、さまざまな形状の焼結体1を成形することが可能となる。
Furthermore, in addition to these waxes, polyethylene, amorphous polyolefin, ethylene vinyl acetate copolymer, polyvinyl butyral resin, for the purpose of increasing the affinity (binding property) between the boron carbide particles 2 and the base resin, Glycidyl methacrylate resin or the like can also be added as a binding aid.
The mixing ratio of mixing the boron carbide particles 2 and the binder 3 is preferably 40 vol% to 70 vol% for the boron carbide particles 2 and 30 vol% to 60 vol% for the binder 3. If the boron carbide particles 2 and the binder 3 are mixed at this mixing ratio, the shape can be easily maintained in the compacting process, and various shapes of the sintered body 1 can be formed.

また、炭化ホウ素の粒子2及びバインダ3の混合には、バッチ式または連続式の混練機(図示略)を用いて混練(混合)を行うのが好ましい。混練機としてバッチ式を用いる場合であれば、混練機の内部で混合物を160℃〜180℃の温度で2時間程度に亘って混練を行えば、炭化ホウ素の粒子とバインダ3とが均質な混合された混合物を得ることができる。このようにして混練が行われた混練物(混合物)はペレタイザを用いて粒径5mm程度のペレットに加工され、ペレットとして成形機(射出成形機)に送られる。   Further, the mixing of the boron carbide particles 2 and the binder 3 is preferably carried out by kneading (mixing) using a batch type or continuous type kneader (not shown). If a batch type is used as the kneader, the mixture of the boron carbide particles and the binder 3 are homogeneously mixed if the mixture is kneaded at a temperature of 160 ° C. to 180 ° C. for about 2 hours. Can be obtained. The kneaded material (mixture) thus kneaded is processed into pellets having a particle size of about 5 mm using a pelletizer, and sent to a molding machine (injection molding machine) as pellets.

成形機は、金型6内に射出された混合物に、50ton〜150tonの圧力を加えて、混合物を所望の形状に成形するものである。圧粉装置の金型6は複数に分割可能となっている。また、金型6の内部には、金型6外の混練物を金型6内に射出する射出部(図示略)が形成されており、射出部を介して混練後の混練物を金型6内に射出できるようになっている。さらに、金型6の内部には、金型6内のガスを金型6外に排出するガス抜き部(図示略)が形成されているのが好ましい。   The molding machine applies a pressure of 50 to 150 tons to the mixture injected into the mold 6 to form the mixture into a desired shape. The mold 6 of the compacting device can be divided into a plurality of parts. Further, an injection part (not shown) for injecting the kneaded material outside the mold 6 into the mold 6 is formed inside the mold 6, and the kneaded material after kneading is injected into the mold through the injection part. 6 can be injected. Furthermore, it is preferable that a gas vent (not shown) for discharging the gas in the mold 6 out of the mold 6 is formed inside the mold 6.

上述した圧粉工程が終了した混練物に対しては、加熱炉7を用いて脱脂を行う。この脱脂は、成形体からバインダを除去するために実施されるが、成形工程で成形された混練物中に入り込んだ空気などのガスや成形体4中に含まれる溶剤などを除く効果も得られる。この脱脂を行うことで、焼結体1の膨れやクラックを防止することができる。
この脱脂を行う雰囲気は、窒素やアルゴンなどの不活性ガスや水素ガスのようなガスを用いて行われ、非酸化性のものとなっている。特に好ましくは、この非酸化性の雰囲気としては、大気圧に対して減圧された不活性ガスの雰囲気、大気圧に保持した不活性ガスの雰囲気、あるいは大気圧に保持した水素ガスの雰囲気を用いるのが良い。
The kneaded product after the above-described compacting process is degreased using the heating furnace 7. This degreasing is carried out in order to remove the binder from the molded body, but it is also possible to obtain the effect of removing gases such as air that has entered into the kneaded product molded in the molding process and the solvent contained in the molded body 4. . By performing this degreasing, swelling and cracks of the sintered body 1 can be prevented.
The degreasing atmosphere is performed using an inert gas such as nitrogen or argon, or a gas such as hydrogen gas, and is non-oxidizing. Particularly preferably, as the non-oxidizing atmosphere, an inert gas atmosphere depressurized with respect to atmospheric pressure, an inert gas atmosphere maintained at atmospheric pressure, or a hydrogen gas atmosphere maintained at atmospheric pressure is used. Is good.

また、脱脂は、バッチ式の加熱炉7か、ベルト式、プッシャー式、ウォーキング式などの連続式の加熱炉7を用いて行うことができ、その際の炉内温度は炭化ホウ素の焼結が起きない600℃以下の温度域とされる。このようにして脱脂が行われた混練物に対しては、焼結工程が行われる。
焼結工程は、圧粉工程において金型6により所定の形状に成形された成形体4を高温状態に保持して、成形体4中の炭化ホウ素の粒子2同士を結合させる工程である。この焼結工程は、上述した脱脂と同じ加熱炉7を用いて行われるが、成形体4を処理する温度及び時間が脱脂とは異なっている。
In addition, degreasing can be performed using a batch-type heating furnace 7 or a continuous heating furnace 7 such as a belt type, a pusher type, or a walking type. A temperature range of 600 ° C. or less that does not occur. A sintering process is performed on the kneaded material thus degreased.
The sintering process is a process in which the molded body 4 formed into a predetermined shape by the mold 6 in the compacting process is held in a high temperature state and the boron carbide particles 2 in the molded body 4 are bonded to each other. This sintering step is performed using the same heating furnace 7 as the above-described degreasing, but the temperature and time for processing the molded body 4 are different from degreasing.

焼結工程においては、難焼結性物質である炭化ホウ素の粒子2の焼結を促進するために、焼結時の雰囲気中にアルミニウム(導電性物質5)が気化されて加えられている。このアルミニウムは、加熱炉7の炉内に成形体4から距離をあけて設けられていて、焼結時に加熱炉7の熱により気化するようになっている。つまり、2000℃を超える焼結温度を備えた焼結工程においては、アルミニウムは融点を超える温度で加熱されることになるため、大気圧状態での飽和蒸気圧に達するまではガスとして気化し、気化したアルミニウムガスが加熱炉7内の雰囲気に含まれるようになる。   In the sintering step, aluminum (conductive material 5) is vaporized and added to the atmosphere during sintering in order to promote the sintering of the boron carbide particles 2 which are hardly sinterable materials. This aluminum is provided in the furnace of the heating furnace 7 at a distance from the molded body 4 and is vaporized by the heat of the heating furnace 7 during sintering. In other words, in a sintering process with a sintering temperature exceeding 2000 ° C., aluminum is heated at a temperature exceeding the melting point, and thus vaporizes as a gas until reaching the saturated vapor pressure at atmospheric pressure, The vaporized aluminum gas is included in the atmosphere in the heating furnace 7.

このような気化したアルミニウムガスの雰囲気中で成形体4を焼結すると、気化したアルミニウムが成形体4の表面に存在するホウ素の酸化物に作用して、炭化ホウ素の焼結反応が促進される。
ところで、本発明の焼結体1の製造方法は、成形体4を焼結する際の条件を、放電加工が可能な焼結体1が得られるような条件として焼結を行う、例えば、焼結体1の焼結を未焼結状態または過焼結状態となる側に変更しつつ焼結を行うことで、焼結体1に放電加工が可能となる特性を発現させることを特徴としている。この「焼結体の焼結が未焼結状態となる」とは、焼結が完全に完了していない状態、つまり「半焼け状態」を意味している。例えば、本来ならば焼結が完全に行われて焼結体1として最高密度が得られる焼結温度や焼結時間に対して、この焼結温度や焼結時間を下回る温度や時間で成形体4を焼結することが、「焼結後に最高密度が出る条件から未焼結側にシフトした条件」に他ならない。
When the molded body 4 is sintered in the atmosphere of the vaporized aluminum gas, the vaporized aluminum acts on the boron oxide existing on the surface of the molded body 4 to promote the boron carbide sintering reaction. .
By the way, in the method for producing the sintered body 1 of the present invention, the sintering is performed with the conditions for sintering the molded body 4 being such that the sintered body 1 capable of electric discharge machining is obtained. By performing sintering while changing the sintering of the bonded body 1 to an unsintered state or an oversintered state, the sintered body 1 is characterized in that it can exhibit electric discharge machining characteristics. . This “sintering of the sintered body is in an unsintered state” means a state where the sintering is not completely completed, that is, a “semi-burned state”. For example, if the sintering is performed completely and the sintering temperature and the sintering time at which the highest density can be obtained as the sintered body 1, the molded body is formed at a temperature and time lower than the sintering temperature and the sintering time. Sintering No. 4 is nothing but “a condition shifted from the condition of maximum density after sintering to the unsintered side”.

例えば、焼結体1を焼結する際に最低でも2150℃という焼結温度が必要な場合であれば、2150℃に対して50℃低い2100℃から、2150℃に対して20℃低い2130℃までの範囲で焼結を行うことが「焼結後に最高密度が出る条件から未焼結側にシフトした条件」ということになる。
なお、炭化ホウ素の焼結体を焼結する場合には焼結温度をある程度まで大きくすると焼結体の密度がそれ以上大きくならないようになる。このように焼結体の密度に変化がなくなった温度を最高焼結温度とした場合に、上述した「最高密度が出る焼結温度(条件)」とは、最高焼結温度に対して98%以上となるような温度を選択するとよい。
For example, if a sintering temperature of at least 2150 ° C. is required when sintering the sintered body 1, 2130 ° C., which is 20 ° C. lower than 2150 ° C. Sintering in the range up to this is "the condition shifted from the condition of maximum density after sintering to the unsintered side".
When sintering a sintered body of boron carbide, if the sintering temperature is increased to some extent, the density of the sintered body will not increase any further. In this way, when the temperature at which the density of the sintered body has ceased to be the maximum sintering temperature, the above-mentioned “sintering temperature (condition) at which the maximum density is obtained” is 98% of the maximum sintering temperature. It is advisable to select such a temperature.

このような条件で焼結体1を焼結すれば、焼結体1の密度を下げて内部に微小な空孔を残留させることにより、焼結後の冷却過程において気化した金属アルミニウムが空孔内で析出して残留する。それによって焼結体の電気的な体積抵抗率が減少し、放電加工に適した状態となる。
具体的には、本発明の焼結体1の製造方法では、成形体4を焼結する際の条件の一つである焼結温度Tに対して、焼結後に最高密度が出る焼結温度をT℃とした場合に、焼結温度Tが(T−50)℃〜(T−20)℃、より好ましくは(T−50)℃〜(T−30)℃とされている。例えば、本実施形態の組成の焼結体を焼結する場合であれば、焼結後の密度が最大となる焼結温度T=2150℃となるので、焼結温度を2130℃(=T−20℃)としている。
If the sintered body 1 is sintered under such conditions, the density of the sintered body 1 is reduced and minute pores remain inside, so that the metal aluminum vaporized in the cooling process after the sintering becomes voids. It precipitates and remains inside. As a result, the electrical volume resistivity of the sintered body is reduced, and it becomes a state suitable for electric discharge machining.
Specifically, in the manufacturing method of the sintered body 1 of the present invention, the sintering temperature at which the highest density is obtained after sintering with respect to the sintering temperature T, which is one of the conditions when the molded body 4 is sintered. Is set to T 0 ° C, the sintering temperature T is (T 0 -50) ° C to (T 0 -20) ° C, more preferably (T 0 -50) ° C to (T 0 -30) ° C. ing. For example, in the case of sintering a sintered body having the composition of the present embodiment, the sintering temperature T 0 = 2150 ° C. at which the density after sintering becomes maximum is set to 2130 ° C. (= T It is set to 0 -20 ℃).

また、本発明の焼結体1の製造方法では、成形体4を焼結する際の条件の一つである焼結温度Tに対して、炭化ホウ素の融点をT℃とした場合に、焼結温度Tが(T×0.760)℃〜(T×0.771)℃、より好ましくは(T×0.760)℃〜(T×0.767)℃とされている。例えば、本実施形態の組成の焼結体を焼結する場合であれば、炭化ホウ素の融点はT=2763℃となり、本実施形態の焼結温度である2130℃は(=T×0.771)と示すことができる。つまり、本実施形態の焼結温度は、上述した(T×0.760)℃〜(T×0.771)℃の範囲に含まれている。 Further, in the sintered body 1 of the production method of the present invention, the molded body 4 with respect to the sintering temperature T, which is one of the conditions for sintering, the melting point of boron carbide in the case of the T 1 ° C., The sintering temperature T is (T 1 × 0.760) ° C. to (T 1 × 0.771) ° C., more preferably (T 1 × 0.760) ° C. to (T 1 × 0.767) ° C. Yes. For example, when the sintered body having the composition of the present embodiment is sintered, the melting point of boron carbide is T 1 = 2763 ° C., and the sintering temperature of the present embodiment is 2130 ° C. (= T 1 × 0 .771). That is, the sintering temperature of this embodiment is included in the range of (T 1 × 0.760) ° C. to (T 1 × 0.771) ° C. described above.

上述した焼結温度Tで成形体4の焼結を行えば、焼結温度Tが低い分だけ焼結を促進するために加えられたアルミニウムが焼結体1中に残留しやすくなり、残留したアルミニウムにより焼結体1の導電性が高くなり、焼結体1に対して良好な放電加工性を発現させることが可能となる。
さらに、本発明の焼結体1の製造方法では、成形体4を焼結する際の条件の一つである成形体4を焼結する際の条件である焼結時間tに対して、焼結後の密度が最大となる焼結時間をt(hr)とした場合に、焼結時間tが(t−3)〜(t−1)、より好ましくは(t−3)〜(t−2)とされている。
If the molded body 4 is sintered at the sintering temperature T described above, the aluminum added to promote the sintering by the amount of the lower sintering temperature T tends to remain in the sintered body 1 and remains. The electrical conductivity of the sintered body 1 is increased by aluminum, and it becomes possible to develop good electric discharge processability for the sintered body 1.
Furthermore, in the manufacturing method of the sintered body 1 of the present invention, the sintering time t is a condition for sintering the molded body 4, which is one of the conditions for sintering the molded body 4. Sintering time t is (t 0 -3) to (t 0 -1), more preferably (t 0 -3), where t 0 (hr) is the sintering time at which the density after sintering is maximum. To (t 0 -2).

このように焼結体1の焼結が未焼結状態となる条件、言い換えれば上述した焼結温度Tや焼結時間tで成形体4の焼結を行えば、焼結を促進するために加えられたアルミニウムが焼結体1中に残留しやすくなり、残留したアルミニウムにより焼結体1の導電性を高めて、良好な放電加工性を発現することが可能となる。
なお、「焼結体1の焼結が未焼結状態となる条件」には、焼結温度Tや焼結時間t以外にも、昇温スピードや冷却スピードを用いることもできる。例えば、昇温スピードや冷却スピードを小さくすれば、焼結温度Tや焼結時間tの場合と同様に、焼結体1の焼結が未焼結状態となり、アルミニウム(導電性物質5)が焼結体1中に残留しやすくなって、焼結体1に対して良好な放電加工性を発現させることが可能となる。
In this way, if the molded body 4 is sintered at the condition where the sintered body 1 is sintered in the unsintered state, in other words, the sintering temperature T and the sintering time t described above, the sintering is promoted. The added aluminum is likely to remain in the sintered body 1, and the electrical conductivity of the sintered body 1 can be increased by the remaining aluminum, and good electric discharge processability can be expressed.
In addition, in addition to the sintering temperature T and the sintering time t, the temperature raising speed and the cooling speed can also be used as the “conditions for sintering the sintered body 1 to be in an unsintered state”. For example, if the temperature raising speed or the cooling speed is reduced, the sintered body 1 is sintered in the unsintered state as in the case of the sintering temperature T and the sintering time t, and aluminum (the conductive material 5) is replaced. It becomes easy to remain in the sintered body 1, and it becomes possible to express good electric discharge processability to the sintered body 1.

さらに、焼結体内部に残留させるために気化させる金属として、融点が炭化ホウ素焼結温度よりも低く、気化した気体の蒸気圧を容易に上げることができ、且つ体積抵抗率が炭化ホウ素よりも十分に低い材料、例えば亜鉛、銀、クロム、銅、金も用いることができる。これらの金属を気化材料として用いる場合、焼結を促進させる目的で気化させるアルミニウムと併用される必要がある。   Furthermore, as a metal to be vaporized to remain inside the sintered body, the melting point is lower than the boron carbide sintering temperature, the vapor pressure of the vaporized gas can be easily increased, and the volume resistivity is higher than that of boron carbide. Sufficiently low materials such as zinc, silver, chromium, copper, gold can also be used. When these metals are used as vaporizing materials, it is necessary to use them together with aluminum that is vaporized for the purpose of promoting sintering.

次に、実施例及び比較例を用いて、本願発明の作用効果をさらに詳しく説明する。
実施例及び比較例に用いた炭化ホウ素の粒子2は、平均粒径D50が1.3μmのものである。この炭化ホウ素の粒子2に、バインダ3を加えた。炭化ホウ素の粒子2とバインダ3との混合比率は、混合後のバインダ3及び炭化ホウ素の総量を100vol%とした場合に、炭化ホウ素が56vol%及びバインダ3が44vol%となっている。また、バインダ3中には、アクリル樹脂が28vol%、ポリスチレンが12vol%、脂肪酸アミド、フタル酸エステル、パラフィンワックス、カルナバワックスが合わせて4vol%含まれている。
Next, the function and effect of the present invention will be described in more detail using Examples and Comparative Examples.
Particles 2 of boron carbide used in Examples and Comparative Examples, the average particle diameter D 50 is of 1.3 .mu.m. A binder 3 was added to the boron carbide particles 2. The mixing ratio of the boron carbide particles 2 and the binder 3 is 56 vol% for boron carbide and 44 vol% for the binder 3 when the total amount of the binder 3 and boron carbide after mixing is 100 vol%. The binder 3 contains 28 vol% of acrylic resin, 12 vol% of polystyrene, 4 vol% of fatty acid amide, phthalate ester, paraffin wax and carnauba wax.

上述した炭化ホウ素の粒子2とバインダ3との混合物については、混練装置を用いて180℃、2時間混練を行い、混練済みの混練物を5mm程度のペレットに加工した。
このようにして得られたペレットを金型6内に射出し、金型6間に50tの圧力を加えて粉末射出成形加工を行い、成形体4を成形した。
成形された成形体4を、不活性ガス(窒素ガス)が充填されたバッチ式の加熱炉7に入れ、減圧状態とされた800℃の炉内で脱脂を行った。次に、同じバッチ式の加熱炉7に対して、不活性ガス(アルゴンガス)を充填して、成形体4の焼結を行った。なお、焼結に際しては、加熱炉7内に金属のアルミニウムを配置し、アルミニウムを気化させながら焼結を行った。
The mixture of the boron carbide particles 2 and the binder 3 described above was kneaded at 180 ° C. for 2 hours using a kneader, and the kneaded kneaded material was processed into pellets of about 5 mm.
The pellets thus obtained were injected into the mold 6, and a powder injection molding process was performed by applying a pressure of 50 t between the molds 6 to form the molded body 4.
The molded body 4 thus formed was put into a batch-type heating furnace 7 filled with an inert gas (nitrogen gas), and degreased in an oven at 800 ° C. under reduced pressure. Next, the same batch type heating furnace 7 was filled with an inert gas (argon gas), and the compact 4 was sintered. In the sintering, metallic aluminum was placed in the heating furnace 7 and sintering was performed while vaporizing the aluminum.

表1に示すように、比較例は、焼結温度を2150℃として焼結を行ったものである。上述した組成の焼結体1では、比較例の2150℃という焼結温度で焼結を行った場合に、最高密度が得られる。つまり、比較例は焼結体の密度が最大となる最高焼結温度T℃で焼結を行ったものである。また、炭化ホウ素の融点2763℃(T)を基準にした場合には、比較例の焼結温度Tは、(T×0.778)℃としても示される。 As shown in Table 1, the comparative example was sintered at a sintering temperature of 2150 ° C. In the sintered body 1 having the above-described composition, the highest density is obtained when sintering is performed at the sintering temperature of 2150 ° C. in the comparative example. That is, in the comparative example, the sintering was performed at the maximum sintering temperature T 0 ° C. at which the density of the sintered body is maximized. Moreover, when the melting point of boron carbide is based on 2763 ° C. (T 1 ), the sintering temperature T of the comparative example is also shown as (T 1 × 0.778) ° C.

一方、実施例は、焼結温度を2130℃として焼結を行ったものである。上述した組成の焼結体では、最高焼結温度Tは2150℃である。それゆえ、実施例の焼結温度Tは、(T−20)℃と示すこともできる。また、炭化ホウ素の融点2763℃(T)を基準にした場合には、実施例の焼結温度Tは、(T×0.771)℃と示してもよい。
上述のようにして焼結を行った実施例及び比較例の焼結体1に対して、体積抵抗率を計測した。結果を表1に示す。
On the other hand, in the example, sintering was performed at a sintering temperature of 2130 ° C. In the sintered body having the above composition, the maximum sintering temperature T 0 is 2150 ° C. Therefore, the sintering temperature T of the examples can also be expressed as (T 0 -20) ° C. In addition, when the melting point of boron carbide is 2766 ° C. (T 1 ), the sintering temperature T of the example may be expressed as (T 1 × 0.771) ° C.
Volume resistivity was measured with respect to the sintered bodies 1 of Examples and Comparative Examples in which sintering was performed as described above. The results are shown in Table 1.

比較例の焼結体1の体積抵抗率である3.28Ω・cmに比して、実施例の焼結体1の体積抵抗率は、0.33Ω・cmとなっており、導通性については実施例の方が比較例のものより導電しやすくなっており、実施例の焼結体1では導電性物質5のコーティングなどを行わなくても放電加工が十分に可能であることがわかる。
このことから、焼結後に最高密度が得られる最高焼結温度をT℃とした場合に、成形体4を実際に焼結する際の焼結温度Tを(T−50)℃〜(T−20)℃の範囲内として焼結を行うか、あるいは炭化ホウ素の融点をT℃とした場合に、成形体4を実際に焼結する際の焼結温度Tを(T×0.760)℃〜(T×0.771)℃として焼結を行うことで、導電性に優れ、放電加工が可能な焼結体1を得ることが可能になることが分かる。
Compared to 3.28 Ω · cm which is the volume resistivity of the sintered body 1 of the comparative example, the volume resistivity of the sintered body 1 of the example is 0.33 Ω · cm. The example is easier to conduct than the comparative example, and it can be seen that the sintered body 1 of the example can sufficiently perform electric discharge machining without coating the conductive material 5 or the like.
From this, when the maximum sintering temperature at which the maximum density is obtained after sintering is T 0 ° C., the sintering temperature T when actually sintering the molded body 4 is (T 0 −50) ° C. to ( When sintering is performed within the range of T 0 -20) ° C., or when the melting point of boron carbide is T 1 ° C., the sintering temperature T when the molded body 4 is actually sintered is (T 1 × It can be seen that by performing the sintering at 0.760) ° C. to (T 1 × 0.771) ° C., it is possible to obtain a sintered body 1 having excellent conductivity and capable of electric discharge machining.

また、成形体4を焼結する際の条件である焼結時間tが、焼結後に最高密度が得られる焼結時間(hr)をtした場合に、(t−3)〜(t−1)として焼結を行うことで、導電性に優れ、放電加工が可能な焼結体1を得ることが可能になることも分かる。
なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
In addition, when the sintering time t, which is a condition for sintering the compact 4, is t 0, the sintering time (hr) at which the highest density is obtained after sintering, (t 0 −3) to (t It can also be seen that by performing sintering as 0-1 ), it is possible to obtain a sintered body 1 that is excellent in electrical conductivity and capable of electric discharge machining.
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.

1 焼結体
2 炭化ホウ素の粒子
3 バインダ
4 成形体
5 導電性物質
6 金型
7 加熱炉
DESCRIPTION OF SYMBOLS 1 Sintered body 2 Boron carbide particle 3 Binder 4 Molded body 5 Conductive substance 6 Mold 7 Heating furnace

Claims (5)

炭化ホウ素とバインダとを混合し且つ成形した成形体を導電性物質が気化した雰囲気下で焼結して前記炭化ホウ素の焼結体を成形するに際しては、
前記成形体を焼結する際の条件を、放電加工が可能な焼結体が得られるような条件として焼結を行うことを特徴とする炭化ホウ素の焼結体の製造方法。
When molding the boron carbide sintered body by mixing the boron carbide and the binder and sintering the molded body in an atmosphere where the conductive material is vaporized,
A method for producing a sintered body of boron carbide, characterized in that sintering is performed under the conditions for sintering the formed body so that a sintered body capable of electric discharge machining is obtained.
炭化ホウ素とバインダとを混合し且つ成形した成形体を導電性物質が気化した雰囲気下で焼結して前記炭化ホウ素の焼結体を成形するに際しては、
前記成形体を焼結する際の条件を、焼結後に最高密度が出る条件から未焼結側にシフトした条件としつつ焼結を行うことで、前記焼結体に放電加工が可能となる特性を発現させることを特徴とする請求項1に記載の炭化ホウ素の焼結体の製造方法。
When molding the boron carbide sintered body by mixing the boron carbide and the binder and sintering the molded body in an atmosphere where the conductive material is vaporized,
By performing the sintering while changing the conditions for sintering the molded body from the condition where the highest density is obtained after sintering to the unsintered side, characteristics that enable electric discharge machining to the sintered body The method for producing a sintered body of boron carbide according to claim 1, wherein:
前記成形体を焼結する際の条件である焼結温度が、焼結後に最高密度が出る焼結温度をT℃とした場合に、(T−50)℃〜(T−20)℃とされていることを特徴とする請求項2に記載の炭化ホウ素の焼結体の製造方法。 When the sintering temperature, which is a condition for sintering the molded body, is T 0 ° C. at which the maximum density after sintering is T 0 ° C., (T 0 −50) ° C. to (T 0 −20) The method for producing a sintered body of boron carbide according to claim 2, wherein the sintered body is at a temperature of ° C. 前記成形体を焼結する際の条件である焼結温度が、前記炭化ホウ素の融点をT℃とした場合に、(T×0.760)℃〜(T×0.771)℃とされていることを特徴とする請求項2または3に記載の炭化ホウ素の焼結体の製造方法。 The sintering temperature, which is a condition for sintering the molded body, is (T 1 × 0.760) ° C. to (T 1 × 0.771) ° C. when the melting point of the boron carbide is T 1 ° C. The method for producing a sintered body of boron carbide according to claim 2 or 3, wherein 前記成形体を焼結する際の条件である焼結時間が、焼結後に最高密度が出る焼結時間をt(hr)とした場合に、(t−3)〜(t−1)とされていることを特徴とする請求項2〜4のいずれかに記載の炭化ホウ素の焼結体の製造方法。
The sintering time, which is a condition for sintering the molded body, is (t 0 -3) to (t 0 -1), where t 0 (hr) is the sintering time at which the highest density is obtained after sintering. The method for producing a sintered body of boron carbide according to any one of claims 2 to 4, wherein:
JP2015157272A 2015-08-07 2015-08-07 Method for manufacturing a sintered body of boron carbide Active JP6346593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015157272A JP6346593B2 (en) 2015-08-07 2015-08-07 Method for manufacturing a sintered body of boron carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015157272A JP6346593B2 (en) 2015-08-07 2015-08-07 Method for manufacturing a sintered body of boron carbide

Publications (2)

Publication Number Publication Date
JP2017036170A true JP2017036170A (en) 2017-02-16
JP6346593B2 JP6346593B2 (en) 2018-06-20

Family

ID=58047022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015157272A Active JP6346593B2 (en) 2015-08-07 2015-08-07 Method for manufacturing a sintered body of boron carbide

Country Status (1)

Country Link
JP (1) JP6346593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345615A (en) * 2021-05-31 2021-09-03 中国工程物理研究院材料研究所 Paraffin/boron carbide neutron protection composite material and preparation method thereof
JP7116234B1 (en) 2021-09-24 2022-08-09 美濃窯業株式会社 Manufacturing method of composite ceramics

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212663A (en) * 1985-07-09 1987-01-21 株式会社ノリタケカンパニーリミテド Method of sintering b4c base fine body
JPH0812434A (en) * 1993-11-01 1996-01-16 Noritake Co Ltd Production of sintered b4c material and sintered b4c compact
JP2005089268A (en) * 2003-09-18 2005-04-07 Japan Nuclear Cycle Development Inst States Of Projects Method and apparatus for sintering boron carbide ceramic
JP2008524108A (en) * 2004-12-20 2008-07-10 ジョージア・テック・リサーチ・コーポレーション B4C with improved density and hardness after pressureless sintering and post-HIP
JP2008273753A (en) * 2007-04-25 2008-11-13 Kyocera Corp Boron carbide-based sintered compact and protective member
JP2008273752A (en) * 2007-04-25 2008-11-13 Kyocera Corp Boron carbide-based sintered compact and protective member
WO2008153177A1 (en) * 2007-06-15 2008-12-18 Mino Ceramic Co., Ltd. Dense boron carbide ceramic and process for producing the same
JP2009143777A (en) * 2007-12-17 2009-07-02 Denki Kagaku Kogyo Kk Boron carbide-titanium diboride sintered compact, and production method therefor
JP2011063453A (en) * 2009-09-15 2011-03-31 Mino Ceramic Co Ltd Boron carbide-silicon carbide composite ceramic and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212663A (en) * 1985-07-09 1987-01-21 株式会社ノリタケカンパニーリミテド Method of sintering b4c base fine body
JPH0812434A (en) * 1993-11-01 1996-01-16 Noritake Co Ltd Production of sintered b4c material and sintered b4c compact
JP2005089268A (en) * 2003-09-18 2005-04-07 Japan Nuclear Cycle Development Inst States Of Projects Method and apparatus for sintering boron carbide ceramic
JP2008524108A (en) * 2004-12-20 2008-07-10 ジョージア・テック・リサーチ・コーポレーション B4C with improved density and hardness after pressureless sintering and post-HIP
JP2008273753A (en) * 2007-04-25 2008-11-13 Kyocera Corp Boron carbide-based sintered compact and protective member
JP2008273752A (en) * 2007-04-25 2008-11-13 Kyocera Corp Boron carbide-based sintered compact and protective member
WO2008153177A1 (en) * 2007-06-15 2008-12-18 Mino Ceramic Co., Ltd. Dense boron carbide ceramic and process for producing the same
JP2009143777A (en) * 2007-12-17 2009-07-02 Denki Kagaku Kogyo Kk Boron carbide-titanium diboride sintered compact, and production method therefor
JP2011063453A (en) * 2009-09-15 2011-03-31 Mino Ceramic Co Ltd Boron carbide-silicon carbide composite ceramic and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345615A (en) * 2021-05-31 2021-09-03 中国工程物理研究院材料研究所 Paraffin/boron carbide neutron protection composite material and preparation method thereof
CN113345615B (en) * 2021-05-31 2022-12-27 中国工程物理研究院材料研究所 Paraffin/boron carbide neutron protection composite material and preparation method thereof
JP7116234B1 (en) 2021-09-24 2022-08-09 美濃窯業株式会社 Manufacturing method of composite ceramics
JP2023046932A (en) * 2021-09-24 2023-04-05 美濃窯業株式会社 Manufacturing method of composite ceramic

Also Published As

Publication number Publication date
JP6346593B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6162311B1 (en) Manufacturing method of powder metallurgy sintered body by additive manufacturing method
TWI722531B (en) Boroncarbide sintered body and etch apparatus comprising the same
JP4330086B1 (en) Method for producing non-oxide ceramic products
JP2016523799A (en) Binder for injection molding composition
JP6373955B2 (en) Method for manufacturing heat-resistant parts using granules
KR20150023454A (en) Metallic crucibles and methods of forming the same
Aguirre et al. Zirconium-diboride silicon-carbide composites: A review
CN111876642A (en) Hard carbide powder for additive manufacturing
JP6346593B2 (en) Method for manufacturing a sintered body of boron carbide
JP2012509408A (en) Method of manufacturing cemented carbide or cermet products
KR101454797B1 (en) method of manufacturing powder injection structure
JP2012512962A (en) Method for manufacturing cemented carbide products
EP3614415B1 (en) Boron carbide sintered body and etcher including the same
JP2007521389A (en) Method for sintering aluminum material and aluminum alloy material
JP2021080350A (en) Composition for injection molding and manufacturing method thereof
KR20200018325A (en) Method for producing an oxide-dispersed strengthened alloy using an Organic/inorganic roll mixing milling composition as a raw material
JP2008150224A (en) Method of manufacturing ceramic
JP4860335B2 (en) Conductive corrosion-resistant member and manufacturing method thereof
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
KR100563770B1 (en) Manufacturing method of sintered diamond tool by metal powder injection molding process
JPS59121150A (en) Injection molding material
KR101525095B1 (en) Injection molding method using powder
JPH0641601B2 (en) Molding composition
JP2013010992A (en) Sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180525

R150 Certificate of patent or registration of utility model

Ref document number: 6346593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250